xref: /linux/tools/perf/util/evsel.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include "asm/bug.h"
13 #include "debugfs.h"
14 #include "event-parse.h"
15 #include "evsel.h"
16 #include "evlist.h"
17 #include "util.h"
18 #include "cpumap.h"
19 #include "thread_map.h"
20 #include "target.h"
21 #include <linux/hw_breakpoint.h>
22 #include <linux/perf_event.h>
23 #include "perf_regs.h"
24 
25 static struct {
26 	bool sample_id_all;
27 	bool exclude_guest;
28 } perf_missing_features;
29 
30 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
31 
32 static int __perf_evsel__sample_size(u64 sample_type)
33 {
34 	u64 mask = sample_type & PERF_SAMPLE_MASK;
35 	int size = 0;
36 	int i;
37 
38 	for (i = 0; i < 64; i++) {
39 		if (mask & (1ULL << i))
40 			size++;
41 	}
42 
43 	size *= sizeof(u64);
44 
45 	return size;
46 }
47 
48 void hists__init(struct hists *hists)
49 {
50 	memset(hists, 0, sizeof(*hists));
51 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
52 	hists->entries_in = &hists->entries_in_array[0];
53 	hists->entries_collapsed = RB_ROOT;
54 	hists->entries = RB_ROOT;
55 	pthread_mutex_init(&hists->lock, NULL);
56 }
57 
58 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
59 				  enum perf_event_sample_format bit)
60 {
61 	if (!(evsel->attr.sample_type & bit)) {
62 		evsel->attr.sample_type |= bit;
63 		evsel->sample_size += sizeof(u64);
64 	}
65 }
66 
67 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
68 				    enum perf_event_sample_format bit)
69 {
70 	if (evsel->attr.sample_type & bit) {
71 		evsel->attr.sample_type &= ~bit;
72 		evsel->sample_size -= sizeof(u64);
73 	}
74 }
75 
76 void perf_evsel__set_sample_id(struct perf_evsel *evsel)
77 {
78 	perf_evsel__set_sample_bit(evsel, ID);
79 	evsel->attr.read_format |= PERF_FORMAT_ID;
80 }
81 
82 void perf_evsel__init(struct perf_evsel *evsel,
83 		      struct perf_event_attr *attr, int idx)
84 {
85 	evsel->idx	   = idx;
86 	evsel->attr	   = *attr;
87 	evsel->leader	   = evsel;
88 	INIT_LIST_HEAD(&evsel->node);
89 	hists__init(&evsel->hists);
90 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
91 }
92 
93 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
94 {
95 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
96 
97 	if (evsel != NULL)
98 		perf_evsel__init(evsel, attr, idx);
99 
100 	return evsel;
101 }
102 
103 struct event_format *event_format__new(const char *sys, const char *name)
104 {
105 	int fd, n;
106 	char *filename;
107 	void *bf = NULL, *nbf;
108 	size_t size = 0, alloc_size = 0;
109 	struct event_format *format = NULL;
110 
111 	if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
112 		goto out;
113 
114 	fd = open(filename, O_RDONLY);
115 	if (fd < 0)
116 		goto out_free_filename;
117 
118 	do {
119 		if (size == alloc_size) {
120 			alloc_size += BUFSIZ;
121 			nbf = realloc(bf, alloc_size);
122 			if (nbf == NULL)
123 				goto out_free_bf;
124 			bf = nbf;
125 		}
126 
127 		n = read(fd, bf + size, BUFSIZ);
128 		if (n < 0)
129 			goto out_free_bf;
130 		size += n;
131 	} while (n > 0);
132 
133 	pevent_parse_format(&format, bf, size, sys);
134 
135 out_free_bf:
136 	free(bf);
137 	close(fd);
138 out_free_filename:
139 	free(filename);
140 out:
141 	return format;
142 }
143 
144 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
145 {
146 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
147 
148 	if (evsel != NULL) {
149 		struct perf_event_attr attr = {
150 			.type	       = PERF_TYPE_TRACEPOINT,
151 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
152 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
153 		};
154 
155 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
156 			goto out_free;
157 
158 		evsel->tp_format = event_format__new(sys, name);
159 		if (evsel->tp_format == NULL)
160 			goto out_free;
161 
162 		event_attr_init(&attr);
163 		attr.config = evsel->tp_format->id;
164 		attr.sample_period = 1;
165 		perf_evsel__init(evsel, &attr, idx);
166 	}
167 
168 	return evsel;
169 
170 out_free:
171 	free(evsel->name);
172 	free(evsel);
173 	return NULL;
174 }
175 
176 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
177 	"cycles",
178 	"instructions",
179 	"cache-references",
180 	"cache-misses",
181 	"branches",
182 	"branch-misses",
183 	"bus-cycles",
184 	"stalled-cycles-frontend",
185 	"stalled-cycles-backend",
186 	"ref-cycles",
187 };
188 
189 static const char *__perf_evsel__hw_name(u64 config)
190 {
191 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
192 		return perf_evsel__hw_names[config];
193 
194 	return "unknown-hardware";
195 }
196 
197 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
198 {
199 	int colon = 0, r = 0;
200 	struct perf_event_attr *attr = &evsel->attr;
201 	bool exclude_guest_default = false;
202 
203 #define MOD_PRINT(context, mod)	do {					\
204 		if (!attr->exclude_##context) {				\
205 			if (!colon) colon = ++r;			\
206 			r += scnprintf(bf + r, size - r, "%c", mod);	\
207 		} } while(0)
208 
209 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
210 		MOD_PRINT(kernel, 'k');
211 		MOD_PRINT(user, 'u');
212 		MOD_PRINT(hv, 'h');
213 		exclude_guest_default = true;
214 	}
215 
216 	if (attr->precise_ip) {
217 		if (!colon)
218 			colon = ++r;
219 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
220 		exclude_guest_default = true;
221 	}
222 
223 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
224 		MOD_PRINT(host, 'H');
225 		MOD_PRINT(guest, 'G');
226 	}
227 #undef MOD_PRINT
228 	if (colon)
229 		bf[colon - 1] = ':';
230 	return r;
231 }
232 
233 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
234 {
235 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
236 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
237 }
238 
239 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
240 	"cpu-clock",
241 	"task-clock",
242 	"page-faults",
243 	"context-switches",
244 	"cpu-migrations",
245 	"minor-faults",
246 	"major-faults",
247 	"alignment-faults",
248 	"emulation-faults",
249 };
250 
251 static const char *__perf_evsel__sw_name(u64 config)
252 {
253 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
254 		return perf_evsel__sw_names[config];
255 	return "unknown-software";
