xref: /linux/tools/perf/util/evsel.c (revision fb71c86cc804b8f490fce1b9140014043ec41858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "callchain.h"
29 #include "cgroup.h"
30 #include "counts.h"
31 #include "event.h"
32 #include "evsel.h"
33 #include "evlist.h"
34 #include "cpumap.h"
35 #include "thread_map.h"
36 #include "target.h"
37 #include "perf_regs.h"
38 #include "record.h"
39 #include "debug.h"
40 #include "trace-event.h"
41 #include "stat.h"
42 #include "string2.h"
43 #include "memswap.h"
44 #include "util.h"
45 #include "../perf-sys.h"
46 #include "util/parse-branch-options.h"
47 #include <internal/xyarray.h>
48 #include <internal/lib.h>
49 
50 #include <linux/ctype.h>
51 
52 struct perf_missing_features perf_missing_features;
53 
54 static clockid_t clockid;
55 
56 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
57 {
58 	return 0;
59 }
60 
61 void __weak test_attr__ready(void) { }
62 
63 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
64 {
65 }
66 
67 static struct {
68 	size_t	size;
69 	int	(*init)(struct evsel *evsel);
70 	void	(*fini)(struct evsel *evsel);
71 } perf_evsel__object = {
72 	.size = sizeof(struct evsel),
73 	.init = perf_evsel__no_extra_init,
74 	.fini = perf_evsel__no_extra_fini,
75 };
76 
77 int perf_evsel__object_config(size_t object_size,
78 			      int (*init)(struct evsel *evsel),
79 			      void (*fini)(struct evsel *evsel))
80 {
81 
82 	if (object_size == 0)
83 		goto set_methods;
84 
85 	if (perf_evsel__object.size > object_size)
86 		return -EINVAL;
87 
88 	perf_evsel__object.size = object_size;
89 
90 set_methods:
91 	if (init != NULL)
92 		perf_evsel__object.init = init;
93 
94 	if (fini != NULL)
95 		perf_evsel__object.fini = fini;
96 
97 	return 0;
98 }
99 
100 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
101 
102 int __perf_evsel__sample_size(u64 sample_type)
103 {
104 	u64 mask = sample_type & PERF_SAMPLE_MASK;
105 	int size = 0;
106 	int i;
107 
108 	for (i = 0; i < 64; i++) {
109 		if (mask & (1ULL << i))
110 			size++;
111 	}
112 
113 	size *= sizeof(u64);
114 
115 	return size;
116 }
117 
118 /**
119  * __perf_evsel__calc_id_pos - calculate id_pos.
120  * @sample_type: sample type
121  *
122  * This function returns the position of the event id (PERF_SAMPLE_ID or
123  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
124  * perf_record_sample.
125  */
126 static int __perf_evsel__calc_id_pos(u64 sample_type)
127 {
128 	int idx = 0;
129 
130 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
131 		return 0;
132 
133 	if (!(sample_type & PERF_SAMPLE_ID))
134 		return -1;
135 
136 	if (sample_type & PERF_SAMPLE_IP)
137 		idx += 1;
138 
139 	if (sample_type & PERF_SAMPLE_TID)
140 		idx += 1;
141 
142 	if (sample_type & PERF_SAMPLE_TIME)
143 		idx += 1;
144 
145 	if (sample_type & PERF_SAMPLE_ADDR)
146 		idx += 1;
147 
148 	return idx;
149 }
150 
151 /**
152  * __perf_evsel__calc_is_pos - calculate is_pos.
153  * @sample_type: sample type
154  *
155  * This function returns the position (counting backwards) of the event id
156  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
157  * sample_id_all is used there is an id sample appended to non-sample events.
158  */
159 static int __perf_evsel__calc_is_pos(u64 sample_type)
160 {
161 	int idx = 1;
162 
163 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
164 		return 1;
165 
166 	if (!(sample_type & PERF_SAMPLE_ID))
167 		return -1;
168 
169 	if (sample_type & PERF_SAMPLE_CPU)
170 		idx += 1;
171 
172 	if (sample_type & PERF_SAMPLE_STREAM_ID)
173 		idx += 1;
174 
175 	return idx;
176 }
177 
178 void perf_evsel__calc_id_pos(struct evsel *evsel)
179 {
180 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
181 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
182 }
183 
184 void __perf_evsel__set_sample_bit(struct evsel *evsel,
185 				  enum perf_event_sample_format bit)
186 {
187 	if (!(evsel->core.attr.sample_type & bit)) {
188 		evsel->core.attr.sample_type |= bit;
189 		evsel->sample_size += sizeof(u64);
190 		perf_evsel__calc_id_pos(evsel);
191 	}
192 }
193 
194 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
195 				    enum perf_event_sample_format bit)
196 {
197 	if (evsel->core.attr.sample_type & bit) {
198 		evsel->core.attr.sample_type &= ~bit;
199 		evsel->sample_size -= sizeof(u64);
200 		perf_evsel__calc_id_pos(evsel);
201 	}
202 }
203 
204 void perf_evsel__set_sample_id(struct evsel *evsel,
205 			       bool can_sample_identifier)
206 {
207 	if (can_sample_identifier) {
208 		perf_evsel__reset_sample_bit(evsel, ID);
209 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
210 	} else {
211 		perf_evsel__set_sample_bit(evsel, ID);
212 	}
213 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
214 }
215 
216 /**
217  * perf_evsel__is_function_event - Return whether given evsel is a function
218  * trace event
219  *
220  * @evsel - evsel selector to be tested
221  *
222  * Return %true if event is function trace event
223  */
224 bool perf_evsel__is_function_event(struct evsel *evsel)
225 {
226 #define FUNCTION_EVENT "ftrace:function"
227 
228 	return evsel->name &&
229 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
230 
231 #undef FUNCTION_EVENT
232 }
233 
234 void evsel__init(struct evsel *evsel,
235 		 struct perf_event_attr *attr, int idx)
236 {
237 	perf_evsel__init(&evsel->core, attr);
238 	evsel->idx	   = idx;
239 	evsel->tracking	   = !idx;
240 	evsel->leader	   = evsel;
241 	evsel->unit	   = "";
242 	evsel->scale	   = 1.0;
243 	evsel->max_events  = ULONG_MAX;
244 	evsel->evlist	   = NULL;
245 	evsel->bpf_obj	   = NULL;
246 	evsel->bpf_fd	   = -1;
247 	INIT_LIST_HEAD(&evsel->config_terms);
248 	perf_evsel__object.init(evsel);
249 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 	perf_evsel__calc_id_pos(evsel);
251 	evsel->cmdline_group_boundary = false;
252 	evsel->metric_expr   = NULL;
253 	evsel->metric_name   = NULL;
254 	evsel->metric_events = NULL;
255 	evsel->collect_stat  = false;
256 	evsel->pmu_name      = NULL;
257 }
258 
259 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
260 {
261 	struct evsel *evsel = zalloc(perf_evsel__object.size);
262 
263 	if (!evsel)
264 		return NULL;
265 	evsel__init(evsel, attr, idx);
266 
267 	if (perf_evsel__is_bpf_output(evsel)) {
268 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
269 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
270 		evsel->core.attr.sample_period = 1;
271 	}
272 
273 	if (perf_evsel__is_clock(evsel)) {
274 		/*
275 		 * The evsel->unit points to static alias->unit
276 		 * so it's ok to use static string in here.
277 		 */
278 		static const char *unit = "msec";
279 
280 		evsel->unit = unit;
281 		evsel->scale = 1e-6;
282 	}
283 
284 	return evsel;
285 }
286 
287 static bool perf_event_can_profile_kernel(void)
288 {
289 	return perf_event_paranoid_check(1);
290 }
291 
292 struct evsel *perf_evsel__new_cycles(bool precise)
293 {
294 	struct perf_event_attr attr = {
295 		.type	= PERF_TYPE_HARDWARE,
296 		.config	= PERF_COUNT_HW_CPU_CYCLES,
297 		.exclude_kernel	= !perf_event_can_profile_kernel(),
298 	};
299 	struct evsel *evsel;
300 
301 	event_attr_init(&attr);
302 
303 	if (!precise)
304 		goto new_event;
305 
306 	/*
307 	 * Now let the usual logic to set up the perf_event_attr defaults
308 	 * to kick in when we return and before perf_evsel__open() is called.
309 	 */
310 new_event:
311 	evsel = evsel__new(&attr);
312 	if (evsel == NULL)
313 		goto out;
314 
315 	evsel->precise_max = true;
316 
317 	/* use asprintf() because free(evsel) assumes name is allocated */
318 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
319 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
320 		     attr.exclude_kernel ? "u" : "",
321 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
322 		goto error_free;
323 out:
324 	return evsel;
325 error_free:
326 	evsel__delete(evsel);
327 	evsel = NULL;
328 	goto out;
329 }
330 
331 /*
332  * Returns pointer with encoded error via <linux/err.h> interface.
