xref: /linux/tools/perf/util/expr.c (revision 320fefa9e2edc67011e235ea1d50f0d00ddfe004)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "smt.h"
15 #include "tsc.h"
16 #include <linux/err.h>
17 #include <linux/kernel.h>
18 #include <linux/zalloc.h>
19 #include <ctype.h>
20 #include <math.h>
21 
22 #ifdef PARSER_DEBUG
23 extern int expr_debug;
24 #endif
25 
26 struct expr_id_data {
27 	union {
28 		struct {
29 			double val;
30 			int source_count;
31 		} val;
32 		struct {
33 			double val;
34 			const char *metric_name;
35 			const char *metric_expr;
36 		} ref;
37 	};
38 
39 	enum {
40 		/* Holding a double value. */
41 		EXPR_ID_DATA__VALUE,
42 		/* Reference to another metric. */
43 		EXPR_ID_DATA__REF,
44 		/* A reference but the value has been computed. */
45 		EXPR_ID_DATA__REF_VALUE,
46 	} kind;
47 };
48 
49 static size_t key_hash(long key, void *ctx __maybe_unused)
50 {
51 	const char *str = (const char *)key;
52 	size_t hash = 0;
53 
54 	while (*str != '\0') {
55 		hash *= 31;
56 		hash += *str;
57 		str++;
58 	}
59 	return hash;
60 }
61 
62 static bool key_equal(long key1, long key2, void *ctx __maybe_unused)
63 {
64 	return !strcmp((const char *)key1, (const char *)key2);
65 }
66 
67 struct hashmap *ids__new(void)
68 {
69 	struct hashmap *hash;
70 
71 	hash = hashmap__new(key_hash, key_equal, NULL);
72 	if (IS_ERR(hash))
73 		return NULL;
74 	return hash;
75 }
76 
77 void ids__free(struct hashmap *ids)
78 {
79 	struct hashmap_entry *cur;
80 	size_t bkt;
81 
82 	if (ids == NULL)
83 		return;
84 
85 	hashmap__for_each_entry(ids, cur, bkt) {
86 		free((void *)cur->pkey);
87 		free((void *)cur->pvalue);
88 	}
89 
90 	hashmap__free(ids);
91 }
92 
93 int ids__insert(struct hashmap *ids, const char *id)
94 {
95 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
96 	char *old_key = NULL;
97 	int ret;
98 
99 	ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data);
100 	if (ret)
101 		free(data_ptr);
102 	free(old_key);
103 	free(old_data);
104 	return ret;
105 }
106 
107 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
108 {
109 	size_t bkt;
110 	struct hashmap_entry *cur;
111 	int ret;
112 	struct expr_id_data *old_data = NULL;
113 	char *old_key = NULL;
114 
115 	if (!ids1)
116 		return ids2;
117 
118 	if (!ids2)
119 		return ids1;
120 
121 	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
122 		struct hashmap *tmp = ids1;
123 
124 		ids1 = ids2;
125 		ids2 = tmp;
126 	}
127 	hashmap__for_each_entry(ids2, cur, bkt) {
128 		ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data);
129 		free(old_key);
130 		free(old_data);
131 
132 		if (ret) {
133 			hashmap__free(ids1);
134 			hashmap__free(ids2);
135 			return NULL;
136 		}
137 	}
138 	hashmap__free(ids2);
139 	return ids1;
140 }
141 
142 /* Caller must make sure id is allocated */
143 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
144 {
145 	return ids__insert(ctx->ids, id);
146 }
147 
148 /* Caller must make sure id is allocated */
149 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
150 {
151 	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
152 }
153 
154 /* Caller must make sure id is allocated */
155 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
156 				  double val, int source_count)
157 {
158 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
159 	char *old_key = NULL;
160 	int ret;
161 
162 	data_ptr = malloc(sizeof(*data_ptr));
163 	if (!data_ptr)
164 		return -ENOMEM;
165 	data_ptr->val.val = val;
166 	data_ptr->val.source_count = source_count;
167 	data_ptr->kind = EXPR_ID_DATA__VALUE;
168 
169 	ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data);
170 	if (ret)
171 		free(data_ptr);
172 	free(old_key);
173 	free(old_data);
174 	return ret;
175 }
176 
177 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
178 {
179 	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
180 	char *old_key = NULL;
181 	char *name;
182 	int ret;
183 
184 	data_ptr = zalloc(sizeof(*data_ptr));
185 	if (!data_ptr)
186 		return -ENOMEM;
187 
188 	name = strdup(ref->metric_name);
189 	if (!name) {
190 		free(data_ptr);
191 		return -ENOMEM;
192 	}
193 
194 	/*
195 	 * Intentionally passing just const char pointers,
196 	 * originally from 'struct pmu_event' object.
