1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (evsel != NULL) 255 perf_evsel__init(evsel, attr, idx); 256 257 if (perf_evsel__is_bpf_output(evsel)) { 258 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 259 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 260 evsel->attr.sample_period = 1; 261 } 262 263 return evsel; 264 } 265 266 static bool perf_event_can_profile_kernel(void) 267 { 268 return geteuid() == 0 || perf_event_paranoid() == -1; 269 } 270 271 struct perf_evsel *perf_evsel__new_cycles(bool precise) 272 { 273 struct perf_event_attr attr = { 274 .type = PERF_TYPE_HARDWARE, 275 .config = PERF_COUNT_HW_CPU_CYCLES, 276 .exclude_kernel = !perf_event_can_profile_kernel(), 277 }; 278 struct perf_evsel *evsel; 279 280 event_attr_init(&attr); 281 282 if (!precise) 283 goto new_event; 284 /* 285 * Unnamed union member, not supported as struct member named 286 * initializer in older compilers such as gcc 4.4.7 287 * 288 * Just for probing the precise_ip: 289 */ 290 attr.sample_period = 1; 291 292 perf_event_attr__set_max_precise_ip(&attr); 293 /* 294 * Now let the usual logic to set up the perf_event_attr defaults 295 * to kick in when we return and before perf_evsel__open() is called. 296 */ 297 attr.sample_period = 0; 298 new_event: 299 evsel = perf_evsel__new(&attr); 300 if (evsel == NULL) 301 goto out; 302 303 /* use asprintf() because free(evsel) assumes name is allocated */ 304 if (asprintf(&evsel->name, "cycles%s%s%.*s", 305 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 306 attr.exclude_kernel ? "u" : "", 307 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 308 goto error_free; 309 out: 310 return evsel; 311 error_free: 312 perf_evsel__delete(evsel); 313 evsel = NULL; 314 goto out; 315 } 316 317 /* 318 * Returns pointer with encoded error via <linux/err.h> interface. 319 */ 320 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 321 { 322 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 323 int err = -ENOMEM; 324 325 if (evsel == NULL) { 326 goto out_err; 327 } else { 328 struct perf_event_attr attr = { 329 .type = PERF_TYPE_TRACEPOINT, 330 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 331 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 332 }; 333 334 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 335 goto out_free; 336 337 evsel->tp_format = trace_event__tp_format(sys, name); 338 if (IS_ERR(evsel->tp_format)) { 339 err = PTR_ERR(evsel->tp_format); 340 goto out_free; 341 } 342 343 event_attr_init(&attr); 344 attr.config = evsel->tp_format->id; 345 attr.sample_period = 1; 346 perf_evsel__init(evsel, &attr, idx); 347 } 348 349 return evsel; 350 351 out_free: 352 zfree(&evsel->name); 353 free(evsel); 354 out_err: 355 return ERR_PTR(err); 356 } 357 358 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 359 "cycles", 360 "instructions", 361 "cache-references", 362 "cache-misses", 363 "branches", 364 "branch-misses", 365 "bus-cycles", 366 "stalled-cycles-frontend", 367 "stalled-cycles-backend", 368 "ref-cycles", 369 }; 370 371 static const char *__perf_evsel__hw_name(u64 config) 372 { 373 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 374 return perf_evsel__hw_names[config]; 375 376 return "unknown-hardware"; 377 } 378 379 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 380 { 381 int colon = 0, r = 0; 382 struct perf_event_attr *attr = &evsel->attr; 383 bool exclude_guest_default = false; 384 385 #define MOD_PRINT(context, mod) do { \ 386 if (!attr->exclude_##context) { \ 387 if (!colon) colon = ++r; \ 388 r += scnprintf(bf + r, size - r, "%c", mod); \ 389 } } while(0) 390 391 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 392 MOD_PRINT(kernel, 'k'); 393 MOD_PRINT(user, 'u'); 394 MOD_PRINT(hv, 'h'); 395 exclude_guest_default = true; 396 } 397 398 if (attr->precise_ip) { 399 if (!colon) 400 colon = ++r; 401 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 402 exclude_guest_default = true; 403 } 404 405 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 406 MOD_PRINT(host, 'H'); 407 MOD_PRINT(guest, 'G'); 408 } 409 #undef MOD_PRINT 410 if (colon) 411 bf[colon - 1] = ':'; 412 return r; 413 } 414 415 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 416 { 417 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 418 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 419 } 420 421 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 422 "cpu-clock", 423 "task-clock", 424 "page-faults", 425 "context-switches", 426 "cpu-migrations", 427 "minor-faults", 428 "major-faults", 429 "alignment-faults", 430 "emulation-faults", 431 "dummy", 432 }; 433 434 static const char *__perf_evsel__sw_name(u64 config) 435 { 436 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 437 return perf_evsel__sw_names[config]; 438 return "unknown-software"; 439 } 440 441 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 442 { 443 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 444 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 445 } 446 447 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 448 { 449 int r; 450 451 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 452 453 if (type & HW_BREAKPOINT_R) 454 r += scnprintf(bf + r, size - r, "r"); 455 456 if (type & HW_BREAKPOINT_W) 457 r += scnprintf(bf + r, size - r, "w"); 458 459 if (type & HW_BREAKPOINT_X) 460 r += scnprintf(bf + r, size - r, "x"); 461 462 return r; 463 } 464 465 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 466 { 467 struct perf_event_attr *attr = &evsel->attr; 468 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 469 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 470 } 471 472 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 473 [PERF_EVSEL__MAX_ALIASES] = { 474 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 475 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 476 { "LLC", "L2", }, 477 { "dTLB", "d-tlb", "Data-TLB", }, 478 { "iTLB", "i-tlb", "Instruction-TLB", }, 479 { "branch", "branches", "bpu", "btb", "bpc", }, 480 { "node", }, 481 }; 482 483 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 484 [PERF_EVSEL__MAX_ALIASES] = { 485 { "load", "loads", "read", }, 486 { "store", "stores", "write", }, 487 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 488 }; 489 490 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 491 [PERF_EVSEL__MAX_ALIASES] = { 492 { "refs", "Reference", "ops", "access", }, 493 { "misses", "miss", }, 494 }; 495 496 #define C(x) PERF_COUNT_HW_CACHE_##x 497 #define CACHE_READ (1 << C(OP_READ)) 498 #define CACHE_WRITE (1 << C(OP_WRITE)) 499 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 500 #define COP(x) (1 << x) 501 502 /* 503 * cache operartion stat 504 * L1I : Read and prefetch only 505 * ITLB and BPU : Read-only 506 */ 507 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 508 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 509 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 510 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 511 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 512 [C(ITLB)] = (CACHE_READ), 513 [C(BPU)] = (CACHE_READ), 514 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 }; 516 517 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 518 { 519 if (perf_evsel__hw_cache_stat[type] & COP(op)) 520 return true; /* valid */ 521 else 522 return false; /* invalid */ 523 } 524 525 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 526 char *bf, size_t size) 527 { 528 if (result) { 529 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 530 perf_evsel__hw_cache_op[op][0], 531 perf_evsel__hw_cache_result[result][0]); 532 } 533 534 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 535 perf_evsel__hw_cache_op[op][1]); 536 } 537 538 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 539 { 540 u8 op, result, type = (config >> 0) & 0xff; 541 const char *err = "unknown-ext-hardware-cache-type"; 542 543 if (type >= PERF_COUNT_HW_CACHE_MAX) 544 goto out_err; 545 546 op = (config >> 8) & 0xff; 547 err = "unknown-ext-hardware-cache-op"; 548 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 549 goto out_err; 550 551 result = (config >> 16) & 0xff; 552 err = "unknown-ext-hardware-cache-result"; 553 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 554 goto out_err; 555 556 err = "invalid-cache"; 557 if (!perf_evsel__is_cache_op_valid(type, op)) 558 goto out_err; 559 560 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 561 out_err: 562 return scnprintf(bf, size, "%s", err); 563 } 564 565 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 566 { 567 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 568 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 569 } 570 571 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 const char *perf_evsel__name(struct perf_evsel *evsel) 578 { 579 char bf[128]; 580 581 if (evsel->name) 582 return evsel->name; 583 584 switch (evsel->attr.type) { 585 case PERF_TYPE_RAW: 586 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 587 break; 588 589 case PERF_TYPE_HARDWARE: 590 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 591 break; 592 593 case PERF_TYPE_HW_CACHE: 594 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 595 break; 596 597 case PERF_TYPE_SOFTWARE: 598 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_TRACEPOINT: 602 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 603 break; 604 605 case PERF_TYPE_BREAKPOINT: 606 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 607 break; 608 609 default: 610 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 611 evsel->attr.type); 612 break; 613 } 614 615 evsel->name = strdup(bf); 616 617 return evsel->name ?: "unknown"; 618 } 619 620 const char *perf_evsel__group_name(struct perf_evsel *evsel) 621 { 622 return evsel->group_name ?: "anon group"; 623 } 624 625 /* 626 * Returns the group details for the specified leader, 627 * with following rules. 