333  */
334 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
335 {
336 	struct evsel *evsel = zalloc(perf_evsel__object.size);
337 	int err = -ENOMEM;
338 
339 	if (evsel == NULL) {
340 		goto out_err;
341 	} else {
342 		struct perf_event_attr attr = {
343 			.type	       = PERF_TYPE_TRACEPOINT,
344 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
345 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
346 		};
347 
348 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
349 			goto out_free;
350 
351 		evsel->tp_format = trace_event__tp_format(sys, name);
352 		if (IS_ERR(evsel->tp_format)) {
353 			err = PTR_ERR(evsel->tp_format);
354 			goto out_free;
355 		}
356 
357 		event_attr_init(&attr);
358 		attr.config = evsel->tp_format->id;
359 		attr.sample_period = 1;
360 		evsel__init(evsel, &attr, idx);
361 	}
362 
363 	return evsel;
364 
365 out_free:
366 	zfree(&evsel->name);
367 	free(evsel);
368 out_err:
369 	return ERR_PTR(err);
370 }
371 
372 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
373 	"cycles",
374 	"instructions",
375 	"cache-references",
376 	"cache-misses",
377 	"branches",
378 	"branch-misses",
379 	"bus-cycles",
380 	"stalled-cycles-frontend",
381 	"stalled-cycles-backend",
382 	"ref-cycles",
383 };
384 
385 static const char *__perf_evsel__hw_name(u64 config)
386 {
387 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
388 		return perf_evsel__hw_names[config];
389 
390 	return "unknown-hardware";
391 }
392 
393 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
394 {
395 	int colon = 0, r = 0;
396 	struct perf_event_attr *attr = &evsel->core.attr;
397 	bool exclude_guest_default = false;
398 
399 #define MOD_PRINT(context, mod)	do {					\
400 		if (!attr->exclude_##context) {				\
401 			if (!colon) colon = ++r;			\
402 			r += scnprintf(bf + r, size - r, "%c", mod);	\
403 		} } while(0)
404 
405 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
406 		MOD_PRINT(kernel, 'k');
407 		MOD_PRINT(user, 'u');
408 		MOD_PRINT(hv, 'h');
409 		exclude_guest_default = true;
410 	}
411 
412 	if (attr->precise_ip) {
413 		if (!colon)
414 			colon = ++r;
415 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
416 		exclude_guest_default = true;
417 	}
418 
419 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
420 		MOD_PRINT(host, 'H');
421 		MOD_PRINT(guest, 'G');
422 	}
423 #undef MOD_PRINT
424 	if (colon)
425 		bf[colon - 1] = ':';
426 	return r;
427 }
428 
429 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
430 {
431 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
432 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
433 }
434 
435 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
436 	"cpu-clock",
437 	"task-clock",
438 	"page-faults",
439 	"context-switches",
440 	"cpu-migrations",
441 	"minor-faults",
442 	"major-faults",
443 	"alignment-faults",
444 	"emulation-faults",
445 	"dummy",
446 };
447 
448 static const char *__perf_evsel__sw_name(u64 config)
449 {
450 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
451 		return perf_evsel__sw_names[config];
452 	return "unknown-software";
453 }
454 
455 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
456 {
457 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
458 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
459 }
460 
461 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
462 {
463 	int r;
464 
465 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
466 
467 	if (type & HW_BREAKPOINT_R)
468 		r += scnprintf(bf + r, size - r, "r");
469 
470 	if (type & HW_BREAKPOINT_W)
471 		r += scnprintf(bf + r, size - r, "w");
472 
473 	if (type & HW_BREAKPOINT_X)
474 		r += scnprintf(bf + r, size - r, "x");
475 
476 	return r;
477 }
478 
479 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
480 {
481 	struct perf_event_attr *attr = &evsel->core.attr;
482 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
483 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
484 }
485 
486 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
487 				[PERF_EVSEL__MAX_ALIASES] = {
488  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
489  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
490  { "LLC",	"L2",							},
491  { "dTLB",	"d-tlb",	"Data-TLB",				},
492  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
493  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
494  { "node",								},
495 };
496 
497 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
498 				   [PERF_EVSEL__MAX_ALIASES] = {
499  { "load",	"loads",	"read",					},
500  { "store",	"stores",	"write",				},
501  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
502 };
503 
504 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
505 				       [PERF_EVSEL__MAX_ALIASES] = {
506  { "refs",	"Reference",	"ops",		"access",		},
507  { "misses",	"miss",							},
508 };
509 
510 #define C(x)		PERF_COUNT_HW_CACHE_##x
511 #define CACHE_READ	(1 << C(OP_READ))
512 #define CACHE_WRITE	(1 << C(OP_WRITE))
513 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
514 #define COP(x)		(1 << x)
515 
516 /*
517  * cache operartion stat
518  * L1I : Read and prefetch only
519  * ITLB and BPU : Read-only
520  */
521 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
522  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
524  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
525  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
526  [C(ITLB)]	= (CACHE_READ),
527  [C(BPU)]	= (CACHE_READ),
528  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
529 };
530 
531 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
532 {
533 	if (perf_evsel__hw_cache_stat[type] & COP(op))
534 		return true;	/* valid */
535 	else
536 		return false;	/* invalid */
537 }
538 
539 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
540 					    char *bf, size_t size)
541 {
542 	if (result) {
543 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
544 				 perf_evsel__hw_cache_op[op][0],
545 				 perf_evsel__hw_cache_result[result][0]);
546 	}
547 
548 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
549 			 perf_evsel__hw_cache_op[op][1]);
550 }
551 
552 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
553 {
554 	u8 op, result, type = (config >>  0) & 0xff;
555 	const char *err = "unknown-ext-hardware-cache-type";
556 
557 	if (type >= PERF_COUNT_HW_CACHE_MAX)
558 		goto out_err;
559 
560 	op = (config >>  8) & 0xff;
561 	err = "unknown-ext-hardware-cache-op";
562 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
563 		goto out_err;
564 
565 	result = (config >> 16) & 0xff;
566 	err = "unknown-ext-hardware-cache-result";
567 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
568 		goto out_err;
569 
570 	err = "invalid-cache";
571 	if (!perf_evsel__is_cache_op_valid(type, op))
572 		goto out_err;
573 
574 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
575 out_err:
576 	return scnprintf(bf, size, "%s", err);
577 }
578 
579 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
580 {
581 	int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
582 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
583 }
584 
585 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
586 {
587 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
588 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
589 }
590 
591 static int perf_evsel__tool_name(char *bf, size_t size)
592 {
593 	int ret = scnprintf(bf, size, "duration_time");
594 	return ret;
595 }
596 
597 const char *perf_evsel__name(struct evsel *evsel)
598 {
599 	char bf[128];
600 
601 	if (!evsel)
602 		goto out_unknown;
603 
604 	if (evsel->name)
605 		return evsel->name;
606 
607 	switch (evsel->core.attr.type) {
608 	case PERF_TYPE_RAW:
609 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
610 		break;
611 
612 	case PERF_TYPE_HARDWARE:
613 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
614 		break;
615 
616 	case PERF_TYPE_HW_CACHE:
617 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
618 		break;
619 
620 	case PERF_TYPE_SOFTWARE:
621 		if (evsel->tool_event)
622 			perf_evsel__tool_name(bf, sizeof(bf));
623 		else
624 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
625 		break;
626 
627 	case PERF_TYPE_TRACEPOINT:
628 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
629 		break;
630 
631 	case PERF_TYPE_BREAKPOINT:
632 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
633 		break;
634 
635 	default:
636 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
637 			  evsel->core.attr.type);
638 		break;
639 	}
640 
641 	evsel->name = strdup(bf);
642 
643 	if (evsel->name)
644 		return evsel->name;
645 out_unknown:
646 	return "unknown";
647 }
648 
649 const char *perf_evsel__group_name(struct evsel *evsel)
650 {
651 	return evsel->group_name ?: "anon group";
652 }
653 
654 /*
655  * Returns the group details for the specified leader,
656  * with following rules.
657  *
658  *  For record -e '{cycles,instructions}'
659  *    'anon group { cycles:u, instructions:u }'
660  *
661  *  For record -e 'cycles,instructions' and report --group
662  *    'cycles:u, instructions:u'
663  */
664 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
665 {
666 	int ret = 0;
667 	struct evsel *pos;
668 	const char *group_name = perf_evsel__group_name(evsel);
669 
670 	if (!evsel->forced_leader)
671 		ret = scnprintf(buf, size, "%s { ", group_name);
672 
673 	ret += scnprintf(buf + ret, size - ret, "%s",
674 			 perf_evsel__name(evsel));
675 
676 	for_each_group_member(pos, evsel)
677 		ret += scnprintf(buf + ret, size - ret, ", %s",
678 				 perf_evsel__name(pos));
679 
680 	if (!evsel->forced_leader)
681 		ret += scnprintf(buf + ret, size - ret, " }");
682 
683 	return ret;
684 }
685 
686 static void __perf_evsel__config_callchain(struct evsel *evsel,
687 					   struct record_opts *opts,
688 					   struct callchain_param *param)
689 {
690 	bool function = perf_evsel__is_function_event(evsel);
691 	struct perf_event_attr *attr = &evsel->core.attr;
692 
693 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
694 
695 	attr->sample_max_stack = param->max_stack;
696 
697 	if (opts->kernel_callchains)
698 		attr->exclude_callchain_user = 1;
699 	if (opts->user_callchains)
700 		attr->exclude_callchain_kernel = 1;
701 	if (param->record_mode == CALLCHAIN_LBR) {
702 		if (!opts->branch_stack) {
703 			if (attr->exclude_user) {
704 				pr_warning("LBR callstack option is only available "
705 					   "to get user callchain information. "
706 					   "Falling back to framepointers.\n");
707 			} else {
708 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
709 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
710 							PERF_SAMPLE_BRANCH_CALL_STACK |
711 							PERF_SAMPLE_BRANCH_NO_CYCLES |
712 							PERF_SAMPLE_BRANCH_NO_FLAGS;
713 			}
714 		} else
715 			 pr_warning("Cannot use LBR callstack with branch stack. "
716 				    "Falling back to framepointers.\n");
717 	}
718 
719 	if (param->record_mode == CALLCHAIN_DWARF) {
720 		if (!function) {
721 			perf_evsel__set_sample_bit(evsel, REGS_USER);
722 			perf_evsel__set_sample_bit(evsel, STACK_USER);
723 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
724 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
725 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
726 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
727 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
728 			} else {
729 				attr->sample_regs_user |= PERF_REGS_MASK;
730 			}
731 			attr->sample_stack_user = param->dump_size;
732 			attr->exclude_callchain_user = 1;
733 		} else {
734 			pr_info("Cannot use DWARF unwind for function trace event,"
735 				" falling back to framepointers.\n");
736 		}
737 	}
738 
739 	if (function) {
740 		pr_info("Disabling user space callchains for function trace event.\n");
741 		attr->exclude_callchain_user = 1;
742 	}
743 }
744 
745 void perf_evsel__config_callchain(struct evsel *evsel,
746 				  struct record_opts *opts,
747 				  struct callchain_param *param)
748 {
749 	if (param->enabled)
750 		return __perf_evsel__config_callchain(evsel, opts, param);
751 }
752 
753 static void
754 perf_evsel__reset_callgraph(struct evsel *evsel,
755 			    struct callchain_param *param)
756 {
757 	struct perf_event_attr *attr = &evsel->core.attr;
758 
759 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
760 	if (param->record_mode == CALLCHAIN_LBR) {
761 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
762 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
763 					      PERF_SAMPLE_BRANCH_CALL_STACK);
764 	}
765 	if (param->record_mode == CALLCHAIN_DWARF) {
766 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
767 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
768 	}
769 }
770 
771 static void apply_config_terms(struct evsel *evsel,
772 			       struct record_opts *opts, bool track)
773 {
774 	struct perf_evsel_config_term *term;
775 	struct list_head *config_terms = &evsel->config_terms;
776 	struct perf_event_attr *attr = &evsel->core.attr;
777 	/* callgraph default */
778 	struct callchain_param param = {
779 		.record_mode = callchain_param.record_mode,
780 	};
781 	u32 dump_size = 0;
782 	int max_stack = 0;
783 	const char *callgraph_buf = NULL;
784 
785 	list_for_each_entry(term, config_terms, list) {
786 		switch (term->type) {
787 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
788 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
789 				attr->sample_period = term->val.period;
790 				attr->freq = 0;
791 				perf_evsel__reset_sample_bit(evsel, PERIOD);
792 			}
793 			break;
794 		case PERF_EVSEL__CONFIG_TERM_FREQ:
795 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
796 				attr->sample_freq = term->val.freq;
797 				attr->freq = 1;
798 				perf_evsel__set_sample_bit(evsel, PERIOD);
799 			}
800 			break;
801 		case PERF_EVSEL__CONFIG_TERM_TIME:
802 			if (term->val.time)
803 				perf_evsel__set_sample_bit(evsel, TIME);
804 			else
805 				perf_evsel__reset_sample_bit(evsel, TIME);
806 			break;
807 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
808 			callgraph_buf = term->val.callgraph;
809 			break;
810 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
811 			if (term->val.branch && strcmp(term->val.branch, "no")) {
812 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
813 				parse_branch_str(term->val.branch,
814 						 &attr->branch_sample_type);
815 			} else
816 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
817 			break;
818 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
819 			dump_size = term->val.stack_user;
820 			break;
821 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
822 			max_stack = term->val.max_stack;
823 			break;
824 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
825 			evsel->max_events = term->val.max_events;
826 			break;
827 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
828 			/*
829 			 * attr->inherit should has already been set by
830 			 * perf_evsel__config. If user explicitly set
831 			 * inherit using config terms, override global
832 			 * opt->no_inherit setting.
