1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "callchain.h" 19 #include "cgroup.h" 20 #include "evsel.h" 21 #include "evlist.h" 22 #include "util.h" 23 #include "cpumap.h" 24 #include "thread_map.h" 25 #include "target.h" 26 #include "perf_regs.h" 27 #include "debug.h" 28 #include "trace-event.h" 29 30 static struct { 31 bool sample_id_all; 32 bool exclude_guest; 33 bool mmap2; 34 bool cloexec; 35 } perf_missing_features; 36 37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 38 { 39 return 0; 40 } 41 42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 43 { 44 } 45 46 static struct { 47 size_t size; 48 int (*init)(struct perf_evsel *evsel); 49 void (*fini)(struct perf_evsel *evsel); 50 } perf_evsel__object = { 51 .size = sizeof(struct perf_evsel), 52 .init = perf_evsel__no_extra_init, 53 .fini = perf_evsel__no_extra_fini, 54 }; 55 56 int perf_evsel__object_config(size_t object_size, 57 int (*init)(struct perf_evsel *evsel), 58 void (*fini)(struct perf_evsel *evsel)) 59 { 60 61 if (object_size == 0) 62 goto set_methods; 63 64 if (perf_evsel__object.size > object_size) 65 return -EINVAL; 66 67 perf_evsel__object.size = object_size; 68 69 set_methods: 70 if (init != NULL) 71 perf_evsel__object.init = init; 72 73 if (fini != NULL) 74 perf_evsel__object.fini = fini; 75 76 return 0; 77 } 78 79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 80 81 int __perf_evsel__sample_size(u64 sample_type) 82 { 83 u64 mask = sample_type & PERF_SAMPLE_MASK; 84 int size = 0; 85 int i; 86 87 for (i = 0; i < 64; i++) { 88 if (mask & (1ULL << i)) 89 size++; 90 } 91 92 size *= sizeof(u64); 93 94 return size; 95 } 96 97 /** 98 * __perf_evsel__calc_id_pos - calculate id_pos. 99 * @sample_type: sample type 100 * 101 * This function returns the position of the event id (PERF_SAMPLE_ID or 102 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 103 * sample_event. 104 */ 105 static int __perf_evsel__calc_id_pos(u64 sample_type) 106 { 107 int idx = 0; 108 109 if (sample_type & PERF_SAMPLE_IDENTIFIER) 110 return 0; 111 112 if (!(sample_type & PERF_SAMPLE_ID)) 113 return -1; 114 115 if (sample_type & PERF_SAMPLE_IP) 116 idx += 1; 117 118 if (sample_type & PERF_SAMPLE_TID) 119 idx += 1; 120 121 if (sample_type & PERF_SAMPLE_TIME) 122 idx += 1; 123 124 if (sample_type & PERF_SAMPLE_ADDR) 125 idx += 1; 126 127 return idx; 128 } 129 130 /** 131 * __perf_evsel__calc_is_pos - calculate is_pos. 132 * @sample_type: sample type 133 * 134 * This function returns the position (counting backwards) of the event id 135 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 136 * sample_id_all is used there is an id sample appended to non-sample events. 137 */ 138 static int __perf_evsel__calc_is_pos(u64 sample_type) 139 { 140 int idx = 1; 141 142 if (sample_type & PERF_SAMPLE_IDENTIFIER) 143 return 1; 144 145 if (!(sample_type & PERF_SAMPLE_ID)) 146 return -1; 147 148 if (sample_type & PERF_SAMPLE_CPU) 149 idx += 1; 150 151 if (sample_type & PERF_SAMPLE_STREAM_ID) 152 idx += 1; 153 154 return idx; 155 } 156 157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 158 { 159 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 160 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 161 } 162 163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 164 enum perf_event_sample_format bit) 165 { 166 if (!(evsel->attr.sample_type & bit)) { 167 evsel->attr.sample_type |= bit; 168 evsel->sample_size += sizeof(u64); 169 perf_evsel__calc_id_pos(evsel); 170 } 171 } 172 173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 174 enum perf_event_sample_format bit) 175 { 176 if (evsel->attr.sample_type & bit) { 177 evsel->attr.sample_type &= ~bit; 178 evsel->sample_size -= sizeof(u64); 179 perf_evsel__calc_id_pos(evsel); 180 } 181 } 182 183 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 184 bool can_sample_identifier) 185 { 186 if (can_sample_identifier) { 187 perf_evsel__reset_sample_bit(evsel, ID); 188 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 189 } else { 190 perf_evsel__set_sample_bit(evsel, ID); 191 } 192 evsel->attr.read_format |= PERF_FORMAT_ID; 193 } 194 195 void perf_evsel__init(struct perf_evsel *evsel, 196 struct perf_event_attr *attr, int idx) 197 { 198 evsel->idx = idx; 199 evsel->tracking = !idx; 200 evsel->attr = *attr; 201 evsel->leader = evsel; 202 evsel->unit = ""; 203 evsel->scale = 1.0; 204 INIT_LIST_HEAD(&evsel->node); 205 perf_evsel__object.init(evsel); 206 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 207 perf_evsel__calc_id_pos(evsel); 208 } 209 210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 211 { 212 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 213 214 if (evsel != NULL) 215 perf_evsel__init(evsel, attr, idx); 216 217 return evsel; 218 } 219 220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 221 { 222 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 223 224 if (evsel != NULL) { 225 struct perf_event_attr attr = { 226 .type = PERF_TYPE_TRACEPOINT, 227 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 228 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 229 }; 230 231 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 232 goto out_free; 233 234 evsel->tp_format = trace_event__tp_format(sys, name); 235 if (evsel->tp_format == NULL) 236 goto out_free; 237 238 event_attr_init(&attr); 239 attr.config = evsel->tp_format->id; 240 attr.sample_period = 1; 241 perf_evsel__init(evsel, &attr, idx); 242 } 243 244 return evsel; 245 246 out_free: 247 zfree(&evsel->name); 248 free(evsel); 249 return NULL; 250 } 251 252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 253 "cycles", 254 "instructions", 255 "cache-references", 256 "cache-misses", 257 "branches", 258 "branch-misses", 259 "bus-cycles", 260 "stalled-cycles-frontend", 261 "stalled-cycles-backend", 262 "ref-cycles", 263 }; 264 265 static const char *__perf_evsel__hw_name(u64 config) 266 { 267 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 268 return perf_evsel__hw_names[config]; 269 270 return "unknown-hardware"; 271 } 272 273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 274 { 275 int colon = 0, r = 0; 276 struct perf_event_attr *attr = &evsel->attr; 277 bool exclude_guest_default = false; 278 279 #define MOD_PRINT(context, mod) do { \ 280 if (!attr->exclude_##context) { \ 281 if (!colon) colon = ++r; \ 282 r += scnprintf(bf + r, size - r, "%c", mod); \ 283 } } while(0) 284 285 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 286 MOD_PRINT(kernel, 'k'); 287 MOD_PRINT(user, 'u'); 288 MOD_PRINT(hv, 'h'); 289 exclude_guest_default = true; 290 } 291 292 if (attr->precise_ip) { 293 if (!colon) 294 colon = ++r; 295 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 296 exclude_guest_default = true; 297 } 298 299 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 300 MOD_PRINT(host, 'H'); 301 MOD_PRINT(guest, 'G'); 302 } 303 #undef MOD_PRINT 304 if (colon) 305 bf[colon - 1] = ':'; 306 return r; 307 } 308 