628 * 629 * For record -e '{cycles,instructions}' 630 * 'anon group { cycles:u, instructions:u }' 631 * 632 * For record -e 'cycles,instructions' and report --group 633 * 'cycles:u, instructions:u' 634 */ 635 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 636 { 637 int ret = 0; 638 struct perf_evsel *pos; 639 const char *group_name = perf_evsel__group_name(evsel); 640 641 if (!evsel->forced_leader) 642 ret = scnprintf(buf, size, "%s { ", group_name); 643 644 ret += scnprintf(buf + ret, size - ret, "%s", 645 perf_evsel__name(evsel)); 646 647 for_each_group_member(pos, evsel) 648 ret += scnprintf(buf + ret, size - ret, ", %s", 649 perf_evsel__name(pos)); 650 651 if (!evsel->forced_leader) 652 ret += scnprintf(buf + ret, size - ret, " }"); 653 654 return ret; 655 } 656 657 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 658 struct record_opts *opts, 659 struct callchain_param *param) 660 { 661 bool function = perf_evsel__is_function_event(evsel); 662 struct perf_event_attr *attr = &evsel->attr; 663 664 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 665 666 attr->sample_max_stack = param->max_stack; 667 668 if (param->record_mode == CALLCHAIN_LBR) { 669 if (!opts->branch_stack) { 670 if (attr->exclude_user) { 671 pr_warning("LBR callstack option is only available " 672 "to get user callchain information. " 673 "Falling back to framepointers.\n"); 674 } else { 675 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 676 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 677 PERF_SAMPLE_BRANCH_CALL_STACK | 678 PERF_SAMPLE_BRANCH_NO_CYCLES | 679 PERF_SAMPLE_BRANCH_NO_FLAGS; 680 } 681 } else 682 pr_warning("Cannot use LBR callstack with branch stack. " 683 "Falling back to framepointers.\n"); 684 } 685 686 if (param->record_mode == CALLCHAIN_DWARF) { 687 if (!function) { 688 perf_evsel__set_sample_bit(evsel, REGS_USER); 689 perf_evsel__set_sample_bit(evsel, STACK_USER); 690 attr->sample_regs_user |= PERF_REGS_MASK; 691 attr->sample_stack_user = param->dump_size; 692 attr->exclude_callchain_user = 1; 693 } else { 694 pr_info("Cannot use DWARF unwind for function trace event," 695 " falling back to framepointers.\n"); 696 } 697 } 698 699 if (function) { 700 pr_info("Disabling user space callchains for function trace event.\n"); 701 attr->exclude_callchain_user = 1; 702 } 703 } 704 705 void perf_evsel__config_callchain(struct perf_evsel *evsel, 706 struct record_opts *opts, 707 struct callchain_param *param) 708 { 709 if (param->enabled) 710 return __perf_evsel__config_callchain(evsel, opts, param); 711 } 712 713 static void 714 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 715 struct callchain_param *param) 716 { 717 struct perf_event_attr *attr = &evsel->attr; 718 719 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 720 if (param->record_mode == CALLCHAIN_LBR) { 721 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 722 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 723 PERF_SAMPLE_BRANCH_CALL_STACK); 724 } 725 if (param->record_mode == CALLCHAIN_DWARF) { 726 perf_evsel__reset_sample_bit(evsel, REGS_USER); 727 perf_evsel__reset_sample_bit(evsel, STACK_USER); 728 } 729 } 730 731 static void apply_config_terms(struct perf_evsel *evsel, 732 struct record_opts *opts, bool track) 733 { 734 struct perf_evsel_config_term *term; 735 struct list_head *config_terms = &evsel->config_terms; 736 struct perf_event_attr *attr = &evsel->attr; 737 /* callgraph default */ 738 struct callchain_param param = { 739 .record_mode = callchain_param.record_mode, 740 }; 741 u32 dump_size = 0; 742 int max_stack = 0; 743 const char *callgraph_buf = NULL; 744 745 list_for_each_entry(term, config_terms, list) { 746 switch (term->type) { 747 case PERF_EVSEL__CONFIG_TERM_PERIOD: 748 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 749 attr->sample_period = term->val.period; 750 attr->freq = 0; 751 perf_evsel__reset_sample_bit(evsel, PERIOD); 752 } 753 break; 754 case PERF_EVSEL__CONFIG_TERM_FREQ: 755 if (!(term->weak && opts->user_freq != UINT_MAX)) { 756 attr->sample_freq = term->val.freq; 757 attr->freq = 1; 758 perf_evsel__set_sample_bit(evsel, PERIOD); 759 } 760 break; 761 case PERF_EVSEL__CONFIG_TERM_TIME: 762 if (term->val.time) 763 perf_evsel__set_sample_bit(evsel, TIME); 764 else 765 perf_evsel__reset_sample_bit(evsel, TIME); 766 break; 767 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 768 callgraph_buf = term->val.callgraph; 769 break; 770 case PERF_EVSEL__CONFIG_TERM_BRANCH: 771 if (term->val.branch && strcmp(term->val.branch, "no")) { 772 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 773 parse_branch_str(term->val.branch, 774 &attr->branch_sample_type); 775 } else 776 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 777 break; 778 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 779 dump_size = term->val.stack_user; 780 break; 781 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 782 max_stack = term->val.max_stack; 783 break; 784 case PERF_EVSEL__CONFIG_TERM_INHERIT: 785 /* 786 * attr->inherit should has already been set by 787 * perf_evsel__config. If user explicitly set 788 * inherit using config terms, override global 789 * opt->no_inherit setting. 790 */ 791 attr->inherit = term->val.inherit ? 1 : 0; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 794 attr->write_backward = term->val.overwrite ? 1 : 0; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 797 break; 798 default: 799 break; 800 } 801 } 802 803 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 804 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 805 bool sample_address = false; 806 807 if (max_stack) { 808 param.max_stack = max_stack; 809 if (callgraph_buf == NULL) 810 callgraph_buf = "fp"; 811 } 812 813 /* parse callgraph parameters */ 814 if (callgraph_buf != NULL) { 815 if (!strcmp(callgraph_buf, "no")) { 816 param.enabled = false; 817 param.record_mode = CALLCHAIN_NONE; 818 } else { 819 param.enabled = true; 820 if (parse_callchain_record(callgraph_buf, ¶m)) { 821 pr_err("per-event callgraph setting for %s failed. " 822 "Apply callgraph global setting for it\n", 823 evsel->name); 824 return; 825 } 826 if (param.record_mode == CALLCHAIN_DWARF) 827 sample_address = true; 828 } 829 } 830 if (dump_size > 0) { 831 dump_size = round_up(dump_size, sizeof(u64)); 832 param.dump_size = dump_size; 833 } 834 835 /* If global callgraph set, clear it */ 836 if (callchain_param.enabled) 837 perf_evsel__reset_callgraph(evsel, &callchain_param); 838 839 /* set perf-event callgraph */ 840 if (param.enabled) { 841 if (sample_address) { 842 perf_evsel__set_sample_bit(evsel, ADDR); 843 perf_evsel__set_sample_bit(evsel, DATA_SRC); 844 evsel->attr.mmap_data = track; 845 } 846 perf_evsel__config_callchain(evsel, opts, ¶m); 847 } 848 } 849 } 850 851 /* 852 * The enable_on_exec/disabled value strategy: 853 * 854 * 1) For any type of traced program: 855 * - all independent events and group leaders are disabled 856 * - all group members are enabled 857 * 858 * Group members are ruled by group leaders. They need to 859 * be enabled, because the group scheduling relies on that. 860 * 861 * 2) For traced programs executed by perf: 862 * - all independent events and group leaders have 863 * enable_on_exec set 864 * - we don't specifically enable or disable any event during 865 * the record command 866 * 867 * Independent events and group leaders are initially disabled 868 * and get enabled by exec. Group members are ruled by group 869 * leaders as stated in 1). 870 * 871 * 3) For traced programs attached by perf (pid/tid): 872 * - we specifically enable or disable all events during 873 * the record command 874 * 875 * When attaching events to already running traced we 876 * enable/disable events specifically, as there's no 877 * initial traced exec call. 878 */ 879 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 880 struct callchain_param *callchain) 881 { 882 struct perf_evsel *leader = evsel->leader; 883 struct perf_event_attr *attr = &evsel->attr; 884 int track = evsel->tracking; 885 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 886 887 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 888 attr->inherit = !opts->no_inherit; 889 attr->write_backward = opts->overwrite ? 