197 	 * We don't need to change them, so there's no
198 	 * need to create our own copy.
199 	 */
200 	data_ptr->ref.metric_name = ref->metric_name;
201 	data_ptr->ref.metric_expr = ref->metric_expr;
202 	data_ptr->kind = EXPR_ID_DATA__REF;
203 
204 	ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data);
205 	if (ret)
206 		free(data_ptr);
207 
208 	pr_debug2("adding ref metric %s: %s\n",
209 		  ref->metric_name, ref->metric_expr);
210 
211 	free(old_key);
212 	free(old_data);
213 	return ret;
214 }
215 
216 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
217 		 struct expr_id_data **data)
218 {
219 	return hashmap__find(ctx->ids, id, data) ? 0 : -1;
220 }
221 
222 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
223 			 struct expr_parse_ctx *needles)
224 {
225 	struct hashmap_entry *cur;
226 	size_t bkt;
227 	struct expr_id_data *data;
228 
229 	hashmap__for_each_entry(needles->ids, cur, bkt) {
230 		if (expr__get_id(haystack, cur->pkey, &data))
231 			return false;
232 	}
233 	return true;
234 }
235 
236 
237 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
238 		     struct expr_id_data **datap)
239 {
240 	struct expr_id_data *data;
241 
242 	if (expr__get_id(ctx, id, datap) || !*datap) {
243 		pr_debug("%s not found\n", id);
244 		return -1;
245 	}
246 
247 	data = *datap;
248 
249 	switch (data->kind) {
250 	case EXPR_ID_DATA__VALUE:
251 		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
252 		break;
253 	case EXPR_ID_DATA__REF:
254 		pr_debug2("lookup(%s): ref metric name %s\n", id,
255 			data->ref.metric_name);
256 		pr_debug("processing metric: %s ENTRY\n", id);
257 		data->kind = EXPR_ID_DATA__REF_VALUE;
258 		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
259 			pr_debug("%s failed to count\n", id);
260 			return -1;
261 		}
262 		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
263 		break;
264 	case EXPR_ID_DATA__REF_VALUE:
265 		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
266 			data->ref.val, data->ref.metric_name);
267 		break;
268 	default:
269 		assert(0);  /* Unreachable. */
270 	}
271 
272 	return 0;
273 }
274 
275 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
276 {
277 	struct expr_id_data *old_val = NULL;
278 	char *old_key = NULL;
279 
280 	hashmap__delete(ctx->ids, id, &old_key, &old_val);
281 	free(old_key);
282 	free(old_val);
283 }
284 
285 struct expr_parse_ctx *expr__ctx_new(void)
286 {
287 	struct expr_parse_ctx *ctx;
288 
289 	ctx = malloc(sizeof(struct expr_parse_ctx));
290 	if (!ctx)
291 		return NULL;
292 
293 	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
294 	if (IS_ERR(ctx->ids)) {
295 		free(ctx);
296 		return NULL;
297 	}
298 	ctx->sctx.user_requested_cpu_list = NULL;
299 	ctx->sctx.runtime = 0;
300 	ctx->sctx.system_wide = false;
301 
302 	return ctx;
303 }
304 
305 void expr__ctx_clear(struct expr_parse_ctx *ctx)
306 {
307 	struct hashmap_entry *cur;
308 	size_t bkt;
309 
310 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
311 		free((void *)cur->pkey);
312 		free(cur->pvalue);
313 	}
314 	hashmap__clear(ctx->ids);
315 }
316 
317 void expr__ctx_free(struct expr_parse_ctx *ctx)
318 {
319 	struct hashmap_entry *cur;
320 	size_t bkt;
321 
322 	if (!ctx)
323 		return;
324 
325 	free(ctx->sctx.user_requested_cpu_list);