833 			 */
834 			attr->inherit = term->val.inherit ? 1 : 0;
835 			break;
836 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
837 			attr->write_backward = term->val.overwrite ? 1 : 0;
838 			break;
839 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
840 			break;
841 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
842 			break;
843 		case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT:
844 			attr->aux_output = term->val.aux_output ? 1 : 0;
845 			break;
846 		default:
847 			break;
848 		}
849 	}
850 
851 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
852 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
853 		bool sample_address = false;
854 
855 		if (max_stack) {
856 			param.max_stack = max_stack;
857 			if (callgraph_buf == NULL)
858 				callgraph_buf = "fp";
859 		}
860 
861 		/* parse callgraph parameters */
862 		if (callgraph_buf != NULL) {
863 			if (!strcmp(callgraph_buf, "no")) {
864 				param.enabled = false;
865 				param.record_mode = CALLCHAIN_NONE;
866 			} else {
867 				param.enabled = true;
868 				if (parse_callchain_record(callgraph_buf, &param)) {
869 					pr_err("per-event callgraph setting for %s failed. "
870 					       "Apply callgraph global setting for it\n",
871 					       evsel->name);
872 					return;
873 				}
874 				if (param.record_mode == CALLCHAIN_DWARF)
875 					sample_address = true;
876 			}
877 		}
878 		if (dump_size > 0) {
879 			dump_size = round_up(dump_size, sizeof(u64));
880 			param.dump_size = dump_size;
881 		}
882 
883 		/* If global callgraph set, clear it */
884 		if (callchain_param.enabled)
885 			perf_evsel__reset_callgraph(evsel, &callchain_param);
886 
887 		/* set perf-event callgraph */
888 		if (param.enabled) {
889 			if (sample_address) {
890 				perf_evsel__set_sample_bit(evsel, ADDR);
891 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
892 				evsel->core.attr.mmap_data = track;
893 			}
894 			perf_evsel__config_callchain(evsel, opts, &param);
895 		}
896 	}
897 }
898 
899 static bool is_dummy_event(struct evsel *evsel)
900 {
901 	return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
902 	       (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
903 }
904 
905 /*
906  * The enable_on_exec/disabled value strategy:
907  *
908  *  1) For any type of traced program:
909  *    - all independent events and group leaders are disabled
910  *    - all group members are enabled
911  *
912  *     Group members are ruled by group leaders. They need to
913  *     be enabled, because the group scheduling relies on that.
914  *
915  *  2) For traced programs executed by perf:
916  *     - all independent events and group leaders have
917  *       enable_on_exec set
918  *     - we don't specifically enable or disable any event during
919  *       the record command
920  *
921  *     Independent events and group leaders are initially disabled
922  *     and get enabled by exec. Group members are ruled by group
923  *     leaders as stated in 1).
924  *
925  *  3) For traced programs attached by perf (pid/tid):
926  *     - we specifically enable or disable all events during
927  *       the record command
928  *
929  *     When attaching events to already running traced we
930  *     enable/disable events specifically, as there's no
931  *     initial traced exec call.
932  */
933 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
934 			struct callchain_param *callchain)
935 {
936 	struct evsel *leader = evsel->leader;
937 	struct perf_event_attr *attr = &evsel->core.attr;
938 	int track = evsel->tracking;
939 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
940 
941 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
942 	attr->inherit	    = !opts->no_inherit;
943 	attr->write_backward = opts->overwrite ? 1 : 0;
944 
945 	perf_evsel__set_sample_bit(evsel, IP);
946 	perf_evsel__set_sample_bit(evsel, TID);
947 
948 	if (evsel->sample_read) {
949 		perf_evsel__set_sample_bit(evsel, READ);
950 
951 		/*
952 		 * We need ID even in case of single event, because
953 		 * PERF_SAMPLE_READ process ID specific data.
954 		 */
955 		perf_evsel__set_sample_id(evsel, false);
956 
957 		/*
958 		 * Apply group format only if we belong to group
959 		 * with more than one members.
960 		 */
961 		if (leader->core.nr_members > 1) {
962 			attr->read_format |= PERF_FORMAT_GROUP;
963 			attr->inherit = 0;
964 		}
965 	}
966 
967 	/*
968 	 * We default some events to have a default interval. But keep
969 	 * it a weak assumption overridable by the user.
970 	 */
971 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
972 				     opts->user_interval != ULLONG_MAX)) {
973 		if (opts->freq) {
974 			perf_evsel__set_sample_bit(evsel, PERIOD);
975 			attr->freq		= 1;
976 			attr->sample_freq	= opts->freq;
977 		} else {
978 			attr->sample_period = opts->default_interval;
979 		}
980 	}
981 
982 	/*
983 	 * Disable sampling for all group members other
984 	 * than leader in case leader 'leads' the sampling.
985 	 */
986 	if ((leader != evsel) && leader->sample_read) {
987 		attr->freq           = 0;
988 		attr->sample_freq    = 0;
989 		attr->sample_period  = 0;
990 		attr->write_backward = 0;
991 
992 		/*
993 		 * We don't get sample for slave events, we make them
994 		 * when delivering group leader sample. Set the slave
995 		 * event to follow the master sample_type to ease up
996 		 * report.
997 		 */
998 		attr->sample_type = leader->core.attr.sample_type;
999 	}
1000 
1001 	if (opts->no_samples)
1002 		attr->sample_freq = 0;
1003 
1004 	if (opts->inherit_stat) {
1005 		evsel->core.attr.read_format |=
1006 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1007 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1008 			PERF_FORMAT_ID;
1009 		attr->inherit_stat = 1;
1010 	}
1011 
1012 	if (opts->sample_address) {
1013 		perf_evsel__set_sample_bit(evsel, ADDR);
1014 		attr->mmap_data = track;
1015 	}
1016 
1017 	/*
1018 	 * We don't allow user space callchains for  function trace
1019 	 * event, due to issues with page faults while tracing page
1020 	 * fault handler and its overall trickiness nature.
1021 	 */
1022 	if (perf_evsel__is_function_event(evsel))
1023 		evsel->core.attr.exclude_callchain_user = 1;
1024 
1025 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1026 		perf_evsel__config_callchain(evsel, opts, callchain);
1027 
1028 	if (opts->sample_intr_regs) {
1029 		attr->sample_regs_intr = opts->sample_intr_regs;
1030 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1031 	}
1032 
1033 	if (opts->sample_user_regs) {
1034 		attr->sample_regs_user |= opts->sample_user_regs;
1035 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1036 	}
1037 
1038 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1039 		perf_evsel__set_sample_bit(evsel, CPU);
1040 
1041 	/*
1042 	 * When the user explicitly disabled time don't force it here.
1043 	 */
1044 	if (opts->sample_time &&
1045 	    (!perf_missing_features.sample_id_all &&
1046 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1047 	     opts->sample_time_set)))
1048 		perf_evsel__set_sample_bit(evsel, TIME);
1049 
1050 	if (opts->raw_samples && !evsel->no_aux_samples) {
1051 		perf_evsel__set_sample_bit(evsel, TIME);
1052 		perf_evsel__set_sample_bit(evsel, RAW);
1053 		perf_evsel__set_sample_bit(evsel, CPU);
1054 	}
1055 
1056 	if (opts->sample_address)
1057 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1058 
1059 	if (opts->sample_phys_addr)
1060 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1061 
1062 	if (opts->no_buffering) {
1063 		attr->watermark = 0;
1064 		attr->wakeup_events = 1;
1065 	}
1066 	if (opts->branch_stack && !evsel->no_aux_samples) {
1067 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1068 		attr->branch_sample_type = opts->branch_stack;
1069 	}
1070 
1071 	if (opts->sample_weight)
1072 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1073 
1074 	attr->task  = track;
1075 	attr->mmap  = track;
1076 	attr->mmap2 = track && !perf_missing_features.mmap2;
1077 	attr->comm  = track;
1078 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1079 	attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1080 
1081 	if (opts->record_namespaces)
1082 		attr->namespaces  = track;
1083 
1084 	if (opts->record_switch_events)
1085 		attr->context_switch = track;
1086 
1087 	if (opts->sample_transaction)
1088 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1089 
1090 	if (opts->running_time) {
1091 		evsel->core.attr.read_format |=
1092 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1093 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1094 	}
1095 
1096 	/*
1097 	 * XXX see the function comment above
1098 	 *
1099 	 * Disabling only independent events or group leaders,
1100 	 * keeping group members enabled.
1101 	 */
1102 	if (perf_evsel__is_group_leader(evsel))
1103 		attr->disabled = 1;
1104 
1105 	/*
1106 	 * Setting enable_on_exec for independent events and
1107 	 * group leaders for traced executed by perf.
1108 	 */
1109 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1110 		!opts->initial_delay)
1111 		attr->enable_on_exec = 1;
1112 
1113 	if (evsel->immediate) {
1114 		attr->disabled = 0;
1115 		attr->enable_on_exec = 0;
1116 	}
1117 
1118 	clockid = opts->clockid;
1119 	if (opts->use_clockid) {
1120 		attr->use_clockid = 1;
1121 		attr->clockid = opts->clockid;
1122 	}
1123 
1124 	if (evsel->precise_max)
1125 		attr->precise_ip = 3;
1126 
1127 	if (opts->all_user) {
1128 		attr->exclude_kernel = 1;
1129 		attr->exclude_user   = 0;
1130 	}
1131 
1132 	if (opts->all_kernel) {
1133 		attr->exclude_kernel = 0;
1134 		attr->exclude_user   = 1;
1135 	}
1136 
1137 	if (evsel->core.own_cpus || evsel->unit)
1138 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1139 
1140 	/*
1141 	 * Apply event specific term settings,
1142 	 * it overloads any global configuration.
1143 	 */
1144 	apply_config_terms(evsel, opts, track);
1145 
1146 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1147 
1148 	/* The --period option takes the precedence. */
1149 	if (opts->period_set) {
1150 		if (opts->period)
1151 			perf_evsel__set_sample_bit(evsel, PERIOD);
1152 		else
1153 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1154 	}
1155 
1156 	/*
1157 	 * For initial_delay, a dummy event is added implicitly.
1158 	 * The software event will trigger -EOPNOTSUPP error out,
1159 	 * if BRANCH_STACK bit is set.