1 : 0; 890 891 perf_evsel__set_sample_bit(evsel, IP); 892 perf_evsel__set_sample_bit(evsel, TID); 893 894 if (evsel->sample_read) { 895 perf_evsel__set_sample_bit(evsel, READ); 896 897 /* 898 * We need ID even in case of single event, because 899 * PERF_SAMPLE_READ process ID specific data. 900 */ 901 perf_evsel__set_sample_id(evsel, false); 902 903 /* 904 * Apply group format only if we belong to group 905 * with more than one members. 906 */ 907 if (leader->nr_members > 1) { 908 attr->read_format |= PERF_FORMAT_GROUP; 909 attr->inherit = 0; 910 } 911 } 912 913 /* 914 * We default some events to have a default interval. But keep 915 * it a weak assumption overridable by the user. 916 */ 917 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 918 opts->user_interval != ULLONG_MAX)) { 919 if (opts->freq) { 920 perf_evsel__set_sample_bit(evsel, PERIOD); 921 attr->freq = 1; 922 attr->sample_freq = opts->freq; 923 } else { 924 attr->sample_period = opts->default_interval; 925 } 926 } 927 928 /* 929 * Disable sampling for all group members other 930 * than leader in case leader 'leads' the sampling. 931 */ 932 if ((leader != evsel) && leader->sample_read) { 933 attr->sample_freq = 0; 934 attr->sample_period = 0; 935 } 936 937 if (opts->no_samples) 938 attr->sample_freq = 0; 939 940 if (opts->inherit_stat) { 941 evsel->attr.read_format |= 942 PERF_FORMAT_TOTAL_TIME_ENABLED | 943 PERF_FORMAT_TOTAL_TIME_RUNNING | 944 PERF_FORMAT_ID; 945 attr->inherit_stat = 1; 946 } 947 948 if (opts->sample_address) { 949 perf_evsel__set_sample_bit(evsel, ADDR); 950 attr->mmap_data = track; 951 } 952 953 /* 954 * We don't allow user space callchains for function trace 955 * event, due to issues with page faults while tracing page 956 * fault handler and its overall trickiness nature. 957 */ 958 if (perf_evsel__is_function_event(evsel)) 959 evsel->attr.exclude_callchain_user = 1; 960 961 if (callchain && callchain->enabled && !evsel->no_aux_samples) 962 perf_evsel__config_callchain(evsel, opts, callchain); 963 964 if (opts->sample_intr_regs) { 965 attr->sample_regs_intr = opts->sample_intr_regs; 966 perf_evsel__set_sample_bit(evsel, REGS_INTR); 967 } 968 969 if (opts->sample_user_regs) { 970 attr->sample_regs_user |= opts->sample_user_regs; 971 perf_evsel__set_sample_bit(evsel, REGS_USER); 972 } 973 974 if (target__has_cpu(&opts->target) || opts->sample_cpu) 975 perf_evsel__set_sample_bit(evsel, CPU); 976 977 /* 978 * When the user explicitly disabled time don't force it here. 979 */ 980 if (opts->sample_time && 981 (!perf_missing_features.sample_id_all && 982 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 983 opts->sample_time_set))) 984 perf_evsel__set_sample_bit(evsel, TIME); 985 986 if (opts->raw_samples && !evsel->no_aux_samples) { 987 perf_evsel__set_sample_bit(evsel, TIME); 988 perf_evsel__set_sample_bit(evsel, RAW); 989 perf_evsel__set_sample_bit(evsel, CPU); 990 } 991 992 if (opts->sample_address) 993 perf_evsel__set_sample_bit(evsel, DATA_SRC); 994 995 if (opts->sample_phys_addr) 996 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 997 998 if (opts->no_buffering) { 999 attr->watermark = 0; 1000 attr->wakeup_events = 1; 1001 } 1002 if (opts->branch_stack && !evsel->no_aux_samples) { 1003 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1004 attr->branch_sample_type = opts->branch_stack; 1005 } 1006 1007 if (opts->sample_weight) 1008 perf_evsel__set_sample_bit(evsel, WEIGHT); 1009 1010 attr->task = track; 1011 attr->mmap = track; 1012 attr->mmap2 = track && !perf_missing_features.mmap2; 1013 attr->comm = track; 1014 1015 if (opts->record_namespaces) 1016 attr->namespaces = track; 1017 1018 if (opts->record_switch_events) 1019 attr->context_switch = track; 1020 1021 if (opts->sample_transaction) 1022 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1023 1024 if (opts->running_time) { 1025 evsel->attr.read_format |= 1026 PERF_FORMAT_TOTAL_TIME_ENABLED | 1027 PERF_FORMAT_TOTAL_TIME_RUNNING; 1028 } 1029 1030 /* 1031 * XXX see the function comment above 1032 * 1033 * Disabling only independent events or group leaders, 1034 * keeping group members enabled. 1035 */ 1036 if (perf_evsel__is_group_leader(evsel)) 1037 attr->disabled = 1; 1038 1039 /* 1040 * Setting enable_on_exec for independent events and 1041 * group leaders for traced executed by perf. 1042 */ 1043 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1044 !opts->initial_delay) 1045 attr->enable_on_exec = 1; 1046 1047 if (evsel->immediate) { 1048 attr->disabled = 0; 1049 attr->enable_on_exec = 0; 1050 } 1051 1052 clockid = opts->clockid; 1053 if (opts->use_clockid) { 1054 attr->use_clockid = 1; 1055 attr->clockid = opts->clockid; 1056 } 1057 1058 if (evsel->precise_max) 1059 perf_event_attr__set_max_precise_ip(attr); 1060 1061 if (opts->all_user) { 1062 attr->exclude_kernel = 1; 1063 attr->exclude_user = 0; 1064 } 1065 1066 if (opts->all_kernel) { 1067 attr->exclude_kernel = 0; 1068 attr->exclude_user = 1; 1069 } 1070 1071 /* 1072 * Apply event specific term settings, 1073 * it overloads any global configuration. 1074 */ 1075 apply_config_terms(evsel, opts, track); 1076 1077 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1078 1079 /* The --period option takes the precedence. */ 1080 if (opts->period_set) { 1081 if (opts->period) 1082 perf_evsel__set_sample_bit(evsel, PERIOD); 1083 else 1084 perf_evsel__reset_sample_bit(evsel, PERIOD); 1085 } 1086 } 1087 1088 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1089 { 1090 if (evsel->system_wide) 1091 nthreads = 1; 1092 1093 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1094 1095 if (evsel->fd) { 1096 int cpu, thread; 1097 for (cpu = 0; cpu < ncpus; cpu++) { 1098 for (thread = 0; thread < nthreads; thread++) { 1099 FD(evsel, cpu, thread) = -1; 1100 } 1101 } 1102 } 1103 1104 return evsel->fd != NULL ? 0 : -ENOMEM; 1105 } 1106 1107 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1108 int ioc, void *arg) 1109 { 1110 int cpu, thread; 1111 1112 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1113 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1114 int fd = FD(evsel, cpu, thread), 1115 err = ioctl(fd, ioc, arg); 1116 1117 if (err) 1118 return err; 1119 } 1120 } 1121 1122 return 0; 1123 } 1124 1125 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1126 { 1127 return perf_evsel__run_ioctl(evsel, 1128 PERF_EVENT_IOC_SET_FILTER, 1129 (void *)filter); 1130 } 1131 1132 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1133 { 1134 char *new_filter = strdup(filter); 1135 1136 if (new_filter != NULL) { 1137 free(evsel->filter); 1138 evsel->filter = new_filter; 1139 return 0; 1140 } 1141 1142 return -1; 1143 } 1144 1145 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1146 const char *fmt, const char *filter) 1147 { 1148 char *new_filter; 1149 1150 if (evsel->filter == NULL) 1151 return perf_evsel__set_filter(evsel, filter); 1152 1153 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1154 free(evsel->filter); 1155 evsel->filter = new_filter; 1156 return 0; 1157 } 1158 1159 return -1; 1160 } 1161 1162 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1163 { 1164 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1165 } 1166 1167 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1168 { 1169 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1170 } 1171 1172 int perf_evsel__enable(struct perf_evsel *evsel) 1173 { 1174 return perf_evsel__run_ioctl(evsel, 1175 PERF_EVENT_IOC_ENABLE, 1176 0); 1177 } 1178 1179 int perf_evsel__disable(struct perf_evsel *evsel) 1180 { 1181 return perf_evsel__run_ioctl(evsel, 1182 PERF_EVENT_IOC_DISABLE, 1183 0); 1184 } 1185 1186 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1187 { 1188 if (ncpus == 0 || nthreads == 0) 1189 return 0; 1190 1191 if (evsel->system_wide) 1192 nthreads = 1; 1193 1194 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1195 if (evsel->sample_id == NULL) 1196 return -ENOMEM; 1197 1198 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1199 if (evsel->id == NULL) { 1200 xyarray__delete(evsel->sample_id); 1201 evsel->sample_id = NULL; 1202 return -ENOMEM; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1209 { 1210 xyarray__delete(evsel->fd); 1211 evsel->fd = NULL; 1212 } 1213 1214 static void perf_evsel__free_id(struct perf_evsel *evsel) 1215 { 1216 xyarray__delete(evsel->sample_id); 1217 evsel->sample_id = NULL; 1218 zfree(&evsel->id); 1219 } 1220 1221 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1222 { 1223 struct perf_evsel_config_term *term, *h; 1224 1225 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1226 list_del(&term->list); 1227 free(term); 1228 } 1229 } 1230 1231 void perf_evsel__close_fd(struct perf_evsel *evsel) 1232 { 1233 int cpu, thread; 1234 1235 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1236 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1237 