256 }
257 
258 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
259 {
260 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
261 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
262 }
263 
264 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
265 {
266 	int r;
267 
268 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
269 
270 	if (type & HW_BREAKPOINT_R)
271 		r += scnprintf(bf + r, size - r, "r");
272 
273 	if (type & HW_BREAKPOINT_W)
274 		r += scnprintf(bf + r, size - r, "w");
275 
276 	if (type & HW_BREAKPOINT_X)
277 		r += scnprintf(bf + r, size - r, "x");
278 
279 	return r;
280 }
281 
282 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
283 {
284 	struct perf_event_attr *attr = &evsel->attr;
285 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
286 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
287 }
288 
289 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
290 				[PERF_EVSEL__MAX_ALIASES] = {
291  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
292  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
293  { "LLC",	"L2",							},
294  { "dTLB",	"d-tlb",	"Data-TLB",				},
295  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
296  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
297  { "node",								},
298 };
299 
300 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
301 				   [PERF_EVSEL__MAX_ALIASES] = {
302  { "load",	"loads",	"read",					},
303  { "store",	"stores",	"write",				},
304  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
305 };
306 
307 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
308 				       [PERF_EVSEL__MAX_ALIASES] = {
309  { "refs",	"Reference",	"ops",		"access",		},
310  { "misses",	"miss",							},
311 };
312 
313 #define C(x)		PERF_COUNT_HW_CACHE_##x
314 #define CACHE_READ	(1 << C(OP_READ))
315 #define CACHE_WRITE	(1 << C(OP_WRITE))
316 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
317 #define COP(x)		(1 << x)
318 
319 /*
320  * cache operartion stat
321  * L1I : Read and prefetch only
322  * ITLB and BPU : Read-only
323  */
324 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
325  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
326  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
327  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
328  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
329  [C(ITLB)]	= (CACHE_READ),
330  [C(BPU)]	= (CACHE_READ),
331  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
332 };
333 
334 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
335 {
336 	if (perf_evsel__hw_cache_stat[type] & COP(op))
337 		return true;	/* valid */
338 	else
339 		return false;	/* invalid */
340 }
341 
342 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
343 					    char *bf, size_t size)
344 {
345 	if (result) {
346 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
347 				 perf_evsel__hw_cache_op[op][0],
348 				 perf_evsel__hw_cache_result[result][0]);
349 	}
350 
351 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
352 			 perf_evsel__hw_cache_op[op][1]);
353 }
354 
355 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
356 {
357 	u8 op, result, type = (config >>  0) & 0xff;
358 	const char *err = "unknown-ext-hardware-cache-type";
359 
360 	if (type > PERF_COUNT_HW_CACHE_MAX)
361 		goto out_err;
362 
363 	op = (config >>  8) & 0xff;
364 	err = "unknown-ext-hardware-cache-op";
365 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
366 		goto out_err;
367 
368 	result = (config >> 16) & 0xff;
369 	err = "unknown-ext-hardware-cache-result";
370 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
371 		goto out_err;
372 
373 	err = "invalid-cache";
374 	if (!perf_evsel__is_cache_op_valid(type, op))
375 		goto out_err;
376 
377 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
378 out_err:
379 	return scnprintf(bf, size, "%s", err);
380 }
381 
382 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
385 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
386 }
387 
388 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
391 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
392 }
393 
394 const char *perf_evsel__name(struct perf_evsel *evsel)
395 {
396 	char bf[128];
397 
398 	if (evsel->name)
399 		return evsel->name;
400 
401 	switch (evsel->attr.type) {
402 	case PERF_TYPE_RAW:
403 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
404 		break;
405 
406 	case PERF_TYPE_HARDWARE:
407 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
408 		break;
409 
410 	case PERF_TYPE_HW_CACHE:
411 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
412 		break;
413 
414 	case PERF_TYPE_SOFTWARE:
415 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
416 		break;
417 
418 	case PERF_TYPE_TRACEPOINT:
419 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
420 		break;
421 
422 	case PERF_TYPE_BREAKPOINT:
423 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
424 		break;
425 
426 	default:
427 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
428 			  evsel->attr.type);
429 		break;
430 	}
431 
432 	evsel->name = strdup(bf);
433 
434 	return evsel->name ?: "unknown";
435 }
436 
437 const char *perf_evsel__group_name(struct perf_evsel *evsel)
438 {
439 	return evsel->group_name ?: "anon group";
440 }
441 
442 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
443 {
444 	int ret;
445 	struct perf_evsel *pos;
446 	const char *group_name = perf_evsel__group_name(evsel);
447 
448 	ret = scnprintf(buf, size, "%s", group_name);
449 
450 	ret += scnprintf(buf + ret, size - ret, " { %s",
451 			 perf_evsel__name(evsel));
452 
453 	for_each_group_member(pos, evsel)
454 		ret += scnprintf(buf + ret, size - ret, ", %s",
455 				 perf_evsel__name(pos));
456 
457 	ret += scnprintf(buf + ret, size - ret, " }");
458 
459 	return ret;
460 }
461 
462 /*
463  * The enable_on_exec/disabled value strategy:
464  *
465  *  1) For any type of traced program:
466  *    - all independent events and group leaders are disabled
467  *    - all group members are enabled
468  *
469  *     Group members are ruled by group leaders. They need to
470  *     be enabled, because the group scheduling relies on that.