1160 	 */
1161 	if (opts->initial_delay && is_dummy_event(evsel))
1162 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1163 }
1164 
1165 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1166 {
1167 	char *new_filter = strdup(filter);
1168 
1169 	if (new_filter != NULL) {
1170 		free(evsel->filter);
1171 		evsel->filter = new_filter;
1172 		return 0;
1173 	}
1174 
1175 	return -1;
1176 }
1177 
1178 static int perf_evsel__append_filter(struct evsel *evsel,
1179 				     const char *fmt, const char *filter)
1180 {
1181 	char *new_filter;
1182 
1183 	if (evsel->filter == NULL)
1184 		return perf_evsel__set_filter(evsel, filter);
1185 
1186 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1187 		free(evsel->filter);
1188 		evsel->filter = new_filter;
1189 		return 0;
1190 	}
1191 
1192 	return -1;
1193 }
1194 
1195 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1196 {
1197 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1198 }
1199 
1200 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1201 {
1202 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1203 }
1204 
1205 int evsel__enable(struct evsel *evsel)
1206 {
1207 	int err = perf_evsel__enable(&evsel->core);
1208 
1209 	if (!err)
1210 		evsel->disabled = false;
1211 
1212 	return err;
1213 }
1214 
1215 int evsel__disable(struct evsel *evsel)
1216 {
1217 	int err = perf_evsel__disable(&evsel->core);
1218 	/*
1219 	 * We mark it disabled here so that tools that disable a event can
1220 	 * ignore events after they disable it. I.e. the ring buffer may have
1221 	 * already a few more events queued up before the kernel got the stop
1222 	 * request.
1223 	 */
1224 	if (!err)
1225 		evsel->disabled = true;
1226 
1227 	return err;
1228 }
1229 
1230 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1231 {
1232 	if (ncpus == 0 || nthreads == 0)
1233 		return 0;
1234 
1235 	if (evsel->system_wide)
1236 		nthreads = 1;
1237 
1238 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1239 	if (evsel->sample_id == NULL)
1240 		return -ENOMEM;
1241 
1242 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1243 	if (evsel->id == NULL) {
1244 		xyarray__delete(evsel->sample_id);
1245 		evsel->sample_id = NULL;
1246 		return -ENOMEM;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static void perf_evsel__free_id(struct evsel *evsel)
1253 {
1254 	xyarray__delete(evsel->sample_id);
1255 	evsel->sample_id = NULL;
1256 	zfree(&evsel->id);
1257 	evsel->ids = 0;
1258 }
1259 
1260 static void perf_evsel__free_config_terms(struct evsel *evsel)
1261 {
1262 	struct perf_evsel_config_term *term, *h;
1263 
1264 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1265 		list_del_init(&term->list);
1266 		free(term);
1267 	}
1268 }
1269 
1270 void perf_evsel__exit(struct evsel *evsel)
1271 {
1272 	assert(list_empty(&evsel->core.node));
1273 	assert(evsel->evlist == NULL);
1274 	perf_evsel__free_counts(evsel);
1275 	perf_evsel__free_fd(&evsel->core);
1276 	perf_evsel__free_id(evsel);
1277 	perf_evsel__free_config_terms(evsel);
1278 	cgroup__put(evsel->cgrp);
1279 	perf_cpu_map__put(evsel->core.cpus);
1280 	perf_cpu_map__put(evsel->core.own_cpus);
1281 	perf_thread_map__put(evsel->core.threads);
1282 	zfree(&evsel->group_name);
1283 	zfree(&evsel->name);
1284 	perf_evsel__object.fini(evsel);
1285 }
1286 
1287 void evsel__delete(struct evsel *evsel)
1288 {
1289 	perf_evsel__exit(evsel);
1290 	free(evsel);
1291 }
1292 
1293 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1294 				struct perf_counts_values *count)
1295 {
1296 	struct perf_counts_values tmp;
1297 
1298 	if (!evsel->prev_raw_counts)
1299 		return;
1300 
1301 	if (cpu == -1) {
1302 		tmp = evsel->prev_raw_counts->aggr;
1303 		evsel->prev_raw_counts->aggr = *count;
1304 	} else {
1305 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1306 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1307 	}
1308 
1309 	count->val = count->val - tmp.val;
1310 	count->ena = count->ena - tmp.ena;
1311 	count->run = count->run - tmp.run;
1312 }
1313 
1314 void perf_counts_values__scale(struct perf_counts_values *count,
1315 			       bool scale, s8 *pscaled)
1316 {
1317 	s8 scaled = 0;
1318 
1319 	if (scale) {
1320 		if (count->run == 0) {
1321 			scaled = -1;
1322 			count->val = 0;
1323 		} else if (count->run < count->ena) {
1324 			scaled = 1;
1325 			count->val = (u64)((double) count->val * count->ena / count->run);
1326 		}
1327 	}
1328 
1329 	if (pscaled)
1330 		*pscaled = scaled;
1331 }
1332 
1333 static int
1334 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1335 {
1336 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1337 
1338 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1339 }
1340 
1341 static void
1342 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1343 		      u64 val, u64 ena, u64 run)
1344 {
1345 	struct perf_counts_values *count;
1346 
1347 	count = perf_counts(counter->counts, cpu, thread);
1348 
1349 	count->val    = val;
1350 	count->ena    = ena;
1351 	count->run    = run;
1352 
1353 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1354 }
1355 
1356 static int
1357 perf_evsel__process_group_data(struct evsel *leader,
1358 			       int cpu, int thread, u64 *data)
1359 {
1360 	u64 read_format = leader->core.attr.read_format;
1361 	struct sample_read_value *v;
1362 	u64 nr, ena = 0, run = 0, i;
1363 
1364 	nr = *data++;
1365 
1366 	if (nr != (u64) leader->core.nr_members)
1367 		return -EINVAL;
1368 
1369 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1370 		ena = *data++;
1371 
1372 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1373 		run = *data++;
1374 
1375 	v = (struct sample_read_value *) data;
1376 
1377 	perf_evsel__set_count(leader, cpu, thread,
1378 			      v[0].value, ena, run);
1379 
1380 	for (i = 1; i < nr; i++) {
1381 		struct evsel *counter;
1382 
1383 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1384 		if (!counter)
1385 			return -EINVAL;
1386 
1387 		perf_evsel__set_count(counter, cpu, thread,
1388 				      v[i].value, ena, run);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int
1395 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1396 {
1397 	struct perf_stat_evsel *ps = leader->stats;
1398 	u64 read_format = leader->core.attr.read_format;
1399 	int size = perf_evsel__read_size(&leader->core);
1400 	u64 *data = ps->group_data;
1401 
1402 	if (!(read_format & PERF_FORMAT_ID))
1403 		return -EINVAL;
1404 
1405 	if (!perf_evsel__is_group_leader(leader))
1406 		return -EINVAL;
1407 
1408 	if (!data) {
1409 		data = zalloc(size);
1410 		if (!data)
1411 			return -ENOMEM;
1412 
1413 		ps->group_data = data;
1414 	}
1415 
1416 	if (FD(leader, cpu, thread) < 0)
1417 		return -EINVAL;
1418 
1419 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1420 		return -errno;
1421 
1422 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1423 }
1424 
1425 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1426 {
1427 	u64 read_format = evsel->core.attr.read_format;
1428 
1429 	if (read_format & PERF_FORMAT_GROUP)
1430 		return perf_evsel__read_group(evsel, cpu, thread);
1431 	else
1432 		return perf_evsel__read_one(evsel, cpu, thread);
1433 }
1434 
1435 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1436 			      int cpu, int thread, bool scale)
1437 {
1438 	struct perf_counts_values count;
1439 	size_t nv = scale ? 3 : 1;
1440 
1441 	if (FD(evsel, cpu, thread) < 0)
1442 		return -EINVAL;
1443 
1444 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1445 		return -ENOMEM;
1446 
1447 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1448 		return -errno;
1449 
1450 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1451 	perf_counts_values__scale(&count, scale, NULL);
1452 	*perf_counts(evsel->counts, cpu, thread) = count;
1453 	return 0;
1454 }
1455 
1456 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1457 {
1458 	struct evsel *leader = evsel->leader;
1459 	int fd;
1460 
1461 	if (perf_evsel__is_group_leader(evsel))
1462 		return -1;
1463 
1464 	/*
1465 	 * Leader must be already processed/open,
1466 	 * if not it's a bug.