close(FD(evsel, cpu, thread)); 1238 FD(evsel, cpu, thread) = -1; 1239 } 1240 } 1241 1242 void perf_evsel__exit(struct perf_evsel *evsel) 1243 { 1244 assert(list_empty(&evsel->node)); 1245 assert(evsel->evlist == NULL); 1246 perf_evsel__free_fd(evsel); 1247 perf_evsel__free_id(evsel); 1248 perf_evsel__free_config_terms(evsel); 1249 cgroup__put(evsel->cgrp); 1250 cpu_map__put(evsel->cpus); 1251 cpu_map__put(evsel->own_cpus); 1252 thread_map__put(evsel->threads); 1253 zfree(&evsel->group_name); 1254 zfree(&evsel->name); 1255 perf_evsel__object.fini(evsel); 1256 } 1257 1258 void perf_evsel__delete(struct perf_evsel *evsel) 1259 { 1260 perf_evsel__exit(evsel); 1261 free(evsel); 1262 } 1263 1264 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1265 struct perf_counts_values *count) 1266 { 1267 struct perf_counts_values tmp; 1268 1269 if (!evsel->prev_raw_counts) 1270 return; 1271 1272 if (cpu == -1) { 1273 tmp = evsel->prev_raw_counts->aggr; 1274 evsel->prev_raw_counts->aggr = *count; 1275 } else { 1276 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1277 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1278 } 1279 1280 count->val = count->val - tmp.val; 1281 count->ena = count->ena - tmp.ena; 1282 count->run = count->run - tmp.run; 1283 } 1284 1285 void perf_counts_values__scale(struct perf_counts_values *count, 1286 bool scale, s8 *pscaled) 1287 { 1288 s8 scaled = 0; 1289 1290 if (scale) { 1291 if (count->run == 0) { 1292 scaled = -1; 1293 count->val = 0; 1294 } else if (count->run < count->ena) { 1295 scaled = 1; 1296 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1297 } 1298 } else 1299 count->ena = count->run = 0; 1300 1301 if (pscaled) 1302 *pscaled = scaled; 1303 } 1304 1305 static int perf_evsel__read_size(struct perf_evsel *evsel) 1306 { 1307 u64 read_format = evsel->attr.read_format; 1308 int entry = sizeof(u64); /* value */ 1309 int size = 0; 1310 int nr = 1; 1311 1312 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1313 size += sizeof(u64); 1314 1315 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1316 size += sizeof(u64); 1317 1318 if (read_format & PERF_FORMAT_ID) 1319 entry += sizeof(u64); 1320 1321 if (read_format & PERF_FORMAT_GROUP) { 1322 nr = evsel->nr_members; 1323 size += sizeof(u64); 1324 } 1325 1326 size += entry * nr; 1327 return size; 1328 } 1329 1330 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1331 struct perf_counts_values *count) 1332 { 1333 size_t size = perf_evsel__read_size(evsel); 1334 1335 memset(count, 0, sizeof(*count)); 1336 1337 if (FD(evsel, cpu, thread) < 0) 1338 return -EINVAL; 1339 1340 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1341 return -errno; 1342 1343 return 0; 1344 } 1345 1346 static int 1347 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1348 { 1349 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1350 1351 return perf_evsel__read(evsel, cpu, thread, count); 1352 } 1353 1354 static void 1355 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1356 u64 val, u64 ena, u64 run) 1357 { 1358 struct perf_counts_values *count; 1359 1360 count = perf_counts(counter->counts, cpu, thread); 1361 1362 count->val = val; 1363 count->ena = ena; 1364 count->run = run; 1365 count->loaded = true; 1366 } 1367 1368 static int 1369 perf_evsel__process_group_data(struct perf_evsel *leader, 1370 int cpu, int thread, u64 *data) 1371 { 1372 u64 read_format = leader->attr.read_format; 1373 struct sample_read_value *v; 1374 u64 nr, ena = 0, run = 0, i; 1375 1376 nr = *data++; 1377 1378 if (nr != (u64) leader->nr_members) 1379 return -EINVAL; 1380 1381 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1382 ena = *data++; 1383 1384 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1385 run = *data++; 1386 1387 v = (struct sample_read_value *) data; 1388 1389 perf_evsel__set_count(leader, cpu, thread, 1390 v[0].value, ena, run); 1391 1392 for (i = 1; i < nr; i++) { 1393 struct perf_evsel *counter; 1394 1395 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1396 if (!counter) 1397 return -EINVAL; 1398 1399 perf_evsel__set_count(counter, cpu, thread, 1400 v[i].value, ena, run); 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int 1407 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1408 { 1409 struct perf_stat_evsel *ps = leader->stats; 1410 u64 read_format = leader->attr.read_format; 1411 int size = perf_evsel__read_size(leader); 1412 u64 *data = ps->group_data; 1413 1414 if (!(read_format & PERF_FORMAT_ID)) 1415 return -EINVAL; 1416 1417 if (!perf_evsel__is_group_leader(leader)) 1418 return -EINVAL; 1419 1420 if (!data) { 1421 data = zalloc(size); 1422 if (!data) 1423 return -ENOMEM; 1424 1425 ps->group_data = data; 1426 } 1427 1428 if (FD(leader, cpu, thread) < 0) 1429 return -EINVAL; 1430 1431 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1432 return -errno; 1433 1434 return perf_evsel__process_group_data(leader, cpu, thread, data); 1435 } 1436 1437 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1438 { 1439 u64 read_format = evsel->attr.read_format; 1440 1441 if (read_format & PERF_FORMAT_GROUP) 1442 return perf_evsel__read_group(evsel, cpu, thread); 1443 else 1444 return perf_evsel__read_one(evsel, cpu, thread); 1445 } 1446 1447 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1448 int cpu, int thread, bool scale) 1449 { 1450 struct perf_counts_values count; 1451 size_t nv = scale ? 3 : 1; 1452 1453 if (FD(evsel, cpu, thread) < 0) 1454 return -EINVAL; 1455 1456 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1457 return -ENOMEM; 1458 1459 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1460 return -errno; 1461 1462 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1463 perf_counts_values__scale(&count, scale, NULL); 1464 *perf_counts(evsel->counts, cpu, thread) = count; 1465 return 0; 1466 } 1467 1468 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1469 { 1470 struct perf_evsel *leader = evsel->leader; 1471 int fd; 1472 1473 if (perf_evsel__is_group_leader(evsel)) 1474 return -1; 1475 1476 /* 1477 * Leader must be already processed/open, 1478 * if not it's a bug. 1479 */ 1480 BUG_ON(!leader->fd); 1481 1482 fd = FD(leader, cpu, thread); 1483 BUG_ON(fd == -1); 1484 1485 return fd; 1486 } 1487 1488 struct bit_names { 1489 int bit; 1490 const char *name; 1491 }; 1492 1493 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1494 { 1495 bool first_bit = true; 1496 int i = 0; 1497 1498 do { 1499 if (value & bits[i].bit) { 1500 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1501 first_bit = false; 1502 } 1503 } while (bits[++i].name != NULL); 1504 } 1505 1506 static void __p_sample_type(char *buf, size_t size, u64 value) 1507 { 1508 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1509 struct bit_names bits[] = { 1510 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1511 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1512 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1513 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1514 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1515 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1516 { .name = NULL, } 1517 }; 1518 #undef bit_name 1519 __p_bits(buf, size, value, bits); 1520 } 1521 1522 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1523 { 1524 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1525 struct bit_names bits[] = { 1526 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1527 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1528 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1529 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1530 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1531 { .name = NULL, } 1532 }; 1533 #undef bit_name 1534 __p_bits(buf, size, value, bits); 1535 } 1536 1537 static void __p_read_format(char *buf, size_t size, u64 value) 1538 { 1539 #define bit_name(n) { PERF_FORMAT_##n, #n } 1540 struct bit_names bits[] = { 1541 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1542 bit_name(ID), bit_name(GROUP), 1543 { .name = NULL, } 1544 }; 1545 #undef bit_name 1546 __p_bits(buf, size, value, bits); 1547 } 1548 1549 #define BUF_SIZE 1024 1550 1551 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1552 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1553 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1554 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1555 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1556 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1557 1558 #define PRINT_ATTRn(_n, _f, _p) \ 1559 do { \ 1560 if (attr->_f) { \ 1561 _p(attr->_f); \ 1562 ret += attr__fprintf(fp, _n, buf, priv);\ 1563 } \ 1564 } while (0) 1565 1566 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1567 1568 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1569 attr__fprintf_f attr__fprintf, void *priv) 1570 { 1571 char buf[BUF_SIZE]; 1572 int ret = 0; 1573 1574 PRINT_ATTRf(type, p_unsigned); 1575 PRINT_ATTRf(size, p_unsigned); 1576 PRINT_ATTRf(config, p_hex); 1577 