309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 310 { 311 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 312 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 313 } 314 315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 316 "cpu-clock", 317 "task-clock", 318 "page-faults", 319 "context-switches", 320 "cpu-migrations", 321 "minor-faults", 322 "major-faults", 323 "alignment-faults", 324 "emulation-faults", 325 "dummy", 326 }; 327 328 static const char *__perf_evsel__sw_name(u64 config) 329 { 330 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 331 return perf_evsel__sw_names[config]; 332 return "unknown-software"; 333 } 334 335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 336 { 337 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 339 } 340 341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 342 { 343 int r; 344 345 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 346 347 if (type & HW_BREAKPOINT_R) 348 r += scnprintf(bf + r, size - r, "r"); 349 350 if (type & HW_BREAKPOINT_W) 351 r += scnprintf(bf + r, size - r, "w"); 352 353 if (type & HW_BREAKPOINT_X) 354 r += scnprintf(bf + r, size - r, "x"); 355 356 return r; 357 } 358 359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 360 { 361 struct perf_event_attr *attr = &evsel->attr; 362 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 363 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 364 } 365 366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 367 [PERF_EVSEL__MAX_ALIASES] = { 368 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 369 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 370 { "LLC", "L2", }, 371 { "dTLB", "d-tlb", "Data-TLB", }, 372 { "iTLB", "i-tlb", "Instruction-TLB", }, 373 { "branch", "branches", "bpu", "btb", "bpc", }, 374 { "node", }, 375 }; 376 377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 378 [PERF_EVSEL__MAX_ALIASES] = { 379 { "load", "loads", "read", }, 380 { "store", "stores", "write", }, 381 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 382 }; 383 384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 385 [PERF_EVSEL__MAX_ALIASES] = { 386 { "refs", "Reference", "ops", "access", }, 387 { "misses", "miss", }, 388 }; 389 390 #define C(x) PERF_COUNT_HW_CACHE_##x 391 #define CACHE_READ (1 << C(OP_READ)) 392 #define CACHE_WRITE (1 << C(OP_WRITE)) 393 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 394 #define COP(x) (1 << x) 395 396 /* 397 * cache operartion stat 398 * L1I : Read and prefetch only 399 * ITLB and BPU : Read-only 400 */ 401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 402 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 403 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 404 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 405 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 406 [C(ITLB)] = (CACHE_READ), 407 [C(BPU)] = (CACHE_READ), 408 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 409 }; 410 411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 412 { 413 if (perf_evsel__hw_cache_stat[type] & COP(op)) 414 return true; /* valid */ 415 else 416 return false; /* invalid */ 417 } 418 419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 420 char *bf, size_t size) 421 { 422 if (result) { 423 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 424 perf_evsel__hw_cache_op[op][0], 425 perf_evsel__hw_cache_result[result][0]); 426 } 427 428 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 429 perf_evsel__hw_cache_op[op][1]); 430 } 431 432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 433 { 434 u8 op, result, type = (config >> 0) & 0xff; 435 const char *err = "unknown-ext-hardware-cache-type"; 436 437 if (type > PERF_COUNT_HW_CACHE_MAX) 438 goto out_err; 439 440 op = (config >> 8) & 0xff; 441 err = "unknown-ext-hardware-cache-op"; 442 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 443 goto out_err; 444 445 result = (config >> 16) & 0xff; 446 err = "unknown-ext-hardware-cache-result"; 447 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 448 goto out_err; 449 450 err = "invalid-cache"; 451 if (!perf_evsel__is_cache_op_valid(type, op)) 452 goto out_err; 453 454 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 455 out_err: 456 return scnprintf(bf, size, "%s", err); 457 } 458 459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 460 { 461 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 462 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 463 } 464 465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 466 { 467 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 468 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 469 } 470 471 const char *perf_evsel__name(struct perf_evsel *evsel) 472 { 473 char bf[128]; 474 475 if (evsel->name) 476 return evsel->name; 477 478 switch (evsel->attr.type) { 479 case PERF_TYPE_RAW: 480 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 481 break; 482 483 case PERF_TYPE_HARDWARE: 484 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 485 break; 486 487 case PERF_TYPE_HW_CACHE: 488 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 489 break; 490 491 case PERF_TYPE_SOFTWARE: 492 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 493 break; 494 495 case PERF_TYPE_TRACEPOINT: 496 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 497 break; 498 499 case PERF_TYPE_BREAKPOINT: 500 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 501 break; 502 503 default: 504 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 505 evsel->attr.type); 506 break; 507 } 508 509 evsel->name = strdup(bf); 510 511 return evsel->name ?: "unknown"; 512 } 513 514 const char *perf_evsel__group_name(struct perf_evsel *evsel) 515 { 516 return evsel->group_name ?: "anon group"; 517 } 518 519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 520 { 521 int ret; 522 struct perf_evsel *pos; 523 const char *group_name = perf_evsel__group_name(evsel); 524 525 ret = scnprintf(buf, size, "%s", group_name); 526 527 ret += scnprintf(buf + ret, size - ret, " { %s", 528 perf_evsel__name(evsel)); 529 530 for_each_group_member(pos, evsel) 531 ret += scnprintf(buf + ret, size - ret, ", %s", 532 perf_evsel__name(pos)); 533 534 ret += scnprintf(buf + ret, size - ret, " }"); 535 536 return ret; 537 } 538 539 static void 540 perf_evsel__config_callgraph(struct perf_evsel *evsel) 541 { 542 bool function = perf_evsel__is_function_event(evsel); 543 struct perf_event_attr *attr = &evsel->attr; 544 545 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 546 547 if (callchain_param.record_mode == CALLCHAIN_DWARF) { 548 if (!function) { 549 perf_evsel__set_sample_bit(evsel, REGS_USER); 550 perf_evsel__set_sample_bit(evsel, STACK_USER); 551 attr->sample_regs_user = PERF_REGS_MASK; 552 attr->sample_stack_user = callchain_param.dump_size; 553 attr->exclude_callchain_user = 1; 554 } else { 555 pr_info("Cannot use DWARF unwind for function trace event," 556 " falling back to framepointers.