326 	hashmap__for_each_entry(ctx->ids, cur, bkt) {
327 		free((void *)cur->pkey);
328 		free(cur->pvalue);
329 	}
330 	hashmap__free(ctx->ids);
331 	free(ctx);
332 }
333 
334 static int
335 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
336 	      bool compute_ids)
337 {
338 	YY_BUFFER_STATE buffer;
339 	void *scanner;
340 	int ret;
341 
342 	pr_debug2("parsing metric: %s\n", expr);
343 
344 	ret = expr_lex_init_extra(&ctx->sctx, &scanner);
345 	if (ret)
346 		return ret;
347 
348 	buffer = expr__scan_string(expr, scanner);
349 
350 #ifdef PARSER_DEBUG
351 	expr_debug = 1;
352 	expr_set_debug(1, scanner);
353 #endif
354 
355 	ret = expr_parse(val, ctx, compute_ids, scanner);
356 
357 	expr__flush_buffer(buffer, scanner);
358 	expr__delete_buffer(buffer, scanner);
359 	expr_lex_destroy(scanner);
360 	return ret;
361 }
362 
363 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
364 		const char *expr)
365 {
366 	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
367 }
368 
369 int expr__find_ids(const char *expr, const char *one,
370 		   struct expr_parse_ctx *ctx)
371 {
372 	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
373 
374 	if (one)
375 		expr__del_id(ctx, one);
376 
377 	return ret;
378 }
379 
380 double expr_id_data__value(const struct expr_id_data *data)
381 {
382 	if (data->kind == EXPR_ID_DATA__VALUE)
383 		return data->val.val;
384 	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
385 	return data->ref.val;
386 }
387 
388 double expr_id_data__source_count(const struct expr_id_data *data)
389 {
390 	assert(data->kind == EXPR_ID_DATA__VALUE);
391 	return data->val.source_count;
392 }
393 
394 #if !defined(__i386__) && !defined(__x86_64__)
395 double arch_get_tsc_freq(void)
396 {
397 	return 0.0;
398 }
399 #endif
400 
401 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
402 {
403 	static struct cpu_topology *topology;
404 	double result = NAN;
405 
406 	if (!strcmp("#num_cpus", literal)) {
407 		result = cpu__max_present_cpu().cpu;
408 		goto out;
409 	}
410 
411 	if (!strcasecmp("#system_tsc_freq", literal)) {
412 		result = arch_get_tsc_freq();
413 		goto out;
414 	}
415 
416 	/*
417 	 * Assume that topology strings are consistent, such as CPUs "0-1"
418 	 * wouldn't be listed as "0,1", and so after deduplication the number of
419 	 * these strings gives an indication of the number of packages, dies,
420 	 * etc.
421 	 */
422 	if (!topology) {
423 		topology = cpu_topology__new();
424 		if (!topology) {
425 			pr_err("Error creating CPU topology");
426 			goto out;
427 		}
428 	}
429 	if (!strcasecmp("#smt_on", literal)) {
430 		result = smt_on(topology) ? 1.0 : 0.0;
431 		goto out;
432 	}
433 	if (!strcmp("#core_wide", literal)) {
434 		result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology)
435 			? 1.0 : 0.0;
436 		goto out;
437 	}
438 	if (!strcmp("#num_packages", literal)) {
439 		result = topology->package_cpus_lists;
440 		goto out;
441 	}
442 	if (!strcmp("#num_dies", literal)) {
443 		result = topology->die_cpus_lists;
444 		goto out;
445 	}
446 	if (!strcmp("#num_cores", literal)) {
447 		result = topology->core_cpus_lists;
448 		goto out;
449 	}
450 
451 	pr_err("Unrecognized literal '%s'", literal);
452 out:
453 	pr_debug2("literal: %s = %f\n", literal, result);
454 	return result;
455 }
456