1467 	 */
1468 	BUG_ON(!leader->core.fd);
1469 
1470 	fd = FD(leader, cpu, thread);
1471 	BUG_ON(fd == -1);
1472 
1473 	return fd;
1474 }
1475 
1476 struct bit_names {
1477 	int bit;
1478 	const char *name;
1479 };
1480 
1481 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1482 {
1483 	bool first_bit = true;
1484 	int i = 0;
1485 
1486 	do {
1487 		if (value & bits[i].bit) {
1488 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1489 			first_bit = false;
1490 		}
1491 	} while (bits[++i].name != NULL);
1492 }
1493 
1494 static void __p_sample_type(char *buf, size_t size, u64 value)
1495 {
1496 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1497 	struct bit_names bits[] = {
1498 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1499 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1500 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1501 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1502 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1503 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1504 		{ .name = NULL, }
1505 	};
1506 #undef bit_name
1507 	__p_bits(buf, size, value, bits);
1508 }
1509 
1510 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1511 {
1512 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1513 	struct bit_names bits[] = {
1514 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1515 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1516 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1517 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1518 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1519 		{ .name = NULL, }
1520 	};
1521 #undef bit_name
1522 	__p_bits(buf, size, value, bits);
1523 }
1524 
1525 static void __p_read_format(char *buf, size_t size, u64 value)
1526 {
1527 #define bit_name(n) { PERF_FORMAT_##n, #n }
1528 	struct bit_names bits[] = {
1529 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1530 		bit_name(ID), bit_name(GROUP),
1531 		{ .name = NULL, }
1532 	};
1533 #undef bit_name
1534 	__p_bits(buf, size, value, bits);
1535 }
1536 
1537 #define BUF_SIZE		1024
1538 
1539 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1540 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1541 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1542 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1543 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1544 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1545 
1546 #define PRINT_ATTRn(_n, _f, _p)				\
1547 do {							\
1548 	if (attr->_f) {					\
1549 		_p(attr->_f);				\
1550 		ret += attr__fprintf(fp, _n, buf, priv);\
1551 	}						\
1552 } while (0)
1553 
1554 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1555 
1556 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1557 			     attr__fprintf_f attr__fprintf, void *priv)
1558 {
1559 	char buf[BUF_SIZE];
1560 	int ret = 0;
1561 
1562 	PRINT_ATTRf(type, p_unsigned);
1563 	PRINT_ATTRf(size, p_unsigned);
1564 	PRINT_ATTRf(config, p_hex);
1565 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1566 	PRINT_ATTRf(sample_type, p_sample_type);
1567 	PRINT_ATTRf(read_format, p_read_format);
1568 
1569 	PRINT_ATTRf(disabled, p_unsigned);
1570 	PRINT_ATTRf(inherit, p_unsigned);
1571 	PRINT_ATTRf(pinned, p_unsigned);
1572 	PRINT_ATTRf(exclusive, p_unsigned);
1573 	PRINT_ATTRf(exclude_user, p_unsigned);
1574 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1575 	PRINT_ATTRf(exclude_hv, p_unsigned);
1576 	PRINT_ATTRf(exclude_idle, p_unsigned);
1577 	PRINT_ATTRf(mmap, p_unsigned);
1578 	PRINT_ATTRf(comm, p_unsigned);
1579 	PRINT_ATTRf(freq, p_unsigned);
1580 	PRINT_ATTRf(inherit_stat, p_unsigned);
1581 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1582 	PRINT_ATTRf(task, p_unsigned);
1583 	PRINT_ATTRf(watermark, p_unsigned);
1584 	PRINT_ATTRf(precise_ip, p_unsigned);
1585 	PRINT_ATTRf(mmap_data, p_unsigned);
1586 	PRINT_ATTRf(sample_id_all, p_unsigned);
1587 	PRINT_ATTRf(exclude_host, p_unsigned);
1588 	PRINT_ATTRf(exclude_guest, p_unsigned);
1589 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1590 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1591 	PRINT_ATTRf(mmap2, p_unsigned);
1592 	PRINT_ATTRf(comm_exec, p_unsigned);
1593 	PRINT_ATTRf(use_clockid, p_unsigned);
1594 	PRINT_ATTRf(context_switch, p_unsigned);
1595 	PRINT_ATTRf(write_backward, p_unsigned);
1596 	PRINT_ATTRf(namespaces, p_unsigned);
1597 	PRINT_ATTRf(ksymbol, p_unsigned);
1598 	PRINT_ATTRf(bpf_event, p_unsigned);
1599 	PRINT_ATTRf(aux_output, p_unsigned);
1600 
1601 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1602 	PRINT_ATTRf(bp_type, p_unsigned);
1603 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1604 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1605 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1606 	PRINT_ATTRf(sample_regs_user, p_hex);
1607 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1608 	PRINT_ATTRf(clockid, p_signed);
1609 	PRINT_ATTRf(sample_regs_intr, p_hex);
1610 	PRINT_ATTRf(aux_watermark, p_unsigned);
1611 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1612 
1613 	return ret;
1614 }
1615 
1616 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1617 				void *priv __maybe_unused)
1618 {
1619 	return fprintf(fp, "  %-32s %s\n", name, val);
1620 }
1621 
1622 static void perf_evsel__remove_fd(struct evsel *pos,
1623 				  int nr_cpus, int nr_threads,
1624 				  int thread_idx)
1625 {
1626 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1627 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1628 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1629 }
1630 
1631 static int update_fds(struct evsel *evsel,
1632 		      int nr_cpus, int cpu_idx,
1633 		      int nr_threads, int thread_idx)
1634 {
1635 	struct evsel *pos;
1636 
1637 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1638 		return -EINVAL;
1639 
1640 	evlist__for_each_entry(evsel->evlist, pos) {
1641 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1642 
1643 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1644 
1645 		/*
1646 		 * Since fds for next evsel has not been created,
1647 		 * there is no need to iterate whole event list.
1648 		 */
1649 		if (pos == evsel)
1650 			break;
1651 	}
1652 	return 0;
1653 }
1654 
1655 static bool ignore_missing_thread(struct evsel *evsel,
1656 				  int nr_cpus, int cpu,
1657 				  struct perf_thread_map *threads,
1658 				  int thread, int err)
1659 {
1660 	pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1661 
1662 	if (!evsel->ignore_missing_thread)
1663 		return false;
1664 
1665 	/* The system wide setup does not work with threads. */
1666 	if (evsel->system_wide)
1667 		return false;
1668 
1669 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1670 	if (err != -ESRCH)
1671 		return false;
1672 
1673 	/* If there's only one thread, let it fail. */
1674 	if (threads->nr == 1)
1675 		return false;
1676 
1677 	/*
1678 	 * We should remove fd for missing_thread first
1679 	 * because thread_map__remove() will decrease threads->nr.
1680 	 */
1681 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1682 		return false;
1683 
1684 	if (thread_map__remove(threads, thread))
1685 		return false;
1686 
1687 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1688 		   ignore_pid);
1689 	return true;
1690 }
1691 
1692 static void display_attr(struct perf_event_attr *attr)
1693 {
1694 	if (verbose >= 2) {
1695 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1696 		fprintf(stderr, "perf_event_attr:\n");
1697 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1698 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1699 	}
1700 }
1701 
1702 static int perf_event_open(struct evsel *evsel,
1703 			   pid_t pid, int cpu, int group_fd,
1704 			   unsigned long flags)
1705 {
1706 	int precise_ip = evsel->core.attr.precise_ip;
1707 	int fd;
1708 
1709 	while (1) {
1710 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1711 			  pid, cpu, group_fd, flags);
1712 
1713 		fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1714 		if (fd >= 0)
1715 			break;
1716 
1717 		/* Do not try less precise if not requested. */
1718 		if (!evsel->precise_max)
1719 			break;
1720 
1721 		/*
1722 		 * We tried all the precise_ip values, and it's
1723 		 * still failing, so leave it to standard fallback.
1724 		 */
1725 		if (!evsel->core.attr.precise_ip) {
1726 			evsel->core.attr.precise_ip = precise_ip;
1727 			break;
1728 		}
1729 
1730 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1731 		evsel->core.attr.precise_ip--;
1732 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1733 		display_attr(&evsel->core.attr);
1734 	}
1735 
1736 	return fd;
1737 }
1738 
1739 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1740 		struct perf_thread_map *threads)
1741 {
1742 	int cpu, thread, nthreads;
1743 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1744 	int pid = -1, err;
1745 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1746 
1747 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1748 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1749 		return -EINVAL;
1750 
1751 	if (cpus == NULL) {
1752 		static struct perf_cpu_map *empty_cpu_map;
1753 
1754 		if (empty_cpu_map == NULL) {
1755 			empty_cpu_map = perf_cpu_map__dummy_new();
1756 			if (empty_cpu_map == NULL)
1757 				return -ENOMEM;
1758 		}
1759 
1760 		cpus = empty_cpu_map;
1761 	}
1762 
1763 	if (threads == NULL) {
1764 		static struct perf_thread_map *empty_thread_map;
1765 
1766 		if (empty_thread_map == NULL) {
1767 			empty_thread_map = thread_map__new_by_tid(-1);
1768 			if (empty_thread_map == NULL)
1769 				return -ENOMEM;
1770 		}
1771 
1772 		threads = empty_thread_map;
1773 	}
1774 
1775 	if (evsel->system_wide)
1776 		nthreads = 1;
1777 	else
1778 		nthreads = threads->nr;
1779 
1780 	if (evsel->core.fd == NULL &&
1781 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1782 		return -ENOMEM;
1783 
1784 	if (evsel->cgrp) {
1785 		flags |= PERF_FLAG_PID_CGROUP;
1786 		pid = evsel->cgrp->fd;
1787 	}
1788 
1789 fallback_missing_features:
1790 	if (perf_missing_features.clockid_wrong)
1791 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1792 	if (perf_missing_features.clockid) {
1793 		evsel->core.attr.use_clockid = 0;
1794 		evsel->core.attr.clockid = 0;
1795 	}
1796 	if (perf_missing_features.cloexec)
1797 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1798 	if (perf_missing_features.mmap2)
1799 		evsel->core.attr.mmap2 = 0;
1800 	if (perf_missing_features.exclude_guest)
1801 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1802 	if (perf_missing_features.lbr_flags)
1803 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1804 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1805 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1806 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1807 	if (perf_missing_features.ksymbol)
1808 		evsel->core.attr.ksymbol = 0;
1809 	if (perf_missing_features.bpf)
1810 		evsel->core.attr.bpf_event = 0;
1811 retry_sample_id:
1812 	if (perf_missing_features.sample_id_all)
1813 		evsel->core.attr.sample_id_all = 0;
1814 
1815 	display_attr(&evsel->core.attr);
1816 
1817 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1818 
1819 		for (thread = 0; thread < nthreads; thread++) {
1820 			int fd, group_fd;
1821 
1822 			if (!evsel->cgrp && !evsel->system_wide)
1823 				pid = perf_thread_map__pid(threads, thread);
1824 
1825 			group_fd = get_group_fd(evsel, cpu, thread);
1826 retry_open:
1827 			test_attr__ready();
1828 
1829 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1830 					     group_fd, flags);
1831 
1832 			FD(evsel, cpu, thread) = fd;
1833 
1834 			if (fd < 0) {
1835 				err = -errno;
1836 
1837 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1838 					/*
1839 					 * We just removed 1 thread, so take a step
1840 					 * back on thread index and lower the upper
1841 					 * nthreads limit.
1842 					 */
1843 					nthreads--;
1844 					thread--;
1845 
1846 					/* ... and pretend like nothing have happened. */
1847 					err = 0;
1848 					continue;
1849 				}
1850 
1851 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1852 					  err);
1853 				goto try_fallback;
1854 			}
1855 
1856 			pr_debug2(" = %d\n", fd);
1857 
1858 			if (evsel->bpf_fd >= 0) {
1859 				int evt_fd = fd;
1860 				int bpf_fd = evsel->bpf_fd;
1861 
1862 				err = ioctl(evt_fd,
1863 					    PERF_EVENT_IOC_SET_BPF,
1864 					    bpf_fd);
1865 				if (err && errno != EEXIST) {
1866 					pr_err("failed to attach bpf fd %d: %s\n",
1867 					       bpf_fd, strerror(errno));
1868 					err = -EINVAL;
1869 					goto out_close;
1870 				}
1871 			}
1872 
1873 			set_rlimit = NO_CHANGE;
1874 
1875 			/*
1876 			 * If we succeeded but had to kill clockid, fail and
1877 			 * have perf_evsel__open_strerror() print us a nice
1878 			 * error.
1879 			 */
1880 			if (perf_missing_features.clockid ||
1881 			    perf_missing_features.clockid_wrong) {
1882 				err = -EINVAL;
1883 				goto out_close;
1884 			}
1885 		}
1886 	}
1887 
1888 	return 0;
1889 
1890 try_fallback:
1891 	/*
1892 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1893 	 * of them try to increase the limits.
1894 	 */
1895 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1896 		struct rlimit l;
1897 		int old_errno = errno;
1898 
1899 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1900 			if (set_rlimit == NO_CHANGE)
1901 				l.rlim_cur = l.rlim_max;
1902 			else {
1903 				l.rlim_cur = l.rlim_max + 1000;
1904 				l.rlim_max = l.rlim_cur;
1905 			}
1906 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1907 				set_rlimit++;
1908 				errno = old_errno;
1909 				goto retry_open;
1910 			}
1911 		}
1912 		errno = old_errno;
1913 	}
1914 
1915 	if (err != -EINVAL || cpu > 0 || thread > 0)
1916 		goto out_close;
1917 
1918 	/*
1919 	 * Must probe features in the order they were added to the
1920 	 * perf_event_attr interface.