\n"); 557 } 558 } 559 560 if (function) { 561 pr_info("Disabling user space callchains for function trace event.\n"); 562 attr->exclude_callchain_user = 1; 563 } 564 } 565 566 /* 567 * The enable_on_exec/disabled value strategy: 568 * 569 * 1) For any type of traced program: 570 * - all independent events and group leaders are disabled 571 * - all group members are enabled 572 * 573 * Group members are ruled by group leaders. They need to 574 * be enabled, because the group scheduling relies on that. 575 * 576 * 2) For traced programs executed by perf: 577 * - all independent events and group leaders have 578 * enable_on_exec set 579 * - we don't specifically enable or disable any event during 580 * the record command 581 * 582 * Independent events and group leaders are initially disabled 583 * and get enabled by exec. Group members are ruled by group 584 * leaders as stated in 1). 585 * 586 * 3) For traced programs attached by perf (pid/tid): 587 * - we specifically enable or disable all events during 588 * the record command 589 * 590 * When attaching events to already running traced we 591 * enable/disable events specifically, as there's no 592 * initial traced exec call. 593 */ 594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 595 { 596 struct perf_evsel *leader = evsel->leader; 597 struct perf_event_attr *attr = &evsel->attr; 598 int track = evsel->tracking; 599 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 600 601 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 602 attr->inherit = !opts->no_inherit; 603 604 perf_evsel__set_sample_bit(evsel, IP); 605 perf_evsel__set_sample_bit(evsel, TID); 606 607 if (evsel->sample_read) { 608 perf_evsel__set_sample_bit(evsel, READ); 609 610 /* 611 * We need ID even in case of single event, because 612 * PERF_SAMPLE_READ process ID specific data. 613 */ 614 perf_evsel__set_sample_id(evsel, false); 615 616 /* 617 * Apply group format only if we belong to group 618 * with more than one members. 619 */ 620 if (leader->nr_members > 1) { 621 attr->read_format |= PERF_FORMAT_GROUP; 622 attr->inherit = 0; 623 } 624 } 625 626 /* 627 * We default some events to have a default interval. But keep 628 * it a weak assumption overridable by the user. 629 */ 630 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 631 opts->user_interval != ULLONG_MAX)) { 632 if (opts->freq) { 633 perf_evsel__set_sample_bit(evsel, PERIOD); 634 attr->freq = 1; 635 attr->sample_freq = opts->freq; 636 } else { 637 attr->sample_period = opts->default_interval; 638 } 639 } 640 641 /* 642 * Disable sampling for all group members other 643 * than leader in case leader 'leads' the sampling. 644 */ 645 if ((leader != evsel) && leader->sample_read) { 646 attr->sample_freq = 0; 647 attr->sample_period = 0; 648 } 649 650 if (opts->no_samples) 651 attr->sample_freq = 0; 652 653 if (opts->inherit_stat) 654 attr->inherit_stat = 1; 655 656 if (opts->sample_address) { 657 perf_evsel__set_sample_bit(evsel, ADDR); 658 attr->mmap_data = track; 659 } 660 661 /* 662 * We don't allow user space callchains for function trace 663 * event, due to issues with page faults while tracing page 664 * fault handler and its overall trickiness nature. 665 */ 666 if (perf_evsel__is_function_event(evsel)) 667 evsel->attr.exclude_callchain_user = 1; 668 669 if (callchain_param.enabled && !evsel->no_aux_samples) 670 perf_evsel__config_callgraph(evsel); 671 672 if (opts->sample_intr_regs) { 673 attr->sample_regs_intr = PERF_REGS_MASK; 674 perf_evsel__set_sample_bit(evsel, REGS_INTR); 675 } 676 677 if (target__has_cpu(&opts->target)) 678 perf_evsel__set_sample_bit(evsel, CPU); 679 680 if (opts->period) 681 perf_evsel__set_sample_bit(evsel, PERIOD); 682 683 /* 684 * When the user explicitely disabled time don't force it here. 685 */ 686 if (opts->sample_time && 687 (!perf_missing_features.sample_id_all && 688 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu))) 689 perf_evsel__set_sample_bit(evsel, TIME); 690 691 if (opts->raw_samples && !evsel->no_aux_samples) { 692 perf_evsel__set_sample_bit(evsel, TIME); 693 perf_evsel__set_sample_bit(evsel, RAW); 694 perf_evsel__set_sample_bit(evsel, CPU); 695 } 696 697 if (opts->sample_address) 698 perf_evsel__set_sample_bit(evsel, DATA_SRC); 699 700 if (opts->no_buffering) { 701 attr->watermark = 0; 702 attr->wakeup_events = 1; 703 } 704 if (opts->branch_stack && !evsel->no_aux_samples) { 705 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 706 attr->branch_sample_type = opts->branch_stack; 707 } 708 709 if (opts->sample_weight) 710 perf_evsel__set_sample_bit(evsel, WEIGHT); 711 712 attr->task = track; 713 attr->mmap = track; 714 attr->mmap2 = track && !perf_missing_features.mmap2; 715 attr->comm = track; 716 717 if (opts->sample_transaction) 718 perf_evsel__set_sample_bit(evsel, TRANSACTION); 719 720 /* 721 * XXX see the function comment above 722 * 723 * Disabling only independent events or group leaders, 724 * keeping group members enabled. 725 */ 726 if (perf_evsel__is_group_leader(evsel)) 727 attr->disabled = 1; 728 729 /* 730 * Setting enable_on_exec for independent events and 731 * group leaders for traced executed by perf. 732 */ 733 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 734 !opts->initial_delay) 735 attr->enable_on_exec = 1; 736 737 if (evsel->immediate) { 738 attr->disabled = 0; 739 attr->enable_on_exec = 0; 740 } 741 } 742 743 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 744 { 745 int cpu, thread; 746 747 if (evsel->system_wide) 748 nthreads = 1; 749 750 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 751 752 if (evsel->fd) { 753 for (cpu = 0; cpu < ncpus; cpu++) { 754 for (thread = 0; thread < nthreads; thread++) { 755 FD(evsel, cpu, thread) = -1; 756 } 757 } 758 } 759 760 return evsel->fd != NULL ? 0 : -ENOMEM; 761 } 762 763 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 764 int ioc, void *arg) 765 { 766 int cpu, thread; 767 768 if (evsel->system_wide) 769 nthreads = 1; 770 771 for (cpu = 0; cpu < ncpus; cpu++) { 772 for (thread = 0; thread < nthreads; thread++) { 773 int fd = FD(evsel, cpu, thread), 774 err = ioctl(fd, ioc, arg); 775 776 if (err) 777 return err; 778 } 779 } 780 781 return 0; 782 } 783 784 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 785 const char *filter) 786 { 787 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 788 PERF_EVENT_IOC_SET_FILTER, 789 (void *)filter); 790 } 791 792 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 793 { 794 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 795 PERF_EVENT_IOC_ENABLE, 796 0); 797 } 798 799 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 800 { 801 if (ncpus == 0 || nthreads == 0) 802 return 0; 803 804 if (evsel->system_wide) 805 nthreads = 1; 806 807 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 808 if (evsel->sample_id == NULL) 809 return -ENOMEM; 810 811 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 812 if (evsel->id == NULL) { 813 xyarray__delete(evsel->sample_id); 814 evsel->sample_id = NULL; 815 return -ENOMEM; 816 } 817 818 return 0; 819 } 820 821 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 822 { 823 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 824 (ncpus * sizeof(struct perf_counts_values)))); 825 } 826 827 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 828 { 829 evsel->counts = zalloc((sizeof(*evsel->counts) + 830 (ncpus * sizeof(struct perf_counts_values)))); 831 return evsel->counts != NULL ? 