471  *
472  *  2) For traced programs executed by perf:
473  *     - all independent events and group leaders have
474  *       enable_on_exec set
475  *     - we don't specifically enable or disable any event during
476  *       the record command
477  *
478  *     Independent events and group leaders are initially disabled
479  *     and get enabled by exec. Group members are ruled by group
480  *     leaders as stated in 1).
481  *
482  *  3) For traced programs attached by perf (pid/tid):
483  *     - we specifically enable or disable all events during
484  *       the record command
485  *
486  *     When attaching events to already running traced we
487  *     enable/disable events specifically, as there's no
488  *     initial traced exec call.
489  */
490 void perf_evsel__config(struct perf_evsel *evsel,
491 			struct perf_record_opts *opts)
492 {
493 	struct perf_event_attr *attr = &evsel->attr;
494 	int track = !evsel->idx; /* only the first counter needs these */
495 
496 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
497 	attr->inherit	    = !opts->no_inherit;
498 
499 	perf_evsel__set_sample_bit(evsel, IP);
500 	perf_evsel__set_sample_bit(evsel, TID);
501 
502 	/*
503 	 * We default some events to a 1 default interval. But keep
504 	 * it a weak assumption overridable by the user.
505 	 */
506 	if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
507 				     opts->user_interval != ULLONG_MAX)) {
508 		if (opts->freq) {
509 			perf_evsel__set_sample_bit(evsel, PERIOD);
510 			attr->freq		= 1;
511 			attr->sample_freq	= opts->freq;
512 		} else {
513 			attr->sample_period = opts->default_interval;
514 		}
515 	}
516 
517 	if (opts->no_samples)
518 		attr->sample_freq = 0;
519 
520 	if (opts->inherit_stat)
521 		attr->inherit_stat = 1;
522 
523 	if (opts->sample_address) {
524 		perf_evsel__set_sample_bit(evsel, ADDR);
525 		attr->mmap_data = track;
526 	}
527 
528 	if (opts->call_graph) {
529 		perf_evsel__set_sample_bit(evsel, CALLCHAIN);
530 
531 		if (opts->call_graph == CALLCHAIN_DWARF) {
532 			perf_evsel__set_sample_bit(evsel, REGS_USER);
533 			perf_evsel__set_sample_bit(evsel, STACK_USER);
534 			attr->sample_regs_user = PERF_REGS_MASK;
535 			attr->sample_stack_user = opts->stack_dump_size;
536 			attr->exclude_callchain_user = 1;
537 		}
538 	}
539 
540 	if (perf_target__has_cpu(&opts->target))
541 		perf_evsel__set_sample_bit(evsel, CPU);
542 
543 	if (opts->period)
544 		perf_evsel__set_sample_bit(evsel, PERIOD);
545 
546 	if (!perf_missing_features.sample_id_all &&
547 	    (opts->sample_time || !opts->no_inherit ||
548 	     perf_target__has_cpu(&opts->target)))
549 		perf_evsel__set_sample_bit(evsel, TIME);
550 
551 	if (opts->raw_samples) {
552 		perf_evsel__set_sample_bit(evsel, TIME);
553 		perf_evsel__set_sample_bit(evsel, RAW);
554 		perf_evsel__set_sample_bit(evsel, CPU);
555 	}
556 
557 	if (opts->no_delay) {
558 		attr->watermark = 0;
559 		attr->wakeup_events = 1;
560 	}
561 	if (opts->branch_stack) {
562 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
563 		attr->branch_sample_type = opts->branch_stack;
564 	}
565 
566 	attr->mmap = track;
567 	attr->comm = track;
568 
569 	/*
570 	 * XXX see the function comment above
571 	 *
572 	 * Disabling only independent events or group leaders,
573 	 * keeping group members enabled.
574 	 */
575 	if (perf_evsel__is_group_leader(evsel))
576 		attr->disabled = 1;
577 
578 	/*
579 	 * Setting enable_on_exec for independent events and
580 	 * group leaders for traced executed by perf.