1921 	 */
1922 	if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1923 		perf_missing_features.aux_output = true;
1924 		pr_debug2("Kernel has no attr.aux_output support, bailing out\n");
1925 		goto out_close;
1926 	} else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1927 		perf_missing_features.bpf = true;
1928 		pr_debug2("switching off bpf_event\n");
1929 		goto fallback_missing_features;
1930 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1931 		perf_missing_features.ksymbol = true;
1932 		pr_debug2("switching off ksymbol\n");
1933 		goto fallback_missing_features;
1934 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1935 		perf_missing_features.write_backward = true;
1936 		pr_debug2("switching off write_backward\n");
1937 		goto out_close;
1938 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1939 		perf_missing_features.clockid_wrong = true;
1940 		pr_debug2("switching off clockid\n");
1941 		goto fallback_missing_features;
1942 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1943 		perf_missing_features.clockid = true;
1944 		pr_debug2("switching off use_clockid\n");
1945 		goto fallback_missing_features;
1946 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1947 		perf_missing_features.cloexec = true;
1948 		pr_debug2("switching off cloexec flag\n");
1949 		goto fallback_missing_features;
1950 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1951 		perf_missing_features.mmap2 = true;
1952 		pr_debug2("switching off mmap2\n");
1953 		goto fallback_missing_features;
1954 	} else if (!perf_missing_features.exclude_guest &&
1955 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1956 		perf_missing_features.exclude_guest = true;
1957 		pr_debug2("switching off exclude_guest, exclude_host\n");
1958 		goto fallback_missing_features;
1959 	} else if (!perf_missing_features.sample_id_all) {
1960 		perf_missing_features.sample_id_all = true;
1961 		pr_debug2("switching off sample_id_all\n");
1962 		goto retry_sample_id;
1963 	} else if (!perf_missing_features.lbr_flags &&
1964 			(evsel->core.attr.branch_sample_type &
1965 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1966 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1967 		perf_missing_features.lbr_flags = true;
1968 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1969 		goto fallback_missing_features;
1970 	} else if (!perf_missing_features.group_read &&
1971 		    evsel->core.attr.inherit &&
1972 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1973 		   perf_evsel__is_group_leader(evsel)) {
1974 		perf_missing_features.group_read = true;
1975 		pr_debug2("switching off group read\n");
1976 		goto fallback_missing_features;
1977 	}
1978 out_close:
1979 	if (err)
1980 		threads->err_thread = thread;
1981 
1982 	do {
1983 		while (--thread >= 0) {
1984 			close(FD(evsel, cpu, thread));
1985 			FD(evsel, cpu, thread) = -1;
1986 		}
1987 		thread = nthreads;
1988 	} while (--cpu >= 0);
1989 	return err;
1990 }
1991 
1992 void evsel__close(struct evsel *evsel)
1993 {
1994 	perf_evsel__close(&evsel->core);
1995 	perf_evsel__free_id(evsel);
1996 }
1997 
1998 int perf_evsel__open_per_cpu(struct evsel *evsel,
1999 			     struct perf_cpu_map *cpus)
2000 {
2001 	return evsel__open(evsel, cpus, NULL);
2002 }
2003 
2004 int perf_evsel__open_per_thread(struct evsel *evsel,
2005 				struct perf_thread_map *threads)
2006 {
2007 	return evsel__open(evsel, NULL, threads);
2008 }
2009 
2010 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2011 				       const union perf_event *event,
2012 				       struct perf_sample *sample)
2013 {
2014 	u64 type = evsel->core.attr.sample_type;
2015 	const __u64 *array = event->sample.array;
2016 	bool swapped = evsel->needs_swap;
2017 	union u64_swap u;
2018 
2019 	array += ((event->header.size -
2020 		   sizeof(event->header)) / sizeof(u64)) - 1;
2021 
2022 	if (type & PERF_SAMPLE_IDENTIFIER) {
2023 		sample->id = *array;
2024 		array--;
2025 	}
2026 
2027 	if (type & PERF_SAMPLE_CPU) {
2028 		u.val64 = *array;
2029 		if (swapped) {
2030 			/* undo swap of u64, then swap on individual u32s */
2031 			u.val64 = bswap_64(u.val64);
2032 			u.val32[0] = bswap_32(u.val32[0]);
2033 		}
2034 
2035 		sample->cpu = u.val32[0];
2036 		array--;
2037 	}
2038 
2039 	if (type & PERF_SAMPLE_STREAM_ID) {
2040 		sample->stream_id = *array;
2041 		array--;
2042 	}
2043 
2044 	if (type & PERF_SAMPLE_ID) {
2045 		sample->id = *array;
2046 		array--;
2047 	}
2048 
2049 	if (type & PERF_SAMPLE_TIME) {
2050 		sample->time = *array;
2051 		array--;
2052 	}
2053 
2054 	if (type & PERF_SAMPLE_TID) {
2055 		u.val64 = *array;
2056 		if (swapped) {
2057 			/* undo swap of u64, then swap on individual u32s */
2058 			u.val64 = bswap_64(u.val64);
2059 			u.val32[0] = bswap_32(u.val32[0]);
2060 			u.val32[1] = bswap_32(u.val32[1]);
2061 		}
2062 
2063 		sample->pid = u.val32[0];
2064 		sample->tid = u.val32[1];
2065 		array--;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2072 			    u64 size)
2073 {
2074 	return size > max_size || offset + size > endp;
2075 }
2076 
2077 #define OVERFLOW_CHECK(offset, size, max_size)				\
2078 	do {								\
2079 		if (overflow(endp, (max_size), (offset), (size)))	\
2080 			return -EFAULT;					\
2081 	} while (0)
2082 
2083 #define OVERFLOW_CHECK_u64(offset) \
2084 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2085 
2086 static int
2087 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2088 {
2089 	/*
2090 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2091 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2092 	 * check the format does not go past the end of the event.
2093 	 */
2094 	if (sample_size + sizeof(event->header) > event->header.size)
2095 		return -EFAULT;
2096 
2097 	return 0;
2098 }
2099 
2100 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2101 			     struct perf_sample *data)
2102 {
2103 	u64 type = evsel->core.attr.sample_type;
2104 	bool swapped = evsel->needs_swap;
2105 	const __u64 *array;
2106 	u16 max_size = event->header.size;
2107 	const void *endp = (void *)event + max_size;
2108 	u64 sz;
2109 
2110 	/*
2111 	 * used for cross-endian analysis. See git commit 65014ab3
2112 	 * for why this goofiness is needed.
2113 	 */
2114 	union u64_swap u;
2115 
2116 	memset(data, 0, sizeof(*data));
2117 	data->cpu = data->pid = data->tid = -1;
2118 	data->stream_id = data->id = data->time = -1ULL;
2119 	data->period = evsel->core.attr.sample_period;
2120 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2121 	data->misc    = event->header.misc;
2122 	data->id = -1ULL;
2123 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2124 
2125 	if (event->header.type != PERF_RECORD_SAMPLE) {
2126 		if (!evsel->core.attr.sample_id_all)
2127 			return 0;
2128 		return perf_evsel__parse_id_sample(evsel, event, data);
2129 	}
2130 
2131 	array = event->sample.array;
2132 
2133 	if (perf_event__check_size(event, evsel->sample_size))
2134 		return -EFAULT;
2135 
2136 	if (type & PERF_SAMPLE_IDENTIFIER) {
2137 		data->id = *array;
2138 		array++;
2139 	}
2140 
2141 	if (type & PERF_SAMPLE_IP) {
2142 		data->ip = *array;
2143 		array++;
2144 	}
2145 
2146 	if (type & PERF_SAMPLE_TID) {
2147 		u.val64 = *array;
2148 		if (swapped) {
2149 			/* undo swap of u64, then swap on individual u32s */
2150 			u.val64 = bswap_64(u.val64);
2151 			u.val32[0] = bswap_32(u.val32[0]);
2152 			u.val32[1] = bswap_32(u.val32[1]);
2153 		}
2154 
2155 		data->pid = u.val32[0];
2156 		data->tid = u.val32[1];
2157 		array++;
2158 	}
2159 
2160 	if (type & PERF_SAMPLE_TIME) {
2161 		data->time = *array;
2162 		array++;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_ADDR) {
2166 		data->addr = *array;
2167 		array++;
2168 	}
2169 
2170 	if (type & PERF_SAMPLE_ID) {
2171 		data->id = *array;
2172 		array++;
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_STREAM_ID) {
2176 		data->stream_id = *array;
2177 		array++;
2178 	}
2179 
2180 	if (type & PERF_SAMPLE_CPU) {
2181 
2182 		u.val64 = *array;
2183 		if (swapped) {
2184 			/* undo swap of u64, then swap on individual u32s */
2185 			u.val64 = bswap_64(u.val64);
2186 			u.val32[0] = bswap_32(u.val32[0]);
2187 		}
2188 
2189 		data->cpu = u.val32[0];
2190 		array++;
2191 	}
2192 
2193 	if (type & PERF_SAMPLE_PERIOD) {
2194 		data->period = *array;
2195 		array++;
2196 	}
2197 
2198 	if (type & PERF_SAMPLE_READ) {
2199 		u64 read_format = evsel->core.attr.read_format;
2200 
2201 		OVERFLOW_CHECK_u64(array);
2202 		if (read_format & PERF_FORMAT_GROUP)
2203 			data->read.group.nr = *array;
2204 		else
2205 			data->read.one.value = *array;
2206 
2207 		array++;
2208 
2209 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2210 			OVERFLOW_CHECK_u64(array);
2211 			data->read.time_enabled = *array;
2212 			array++;
2213 		}
2214 
2215 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2216 			OVERFLOW_CHECK_u64(array);
2217 			data->read.time_running = *array;
2218 			array++;
2219 		}
2220 
2221 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2222 		if (read_format & PERF_FORMAT_GROUP) {
2223 			const u64 max_group_nr = UINT64_MAX /
2224 					sizeof(struct sample_read_value);
2225 
2226 			if (data->read.group.nr > max_group_nr)
2227 				return -EFAULT;
2228 			sz = data->read.group.nr *
2229 			     sizeof(struct sample_read_value);
2230 			OVERFLOW_CHECK(array, sz, max_size);
2231 			data->read.group.values =
2232 					(struct sample_read_value *)array;
2233 			array = (void *)array + sz;
2234 		} else {
2235 			OVERFLOW_CHECK_u64(array);
2236 			data->read.one.id = *array;
2237 			array++;
2238 		}
2239 	}
2240 
2241 	if (evsel__has_callchain(evsel)) {
2242 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2243 
2244 		OVERFLOW_CHECK_u64(array);
2245 		data->callchain = (struct ip_callchain *)array++;
2246 		if (data->callchain->nr > max_callchain_nr)
2247 			return -EFAULT;
2248 		sz = data->callchain->nr * sizeof(u64);
2249 		OVERFLOW_CHECK(array, sz, max_size);
2250 		array = (void *)array + sz;
2251 	}
2252 
2253 	if (type & PERF_SAMPLE_RAW) {
2254 		OVERFLOW_CHECK_u64(array);
2255 		u.val64 = *array;
2256 
2257 		/*
2258 		 * Undo swap of u64, then swap on individual u32s,
2259 		 * get the size of the raw area and undo all of the
2260 		 * swap. The pevent interface handles endianity by
2261 		 * itself.