0 : -ENOMEM; 832 } 833 834 static void perf_evsel__free_fd(struct perf_evsel *evsel) 835 { 836 xyarray__delete(evsel->fd); 837 evsel->fd = NULL; 838 } 839 840 static void perf_evsel__free_id(struct perf_evsel *evsel) 841 { 842 xyarray__delete(evsel->sample_id); 843 evsel->sample_id = NULL; 844 zfree(&evsel->id); 845 } 846 847 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 848 { 849 int cpu, thread; 850 851 if (evsel->system_wide) 852 nthreads = 1; 853 854 for (cpu = 0; cpu < ncpus; cpu++) 855 for (thread = 0; thread < nthreads; ++thread) { 856 close(FD(evsel, cpu, thread)); 857 FD(evsel, cpu, thread) = -1; 858 } 859 } 860 861 void perf_evsel__free_counts(struct perf_evsel *evsel) 862 { 863 zfree(&evsel->counts); 864 } 865 866 void perf_evsel__exit(struct perf_evsel *evsel) 867 { 868 assert(list_empty(&evsel->node)); 869 perf_evsel__free_fd(evsel); 870 perf_evsel__free_id(evsel); 871 close_cgroup(evsel->cgrp); 872 zfree(&evsel->group_name); 873 zfree(&evsel->name); 874 perf_evsel__object.fini(evsel); 875 } 876 877 void perf_evsel__delete(struct perf_evsel *evsel) 878 { 879 perf_evsel__exit(evsel); 880 free(evsel); 881 } 882 883 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, 884 struct perf_counts_values *count) 885 { 886 struct perf_counts_values tmp; 887 888 if (!evsel->prev_raw_counts) 889 return; 890 891 if (cpu == -1) { 892 tmp = evsel->prev_raw_counts->aggr; 893 evsel->prev_raw_counts->aggr = *count; 894 } else { 895 tmp = evsel->prev_raw_counts->cpu[cpu]; 896 evsel->prev_raw_counts->cpu[cpu] = *count; 897 } 898 899 count->val = count->val - tmp.val; 900 count->ena = count->ena - tmp.ena; 901 count->run = count->run - tmp.run; 902 } 903 904 void perf_counts_values__scale(struct perf_counts_values *count, 905 bool scale, s8 *pscaled) 906 { 907 s8 scaled = 0; 908 909 if (scale) { 910 if (count->run == 0) { 911 scaled = -1; 912 count->val = 0; 913 } else if (count->run < count->ena) { 914 scaled = 1; 915 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 916 } 917 } else 918 count->ena = count->run = 0; 919 920 if (pscaled) 921 *pscaled = scaled; 922 } 923 924 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread, 925 perf_evsel__read_cb_t cb) 926 { 927 struct perf_counts_values count; 928 929 memset(&count, 0, sizeof(count)); 930 931 if (FD(evsel, cpu, thread) < 0) 932 return -EINVAL; 933 934 if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0) 935 return -errno; 936 937 return cb(evsel, cpu, thread, &count); 938 } 939 940 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 941 int cpu, int thread, bool scale) 942 { 943 struct perf_counts_values count; 944 size_t nv = scale ? 3 : 1; 945 946 if (FD(evsel, cpu, thread) < 0) 947 return -EINVAL; 948 949 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 950 return -ENOMEM; 951 952 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 953 return -errno; 954 955 perf_evsel__compute_deltas(evsel, cpu, &count); 956 perf_counts_values__scale(&count, scale, NULL); 957 evsel->counts->cpu[cpu] = count; 958 return 0; 959 } 960 961 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 962 { 963 struct perf_evsel *leader = evsel->leader; 964 int fd; 965 966 if (perf_evsel__is_group_leader(evsel)) 967 return -1; 968 969 /* 970 * Leader must be already processed/open, 971 * if not it's a bug. 972 */ 973 BUG_ON(!leader->fd); 974 975 fd = FD(leader, cpu, thread); 976 BUG_ON(fd == -1); 977 978 return fd; 979 } 980 981 #define __PRINT_ATTR(fmt, cast, field) \ 982 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 983 984 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 985 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 986 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 987 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 988 989 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 990 fprintf(fp, " %-19s %u %-19s %u\n", \ 991 name1, attr->field1, name2, attr->field2) 992 993 #define PRINT_ATTR2(field1, field2) \ 994 PRINT_ATTR2N(#field1, field1, #field2, field2) 995 996 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 997 { 998 size_t ret = 0; 999 1000 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 1001 ret += fprintf(fp, "perf_event_attr:\n"); 1002 1003 ret += PRINT_ATTR_U32(type); 1004 ret += PRINT_ATTR_U32(size); 1005 ret += PRINT_ATTR_X64(config); 1006 ret += PRINT_ATTR_U64(sample_period); 1007 ret += PRINT_ATTR_U64(sample_freq); 1008 ret += PRINT_ATTR_X64(sample_type); 1009 ret += PRINT_ATTR_X64(read_format); 1010 1011 ret += PRINT_ATTR2(disabled, inherit); 1012 ret += PRINT_ATTR2(pinned, exclusive); 1013 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 1014 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 1015 ret += PRINT_ATTR2(mmap, comm); 1016 ret += PRINT_ATTR2(mmap2, comm_exec); 1017 ret += PRINT_ATTR2(freq, inherit_stat); 1018 ret += PRINT_ATTR2(enable_on_exec, task); 1019 ret += PRINT_ATTR2(watermark, precise_ip); 1020 ret += PRINT_ATTR2(mmap_data, sample_id_all); 1021 ret += PRINT_ATTR2(exclude_host, exclude_guest); 1022 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 1023 "excl.callchain_user", exclude_callchain_user); 1024 1025 ret += PRINT_ATTR_U32(wakeup_events); 1026 ret += PRINT_ATTR_U32(wakeup_watermark); 1027 ret += PRINT_ATTR_X32(bp_type); 1028 ret += PRINT_ATTR_X64(bp_addr); 1029 ret += PRINT_ATTR_X64(config1); 1030 ret += PRINT_ATTR_U64(bp_len); 1031 ret += PRINT_ATTR_X64(config2); 1032 ret += PRINT_ATTR_X64(branch_sample_type); 1033 ret += PRINT_ATTR_X64(sample_regs_user); 1034 ret += PRINT_ATTR_U32(sample_stack_user); 1035 ret += PRINT_ATTR_X64(sample_regs_intr); 1036 1037 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 1038 1039 return ret; 1040 } 1041 1042 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1043 struct thread_map *threads) 1044 { 1045 int cpu, thread, nthreads; 1046 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1047 int pid = -1, err; 1048 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1049 1050 if (evsel->system_wide) 1051 nthreads = 1; 1052 else 1053 nthreads = threads->nr; 1054 1055 if (evsel->fd == NULL && 1056 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1057 return -ENOMEM; 1058 1059 if (evsel->cgrp) { 1060 flags |= PERF_FLAG_PID_CGROUP; 1061 pid = evsel->cgrp->fd; 1062 } 1063 1064 fallback_missing_features: 1065 if (perf_missing_features.cloexec) 1066 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1067 if (perf_missing_features.mmap2) 