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1578 PRINT_ATTRf(sample_type, p_sample_type); 1579 PRINT_ATTRf(read_format, p_read_format); 1580 1581 PRINT_ATTRf(disabled, p_unsigned); 1582 PRINT_ATTRf(inherit, p_unsigned); 1583 PRINT_ATTRf(pinned, p_unsigned); 1584 PRINT_ATTRf(exclusive, p_unsigned); 1585 PRINT_ATTRf(exclude_user, p_unsigned); 1586 PRINT_ATTRf(exclude_kernel, p_unsigned); 1587 PRINT_ATTRf(exclude_hv, p_unsigned); 1588 PRINT_ATTRf(exclude_idle, p_unsigned); 1589 PRINT_ATTRf(mmap, p_unsigned); 1590 PRINT_ATTRf(comm, p_unsigned); 1591 PRINT_ATTRf(freq, p_unsigned); 1592 PRINT_ATTRf(inherit_stat, p_unsigned); 1593 PRINT_ATTRf(enable_on_exec, p_unsigned); 1594 PRINT_ATTRf(task, p_unsigned); 1595 PRINT_ATTRf(watermark, p_unsigned); 1596 PRINT_ATTRf(precise_ip, p_unsigned); 1597 PRINT_ATTRf(mmap_data, p_unsigned); 1598 PRINT_ATTRf(sample_id_all, p_unsigned); 1599 PRINT_ATTRf(exclude_host, p_unsigned); 1600 PRINT_ATTRf(exclude_guest, p_unsigned); 1601 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1602 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1603 PRINT_ATTRf(mmap2, p_unsigned); 1604 PRINT_ATTRf(comm_exec, p_unsigned); 1605 PRINT_ATTRf(use_clockid, p_unsigned); 1606 PRINT_ATTRf(context_switch, p_unsigned); 1607 PRINT_ATTRf(write_backward, p_unsigned); 1608 PRINT_ATTRf(namespaces, p_unsigned); 1609 1610 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1611 PRINT_ATTRf(bp_type, p_unsigned); 1612 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1613 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1614 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1615 PRINT_ATTRf(sample_regs_user, p_hex); 1616 PRINT_ATTRf(sample_stack_user, p_unsigned); 1617 PRINT_ATTRf(clockid, p_signed); 1618 PRINT_ATTRf(sample_regs_intr, p_hex); 1619 PRINT_ATTRf(aux_watermark, p_unsigned); 1620 PRINT_ATTRf(sample_max_stack, p_unsigned); 1621 1622 return ret; 1623 } 1624 1625 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1626 void *priv __maybe_unused) 1627 { 1628 return fprintf(fp, " %-32s %s\n", name, val); 1629 } 1630 1631 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1632 int nr_cpus, int nr_threads, 1633 int thread_idx) 1634 { 1635 for (int cpu = 0; cpu < nr_cpus; cpu++) 1636 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1637 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1638 } 1639 1640 static int update_fds(struct perf_evsel *evsel, 1641 int nr_cpus, int cpu_idx, 1642 int nr_threads, int thread_idx) 1643 { 1644 struct perf_evsel *pos; 1645 1646 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1647 return -EINVAL; 1648 1649 evlist__for_each_entry(evsel->evlist, pos) { 1650 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1651 1652 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1653 1654 /* 1655 * Since fds for next evsel has not been created, 1656 * there is no need to iterate whole event list. 1657 */ 1658 if (pos == evsel) 1659 break; 1660 } 1661 return 0; 1662 } 1663 1664 static bool ignore_missing_thread(struct perf_evsel *evsel, 1665 int nr_cpus, int cpu, 1666 struct thread_map *threads, 1667 int thread, int err) 1668 { 1669 pid_t ignore_pid = thread_map__pid(threads, thread); 1670 1671 if (!evsel->ignore_missing_thread) 1672 return false; 1673 1674 /* The system wide setup does not work with threads. */ 1675 if (evsel->system_wide) 1676 return false; 1677 1678 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1679 if (err != -ESRCH) 1680 return false; 1681 1682 /* If there's only one thread, let it fail. */ 1683 if (threads->nr == 1) 1684 return false; 1685 1686 /* 1687 * We should remove fd for missing_thread first 1688 * because thread_map__remove() will decrease threads->nr. 1689 */ 1690 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1691 return false; 1692 1693 if (thread_map__remove(threads, thread)) 1694 return false; 1695 1696 pr_warning("WARNING: Ignored open failure for pid %d\n", 1697 ignore_pid); 1698 return true; 1699 } 1700 1701 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1702 struct thread_map *threads) 1703 { 1704 int cpu, thread, nthreads; 1705 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1706 int pid = -1, err; 1707 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1708 1709 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1710 return -EINVAL; 1711 1712 if (cpus == NULL) { 1713 static struct cpu_map *empty_cpu_map; 1714 1715 if (empty_cpu_map == NULL) { 1716 empty_cpu_map = cpu_map__dummy_new(); 1717 if (empty_cpu_map == NULL) 1718 return -ENOMEM; 1719 } 1720 1721 cpus = empty_cpu_map; 1722 } 1723 1724 if (threads == NULL) { 1725 static struct thread_map *empty_thread_map; 1726 1727 if (empty_thread_map == NULL) { 1728 empty_thread_map = thread_map__new_by_tid(-1); 1729 if (empty_thread_map == NULL) 1730 return -ENOMEM; 1731 } 1732 1733 threads = empty_thread_map; 1734 } 1735 1736 if (evsel->system_wide) 1737 nthreads = 1; 1738 else 1739 nthreads = threads->nr; 1740 1741 if (evsel->fd == NULL && 1742 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1743 return -ENOMEM; 1744 1745 if (evsel->cgrp) { 1746 flags |= PERF_FLAG_PID_CGROUP; 1747 pid = evsel->cgrp->fd; 1748 } 1749 1750 fallback_missing_features: 1751 if (perf_missing_features.clockid_wrong) 1752 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1753 if (perf_missing_features.clockid) { 1754 evsel->attr.use_clockid = 0; 1755 evsel->attr.clockid = 0; 1756 } 1757 if (perf_missing_features.cloexec) 1758 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1759 if (perf_missing_features.mmap2) 1760 evsel->attr.mmap2 = 0; 1761 if (perf_missing_features.exclude_guest) 1762 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1763 if (perf_missing_features.lbr_flags) 1764 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1765 PERF_SAMPLE_BRANCH_NO_CYCLES); 1766 if (perf_missing_features.group_read && evsel->attr.inherit) 1767 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1768 retry_sample_id: 1769 if (perf_missing_features.sample_id_all) 1770 evsel->attr.sample_id_all = 0; 1771 1772 if (verbose >= 2) { 1773 fprintf(stderr, "%.60s\n", graph_dotted_line); 1774 fprintf(stderr, "perf_event_attr:\n"); 1775 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1776 fprintf(stderr, "%.60s\n", graph_dotted_line); 1777 } 1778 1779 for (cpu = 0; cpu < cpus->nr; cpu++) { 1780 1781 for (thread = 0; thread < nthreads; thread++) { 1782 int fd, group_fd; 1783 1784 if (!evsel->cgrp && !evsel->system_wide) 1785 pid = thread_map__pid(threads, thread); 1786 1787 group_fd = get_group_fd(evsel, cpu, thread); 1788 retry_open: 1789 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1790 pid, cpus->map[cpu], group_fd, flags); 1791 1792 test_attr__ready(); 1793 1794 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1795 group_fd, flags); 1796 1797 FD(evsel, cpu, thread) = fd; 1798 1799 if (fd < 0) { 1800 err = -errno; 1801 1802 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1803 /* 1804 * We just removed 1 thread, so take a step 1805 * back on thread index and lower the upper 1806 * nthreads limit. 1807 */ 1808 nthreads--; 1809 thread--; 1810 1811 /* ... and pretend like nothing have happened. */ 1812 err = 0; 1813 continue; 1814 } 1815 1816 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1817 err); 1818 goto try_fallback; 1819 } 1820 1821 pr_debug2(" = %d\n", fd); 1822 1823 if (evsel->bpf_fd >= 0) { 1824 int evt_fd = fd; 1825 int bpf_fd = evsel->bpf_fd; 1826 1827 err = ioctl(evt_fd, 1828 PERF_EVENT_IOC_SET_BPF, 1829 bpf_fd); 1830 if (err && errno != EEXIST) { 1831 pr_err("failed to attach bpf fd %d: %s\n", 1832 bpf_fd, strerror(errno)); 1833 err = -EINVAL; 1834 goto out_close; 1835 } 1836 } 1837 1838 set_rlimit = NO_CHANGE; 1839 1840 /* 1841 * If we succeeded but had to kill clockid, fail and 1842 * have perf_evsel__open_strerror() print us a nice 1843 * error. 1844 */ 1845 if (perf_missing_features.clockid || 1846 perf_missing_features.clockid_wrong) { 1847 err = -EINVAL; 1848 goto out_close; 1849 } 1850 } 1851 } 1852 1853 return 0; 1854 1855 try_fallback: 1856 /* 1857 * perf stat needs between 5 and 22 fds per CPU. When we run out 1858 * of them try to increase the limits. 1859 */ 1860 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1861 struct rlimit l; 1862 int old_errno = errno; 1863 1864 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1865 if (set_rlimit == NO_CHANGE) 1866 l.rlim_cur = l.rlim_max; 1867 else { 1868 l.rlim_cur = l.rlim_max + 1000; 1869 l.rlim_max = l.rlim_cur; 1870 } 1871 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1872 set_rlimit++; 1873 errno = old_errno; 1874 goto retry_open; 1875 } 1876 } 1877 errno = old_errno; 1878 } 1879 1880 if (err != -EINVAL || cpu > 0 || thread > 0) 1881 goto out_close; 1882 1883 /* 1884 * Must probe features in the order they were added to the 1885 * perf_event_attr interface. 