581 	 */
582 	if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
583 		attr->enable_on_exec = 1;
584 }
585 
586 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
587 {
588 	int cpu, thread;
589 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
590 
591 	if (evsel->fd) {
592 		for (cpu = 0; cpu < ncpus; cpu++) {
593 			for (thread = 0; thread < nthreads; thread++) {
594 				FD(evsel, cpu, thread) = -1;
595 			}
596 		}
597 	}
598 
599 	return evsel->fd != NULL ? 0 : -ENOMEM;
600 }
601 
602 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
603 			   const char *filter)
604 {
605 	int cpu, thread;
606 
607 	for (cpu = 0; cpu < ncpus; cpu++) {
608 		for (thread = 0; thread < nthreads; thread++) {
609 			int fd = FD(evsel, cpu, thread),
610 			    err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter);
611 
612 			if (err)
613 				return err;
614 		}
615 	}
616 
617 	return 0;
618 }
619 
620 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
621 {
622 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
623 	if (evsel->sample_id == NULL)
624 		return -ENOMEM;
625 
626 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
627 	if (evsel->id == NULL) {
628 		xyarray__delete(evsel->sample_id);
629 		evsel->sample_id = NULL;
630 		return -ENOMEM;
631 	}
632 
633 	return 0;
634 }
635 
636 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
637 {
638 	evsel->counts = zalloc((sizeof(*evsel->counts) +
639 				(ncpus * sizeof(struct perf_counts_values))));
640 	return evsel->counts != NULL ? 0 : -ENOMEM;
641 }
642 
643 void perf_evsel__free_fd(struct perf_evsel *evsel)
644 {
645 	xyarray__delete(evsel->fd);
646 	evsel->fd = NULL;
647 }
648 
649 void perf_evsel__free_id(struct perf_evsel *evsel)
650 {
651 	xyarray__delete(evsel->sample_id);
652 	evsel->sample_id = NULL;
653 	free(evsel->id);
654 	evsel->id = NULL;
655 }
656 
657 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
658 {
659 	int cpu, thread;
660 
661 	for (cpu = 0; cpu < ncpus; cpu++)
662 		for (thread = 0; thread < nthreads; ++thread) {
663 			close(FD(evsel, cpu, thread));
664 			FD(evsel, cpu, thread) = -1;
665 		}
666 }
667 
668 void perf_evsel__free_counts(struct perf_evsel *evsel)
669 {
670 	free(evsel->counts);
671 }
672 
673 void perf_evsel__exit(struct perf_evsel *evsel)
674 {
675 	assert(list_empty(&evsel->node));
676 	xyarray__delete(evsel->fd);
677 	xyarray__delete(evsel->sample_id);
678 	free(evsel->id);
679 }
680 
681 void perf_evsel__delete(struct perf_evsel *evsel)
682 {
683 	perf_evsel__exit(evsel);
684 	close_cgroup(evsel->cgrp);
685 	free(evsel->group_name);
686 	if (evsel->tp_format)
687 		pevent_free_format(evsel->tp_format);
688 	free(evsel->name);
689 	free(evsel);
690 }
691 
692 static inline void compute_deltas(struct perf_evsel *evsel,
693 				  int cpu,
694 				  struct perf_counts_values *count)
695 {
696 	struct perf_counts_values tmp;
697 
698 	if (!evsel->prev_raw_counts)
699 		return;
700 
701 	if (cpu == -1) {
702 		tmp = evsel->prev_raw_counts->aggr;
703 		evsel->prev_raw_counts->aggr = *count;
704 	} else {
705 		tmp = evsel->prev_raw_counts->cpu[cpu];
706 		evsel->prev_raw_counts->cpu[cpu] = *count;
707 	}
708 
709 	count->val = count->val - tmp.val;
710 	count->ena = count->ena - tmp.ena;
711 	count->run = count->run - tmp.run;
712 }
713 
714 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
715 			      int cpu, int thread, bool scale)
716 {
717 	struct perf_counts_values count;
718 	size_t nv = scale ? 3 : 1;
719 
720 	if (FD(evsel, cpu, thread) < 0)
721 		return -EINVAL;
722 
723 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
724 		return -ENOMEM;
725 
726 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
727 		return -errno;
728 
729 	compute_deltas(evsel, cpu, &count);
730 
731 	if (scale) {
732 		if (count.run == 0)
733 			count.val = 0;
734 		else if (count.run < count.ena)
735 			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
736 	} else
737 		count.ena = count.run = 0;
738 
739 	evsel->counts->cpu[cpu] = count;
740 	return 0;
741 }
742 
743 int __perf_evsel__read(struct perf_evsel *evsel,
744 		       int ncpus, int nthreads, bool scale)
745 {
746 	size_t nv = scale ? 3 : 1;
747 	int cpu, thread;
748 	struct perf_counts_values *aggr = &evsel->counts->aggr, count;
749 
750 	aggr->val = aggr->ena = aggr->run = 0;
751 
752 	for (cpu = 0; cpu < ncpus; cpu++) {
753 		for (thread = 0; thread < nthreads; thread++) {
754 			if (FD(evsel, cpu, thread) < 0)
755 				continue;
756 
757 			if (readn(FD(evsel, cpu, thread),
758 				  &count, nv * sizeof(u64)) < 0)
759 				return -errno;
760 
761 			aggr->val += count.val;
762 			if (scale) {
763 				aggr->ena += count.ena;
764 				aggr->run += count.run;
765 			}
766 		}
767 	}
768 
769 	compute_deltas(evsel, -1, aggr);
770 
771 	evsel->counts->scaled = 0;
772 	if (scale) {
773 		if (aggr->run == 0) {
774 			evsel->counts->scaled = -1;
775 			aggr->val = 0;
776 			return 0;
777 		}
778 
779 		if (aggr->run < aggr->ena) {
780 			evsel->counts->scaled = 1;
781 			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
782 		}
783 	} else
784 		aggr->ena = aggr->run = 0;
785 
786 	return 0;
787 }
788 
789 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
790 {
791 	struct perf_evsel *leader = evsel->leader;
792 	int fd;
793 
794 	if (perf_evsel__is_group_leader(evsel))
795 		return -1;
796 
797 	/*
798 	 * Leader must be already processed/open,
799 	 * if not it's a bug.