1068 evsel->attr.mmap2 = 0; 1069 if (perf_missing_features.exclude_guest) 1070 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1071 retry_sample_id: 1072 if (perf_missing_features.sample_id_all) 1073 evsel->attr.sample_id_all = 0; 1074 1075 if (verbose >= 2) 1076 perf_event_attr__fprintf(&evsel->attr, stderr); 1077 1078 for (cpu = 0; cpu < cpus->nr; cpu++) { 1079 1080 for (thread = 0; thread < nthreads; thread++) { 1081 int group_fd; 1082 1083 if (!evsel->cgrp && !evsel->system_wide) 1084 pid = threads->map[thread]; 1085 1086 group_fd = get_group_fd(evsel, cpu, thread); 1087 retry_open: 1088 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1089 pid, cpus->map[cpu], group_fd, flags); 1090 1091 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1092 pid, 1093 cpus->map[cpu], 1094 group_fd, flags); 1095 if (FD(evsel, cpu, thread) < 0) { 1096 err = -errno; 1097 pr_debug2("sys_perf_event_open failed, error %d\n", 1098 err); 1099 goto try_fallback; 1100 } 1101 set_rlimit = NO_CHANGE; 1102 } 1103 } 1104 1105 return 0; 1106 1107 try_fallback: 1108 /* 1109 * perf stat needs between 5 and 22 fds per CPU. When we run out 1110 * of them try to increase the limits. 1111 */ 1112 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1113 struct rlimit l; 1114 int old_errno = errno; 1115 1116 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1117 if (set_rlimit == NO_CHANGE) 1118 l.rlim_cur = l.rlim_max; 1119 else { 1120 l.rlim_cur = l.rlim_max + 1000; 1121 l.rlim_max = l.rlim_cur; 1122 } 1123 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1124 set_rlimit++; 1125 errno = old_errno; 1126 goto retry_open; 1127 } 1128 } 1129 errno = old_errno; 1130 } 1131 1132 if (err != -EINVAL || cpu > 0 || thread > 0) 1133 goto out_close; 1134 1135 if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1136 perf_missing_features.cloexec = true; 1137 goto fallback_missing_features; 1138 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1139 perf_missing_features.mmap2 = true; 1140 goto fallback_missing_features; 1141 } else if (!perf_missing_features.exclude_guest && 1142 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1143 perf_missing_features.exclude_guest = true; 1144 goto fallback_missing_features; 1145 } else if (!perf_missing_features.sample_id_all) { 1146 perf_missing_features.sample_id_all = true; 1147 goto retry_sample_id; 1148 } 1149 1150 out_close: 1151 do { 1152 while (--thread >= 0) { 1153 close(FD(evsel, cpu, thread)); 1154 FD(evsel, cpu, thread) = -1; 1155 } 1156 thread = nthreads; 1157 } while (--cpu >= 0); 1158 return err; 1159 } 1160 1161 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1162 { 1163 if (evsel->fd == NULL) 1164 return; 1165 1166 perf_evsel__close_fd(evsel, ncpus, nthreads); 1167 perf_evsel__free_fd(evsel); 1168 } 1169 1170 static struct { 1171 struct cpu_map map; 1172 int cpus[1]; 1173 } empty_cpu_map = { 1174 .map.nr = 1, 1175 .cpus = { -1, }, 1176 }; 1177 1178 static struct { 1179 struct thread_map map; 1180 int threads[1]; 1181 } empty_thread_map = { 1182 .map.nr = 1, 1183 .threads = { -1, }, 1184 }; 1185 1186 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1187 struct thread_map *threads) 1188 { 1189 if (cpus == NULL) { 1190 /* Work around old compiler warnings about strict aliasing */ 1191 cpus = &empty_cpu_map.map; 1192 } 1193 1194 if (threads == NULL) 1195 threads = &empty_thread_map.map; 1196 1197 return __perf_evsel__open(evsel, cpus, threads); 1198 } 1199 1200 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1201 struct cpu_map *cpus) 1202 { 1203 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1204 } 1205 1206 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1207 struct thread_map *threads) 1208 { 1209 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1210 } 1211 1212 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1213 const union perf_event *event, 1214 struct perf_sample *sample) 1215 { 1216 u64 type = evsel->attr.sample_type; 1217 const u64 *array = event->sample.array; 1218 bool swapped = evsel->needs_swap; 1219 union u64_swap u; 1220 1221 array += ((event->header.size - 1222 sizeof(event->header)) / sizeof(u64)) - 1; 1223 1224 if (type & PERF_SAMPLE_IDENTIFIER) { 1225 sample->id = *array; 1226 array--; 1227 } 1228 1229 if (type & PERF_SAMPLE_CPU) { 1230 u.val64 = *array; 1231 if (swapped) { 1232 /* undo swap of u64, then swap on individual u32s */ 1233 u.val64 = bswap_64(u.val64); 1234 u.val32[0] = bswap_32(u.val32[0]); 1235 } 1236 1237 sample->cpu = u.val32[0]; 1238 array--; 1239 } 1240 1241 if (type & PERF_SAMPLE_STREAM_ID) { 1242 sample->stream_id = *array; 1243 array--; 1244 } 1245 1246 if (type & PERF_SAMPLE_ID) { 1247 sample->id = *array; 1248 array--; 1249 } 1250 1251 if (type & PERF_SAMPLE_TIME) { 1252 sample->time = *array; 1253 array--; 1254 } 1255 1256 if (type & PERF_SAMPLE_TID) { 1257 u.val64 = *array; 1258 if (swapped) { 1259 /* undo swap of u64, then swap on individual u32s */ 1260 u.val64 = bswap_64(u.val64); 1261 u.val32[0] = bswap_32(u.val32[0]); 1262 u.val32[1] = bswap_32(u.val32[1]); 1263 } 1264 1265 sample->pid = u.val32[0]; 1266 sample->tid = u.val32[1]; 1267 array--; 1268 } 1269 1270 return 0; 1271 } 1272 1273 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1274 u64 size) 1275 { 1276 return size > max_size || offset + size > endp; 1277 } 1278 1279 #define OVERFLOW_CHECK(offset, size, max_size) \ 1280 do { \ 1281 if (overflow(endp, (max_size), (offset), (size))) \ 1282 return -EFAULT; \ 1283 } while (0) 1284 1285 #define OVERFLOW_CHECK_u64(offset) \ 1286 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1287 1288 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1289 struct perf_sample *data) 1290 { 1291 u64 type = evsel->attr.sample_type; 1292 bool swapped = evsel->needs_swap; 1293 const u64 *array; 1294 u16 max_size = event->header.size; 1295 const void *endp = (void *)event + max_size; 1296 u64 sz; 1297 1298 /* 1299 * used for cross-endian analysis. See git commit 65014ab3 1300 * for why this goofiness is needed. 1301 */ 1302 union u64_swap u; 1303 1304 memset(data, 0, sizeof(*data)); 1305 data->cpu = data->pid = data->tid = -1; 1306 data->stream_id = data->id = data->time = -1ULL; 1307 data->period = evsel->attr.sample_period; 1308 data->weight = 0; 1309 1310 if (event->header.type != PERF_RECORD_SAMPLE) { 1311 if (!evsel->attr.sample_id_all) 1312 return 0; 1313 return perf_evsel__parse_id_sample(evsel, event, data); 1314 } 1315 1316 array = event->sample.array; 1317 1318 /* 1319 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1320 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1321 * check the format does not go past the end of the event. 