1886 */ 1887 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1888 perf_missing_features.write_backward = true; 1889 pr_debug2("switching off write_backward\n"); 1890 goto out_close; 1891 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1892 perf_missing_features.clockid_wrong = true; 1893 pr_debug2("switching off clockid\n"); 1894 goto fallback_missing_features; 1895 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1896 perf_missing_features.clockid = true; 1897 pr_debug2("switching off use_clockid\n"); 1898 goto fallback_missing_features; 1899 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1900 perf_missing_features.cloexec = true; 1901 pr_debug2("switching off cloexec flag\n"); 1902 goto fallback_missing_features; 1903 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1904 perf_missing_features.mmap2 = true; 1905 pr_debug2("switching off mmap2\n"); 1906 goto fallback_missing_features; 1907 } else if (!perf_missing_features.exclude_guest && 1908 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1909 perf_missing_features.exclude_guest = true; 1910 pr_debug2("switching off exclude_guest, exclude_host\n"); 1911 goto fallback_missing_features; 1912 } else if (!perf_missing_features.sample_id_all) { 1913 perf_missing_features.sample_id_all = true; 1914 pr_debug2("switching off sample_id_all\n"); 1915 goto retry_sample_id; 1916 } else if (!perf_missing_features.lbr_flags && 1917 (evsel->attr.branch_sample_type & 1918 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1919 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1920 perf_missing_features.lbr_flags = true; 1921 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1922 goto fallback_missing_features; 1923 } else if (!perf_missing_features.group_read && 1924 evsel->attr.inherit && 1925 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1926 perf_missing_features.group_read = true; 1927 pr_debug2("switching off group read\n"); 1928 goto fallback_missing_features; 1929 } 1930 out_close: 1931 if (err) 1932 threads->err_thread = thread; 1933 1934 do { 1935 while (--thread >= 0) { 1936 close(FD(evsel, cpu, thread)); 1937 FD(evsel, cpu, thread) = -1; 1938 } 1939 thread = nthreads; 1940 } while (--cpu >= 0); 1941 return err; 1942 } 1943 1944 void perf_evsel__close(struct perf_evsel *evsel) 1945 { 1946 if (evsel->fd == NULL) 1947 return; 1948 1949 perf_evsel__close_fd(evsel); 1950 perf_evsel__free_fd(evsel); 1951 } 1952 1953 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1954 struct cpu_map *cpus) 1955 { 1956 return perf_evsel__open(evsel, cpus, NULL); 1957 } 1958 1959 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1960 struct thread_map *threads) 1961 { 1962 return perf_evsel__open(evsel, NULL, threads); 1963 } 1964 1965 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1966 const union perf_event *event, 1967 struct perf_sample *sample) 1968 { 1969 u64 type = evsel->attr.sample_type; 1970 const u64 *array = event->sample.array; 1971 bool swapped = evsel->needs_swap; 1972 union u64_swap u; 1973 1974 array += ((event->header.size - 1975 sizeof(event->header)) / sizeof(u64)) - 1; 1976 1977 if (type & PERF_SAMPLE_IDENTIFIER) { 1978 sample->id = *array; 1979 array--; 1980 } 1981 1982 if (type & PERF_SAMPLE_CPU) { 1983 u.val64 = *array; 1984 if (swapped) { 1985 /* undo swap of u64, then swap on individual u32s */ 1986 u.val64 = bswap_64(u.val64); 1987 u.val32[0] = bswap_32(u.val32[0]); 1988 } 1989 1990 sample->cpu = u.val32[0]; 1991 array--; 1992 } 1993 1994 if (type & PERF_SAMPLE_STREAM_ID) { 1995 sample->stream_id = *array; 1996 array--; 1997 } 1998 1999 if (type & PERF_SAMPLE_ID) { 2000 sample->id = *array; 2001 array--; 2002 } 2003 2004 if (type & PERF_SAMPLE_TIME) { 2005 sample->time = *array; 2006 array--; 2007 } 2008 2009 if (type & PERF_SAMPLE_TID) { 2010 u.val64 = *array; 2011 if (swapped) { 2012 /* undo swap of u64, then swap on individual u32s */ 2013 u.val64 = bswap_64(u.val64); 2014 u.val32[0] = bswap_32(u.val32[0]); 2015 u.val32[1] = bswap_32(u.val32[1]); 2016 } 2017 2018 sample->pid = u.val32[0]; 2019 sample->tid = u.val32[1]; 2020 array--; 2021 } 2022 2023 return 0; 2024 } 2025 2026 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2027 u64 size) 2028 { 2029 return size > max_size || offset + size > endp; 2030 } 2031 2032 #define OVERFLOW_CHECK(offset, size, max_size) \ 2033 do { \ 2034 if (overflow(endp, (max_size), (offset), (size))) \ 2035 return -EFAULT; \ 2036 } while (0) 2037 2038 #define OVERFLOW_CHECK_u64(offset) \ 2039 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2040 2041 static int 2042 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2043 { 2044 /* 2045 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2046 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2047 * check the format does not go past the end of the event. 2048 */ 2049 if (sample_size + sizeof(event->header) > event->header.size) 2050 return -EFAULT; 2051 2052 return 0; 2053 } 2054 2055 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2056 struct perf_sample *data) 2057 { 2058 u64 type = evsel->attr.sample_type; 2059 bool swapped = evsel->needs_swap; 2060 const u64 *array; 2061 u16 max_size = event->header.size; 2062 const void *endp = (void *)event + max_size; 2063 u64 sz; 2064 2065 /* 2066 * used for cross-endian analysis. See git commit 65014ab3 2067 * for why this goofiness is needed. 2068 */ 2069 union u64_swap u; 2070 2071 memset(data, 0, sizeof(*data)); 2072 data->cpu = data->pid = data->tid = -1; 2073 data->stream_id = data->id = data->time = -1ULL; 2074 data->period = evsel->attr.sample_period; 2075 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2076 data->misc = event->header.misc; 2077 data->id = -1ULL; 2078 data->data_src = PERF_MEM_DATA_SRC_NONE; 2079 2080 if (event->header.type != PERF_RECORD_SAMPLE) { 2081 if (!evsel->attr.sample_id_all) 2082 return 0; 2083 return perf_evsel__parse_id_sample(evsel, event, data); 2084 } 2085 2086 array = event->sample.array; 2087 2088 if (perf_event__check_size(event, evsel->sample_size)) 2089 return -EFAULT; 2090 2091 if (type & PERF_SAMPLE_IDENTIFIER) { 2092 data->id = *array; 2093 array++; 2094 } 2095 2096 if (type & PERF_SAMPLE_IP) { 2097 data->ip = *array; 2098 array++; 2099 } 2100 2101 if (type & PERF_SAMPLE_TID) { 2102 u.val64 = *array; 2103 if (swapped) { 2104 /* undo swap of u64, then swap on individual u32s */ 2105 u.val64 = bswap_64(u.val64); 2106 u.val32[0] = bswap_32(u.val32[0]); 2107 u.val32[1] = bswap_32(u.val32[1]); 2108 } 2109 2110 data->pid = u.val32[0]; 2111 data->tid = u.val32[1]; 2112 array++; 2113 } 2114 2115 if (type & PERF_SAMPLE_TIME) { 2116 data->time = *array; 2117 array++; 2118 } 2119 2120 if (type & PERF_SAMPLE_ADDR) { 2121 data->addr = *array; 2122 array++; 2123 } 2124 2125 if (type & PERF_SAMPLE_ID) { 2126 data->id = *array; 2127 array++; 2128 } 2129 2130 if (type & PERF_SAMPLE_STREAM_ID) { 2131 data->stream_id = *array; 2132 array++; 2133 } 2134 2135 if (type & PERF_SAMPLE_CPU) { 2136 2137 u.val64 = *array; 2138 if (swapped) { 2139 /* undo swap of u64, then swap on individual u32s */ 2140 u.val64 = bswap_64(u.val64); 2141 u.val32[0] = bswap_32(u.val32[0]); 2142 } 2143 2144 data->cpu = u.val32[0]; 2145 array++; 2146 } 2147 2148 if (type & PERF_SAMPLE_PERIOD) { 2149 data->period = *array; 2150 array++; 2151 } 2152 2153 if (type & PERF_SAMPLE_READ) { 2154 u64 read_format = evsel->attr.read_format; 2155 2156 OVERFLOW_CHECK_u64(array); 2157 if (read_format & PERF_FORMAT_GROUP) 2158 data->read.group.nr = *array; 2159 else 2160 data->read.one.value = *array; 2161 2162 array++; 2163 2164 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2165 OVERFLOW_CHECK_u64(array); 2166 data->read.time_enabled = *array; 2167 array++; 2168 } 2169 2170 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2171 OVERFLOW_CHECK_u64(array); 2172 data->read.time_running = *array; 2173 array++; 2174 } 2175 2176 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2177 if (read_format & PERF_FORMAT_GROUP) { 2178 const u64 max_group_nr = UINT64_MAX / 2179 sizeof(struct sample_read_value); 2180 2181 if (data->read.group.nr > max_group_nr) 2182 return -EFAULT; 2183 sz = data->read.group.nr * 2184 sizeof(struct sample_read_value); 2185 OVERFLOW_CHECK(array, sz, max_size); 2186 data->read.group.values = 2187 (struct sample_read_value *)array; 2188 array = (void *)array + sz; 2189 } else { 2190 OVERFLOW_CHECK_u64(array); 2191 data->read.one.id = *array; 2192 array++; 2193 } 2194 } 2195 2196 if (type & PERF_SAMPLE_CALLCHAIN) { 2197 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2198 2199 OVERFLOW_CHECK_u64(array); 2200 data->callchain = (struct ip_callchain *)array++; 2201 if (data->callchain->nr > max_callchain_nr) 2202 return -EFAULT; 2203 sz = data->callchain->nr * sizeof(u64); 2204 OVERFLOW_CHECK(array, sz, max_size); 2205 array = (void *)array + sz; 2206 } 2207 2208 if (type & PERF_SAMPLE_RAW) { 2209 OVERFLOW_CHECK_u64(array); 2210 u.val64 = *array; 2211 2212 /* 2213 * Undo swap of u64, then swap on individual u32s, 2214 * get the size of the raw area and undo all of the 2215 * swap. The pevent interface handles endianity by 2216 * itself. 