800 	 */
801 	BUG_ON(!leader->fd);
802 
803 	fd = FD(leader, cpu, thread);
804 	BUG_ON(fd == -1);
805 
806 	return fd;
807 }
808 
809 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
810 			      struct thread_map *threads)
811 {
812 	int cpu, thread;
813 	unsigned long flags = 0;
814 	int pid = -1, err;
815 
816 	if (evsel->fd == NULL &&
817 	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
818 		return -ENOMEM;
819 
820 	if (evsel->cgrp) {
821 		flags = PERF_FLAG_PID_CGROUP;
822 		pid = evsel->cgrp->fd;
823 	}
824 
825 fallback_missing_features:
826 	if (perf_missing_features.exclude_guest)
827 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
828 retry_sample_id:
829 	if (perf_missing_features.sample_id_all)
830 		evsel->attr.sample_id_all = 0;
831 
832 	for (cpu = 0; cpu < cpus->nr; cpu++) {
833 
834 		for (thread = 0; thread < threads->nr; thread++) {
835 			int group_fd;
836 
837 			if (!evsel->cgrp)
838 				pid = threads->map[thread];
839 
840 			group_fd = get_group_fd(evsel, cpu, thread);
841 
842 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
843 								     pid,
844 								     cpus->map[cpu],
845 								     group_fd, flags);
846 			if (FD(evsel, cpu, thread) < 0) {
847 				err = -errno;
848 				goto try_fallback;
849 			}
850 		}
851 	}
852 
853 	return 0;
854 
855 try_fallback:
856 	if (err != -EINVAL || cpu > 0 || thread > 0)
857 		goto out_close;
858 
859 	if (!perf_missing_features.exclude_guest &&
860 	    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
861 		perf_missing_features.exclude_guest = true;
862 		goto fallback_missing_features;
863 	} else if (!perf_missing_features.sample_id_all) {
864 		perf_missing_features.sample_id_all = true;
865 		goto retry_sample_id;
866 	}
867 
868 out_close:
869 	do {
870 		while (--thread >= 0) {
871 			close(FD(evsel, cpu, thread));
872 			FD(evsel, cpu, thread) = -1;
873 		}
874 		thread = threads->nr;
875 	} while (--cpu >= 0);
876 	return err;
877 }
878 
879 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
880 {
881 	if (evsel->fd == NULL)
882 		return;
883 
884 	perf_evsel__close_fd(evsel, ncpus, nthreads);
885 	perf_evsel__free_fd(evsel);
886 	evsel->fd = NULL;
887 }
888 
889 static struct {
890 	struct cpu_map map;
891 	int cpus[1];
892 } empty_cpu_map = {
893 	.map.nr	= 1,
894 	.cpus	= { -1, },
895 };
896 
897 static struct {
898 	struct thread_map map;
899 	int threads[1];
900 } empty_thread_map = {
901 	.map.nr	 = 1,
902 	.threads = { -1, },
903 };
904 
905 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
906 		     struct thread_map *threads)
907 {
908 	if (cpus == NULL) {
909 		/* Work around old compiler warnings about strict aliasing */
910 		cpus = &empty_cpu_map.map;
911 	}
912 
913 	if (threads == NULL)
914 		threads = &empty_thread_map.map;
915 
916 	return __perf_evsel__open(evsel, cpus, threads);
917 }
918 
919 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
920 			     struct cpu_map *cpus)
921 {
922 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
923 }
924 
925 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
926 				struct thread_map *threads)
927 {
928 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
929 }
930 
931 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
932 				       const union perf_event *event,
933 				       struct perf_sample *sample)
934 {
935 	u64 type = evsel->attr.sample_type;
936 	const u64 *array = event->sample.array;
937 	bool swapped = evsel->needs_swap;
938 	union u64_swap u;
939 
940 	array += ((event->header.size -
941 		   sizeof(event->header)) / sizeof(u64)) - 1;
942 
943 	if (type & PERF_SAMPLE_CPU) {
944 		u.val64 = *array;
945 		if (swapped) {
946 			/* undo swap of u64, then swap on individual u32s */
947 			u.val64 = bswap_64(u.val64);
948 			u.val32[0] = bswap_32(u.val32[0]);
949 		}
950 
951 		sample->cpu = u.val32[0];
952 		array--;
953 	}
954 
955 	if (type & PERF_SAMPLE_STREAM_ID) {
956 		sample->stream_id = *array;
957 		array--;
958 	}
959 
960 	if (type & PERF_SAMPLE_ID) {
961 		sample->id = *array;
962 		array--;
963 	}
964 
965 	if (type & PERF_SAMPLE_TIME) {
966 		sample->time = *array;
967 		array--;
968 	}
969 
970 	if (type & PERF_SAMPLE_TID) {
971 		u.val64 = *array;
972 		if (swapped) {
973 			/* undo swap of u64, then swap on individual u32s */
974 			u.val64 = bswap_64(u.val64);
975 			u.val32[0] = bswap_32(u.val32[0]);
976 			u.val32[1] = bswap_32(u.val32[1]);
977 		}
978 
979 		sample->pid = u.val32[0];
980 		sample->tid = u.val32[1];
981 	}
982 
983 	return 0;
984 }
985 
986 static bool sample_overlap(const union perf_event *event,
987 			   const void *offset, u64 size)
988 {
989 	const void *base = event;
990 
991 	if (offset + size > base + event->header.size)
992 		return true;
993 
994 	return false;
995 }
996 
997 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
998 			     struct perf_sample *data)
999 {
1000 	u64 type = evsel->attr.sample_type;
1001 	u64 regs_user = evsel->attr.sample_regs_user;
1002 	bool swapped = evsel->needs_swap;
1003 	const u64 *array;
1004 
1005 	/*
1006 	 * used for cross-endian analysis. See git commit 65014ab3
1007 	 * for why this goofiness is needed.