1322 */ 1323 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1324 return -EFAULT; 1325 1326 data->id = -1ULL; 1327 if (type & PERF_SAMPLE_IDENTIFIER) { 1328 data->id = *array; 1329 array++; 1330 } 1331 1332 if (type & PERF_SAMPLE_IP) { 1333 data->ip = *array; 1334 array++; 1335 } 1336 1337 if (type & PERF_SAMPLE_TID) { 1338 u.val64 = *array; 1339 if (swapped) { 1340 /* undo swap of u64, then swap on individual u32s */ 1341 u.val64 = bswap_64(u.val64); 1342 u.val32[0] = bswap_32(u.val32[0]); 1343 u.val32[1] = bswap_32(u.val32[1]); 1344 } 1345 1346 data->pid = u.val32[0]; 1347 data->tid = u.val32[1]; 1348 array++; 1349 } 1350 1351 if (type & PERF_SAMPLE_TIME) { 1352 data->time = *array; 1353 array++; 1354 } 1355 1356 data->addr = 0; 1357 if (type & PERF_SAMPLE_ADDR) { 1358 data->addr = *array; 1359 array++; 1360 } 1361 1362 if (type & PERF_SAMPLE_ID) { 1363 data->id = *array; 1364 array++; 1365 } 1366 1367 if (type & PERF_SAMPLE_STREAM_ID) { 1368 data->stream_id = *array; 1369 array++; 1370 } 1371 1372 if (type & PERF_SAMPLE_CPU) { 1373 1374 u.val64 = *array; 1375 if (swapped) { 1376 /* undo swap of u64, then swap on individual u32s */ 1377 u.val64 = bswap_64(u.val64); 1378 u.val32[0] = bswap_32(u.val32[0]); 1379 } 1380 1381 data->cpu = u.val32[0]; 1382 array++; 1383 } 1384 1385 if (type & PERF_SAMPLE_PERIOD) { 1386 data->period = *array; 1387 array++; 1388 } 1389 1390 if (type & PERF_SAMPLE_READ) { 1391 u64 read_format = evsel->attr.read_format; 1392 1393 OVERFLOW_CHECK_u64(array); 1394 if (read_format & PERF_FORMAT_GROUP) 1395 data->read.group.nr = *array; 1396 else 1397 data->read.one.value = *array; 1398 1399 array++; 1400 1401 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1402 OVERFLOW_CHECK_u64(array); 1403 data->read.time_enabled = *array; 1404 array++; 1405 } 1406 1407 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1408 OVERFLOW_CHECK_u64(array); 1409 data->read.time_running = *array; 1410 array++; 1411 } 1412 1413 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1414 if (read_format & PERF_FORMAT_GROUP) { 1415 const u64 max_group_nr = UINT64_MAX / 1416 sizeof(struct sample_read_value); 1417 1418 if (data->read.group.nr > max_group_nr) 1419 return -EFAULT; 1420 sz = data->read.group.nr * 1421 sizeof(struct sample_read_value); 1422 OVERFLOW_CHECK(array, sz, max_size); 1423 data->read.group.values = 1424 (struct sample_read_value *)array; 1425 array = (void *)array + sz; 1426 } else { 1427 OVERFLOW_CHECK_u64(array); 1428 data->read.one.id = *array; 1429 array++; 1430 } 1431 } 1432 1433 if (type & PERF_SAMPLE_CALLCHAIN) { 1434 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1435 1436 OVERFLOW_CHECK_u64(array); 1437 data->callchain = (struct ip_callchain *)array++; 1438 if (data->callchain->nr > max_callchain_nr) 1439 return -EFAULT; 1440 sz = data->callchain->nr * sizeof(u64); 1441 OVERFLOW_CHECK(array, sz, max_size); 1442 array = (void *)array + sz; 1443 } 1444 1445 if (type & PERF_SAMPLE_RAW) { 1446 OVERFLOW_CHECK_u64(array); 1447 u.val64 = *array; 1448 if (WARN_ONCE(swapped, 1449 "Endianness of raw data not corrected!\n")) { 1450 /* undo swap of u64, then swap on individual u32s */ 1451 u.val64 = bswap_64(u.val64); 1452 u.val32[0] = bswap_32(u.val32[0]); 1453 u.val32[1] = bswap_32(u.val32[1]); 1454 } 1455 data->raw_size = u.val32[0]; 1456 array = (void *)array + sizeof(u32); 1457 1458 OVERFLOW_CHECK(array, data->raw_size, max_size); 1459 data->raw_data = (void *)array; 1460 array = (void *)array + data->raw_size; 1461 } 1462 1463 if (type & PERF_SAMPLE_BRANCH_STACK) { 1464 const u64 max_branch_nr = UINT64_MAX / 1465 sizeof(struct branch_entry); 1466 1467 OVERFLOW_CHECK_u64(array); 1468 data->branch_stack = (struct branch_stack *)array++; 1469 1470 if (data->branch_stack->nr > max_branch_nr) 1471 return -EFAULT; 1472 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1473 OVERFLOW_CHECK(array, sz, max_size); 1474 array = (void *)array + sz; 1475 } 1476 1477 if (type & PERF_SAMPLE_REGS_USER) { 1478 OVERFLOW_CHECK_u64(array); 1479 data->user_regs.abi = *array; 1480 array++; 1481 1482 if (data->user_regs.abi) { 1483 u64 mask = evsel->attr.sample_regs_user; 1484 1485 sz = hweight_long(mask) * sizeof(u64); 1486 OVERFLOW_CHECK(array, sz, max_size); 1487 data->user_regs.mask = mask; 1488 data->user_regs.regs = (u64 *)array; 1489 array = (void *)array + sz; 1490 } 1491 } 1492 1493 if (type & PERF_SAMPLE_STACK_USER) { 1494 OVERFLOW_CHECK_u64(array); 1495 sz = *array++; 1496 1497 data->user_stack.offset = ((char *)(array - 1) 1498 - (char *) event); 1499 1500 if (!sz) { 1501 data->user_stack.size = 0; 1502 } else { 1503 OVERFLOW_CHECK(array, sz, max_size); 1504 data->user_stack.data = (char *)array; 1505 array = (void *)array + sz; 1506 OVERFLOW_CHECK_u64(array); 1507 data->user_stack.size = *array++; 1508 if (WARN_ONCE(data->user_stack.size > sz, 1509 "user stack dump failure\n")) 1510 return -EFAULT; 1511 } 1512 } 1513 1514 data->weight = 0; 1515 if (type & PERF_SAMPLE_WEIGHT) { 1516 OVERFLOW_CHECK_u64(array); 1517 data->weight = *array; 1518 array++; 1519 } 1520 1521 data->data_src = PERF_MEM_DATA_SRC_NONE; 1522 if (type & PERF_SAMPLE_DATA_SRC) { 1523 OVERFLOW_CHECK_u64(array); 1524 data->data_src = *array; 1525 array++; 1526 } 1527 1528 data->transaction = 0; 1529 if (type & PERF_SAMPLE_TRANSACTION) { 1530 OVERFLOW_CHECK_u64(array); 1531 data->transaction = *array; 1532 array++; 1533 } 1534 1535 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1536 if (type & PERF_SAMPLE_REGS_INTR) { 1537 OVERFLOW_CHECK_u64(array); 1538 data->intr_regs.abi = *array; 1539 array++; 1540 1541 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1542 u64 mask = evsel->attr.sample_regs_intr; 1543 1544 sz = hweight_long(mask) * sizeof(u64); 1545 OVERFLOW_CHECK(array, sz, max_size); 1546 data->intr_regs.mask = mask; 1547 data->intr_regs.regs = (u64 *)array; 1548 array = (void *)array + sz; 1549 } 1550 } 1551 1552 return 0; 1553 } 1554 1555 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1556 u64 read_format) 1557 { 1558 size_t sz, result = sizeof(struct sample_event); 1559 1560 if (type & PERF_SAMPLE_IDENTIFIER) 1561 result += sizeof(u64); 1562 1563 if (type & PERF_SAMPLE_IP) 1564 result += sizeof(u64); 1565 1566 if (type & PERF_SAMPLE_TID) 1567 result += sizeof(u64); 1568 1569 if (type & PERF_SAMPLE_TIME) 1570 result += sizeof(u64); 1571 1572 if (type & PERF_SAMPLE_ADDR) 1573 result += sizeof(u64); 1574 1575 if (type & PERF_SAMPLE_ID) 1576 result += sizeof(u64); 1577 1578 if (type & PERF_SAMPLE_STREAM_ID) 1579 result += sizeof(u64); 1580 1581 if (type & PERF_SAMPLE_CPU) 1582 result += sizeof(u64); 1583 1584 if (type & PERF_SAMPLE_PERIOD) 1585 result += sizeof(u64); 1586 1587 if (type & PERF_SAMPLE_READ) { 1588 result += sizeof(u64); 1589 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1590 result += sizeof(u64); 1591 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1592 result += sizeof(u64); 1593 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1594 if (read_format & PERF_FORMAT_GROUP) { 1595 sz = sample->read.group.nr * 1596 sizeof(struct sample_read_value); 1597 result += sz; 1598 } else { 1599 result += sizeof(u64); 1600 } 1601 } 1602 1603 if (type & PERF_SAMPLE_CALLCHAIN) { 1604 sz = (sample->callchain->nr + 1) * sizeof(u64); 1605 result += sz; 1606 } 1607 1608 if (type & PERF_SAMPLE_RAW) { 1609 result += sizeof(u32); 1610 result += sample->raw_size; 1611 } 1612 1613 if (type & PERF_SAMPLE_BRANCH_STACK) { 1614 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1615 sz += sizeof(u64); 1616 result += sz; 1617 } 1618 1619 if (type & PERF_SAMPLE_REGS_USER) { 1620 if (sample->user_regs.abi) { 1621 result += sizeof(u64); 1622 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1623 result += sz; 1624 } else { 1625 result += sizeof(u64); 1626 } 1627 } 1628 1629 if (type & PERF_SAMPLE_STACK_USER) { 1630 sz = sample->user_stack.size; 1631 result += sizeof(u64); 1632 if (sz) { 1633 result += sz; 1634 result += sizeof(u64); 1635 } 1636 } 1637 1638 if (type & PERF_SAMPLE_WEIGHT) 1639 result += sizeof(u64); 1640 1641 if (type & PERF_SAMPLE_DATA_SRC) 1642 result += sizeof(u64); 1643 1644 if (type & PERF_SAMPLE_TRANSACTION) 1645 result += sizeof(u64); 1646 1647 if (type & PERF_SAMPLE_REGS_INTR) { 1648 if (sample->intr_regs.abi) { 1649 result += sizeof(u64); 1650 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 1651 result += sz; 1652 } else { 1653 result += sizeof(u64); 1654 } 1655 } 1656 1657 return result; 1658 } 1659 1660 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1661 u64 read_format, 1662 const struct perf_sample *sample, 1663 bool swapped) 1664 { 1665 u64 *array; 1666 size_t sz; 1667 /* 1668 * used for cross-endian analysis. See git commit 65014ab3 1669 * for why this goofiness is needed. 1670 */ 1671 union u64_swap u; 1672 1673 array = event->sample.array; 1674 1675 if (type & PERF_SAMPLE_IDENTIFIER) { 1676 *array = sample->id; 1677 array++; 1678 } 1679 1680 if (type & PERF_SAMPLE_IP) { 1681 *array = sample->ip; 1682 array++; 1683 } 1684 1685 if (type & PERF_SAMPLE_TID) { 1686 u.val32[0] = sample->pid; 1687 u.val32[1] = sample->tid; 1688 if (swapped) { 1689 /* 1690 * Inverse of what is done in perf_evsel__parse_sample 1691 */ 1692 u.val32[0] = bswap_32(u.val32[0]); 1693 u.val32[1] = bswap_32(u.val32[1]); 1694 u.val64 = bswap_64(u.val64); 1695 } 1696 1697 *array = u.val64; 1698 array++; 1699 } 1700 1701 if (type & PERF_SAMPLE_TIME) { 1702 *array = sample->time; 1703 array++; 1704 } 1705 1706 if (type & PERF_SAMPLE_ADDR) { 1707 *array = sample->addr; 1708 array++; 1709 } 1710 1711 if (type & PERF_SAMPLE_ID) { 1712 *array = sample->id; 1713 array++; 1714 } 1715 1716 if (type & PERF_SAMPLE_STREAM_ID) { 1717 *array = sample->stream_id; 1718 array++; 1719 } 1720 1721 if (type & PERF_SAMPLE_CPU) { 1722 u.val32[0] = sample->cpu; 1723 if (swapped) { 1724 /* 1725 * Inverse of what is done in perf_evsel__parse_sample 1726 */ 1727 u.val32[0] = bswap_32(u.val32[0]); 1728 u.val64 = bswap_64(u.val64); 1729 } 1730 *array = u.val64; 1731 array++; 1732 } 1733 1734 if (type & PERF_SAMPLE_PERIOD) { 1735 *array = sample->period; 1736 array++; 1737 } 1738 1739 if (type & PERF_SAMPLE_READ) { 1740 if (read_format & PERF_FORMAT_GROUP) 1741 *array = sample->read.group.nr; 1742 else 1743 *array = sample->read.one.value; 1744 array++; 1745 1746 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1747 *array = sample->read.time_enabled; 1748 array++; 1749 } 1750 1751 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1752 *array = sample->read.time_running; 1753 array++; 1754 } 1755 1756 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1757 if (read_format & PERF_FORMAT_GROUP) { 1758 sz = sample->read.group.nr * 1759 sizeof(struct sample_read_value); 1760 memcpy(array, sample->read.group.values, sz); 1761 array = (void *)array + sz; 1762 } else { 1763 *array = sample->read.one.id; 1764 array++; 1765 } 1766 } 1767 1768 if (type & PERF_SAMPLE_CALLCHAIN) { 1769 sz = (sample->callchain->nr + 1) * sizeof(u64); 1770 memcpy(array, sample->callchain, sz); 1771 array = (void *)array + sz; 1772 } 1773 1774 if (type & PERF_SAMPLE_RAW) { 1775 u.val32[0] = sample->raw_size; 1776 if (WARN_ONCE(swapped, 1777 "Endianness of raw data not corrected!\n")) { 1778 /* 1779 * Inverse of what is done in perf_evsel__parse_sample 1780 */ 1781 u.val32[0] = bswap_32(u.val32[0]); 1782 u.val32[1] = bswap_32(u.val32[1]); 1783 u.val64 = bswap_64(u.val64); 1784 } 1785 *array = u.val64; 1786 array = (void *)array + sizeof(u32); 1787 1788 memcpy(array, sample->raw_data, sample->raw_size); 1789 array = (void *)array + sample->raw_size; 1790 } 1791 1792 if (type & PERF_SAMPLE_BRANCH_STACK) { 1793 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1794 sz += sizeof(u64); 1795 memcpy(array, sample->branch_stack, sz); 1796 array = (void *)array + sz; 1797 } 1798 1799 if (type & PERF_SAMPLE_REGS_USER) { 1800 if (sample->user_regs.abi) { 1801 *array++ = sample->user_regs.abi; 1802 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1803 memcpy(array, sample->user_regs.regs, sz); 1804 array = (void *)array + sz; 1805 } else { 1806 *array++ = 0; 1807 } 1808 } 1809 1810 if (type & PERF_SAMPLE_STACK_USER) { 1811 sz = sample->user_stack.size; 1812 *array++ = sz; 1813 if (sz) { 1814 memcpy(array, sample->user_stack.data, sz); 1815 array = (void *)array + sz; 1816 *array++ = sz; 1817 } 1818 } 1819 1820 if (type & PERF_SAMPLE_WEIGHT) { 1821 *array = sample->weight; 1822 array++; 1823 } 1824 1825 if (type & PERF_SAMPLE_DATA_SRC) { 1826 *array = sample->data_src; 1827 array++; 1828 } 1829 1830 if (type & PERF_SAMPLE_TRANSACTION) { 1831 *array = sample->transaction; 1832 array++; 1833 } 1834 1835 if (type & PERF_SAMPLE_REGS_INTR) { 1836 if (sample->intr_regs.abi) { 1837 *array++ = sample->intr_regs.abi; 1838 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 1839 memcpy(array, sample->intr_regs.regs, sz); 1840 array = (void *)array + sz; 1841 } else { 1842 *array++ = 0; 1843 } 1844 } 1845 1846 return 0; 1847 } 1848 1849 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1850 { 1851 return pevent_find_field(evsel->tp_format, name); 1852 } 1853 1854 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1855 const char *name) 1856 { 1857 struct format_field *field = perf_evsel__field(evsel, name); 1858 int offset; 1859 1860 if (!field) 1861 return NULL; 1862 1863 offset = field->offset; 1864 1865 if (field->flags & FIELD_IS_DYNAMIC) { 1866 offset = *(int *)(sample->raw_data + field->offset); 1867 offset &= 0xffff; 1868 } 1869 1870 return sample->raw_data + offset; 1871 } 1872 1873 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1874 const char *name) 1875 { 1876 struct format_field *field = perf_evsel__field(evsel, name); 1877 void *ptr; 1878 u64 value; 1879 1880 if (!field) 1881 return 0; 1882 1883 ptr = sample->raw_data + field->offset; 1884 1885 switch (field->size) { 1886 case 1: 1887 return *(u8 *)ptr; 1888 case 2: 1889 value = *(u16 *)ptr; 1890 break; 1891 case 4: 1892 value = *(u32 *)ptr; 1893 break; 1894 case 8: 1895 value = *(u64 *)ptr; 1896 break; 1897 default: 1898 return 0; 1899 } 1900 1901 if (!evsel->needs_swap) 1902 return value; 1903 1904 switch (field->size) { 1905 case 2: 1906 return bswap_16(value); 1907 case 4: 1908 return bswap_32(value); 1909 case 8: 1910 return bswap_64(value); 1911 default: 1912 return 0; 1913 } 1914 1915 return 0; 1916 } 1917 1918 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1919 { 1920 va_list args; 1921 int ret = 0; 1922 1923 if (!