2262 		 */
2263 		if (swapped) {
2264 			u.val64 = bswap_64(u.val64);
2265 			u.val32[0] = bswap_32(u.val32[0]);
2266 			u.val32[1] = bswap_32(u.val32[1]);
2267 		}
2268 		data->raw_size = u.val32[0];
2269 
2270 		/*
2271 		 * The raw data is aligned on 64bits including the
2272 		 * u32 size, so it's safe to use mem_bswap_64.
2273 		 */
2274 		if (swapped)
2275 			mem_bswap_64((void *) array, data->raw_size);
2276 
2277 		array = (void *)array + sizeof(u32);
2278 
2279 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2280 		data->raw_data = (void *)array;
2281 		array = (void *)array + data->raw_size;
2282 	}
2283 
2284 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2285 		const u64 max_branch_nr = UINT64_MAX /
2286 					  sizeof(struct branch_entry);
2287 
2288 		OVERFLOW_CHECK_u64(array);
2289 		data->branch_stack = (struct branch_stack *)array++;
2290 
2291 		if (data->branch_stack->nr > max_branch_nr)
2292 			return -EFAULT;
2293 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2294 		OVERFLOW_CHECK(array, sz, max_size);
2295 		array = (void *)array + sz;
2296 	}
2297 
2298 	if (type & PERF_SAMPLE_REGS_USER) {
2299 		OVERFLOW_CHECK_u64(array);
2300 		data->user_regs.abi = *array;
2301 		array++;
2302 
2303 		if (data->user_regs.abi) {
2304 			u64 mask = evsel->core.attr.sample_regs_user;
2305 
2306 			sz = hweight64(mask) * sizeof(u64);
2307 			OVERFLOW_CHECK(array, sz, max_size);
2308 			data->user_regs.mask = mask;
2309 			data->user_regs.regs = (u64 *)array;
2310 			array = (void *)array + sz;
2311 		}
2312 	}
2313 
2314 	if (type & PERF_SAMPLE_STACK_USER) {
2315 		OVERFLOW_CHECK_u64(array);
2316 		sz = *array++;
2317 
2318 		data->user_stack.offset = ((char *)(array - 1)
2319 					  - (char *) event);
2320 
2321 		if (!sz) {
2322 			data->user_stack.size = 0;
2323 		} else {
2324 			OVERFLOW_CHECK(array, sz, max_size);
2325 			data->user_stack.data = (char *)array;
2326 			array = (void *)array + sz;
2327 			OVERFLOW_CHECK_u64(array);
2328 			data->user_stack.size = *array++;
2329 			if (WARN_ONCE(data->user_stack.size > sz,
2330 				      "user stack dump failure\n"))
2331 				return -EFAULT;
2332 		}
2333 	}
2334 
2335 	if (type & PERF_SAMPLE_WEIGHT) {
2336 		OVERFLOW_CHECK_u64(array);
2337 		data->weight = *array;
2338 		array++;
2339 	}
2340 
2341 	if (type & PERF_SAMPLE_DATA_SRC) {
2342 		OVERFLOW_CHECK_u64(array);
2343 		data->data_src = *array;
2344 		array++;
2345 	}
2346 
2347 	if (type & PERF_SAMPLE_TRANSACTION) {
2348 		OVERFLOW_CHECK_u64(array);
2349 		data->transaction = *array;
2350 		array++;
2351 	}
2352 
2353 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2354 	if (type & PERF_SAMPLE_REGS_INTR) {
2355 		OVERFLOW_CHECK_u64(array);
2356 		data->intr_regs.abi = *array;
2357 		array++;
2358 
2359 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2360 			u64 mask = evsel->core.attr.sample_regs_intr;
2361 
2362 			sz = hweight64(mask) * sizeof(u64);
2363 			OVERFLOW_CHECK(array, sz, max_size);
2364 			data->intr_regs.mask = mask;
2365 			data->intr_regs.regs = (u64 *)array;
2366 			array = (void *)array + sz;
2367 		}
2368 	}
2369 
2370 	data->phys_addr = 0;
2371 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2372 		data->phys_addr = *array;
2373 		array++;
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2380 				       union perf_event *event,
2381 				       u64 *timestamp)
2382 {
2383 	u64 type = evsel->core.attr.sample_type;
2384 	const __u64 *array;
2385 
2386 	if (!(type & PERF_SAMPLE_TIME))
2387 		return -1;
2388 
2389 	if (event->header.type != PERF_RECORD_SAMPLE) {
2390 		struct perf_sample data = {
2391 			.time = -1ULL,
2392 		};
2393 
2394 		if (!evsel->core.attr.sample_id_all)
2395 			return -1;
2396 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2397 			return -1;
2398 
2399 		*timestamp = data.time;
2400 		return 0;
2401 	}
2402 
2403 	array = event->sample.array;
2404 
2405 	if (perf_event__check_size(event, evsel->sample_size))
2406 		return -EFAULT;
2407 
2408 	if (type & PERF_SAMPLE_IDENTIFIER)
2409 		array++;
2410 
2411 	if (type & PERF_SAMPLE_IP)
2412 		array++;
2413 
2414 	if (type & PERF_SAMPLE_TID)
2415 		array++;
2416 
2417 	if (type & PERF_SAMPLE_TIME)
2418 		*timestamp = *array;
2419 
2420 	return 0;
2421 }
2422 
2423 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2424 				     u64 read_format)
2425 {
2426 	size_t sz, result = sizeof(struct perf_record_sample);
2427 
2428 	if (type & PERF_SAMPLE_IDENTIFIER)
2429 		result += sizeof(u64);
2430 
2431 	if (type & PERF_SAMPLE_IP)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_TID)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_TIME)
2438 		result += sizeof(u64);
2439 
2440 	if (type & PERF_SAMPLE_ADDR)
2441 		result += sizeof(u64);
2442 
2443 	if (type & PERF_SAMPLE_ID)
2444 		result += sizeof(u64);
2445 
2446 	if (type & PERF_SAMPLE_STREAM_ID)
2447 		result += sizeof(u64);
2448 
2449 	if (type & PERF_SAMPLE_CPU)
2450 		result += sizeof(u64);
2451 
2452 	if (type & PERF_SAMPLE_PERIOD)
2453 		result += sizeof(u64);
2454 
2455 	if (type & PERF_SAMPLE_READ) {
2456 		result += sizeof(u64);
2457 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2458 			result += sizeof(u64);
2459 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2460 			result += sizeof(u64);
2461 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2462 		if (read_format & PERF_FORMAT_GROUP) {
2463 			sz = sample->read.group.nr *
2464 			     sizeof(struct sample_read_value);
2465 			result += sz;
2466 		} else {
2467 			result += sizeof(u64);
2468 		}
2469 	}
2470 
2471 	if (type & PERF_SAMPLE_CALLCHAIN) {
2472 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2473 		result += sz;
2474 	}
2475 
2476 	if (type & PERF_SAMPLE_RAW) {
2477 		result += sizeof(u32);
2478 		result += sample->raw_size;
2479 	}
2480 
2481 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2482 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2483 		sz += sizeof(u64);
2484 		result += sz;
2485 	}
2486 
2487 	if (type & PERF_SAMPLE_REGS_USER) {
2488 		if (sample->user_regs.abi) {
2489 			result += sizeof(u64);
2490 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2491 			result += sz;
2492 		} else {
2493 			result += sizeof(u64);
2494 		}
2495 	}
2496 
2497 	if (type & PERF_SAMPLE_STACK_USER) {
2498 		sz = sample->user_stack.size;
2499 		result += sizeof(u64);
2500 		if (sz) {
2501 			result += sz;
2502 			result += sizeof(u64);
2503 		}
2504 	}
2505 
2506 	if (type & PERF_SAMPLE_WEIGHT)
2507 		result += sizeof(u64);
2508 
2509 	if (type & PERF_SAMPLE_DATA_SRC)
2510 		result += sizeof(u64);
2511 
2512 	if (type & PERF_SAMPLE_TRANSACTION)
2513 		result += sizeof(u64);
2514 
2515 	if (type & PERF_SAMPLE_REGS_INTR) {
2516 		if (sample->intr_regs.abi) {
2517 			result += sizeof(u64);
2518 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2519 			result += sz;
2520 		} else {
2521 			result += sizeof(u64);
2522 		}
2523 	}
2524 
2525 	if (type & PERF_SAMPLE_PHYS_ADDR)
2526 		result += sizeof(u64);
2527 
2528 	return result;
2529 }
2530 
2531 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2532 				  u64 read_format,
2533 				  const struct perf_sample *sample)
2534 {
2535 	__u64 *array;
2536 	size_t sz;
2537 	/*
2538 	 * used for cross-endian analysis. See git commit 65014ab3
2539 	 * for why this goofiness is needed.