1008 	 */
1009 	union u64_swap u;
1010 
1011 	memset(data, 0, sizeof(*data));
1012 	data->cpu = data->pid = data->tid = -1;
1013 	data->stream_id = data->id = data->time = -1ULL;
1014 	data->period = 1;
1015 
1016 	if (event->header.type != PERF_RECORD_SAMPLE) {
1017 		if (!evsel->attr.sample_id_all)
1018 			return 0;
1019 		return perf_evsel__parse_id_sample(evsel, event, data);
1020 	}
1021 
1022 	array = event->sample.array;
1023 
1024 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1025 		return -EFAULT;
1026 
1027 	if (type & PERF_SAMPLE_IP) {
1028 		data->ip = event->ip.ip;
1029 		array++;
1030 	}
1031 
1032 	if (type & PERF_SAMPLE_TID) {
1033 		u.val64 = *array;
1034 		if (swapped) {
1035 			/* undo swap of u64, then swap on individual u32s */
1036 			u.val64 = bswap_64(u.val64);
1037 			u.val32[0] = bswap_32(u.val32[0]);
1038 			u.val32[1] = bswap_32(u.val32[1]);
1039 		}
1040 
1041 		data->pid = u.val32[0];
1042 		data->tid = u.val32[1];
1043 		array++;
1044 	}
1045 
1046 	if (type & PERF_SAMPLE_TIME) {
1047 		data->time = *array;
1048 		array++;
1049 	}
1050 
1051 	data->addr = 0;
1052 	if (type & PERF_SAMPLE_ADDR) {
1053 		data->addr = *array;
1054 		array++;
1055 	}
1056 
1057 	data->id = -1ULL;
1058 	if (type & PERF_SAMPLE_ID) {
1059 		data->id = *array;
1060 		array++;
1061 	}
1062 
1063 	if (type & PERF_SAMPLE_STREAM_ID) {
1064 		data->stream_id = *array;
1065 		array++;
1066 	}
1067 
1068 	if (type & PERF_SAMPLE_CPU) {
1069 
1070 		u.val64 = *array;
1071 		if (swapped) {
1072 			/* undo swap of u64, then swap on individual u32s */
1073 			u.val64 = bswap_64(u.val64);
1074 			u.val32[0] = bswap_32(u.val32[0]);
1075 		}
1076 
1077 		data->cpu = u.val32[0];
1078 		array++;
1079 	}
1080 
1081 	if (type & PERF_SAMPLE_PERIOD) {
1082 		data->period = *array;
1083 		array++;
1084 	}
1085 
1086 	if (type & PERF_SAMPLE_READ) {
1087 		fprintf(stderr, "PERF_SAMPLE_READ is unsupported for now\n");
1088 		return -1;
1089 	}
1090 
1091 	if (type & PERF_SAMPLE_CALLCHAIN) {
1092 		if (sample_overlap(event, array, sizeof(data->callchain->nr)))
1093 			return -EFAULT;
1094 
1095 		data->callchain = (struct ip_callchain *)array;
1096 
1097 		if (sample_overlap(event, array, data->callchain->nr))
1098 			return -EFAULT;
1099 
1100 		array += 1 + data->callchain->nr;
1101 	}
1102 
1103 	if (type & PERF_SAMPLE_RAW) {
1104 		const u64 *pdata;
1105 
1106 		u.val64 = *array;
1107 		if (WARN_ONCE(swapped,
1108 			      "Endianness of raw data not corrected!\n")) {
1109 			/* undo swap of u64, then swap on individual u32s */
1110 			u.val64 = bswap_64(u.val64);
1111 			u.val32[0] = bswap_32(u.val32[0]);
1112 			u.val32[1] = bswap_32(u.val32[1]);
1113 		}
1114 
1115 		if (sample_overlap(event, array, sizeof(u32)))
1116 			return -EFAULT;
1117 
1118 		data->raw_size = u.val32[0];
1119 		pdata = (void *) array + sizeof(u32);
1120 
1121 		if (sample_overlap(event, pdata, data->raw_size))
1122 			return -EFAULT;
1123 
1124 		data->raw_data = (void *) pdata;
1125 
1126 		array = (void *)array + data->raw_size + sizeof(u32);
1127 	}
1128 
1129 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1130 		u64 sz;
1131 
1132 		data->branch_stack = (struct branch_stack *)array;
1133 		array++; /* nr */
1134 
1135 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1136 		sz /= sizeof(u64);
1137 		array += sz;
1138 	}
1139 
1140 	if (type & PERF_SAMPLE_REGS_USER) {
1141 		/* First u64 tells us if we have any regs in sample. */
1142 		u64 avail = *array++;
1143 
1144 		if (avail) {
1145 			data->user_regs.regs = (u64 *)array;
1146 			array += hweight_long(regs_user);
1147 		}
1148 	}
1149 
1150 	if (type & PERF_SAMPLE_STACK_USER) {
1151 		u64 size = *array++;
1152 
1153 		data->user_stack.offset = ((char *)(array - 1)
1154 					  - (char *) event);
1155 
1156 		if (!size) {
1157 			data->user_stack.size = 0;
1158 		} else {
1159 			data->user_stack.data = (char *)array;
1160 			array += size / sizeof(*array);
1161 			data->user_stack.size = *array;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1169 				  const struct perf_sample *sample,
1170 				  bool swapped)
1171 {
1172 	u64 *array;
1173 
1174 	/*
1175 	 * used for cross-endian analysis. See git commit 65014ab3
1176 	 * for why this goofiness is needed.