*first) { 1924 ret += fprintf(fp, ","); 1925 } else { 1926 ret += fprintf(fp, ":"); 1927 *first = false; 1928 } 1929 1930 va_start(args, fmt); 1931 ret += vfprintf(fp, fmt, args); 1932 va_end(args); 1933 return ret; 1934 } 1935 1936 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1937 { 1938 if (value == 0) 1939 return 0; 1940 1941 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1942 } 1943 1944 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1945 1946 struct bit_names { 1947 int bit; 1948 const char *name; 1949 }; 1950 1951 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1952 struct bit_names *bits, bool *first) 1953 { 1954 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1955 bool first_bit = true; 1956 1957 do { 1958 if (value & bits[i].bit) { 1959 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1960 first_bit = false; 1961 } 1962 } while (bits[++i].name != NULL); 1963 1964 return printed; 1965 } 1966 1967 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1968 { 1969 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1970 struct bit_names bits[] = { 1971 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1972 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1973 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1974 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1975 bit_name(IDENTIFIER), bit_name(REGS_INTR), 1976 { .name = NULL, } 1977 }; 1978 #undef bit_name 1979 return bits__fprintf(fp, "sample_type", value, bits, first); 1980 } 1981 1982 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1983 { 1984 #define bit_name(n) { PERF_FORMAT_##n, #n } 1985 struct bit_names bits[] = { 1986 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1987 bit_name(ID), bit_name(GROUP), 1988 { .name = NULL, } 1989 }; 1990 #undef bit_name 1991 return bits__fprintf(fp, "read_format", value, bits, first); 1992 } 1993 1994 int perf_evsel__fprintf(struct perf_evsel *evsel, 1995 struct perf_attr_details *details, FILE *fp) 1996 { 1997 bool first = true; 1998 int printed = 0; 1999 2000 if (details->event_group) { 2001 struct perf_evsel *pos; 2002 2003 if (!perf_evsel__is_group_leader(evsel)) 2004 return 0; 2005 2006 if (evsel->nr_members > 1) 2007 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 2008 2009 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2010 for_each_group_member(pos, evsel) 2011 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 2012 2013 if (evsel->nr_members > 1) 2014 printed += fprintf(fp, "}"); 2015 goto out; 2016 } 2017 2018 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2019 2020 if (details->verbose || details->freq) { 2021 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 2022 (u64)evsel->attr.sample_freq); 2023 } 2024 2025 if (details->verbose) { 2026 if_print(type); 2027 if_print(config); 2028 if_print(config1); 2029 if_print(config2); 2030 if_print(size); 2031 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 2032 if (evsel->attr.read_format) 2033 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 2034 if_print(disabled); 2035 if_print(inherit); 2036 if_print(pinned); 2037 if_print(exclusive); 2038 if_print(exclude_user); 2039 if_print(exclude_kernel); 2040 if_print(exclude_hv); 2041 if_print(exclude_idle); 2042 if_print(mmap); 2043 if_print(mmap2); 2044 if_print(comm); 2045 if_print(comm_exec); 2046 if_print(freq); 2047 if_print(inherit_stat); 2048 if_print(enable_on_exec); 2049 if_print(task); 2050 if_print(watermark); 2051 if_print(precise_ip); 2052 if_print(mmap_data); 2053 if_print(sample_id_all); 2054 if_print(exclude_host); 2055 if_print(exclude_guest); 2056 if_print(__reserved_1); 2057 if_print(wakeup_events); 2058 if_print(bp_type); 2059 if_print(branch_sample_type); 2060 } 2061 out: 2062 fputc('\n', fp); 2063 return ++printed; 2064 } 2065 2066 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2067 char *msg, size_t msgsize) 2068 { 2069 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2070 evsel->attr.type == PERF_TYPE_HARDWARE && 2071 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2072 /* 2073 * If it's cycles then fall back to hrtimer based 2074 * cpu-clock-tick sw counter, which is always available even if 2075 * no PMU support. 2076 * 2077 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2078 * b0a873e). 2079 */ 2080 scnprintf(msg, msgsize, "%s", 2081 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2082 2083 evsel->attr.type = PERF_TYPE_SOFTWARE; 2084 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2085 2086 zfree(&evsel->name); 2087 return true; 2088 } 2089 2090 return false; 2091 } 2092 2093 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2094 int err, char *msg, size_t size) 2095 { 2096 char sbuf[STRERR_BUFSIZE]; 2097 2098 switch (err) { 2099 case EPERM: 2100 case EACCES: 2101 return scnprintf(msg, size, 2102 "You may not have permission to collect %sstats.\n" 2103 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 2104 " -1 - Not paranoid at all\n" 2105 " 0 - Disallow raw tracepoint access for unpriv\n" 2106 " 1 - Disallow cpu events for unpriv\n" 2107 " 2 - Disallow kernel profiling for unpriv", 2108 target->system_wide ? "system-wide " : ""); 2109 case ENOENT: 2110 return scnprintf(msg, size, "The %s event is not supported.", 2111 perf_evsel__name(evsel)); 2112 case EMFILE: 2113 return scnprintf(msg, size, "%s", 2114 "Too many events are opened.\n" 2115 "Try again after reducing the number of events."); 2116 case ENODEV: 2117 if (target->cpu_list) 2118 return scnprintf(msg, size, "%s", 2119 "No such device - did you specify an out-of-range profile CPU?\n"); 2120 break; 2121 case EOPNOTSUPP: 2122 if (evsel->attr.precise_ip) 2123 return scnprintf(msg, size, "%s", 2124 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2125 #if defined(__i386__) || defined(__x86_64__) 2126 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2127 return scnprintf(msg, size, "%s", 2128 "No hardware sampling interrupt available.\n" 2129 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2130 #endif 2131 break; 2132 case EBUSY: 2133 if (find_process("oprofiled")) 2134 return scnprintf(msg, size, 2135 "The PMU counters are busy/taken by another profiler.\n" 2136 "We found oprofile daemon running, please stop it and try again."); 2137 break; 2138 default: 2139 break; 2140 } 2141 2142 return scnprintf(msg, size, 2143 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2144 "/bin/dmesg may provide additional information.\n" 2145 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2146 err, strerror_r(err, sbuf, sizeof(sbuf)), 2147 perf_evsel__name(evsel)); 2148 } 2149