2540 	 */
2541 	union u64_swap u;
2542 
2543 	array = event->sample.array;
2544 
2545 	if (type & PERF_SAMPLE_IDENTIFIER) {
2546 		*array = sample->id;
2547 		array++;
2548 	}
2549 
2550 	if (type & PERF_SAMPLE_IP) {
2551 		*array = sample->ip;
2552 		array++;
2553 	}
2554 
2555 	if (type & PERF_SAMPLE_TID) {
2556 		u.val32[0] = sample->pid;
2557 		u.val32[1] = sample->tid;
2558 		*array = u.val64;
2559 		array++;
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_TIME) {
2563 		*array = sample->time;
2564 		array++;
2565 	}
2566 
2567 	if (type & PERF_SAMPLE_ADDR) {
2568 		*array = sample->addr;
2569 		array++;
2570 	}
2571 
2572 	if (type & PERF_SAMPLE_ID) {
2573 		*array = sample->id;
2574 		array++;
2575 	}
2576 
2577 	if (type & PERF_SAMPLE_STREAM_ID) {
2578 		*array = sample->stream_id;
2579 		array++;
2580 	}
2581 
2582 	if (type & PERF_SAMPLE_CPU) {
2583 		u.val32[0] = sample->cpu;
2584 		u.val32[1] = 0;
2585 		*array = u.val64;
2586 		array++;
2587 	}
2588 
2589 	if (type & PERF_SAMPLE_PERIOD) {
2590 		*array = sample->period;
2591 		array++;
2592 	}
2593 
2594 	if (type & PERF_SAMPLE_READ) {
2595 		if (read_format & PERF_FORMAT_GROUP)
2596 			*array = sample->read.group.nr;
2597 		else
2598 			*array = sample->read.one.value;
2599 		array++;
2600 
2601 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2602 			*array = sample->read.time_enabled;
2603 			array++;
2604 		}
2605 
2606 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2607 			*array = sample->read.time_running;
2608 			array++;
2609 		}
2610 
2611 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2612 		if (read_format & PERF_FORMAT_GROUP) {
2613 			sz = sample->read.group.nr *
2614 			     sizeof(struct sample_read_value);
2615 			memcpy(array, sample->read.group.values, sz);
2616 			array = (void *)array + sz;
2617 		} else {
2618 			*array = sample->read.one.id;
2619 			array++;
2620 		}
2621 	}
2622 
2623 	if (type & PERF_SAMPLE_CALLCHAIN) {
2624 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2625 		memcpy(array, sample->callchain, sz);
2626 		array = (void *)array + sz;
2627 	}
2628 
2629 	if (type & PERF_SAMPLE_RAW) {
2630 		u.val32[0] = sample->raw_size;
2631 		*array = u.val64;
2632 		array = (void *)array + sizeof(u32);
2633 
2634 		memcpy(array, sample->raw_data, sample->raw_size);
2635 		array = (void *)array + sample->raw_size;
2636 	}
2637 
2638 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2639 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2640 		sz += sizeof(u64);
2641 		memcpy(array, sample->branch_stack, sz);
2642 		array = (void *)array + sz;
2643 	}
2644 
2645 	if (type & PERF_SAMPLE_REGS_USER) {
2646 		if (sample->user_regs.abi) {
2647 			*array++ = sample->user_regs.abi;
2648 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2649 			memcpy(array, sample->user_regs.regs, sz);
2650 			array = (void *)array + sz;
2651 		} else {
2652 			*array++ = 0;
2653 		}
2654 	}
2655 
2656 	if (type & PERF_SAMPLE_STACK_USER) {
2657 		sz = sample->user_stack.size;
2658 		*array++ = sz;
2659 		if (sz) {
2660 			memcpy(array, sample->user_stack.data, sz);
2661 			array = (void *)array + sz;
2662 			*array++ = sz;
2663 		}
2664 	}
2665 
2666 	if (type & PERF_SAMPLE_WEIGHT) {
2667 		*array = sample->weight;
2668 		array++;
2669 	}
2670 
2671 	if (type & PERF_SAMPLE_DATA_SRC) {
2672 		*array = sample->data_src;
2673 		array++;
2674 	}
2675 
2676 	if (type & PERF_SAMPLE_TRANSACTION) {
2677 		*array = sample->transaction;
2678 		array++;
2679 	}
2680 
2681 	if (type & PERF_SAMPLE_REGS_INTR) {
2682 		if (sample->intr_regs.abi) {
2683 			*array++ = sample->intr_regs.abi;
2684 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2685 			memcpy(array, sample->intr_regs.regs, sz);
2686 			array = (void *)array + sz;
2687 		} else {
2688 			*array++ = 0;
2689 		}
2690 	}
2691 
2692 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2693 		*array = sample->phys_addr;
2694 		array++;
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2701 {
2702 	return tep_find_field(evsel->tp_format, name);
2703 }
2704 
2705 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2706 			 const char *name)
2707 {
2708 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2709 	int offset;
2710 
2711 	if (!field)
2712 		return NULL;
2713 
2714 	offset = field->offset;
2715 
2716 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2717 		offset = *(int *)(sample->raw_data + field->offset);
2718 		offset &= 0xffff;
2719 	}
2720 
2721 	return sample->raw_data + offset;
2722 }
2723 
2724 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2725 			 bool needs_swap)
2726 {
2727 	u64 value;
2728 	void *ptr = sample->raw_data + field->offset;
2729 
2730 	switch (field->size) {
2731 	case 1:
2732 		return *(u8 *)ptr;
2733 	case 2:
2734 		value = *(u16 *)ptr;
2735 		break;
2736 	case 4:
2737 		value = *(u32 *)ptr;
2738 		break;
2739 	case 8:
2740 		memcpy(&value, ptr, sizeof(u64));
2741 		break;
2742 	default:
2743 		return 0;
2744 	}
2745 
2746 	if (!needs_swap)
2747 		return value;
2748 
2749 	switch (field->size) {
2750 	case 2:
2751 		return bswap_16(value);
2752 	case 4:
2753 		return bswap_32(value);
2754 	case 8:
2755 		return bswap_64(value);
2756 	default:
2757 		return 0;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2764 		       const char *name)
2765 {
2766 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2767 
2768 	if (!field)
2769 		return 0;
2770 
2771 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2772 }
2773 
2774 bool perf_evsel__fallback(struct evsel *evsel, int err,
2775 			  char *msg, size_t msgsize)
2776 {
2777 	int paranoid;
2778 
2779 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2780 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2781 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2782 		/*
2783 		 * If it's cycles then fall back to hrtimer based
2784 		 * cpu-clock-tick sw counter, which is always available even if
2785 		 * no PMU support.
2786 		 *
2787 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2788 		 * b0a873e).
2789 		 */
2790 		scnprintf(msg, msgsize, "%s",
2791 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2792 
2793 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2794 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2795 
2796 		zfree(&evsel->name);
2797 		return true;
2798 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2799 		   (paranoid = perf_event_paranoid()) > 1) {
2800 		const char *name = perf_evsel__name(evsel);
2801 		char *new_name;
2802 		const char *sep = ":";
2803 
2804 		/* Is there already the separator in the name. */
2805 		if (strchr(name, '/') ||
2806 		    strchr(name, ':'))
2807 			sep = "";
2808 
2809 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2810 			return false;
2811 
2812 		if (evsel->name)
2813 			free(evsel->name);
2814 		evsel->name = new_name;
2815 		scnprintf(msg, msgsize,
2816 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2817 		evsel->core.attr.exclude_kernel = 1;
2818 
2819 		return true;
2820 	}
2821 
2822 	return false;
2823 }
2824 
2825 static bool find_process(const char *name)
2826 {
2827 	size_t len = strlen(name);
2828 	DIR *dir;
2829 	struct dirent *d;
2830 	int ret = -1;
2831 
2832 	dir = opendir(procfs__mountpoint());
2833 	if (!dir)
2834 		return false;
2835 
2836 	/* Walk through the directory. */
2837 	while (ret && (d = readdir(dir)) != NULL) {
2838 		char path[PATH_MAX];
2839 		char *data;
2840 		size_t size;
2841 
2842 		if ((d->d_type != DT_DIR) ||
2843 		     !strcmp(".", d->d_name) ||
2844 		     !strcmp("..", d->d_name))
2845 			continue;
2846 
2847 		scnprintf(path, sizeof(path), "%s/%s/comm",
2848 			  procfs__mountpoint(), d->d_name);
2849 
2850 		if (filename__read_str(path, &data, &size))
2851 			continue;
2852 
2853 		ret = strncmp(name, data, len);
2854 		free(data);
2855 	}
2856 
2857 	closedir(dir);
2858 	return ret ? false : true;
2859 }
2860 
2861 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2862 			      int err, char *msg, size_t size)
2863 {
2864 	char sbuf[STRERR_BUFSIZE];
2865 	int printed = 0;
2866 
2867 	switch (err) {
2868 	case EPERM:
2869 	case EACCES:
2870 		if (err == EPERM)
2871 			printed = scnprintf(msg, size,
2872 				"No permission to enable %s event.\n\n",
2873 				perf_evsel__name(evsel));
2874 
2875 		return scnprintf(msg + printed, size - printed,
2876 		 "You may not have permission to collect %sstats.\n\n"
2877 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2878 		 "which controls use of the performance events system by\n"
2879 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2880 		 "The current value is %d:\n\n"
2881 		 "  -1: Allow use of (almost) all events by all users\n"
2882 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2883 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2884 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2885 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2886 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2887 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2888 		 "	kernel.perf_event_paranoid = -1\n" ,
2889 				 target->system_wide ? "system-wide " : "",
2890 				 perf_event_paranoid());
2891 	case ENOENT:
2892 		return scnprintf(msg, size, "The %s event is not supported.",
2893 				 perf_evsel__name(evsel));
2894 	case EMFILE:
2895 		return scnprintf(msg, size, "%s",
2896 			 "Too many events are opened.\n"
2897 			 "Probably the maximum number of open file descriptors has been reached.\n"
2898 			 "Hint: Try again after reducing the number of events.\n"
2899 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2900 	case ENOMEM:
2901 		if (evsel__has_callchain(evsel) &&
2902 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2903 			return scnprintf(msg, size,
2904 					 "Not enough memory to setup event with callchain.\n"
2905 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2906 					 "Hint: Current value: %d", sysctl__max_stack());
2907 		break;
2908 	case ENODEV:
2909 		if (target->cpu_list)
2910 			return scnprintf(msg, size, "%s",
2911 	 "No such device - did you specify an out-of-range profile CPU?");
2912 		break;
2913 	case EOPNOTSUPP:
2914 		if (evsel->core.attr.sample_period != 0)
2915 			return scnprintf(msg, size,
2916 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2917 					 perf_evsel__name(evsel));
2918 		if (evsel->core.attr.precise_ip)
2919 			return scnprintf(msg, size, "%s",
2920 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2921 #if defined(__i386__) || defined(__x86_64__)
2922 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2923 			return scnprintf(msg, size, "%s",
2924 	"No hardware sampling interrupt available.\n");
2925 #endif
2926 		break;
2927 	case EBUSY:
2928 		if (find_process("oprofiled"))
2929 			return scnprintf(msg, size,
2930 	"The PMU counters are busy/taken by another profiler.\n"
2931 	"We found oprofile daemon running, please stop it and try again.");
2932 		break;
2933 	case EINVAL:
2934 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2935 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2936 		if (perf_missing_features.clockid)
2937 			return scnprintf(msg, size, "clockid feature not supported.");
2938 		if (perf_missing_features.clockid_wrong)
2939 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2940 		if (perf_missing_features.aux_output)
2941 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2942 		break;
2943 	default:
2944 		break;
2945 	}
2946 
2947 	return scnprintf(msg, size,
2948 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2949 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2950 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2951 			 perf_evsel__name(evsel));
2952 }
2953 
2954 struct perf_env *perf_evsel__env(struct evsel *evsel)
2955 {
2956 	if (evsel && evsel->evlist)
2957 		return evsel->evlist->env;
2958 	return NULL;
2959 }
2960 
2961 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2962 {
2963 	int cpu, thread;
2964 
2965 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2966 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2967 		     thread++) {
2968 			int fd = FD(evsel, cpu, thread);
2969 
2970 			if (perf_evlist__id_add_fd(evlist, evsel,
2971 						   cpu, thread, fd) < 0)
2972 				return -1;
2973 		}
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2980 {
2981 	struct perf_cpu_map *cpus = evsel->core.cpus;
2982 	struct perf_thread_map *threads = evsel->core.threads;
2983 
2984 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2985 		return -ENOMEM;
2986 
2987 	return store_evsel_ids(evsel, evlist);
2988 }
2989