1177 	 */
1178 	union u64_swap u;
1179 
1180 	array = event->sample.array;
1181 
1182 	if (type & PERF_SAMPLE_IP) {
1183 		event->ip.ip = sample->ip;
1184 		array++;
1185 	}
1186 
1187 	if (type & PERF_SAMPLE_TID) {
1188 		u.val32[0] = sample->pid;
1189 		u.val32[1] = sample->tid;
1190 		if (swapped) {
1191 			/*
1192 			 * Inverse of what is done in perf_evsel__parse_sample
1193 			 */
1194 			u.val32[0] = bswap_32(u.val32[0]);
1195 			u.val32[1] = bswap_32(u.val32[1]);
1196 			u.val64 = bswap_64(u.val64);
1197 		}
1198 
1199 		*array = u.val64;
1200 		array++;
1201 	}
1202 
1203 	if (type & PERF_SAMPLE_TIME) {
1204 		*array = sample->time;
1205 		array++;
1206 	}
1207 
1208 	if (type & PERF_SAMPLE_ADDR) {
1209 		*array = sample->addr;
1210 		array++;
1211 	}
1212 
1213 	if (type & PERF_SAMPLE_ID) {
1214 		*array = sample->id;
1215 		array++;
1216 	}
1217 
1218 	if (type & PERF_SAMPLE_STREAM_ID) {
1219 		*array = sample->stream_id;
1220 		array++;
1221 	}
1222 
1223 	if (type & PERF_SAMPLE_CPU) {
1224 		u.val32[0] = sample->cpu;
1225 		if (swapped) {
1226 			/*
1227 			 * Inverse of what is done in perf_evsel__parse_sample
1228 			 */
1229 			u.val32[0] = bswap_32(u.val32[0]);
1230 			u.val64 = bswap_64(u.val64);
1231 		}
1232 		*array = u.val64;
1233 		array++;
1234 	}
1235 
1236 	if (type & PERF_SAMPLE_PERIOD) {
1237 		*array = sample->period;
1238 		array++;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1245 {
1246 	return pevent_find_field(evsel->tp_format, name);
1247 }
1248 
1249 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1250 			 const char *name)
1251 {
1252 	struct format_field *field = perf_evsel__field(evsel, name);
1253 	int offset;
1254 
1255 	if (!field)
1256 		return NULL;
1257 
1258 	offset = field->offset;
1259 
1260 	if (field->flags & FIELD_IS_DYNAMIC) {
1261 		offset = *(int *)(sample->raw_data + field->offset);
1262 		offset &= 0xffff;
1263 	}
1264 
1265 	return sample->raw_data + offset;
1266 }
1267 
1268 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1269 		       const char *name)
1270 {
1271 	struct format_field *field = perf_evsel__field(evsel, name);
1272 	void *ptr;
1273 	u64 value;
1274 
1275 	if (!field)
1276 		return 0;
1277 
1278 	ptr = sample->raw_data + field->offset;
1279 
1280 	switch (field->size) {
1281 	case 1:
1282 		return *(u8 *)ptr;
1283 	case 2:
1284 		value = *(u16 *)ptr;
1285 		break;
1286 	case 4:
1287 		value = *(u32 *)ptr;
1288 		break;
1289 	case 8:
1290 		value = *(u64 *)ptr;
1291 		break;
1292 	default:
1293 		return 0;
1294 	}
1295 
1296 	if (!evsel->needs_swap)
1297 		return value;
1298 
1299 	switch (field->size) {
1300 	case 2:
1301 		return bswap_16(value);
1302 	case 4:
1303 		return bswap_32(value);
1304 	case 8:
1305 		return bswap_64(value);
1306 	default:
1307 		return 0;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1314 {
1315 	va_list args;
1316 	int ret = 0;
1317 
1318 	if (!*first) {
1319 		ret += fprintf(fp, ",");
1320 	} else {
1321 		ret += fprintf(fp, ":");
1322 		*first = false;
1323 	}
1324 
1325 	va_start(args, fmt);
1326 	ret += vfprintf(fp, fmt, args);
1327 	va_end(args);
1328 	return ret;
1329 }
1330 
1331 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1332 {
1333 	if (value == 0)
1334 		return 0;
1335 
1336 	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1337 }
1338 
1339 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1340 
1341 struct bit_names {
1342 	int bit;
1343 	const char *name;
1344 };
1345 
1346 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1347 			 struct bit_names *bits, bool *first)
1348 {
1349 	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1350 	bool first_bit = true;
1351 
1352 	do {
1353 		if (value & bits[i].bit) {
1354 			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1355 			first_bit = false;
1356 		}
1357 	} while (bits[++i].name != NULL);
1358 
1359 	return printed;
1360 }
1361 
1362 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1363 {
1364 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1365 	struct bit_names bits[] = {
1366 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1367 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1368 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1369 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1370 		{ .name = NULL, }
1371 	};
1372 #undef bit_name
1373 	return bits__fprintf(fp, "sample_type", value, bits, first);
1374 }
1375 
1376 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1377 {
1378 #define bit_name(n) { PERF_FORMAT_##n, #n }
1379 	struct bit_names bits[] = {
1380 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1381 		bit_name(ID), bit_name(GROUP),
1382 		{ .name = NULL, }
1383 	};
1384 #undef bit_name