2217 */ 2218 if (swapped) { 2219 u.val64 = bswap_64(u.val64); 2220 u.val32[0] = bswap_32(u.val32[0]); 2221 u.val32[1] = bswap_32(u.val32[1]); 2222 } 2223 data->raw_size = u.val32[0]; 2224 2225 /* 2226 * The raw data is aligned on 64bits including the 2227 * u32 size, so it's safe to use mem_bswap_64. 2228 */ 2229 if (swapped) 2230 mem_bswap_64((void *) array, data->raw_size); 2231 2232 array = (void *)array + sizeof(u32); 2233 2234 OVERFLOW_CHECK(array, data->raw_size, max_size); 2235 data->raw_data = (void *)array; 2236 array = (void *)array + data->raw_size; 2237 } 2238 2239 if (type & PERF_SAMPLE_BRANCH_STACK) { 2240 const u64 max_branch_nr = UINT64_MAX / 2241 sizeof(struct branch_entry); 2242 2243 OVERFLOW_CHECK_u64(array); 2244 data->branch_stack = (struct branch_stack *)array++; 2245 2246 if (data->branch_stack->nr > max_branch_nr) 2247 return -EFAULT; 2248 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2249 OVERFLOW_CHECK(array, sz, max_size); 2250 array = (void *)array + sz; 2251 } 2252 2253 if (type & PERF_SAMPLE_REGS_USER) { 2254 OVERFLOW_CHECK_u64(array); 2255 data->user_regs.abi = *array; 2256 array++; 2257 2258 if (data->user_regs.abi) { 2259 u64 mask = evsel->attr.sample_regs_user; 2260 2261 sz = hweight_long(mask) * sizeof(u64); 2262 OVERFLOW_CHECK(array, sz, max_size); 2263 data->user_regs.mask = mask; 2264 data->user_regs.regs = (u64 *)array; 2265 array = (void *)array + sz; 2266 } 2267 } 2268 2269 if (type & PERF_SAMPLE_STACK_USER) { 2270 OVERFLOW_CHECK_u64(array); 2271 sz = *array++; 2272 2273 data->user_stack.offset = ((char *)(array - 1) 2274 - (char *) event); 2275 2276 if (!sz) { 2277 data->user_stack.size = 0; 2278 } else { 2279 OVERFLOW_CHECK(array, sz, max_size); 2280 data->user_stack.data = (char *)array; 2281 array = (void *)array + sz; 2282 OVERFLOW_CHECK_u64(array); 2283 data->user_stack.size = *array++; 2284 if (WARN_ONCE(data->user_stack.size > sz, 2285 "user stack dump failure\n")) 2286 return -EFAULT; 2287 } 2288 } 2289 2290 if (type & PERF_SAMPLE_WEIGHT) { 2291 OVERFLOW_CHECK_u64(array); 2292 data->weight = *array; 2293 array++; 2294 } 2295 2296 if (type & PERF_SAMPLE_DATA_SRC) { 2297 OVERFLOW_CHECK_u64(array); 2298 data->data_src = *array; 2299 array++; 2300 } 2301 2302 if (type & PERF_SAMPLE_TRANSACTION) { 2303 OVERFLOW_CHECK_u64(array); 2304 data->transaction = *array; 2305 array++; 2306 } 2307 2308 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2309 if (type & PERF_SAMPLE_REGS_INTR) { 2310 OVERFLOW_CHECK_u64(array); 2311 data->intr_regs.abi = *array; 2312 array++; 2313 2314 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2315 u64 mask = evsel->attr.sample_regs_intr; 2316 2317 sz = hweight_long(mask) * sizeof(u64); 2318 OVERFLOW_CHECK(array, sz, max_size); 2319 data->intr_regs.mask = mask; 2320 data->intr_regs.regs = (u64 *)array; 2321 array = (void *)array + sz; 2322 } 2323 } 2324 2325 data->phys_addr = 0; 2326 if (type & PERF_SAMPLE_PHYS_ADDR) { 2327 data->phys_addr = *array; 2328 array++; 2329 } 2330 2331 return 0; 2332 } 2333 2334 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2335 union perf_event *event, 2336 u64 *timestamp) 2337 { 2338 u64 type = evsel->attr.sample_type; 2339 const u64 *array; 2340 2341 if (!(type & PERF_SAMPLE_TIME)) 2342 return -1; 2343 2344 if (event->header.type != PERF_RECORD_SAMPLE) { 2345 struct perf_sample data = { 2346 .time = -1ULL, 2347 }; 2348 2349 if (!evsel->attr.sample_id_all) 2350 return -1; 2351 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2352 return -1; 2353 2354 *timestamp = data.time; 2355 return 0; 2356 } 2357 2358 array = event->sample.array; 2359 2360 if (perf_event__check_size(event, evsel->sample_size)) 2361 return -EFAULT; 2362 2363 if (type & PERF_SAMPLE_IDENTIFIER) 2364 array++; 2365 2366 if (type & PERF_SAMPLE_IP) 2367 array++; 2368 2369 if (type & PERF_SAMPLE_TID) 2370 array++; 2371 2372 if (type & PERF_SAMPLE_TIME) 2373 *timestamp = *array; 2374 2375 return 0; 2376 } 2377 2378 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2379 u64 read_format) 2380 { 2381 size_t sz, result = sizeof(struct sample_event); 2382 2383 if (type & PERF_SAMPLE_IDENTIFIER) 2384 result += sizeof(u64); 2385 2386 if (type & PERF_SAMPLE_IP) 2387 result += sizeof(u64); 2388 2389 if (type & PERF_SAMPLE_TID) 2390 result += sizeof(u64); 2391 2392 if (type & PERF_SAMPLE_TIME) 2393 result += sizeof(u64); 2394 2395 if (type & PERF_SAMPLE_ADDR) 2396 result += sizeof(u64); 2397 2398 if (type & PERF_SAMPLE_ID) 2399 result += sizeof(u64); 2400 2401 if (type & PERF_SAMPLE_STREAM_ID) 2402 result += sizeof(u64); 2403 2404 if (type & PERF_SAMPLE_CPU) 2405 result += sizeof(u64); 2406 2407 if (type & PERF_SAMPLE_PERIOD) 2408 result += sizeof(u64); 2409 2410 if (type & PERF_SAMPLE_READ) { 2411 result += sizeof(u64); 2412 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2413 result += sizeof(u64); 2414 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2415 result += sizeof(u64); 2416 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2417 if (read_format & PERF_FORMAT_GROUP) { 2418 sz = sample->read.group.nr * 2419 sizeof(struct sample_read_value); 2420 result += sz; 2421 } else { 2422 result += sizeof(u64); 2423 } 2424 } 2425 2426 if (type & PERF_SAMPLE_CALLCHAIN) { 2427 sz = (sample->callchain->nr + 1) * sizeof(u64); 2428 result += sz; 2429 } 2430 2431 if (type & PERF_SAMPLE_RAW) { 2432 result += sizeof(u32); 2433 result += sample->raw_size; 2434 } 2435 2436 if (type & PERF_SAMPLE_BRANCH_STACK) { 2437 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2438 sz += sizeof(u64); 2439 result += sz; 2440 } 2441 2442 if (type & PERF_SAMPLE_REGS_USER) { 2443 if (sample->user_regs.abi) { 2444 result += sizeof(u64); 2445 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2446 result += sz; 2447 } else { 2448 result += sizeof(u64); 2449 } 2450 } 2451 2452 if (type & PERF_SAMPLE_STACK_USER) { 2453 sz = sample->user_stack.size; 2454 result += sizeof(u64); 2455 if (sz) { 2456 result += sz; 2457 result += sizeof(u64); 2458 } 2459 } 2460 2461 if (type & PERF_SAMPLE_WEIGHT) 2462 result += sizeof(u64); 2463 2464 if (type & PERF_SAMPLE_DATA_SRC) 2465 result += sizeof(u64); 2466 2467 if (type & PERF_SAMPLE_TRANSACTION) 2468 result += sizeof(u64); 2469 2470 if (type & PERF_SAMPLE_REGS_INTR) { 2471 if (sample->intr_regs.abi) { 2472 result += sizeof(u64); 2473 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2474 result += sz; 2475 } else { 2476 result += sizeof(u64); 2477 } 2478 } 2479 2480 if (type & PERF_SAMPLE_PHYS_ADDR) 2481 result += sizeof(u64); 2482 2483 return result; 2484 } 2485 2486 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2487 u64 read_format, 2488 const struct perf_sample *sample) 2489 { 2490 u64 *array; 2491 size_t sz; 2492 /* 2493 * used for cross-endian analysis. See git commit 65014ab3 2494 * for why this goofiness is needed. 2495 */ 2496 union u64_swap u; 2497 2498 array = event->sample.array; 2499 2500 if (type & PERF_SAMPLE_IDENTIFIER) { 2501 *array = sample->id; 2502 array++; 2503 } 2504 2505 if (type & PERF_SAMPLE_IP) { 2506 *array = sample->ip; 2507 array++; 2508 } 2509 2510 if (type & PERF_SAMPLE_TID) { 2511 u.val32[0] = sample->pid; 2512 u.val32[1] = sample->tid; 2513 *array = u.val64; 2514 array++; 2515 } 2516 2517 if (type & PERF_SAMPLE_TIME) { 2518 *array = sample->time; 2519 array++; 2520 } 2521 2522 if (type & PERF_SAMPLE_ADDR) { 2523 *array = sample->addr; 2524 array++; 2525 } 2526 2527 if (type & PERF_SAMPLE_ID) { 2528 *array = sample->id; 2529 array++; 2530 } 2531 2532 if (type & PERF_SAMPLE_STREAM_ID) { 2533 *array = sample->stream_id; 2534 array++; 2535 } 2536 2537 if (type & PERF_SAMPLE_CPU) { 2538 u.val32[0] = sample->cpu; 2539 u.val32[1] = 0; 2540 *array = u.val64; 2541 array++; 2542 } 2543 2544 if (type & PERF_SAMPLE_PERIOD) { 2545 *array = sample->period; 2546 array++; 2547 } 2548 2549 if (type & PERF_SAMPLE_READ) { 2550 if (read_format & PERF_FORMAT_GROUP) 2551 *array = sample->read.group.nr; 2552 else 2553 *array = sample->read.one.value; 2554 array++; 2555 2556 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2557 *array = sample->read.time_enabled; 2558 array++; 2559 } 2560 2561 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2562 *array = sample->read.time_running; 2563 array++; 2564 } 2565 2566 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2567 if (read_format & PERF_FORMAT_GROUP) { 2568 sz = sample->read.group.nr * 2569 sizeof(struct sample_read_value); 2570 memcpy(array, sample->read.group.values, sz); 2571 array = (void *)array + sz; 2572 } else { 2573 *array = sample->read.one.id; 2574 array++; 2575 } 2576 } 2577 2578 if (type & PERF_SAMPLE_CALLCHAIN) { 2579 sz = (sample->callchain->nr + 1) * sizeof(u64); 2580 memcpy(array, sample->callchain, sz); 2581 array = (void *)array + sz; 2582 } 2583 2584 if (type & PERF_SAMPLE_RAW) { 2585 u.val32[0] = sample->raw_size; 2586 *array = u.val64; 2587 array = (void *)array + sizeof(u32); 2588 2589 memcpy(array, sample->raw_data, sample->raw_size); 