1385 	return bits__fprintf(fp, "read_format", value, bits, first);
1386 }
1387 
1388 int perf_evsel__fprintf(struct perf_evsel *evsel,
1389 			struct perf_attr_details *details, FILE *fp)
1390 {
1391 	bool first = true;
1392 	int printed = 0;
1393 
1394 	if (details->event_group) {
1395 		struct perf_evsel *pos;
1396 
1397 		if (!perf_evsel__is_group_leader(evsel))
1398 			return 0;
1399 
1400 		if (evsel->nr_members > 1)
1401 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1402 
1403 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1404 		for_each_group_member(pos, evsel)
1405 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1406 
1407 		if (evsel->nr_members > 1)
1408 			printed += fprintf(fp, "}");
1409 		goto out;
1410 	}
1411 
1412 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1413 
1414 	if (details->verbose || details->freq) {
1415 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1416 					 (u64)evsel->attr.sample_freq);
1417 	}
1418 
1419 	if (details->verbose) {
1420 		if_print(type);
1421 		if_print(config);
1422 		if_print(config1);
1423 		if_print(config2);
1424 		if_print(size);
1425 		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1426 		if (evsel->attr.read_format)
1427 			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1428 		if_print(disabled);
1429 		if_print(inherit);
1430 		if_print(pinned);
1431 		if_print(exclusive);
1432 		if_print(exclude_user);
1433 		if_print(exclude_kernel);
1434 		if_print(exclude_hv);
1435 		if_print(exclude_idle);
1436 		if_print(mmap);
1437 		if_print(comm);
1438 		if_print(freq);
1439 		if_print(inherit_stat);
1440 		if_print(enable_on_exec);
1441 		if_print(task);
1442 		if_print(watermark);
1443 		if_print(precise_ip);
1444 		if_print(mmap_data);
1445 		if_print(sample_id_all);
1446 		if_print(exclude_host);
1447 		if_print(exclude_guest);
1448 		if_print(__reserved_1);
1449 		if_print(wakeup_events);
1450 		if_print(bp_type);
1451 		if_print(branch_sample_type);
1452 	}
1453 out:
1454 	fputc('\n', fp);
1455 	return ++printed;
1456 }
1457 
1458 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1459 			  char *msg, size_t msgsize)
1460 {
1461 	if ((err == ENOENT || err == ENXIO) &&
1462 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
1463 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1464 		/*
1465 		 * If it's cycles then fall back to hrtimer based
1466 		 * cpu-clock-tick sw counter, which is always available even if
1467 		 * no PMU support.
1468 		 *
1469 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1470 		 * b0a873e).
1471 		 */
1472 		scnprintf(msg, msgsize, "%s",
1473 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1474 
1475 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
1476 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1477 
1478 		free(evsel->name);
1479 		evsel->name = NULL;
1480 		return true;
1481 	}
1482 
1483 	return false;
1484 }
1485 
1486 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1487 			      struct perf_target *target,
1488 			      int err, char *msg, size_t size)
1489 {
1490 	switch (err) {
1491 	case EPERM:
1492 	case EACCES:
1493 		return scnprintf(msg, size, "%s",
1494 		 "You may not have permission to collect %sstats.\n"
1495 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1496 		 " -1 - Not paranoid at all\n"
1497 		 "  0 - Disallow raw tracepoint access for unpriv\n"
1498 		 "  1 - Disallow cpu events for unpriv\n"
1499 		 "  2 - Disallow kernel profiling for unpriv",
1500 				 target->system_wide ? "system-wide " : "");
1501 	case ENOENT:
1502 		return scnprintf(msg, size, "The %s event is not supported.",
1503 				 perf_evsel__name(evsel));
1504 	case EMFILE:
1505 		return scnprintf(msg, size, "%s",
1506 			 "Too many events are opened.\n"
1507 			 "Try again after reducing the number of events.");
1508 	case ENODEV:
1509 		if (target->cpu_list)
1510 			return scnprintf(msg, size, "%s",
1511 	 "No such device - did you specify an out-of-range profile CPU?\n");
1512 		break;
1513 	case EOPNOTSUPP:
1514 		if (evsel->attr.precise_ip)
1515 			return scnprintf(msg, size, "%s",
1516 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
1517 #if defined(__i386__) || defined(__x86_64__)
1518 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
1519 			return scnprintf(msg, size, "%s",
1520 	"No hardware sampling interrupt available.\n"
1521 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
1522 #endif
1523 		break;
1524 	default:
1525 		break;
1526 	}
1527 
1528 	return scnprintf(msg, size,
1529 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
1530 	"/bin/dmesg may provide additional information.\n"
1531 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
1532 			 err, strerror(err), perf_evsel__name(evsel));
1533 }
1534