2590 array = (void *)array + sample->raw_size; 2591 } 2592 2593 if (type & PERF_SAMPLE_BRANCH_STACK) { 2594 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2595 sz += sizeof(u64); 2596 memcpy(array, sample->branch_stack, sz); 2597 array = (void *)array + sz; 2598 } 2599 2600 if (type & PERF_SAMPLE_REGS_USER) { 2601 if (sample->user_regs.abi) { 2602 *array++ = sample->user_regs.abi; 2603 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2604 memcpy(array, sample->user_regs.regs, sz); 2605 array = (void *)array + sz; 2606 } else { 2607 *array++ = 0; 2608 } 2609 } 2610 2611 if (type & PERF_SAMPLE_STACK_USER) { 2612 sz = sample->user_stack.size; 2613 *array++ = sz; 2614 if (sz) { 2615 memcpy(array, sample->user_stack.data, sz); 2616 array = (void *)array + sz; 2617 *array++ = sz; 2618 } 2619 } 2620 2621 if (type & PERF_SAMPLE_WEIGHT) { 2622 *array = sample->weight; 2623 array++; 2624 } 2625 2626 if (type & PERF_SAMPLE_DATA_SRC) { 2627 *array = sample->data_src; 2628 array++; 2629 } 2630 2631 if (type & PERF_SAMPLE_TRANSACTION) { 2632 *array = sample->transaction; 2633 array++; 2634 } 2635 2636 if (type & PERF_SAMPLE_REGS_INTR) { 2637 if (sample->intr_regs.abi) { 2638 *array++ = sample->intr_regs.abi; 2639 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2640 memcpy(array, sample->intr_regs.regs, sz); 2641 array = (void *)array + sz; 2642 } else { 2643 *array++ = 0; 2644 } 2645 } 2646 2647 if (type & PERF_SAMPLE_PHYS_ADDR) { 2648 *array = sample->phys_addr; 2649 array++; 2650 } 2651 2652 return 0; 2653 } 2654 2655 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2656 { 2657 return pevent_find_field(evsel->tp_format, name); 2658 } 2659 2660 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2661 const char *name) 2662 { 2663 struct format_field *field = perf_evsel__field(evsel, name); 2664 int offset; 2665 2666 if (!field) 2667 return NULL; 2668 2669 offset = field->offset; 2670 2671 if (field->flags & FIELD_IS_DYNAMIC) { 2672 offset = *(int *)(sample->raw_data + field->offset); 2673 offset &= 0xffff; 2674 } 2675 2676 return sample->raw_data + offset; 2677 } 2678 2679 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2680 bool needs_swap) 2681 { 2682 u64 value; 2683 void *ptr = sample->raw_data + field->offset; 2684 2685 switch (field->size) { 2686 case 1: 2687 return *(u8 *)ptr; 2688 case 2: 2689 value = *(u16 *)ptr; 2690 break; 2691 case 4: 2692 value = *(u32 *)ptr; 2693 break; 2694 case 8: 2695 memcpy(&value, ptr, sizeof(u64)); 2696 break; 2697 default: 2698 return 0; 2699 } 2700 2701 if (!needs_swap) 2702 return value; 2703 2704 switch (field->size) { 2705 case 2: 2706 return bswap_16(value); 2707 case 4: 2708 return bswap_32(value); 2709 case 8: 2710 return bswap_64(value); 2711 default: 2712 return 0; 2713 } 2714 2715 return 0; 2716 } 2717 2718 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2719 const char *name) 2720 { 2721 struct format_field *field = perf_evsel__field(evsel, name); 2722 2723 if (!field) 2724 return 0; 2725 2726 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2727 } 2728 2729 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2730 char *msg, size_t msgsize) 2731 { 2732 int paranoid; 2733 2734 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2735 evsel->attr.type == PERF_TYPE_HARDWARE && 2736 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2737 /* 2738 * If it's cycles then fall back to hrtimer based 2739 * cpu-clock-tick sw counter, which is always available even if 2740 * no PMU support. 2741 * 2742 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2743 * b0a873e). 2744 */ 2745 scnprintf(msg, msgsize, "%s", 2746 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2747 2748 evsel->attr.type = PERF_TYPE_SOFTWARE; 2749 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2750 2751 zfree(&evsel->name); 2752 return true; 2753 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2754 (paranoid = perf_event_paranoid()) > 1) { 2755 const char *name = perf_evsel__name(evsel); 2756 char *new_name; 2757 2758 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2759 return false; 2760 2761 if (evsel->name) 2762 free(evsel->name); 2763 evsel->name = new_name; 2764 scnprintf(msg, msgsize, 2765 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2766 evsel->attr.exclude_kernel = 1; 2767 2768 return true; 2769 } 2770 2771 return false; 2772 } 2773 2774 static bool find_process(const char *name) 2775 { 2776 size_t len = strlen(name); 2777 DIR *dir; 2778 struct dirent *d; 2779 int ret = -1; 2780 2781 dir = opendir(procfs__mountpoint()); 2782 if (!dir) 2783 return false; 2784 2785 /* Walk through the directory. */ 2786 while (ret && (d = readdir(dir)) != NULL) { 2787 char path[PATH_MAX]; 2788 char *data; 2789 size_t size; 2790 2791 if ((d->d_type != DT_DIR) || 2792 !strcmp(".", d->d_name) || 2793 !strcmp("..", d->d_name)) 2794 continue; 2795 2796 scnprintf(path, sizeof(path), "%s/%s/comm", 2797 procfs__mountpoint(), d->d_name); 2798 2799 if (filename__read_str(path, &data, &size)) 2800 continue; 2801 2802 ret = strncmp(name, data, len); 2803 free(data); 2804 } 2805 2806 closedir(dir); 2807 return ret ? false : true; 2808 } 2809 2810 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2811 int err, char *msg, size_t size) 2812 { 2813 char sbuf[STRERR_BUFSIZE]; 2814 int printed = 0; 2815 2816 switch (err) { 2817 case EPERM: 2818 case EACCES: 2819 if (err == EPERM) 2820 printed = scnprintf(msg, size, 2821 "No permission to enable %s event.\n\n", 2822 perf_evsel__name(evsel)); 2823 2824 return scnprintf(msg + printed, size - printed, 2825 "You may not have permission to collect %sstats.\n\n" 2826 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2827 "which controls use of the performance events system by\n" 2828 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2829 "The current value is %d:\n\n" 2830 " -1: Allow use of (almost) all events by all users\n" 2831 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2832 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2833 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2834 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2835 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2836 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2837 " kernel.perf_event_paranoid = -1\n" , 2838 target->system_wide ? "system-wide " : "", 2839 perf_event_paranoid()); 2840 case ENOENT: 2841 return scnprintf(msg, size, "The %s event is not supported.", 2842 perf_evsel__name(evsel)); 2843 case EMFILE: 2844 return scnprintf(msg, size, "%s", 2845 "Too many events are opened.\n" 2846 "Probably the maximum number of open file descriptors has been reached.\n" 2847 "Hint: Try again after reducing the number of events.\n" 2848 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2849 case ENOMEM: 2850 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2851 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2852 return scnprintf(msg, size, 2853 "Not enough memory to setup event with callchain.\n" 2854 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2855 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2856 break; 2857 case ENODEV: 2858 if (target->cpu_list) 2859 return scnprintf(msg, size, "%s", 2860 "No such device - did you specify an out-of-range profile CPU?"); 2861 break; 2862 case EOPNOTSUPP: 2863 if (evsel->attr.sample_period != 0) 2864 return scnprintf(msg, size, 2865 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2866 perf_evsel__name(evsel)); 2867 if (evsel->attr.precise_ip) 2868 return scnprintf(msg, size, "%s", 2869 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2870 #if defined(__i386__) || defined(__x86_64__) 2871 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2872 return scnprintf(msg, size, "%s", 2873 "No hardware sampling interrupt available.\n" 2874 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2875 #endif 2876 break; 2877 case EBUSY: 2878 if (find_process("oprofiled")) 2879 return scnprintf(msg, size, 2880 "The PMU counters are busy/taken by another profiler.\n" 2881 "We found oprofile daemon running, please stop it and try again."); 2882 break; 2883 case EINVAL: 2884 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2885 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2886 if (perf_missing_features.clockid) 2887 return scnprintf(msg, size, "clockid feature not supported."); 2888 if (perf_missing_features.clockid_wrong) 2889 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2890 break; 2891 default: 2892 break; 2893 } 2894 2895 return scnprintf(msg, size, 2896 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2897 "/bin/dmesg may provide additional information.\n" 2898 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2899 err, str_error_r(err, sbuf, sizeof(sbuf)), 2900 perf_evsel__name(evsel)); 2901 } 2902 2903 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2904 { 2905 if (evsel && evsel->evlist) 2906 return evsel->evlist->env; 2907 return NULL; 2908 } 2909