xref: /linux/tools/perf/util/evsel.c (revision de1e17b1d0c81be472039798698b517c8a68b516)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 	bool write_backward;
41 } perf_missing_features;
42 
43 static clockid_t clockid;
44 
45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 	return 0;
48 }
49 
50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53 
54 static struct {
55 	size_t	size;
56 	int	(*init)(struct perf_evsel *evsel);
57 	void	(*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 	.size = sizeof(struct perf_evsel),
60 	.init = perf_evsel__no_extra_init,
61 	.fini = perf_evsel__no_extra_fini,
62 };
63 
64 int perf_evsel__object_config(size_t object_size,
65 			      int (*init)(struct perf_evsel *evsel),
66 			      void (*fini)(struct perf_evsel *evsel))
67 {
68 
69 	if (object_size == 0)
70 		goto set_methods;
71 
72 	if (perf_evsel__object.size > object_size)
73 		return -EINVAL;
74 
75 	perf_evsel__object.size = object_size;
76 
77 set_methods:
78 	if (init != NULL)
79 		perf_evsel__object.init = init;
80 
81 	if (fini != NULL)
82 		perf_evsel__object.fini = fini;
83 
84 	return 0;
85 }
86 
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88 
89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 	u64 mask = sample_type & PERF_SAMPLE_MASK;
92 	int size = 0;
93 	int i;
94 
95 	for (i = 0; i < 64; i++) {
96 		if (mask & (1ULL << i))
97 			size++;
98 	}
99 
100 	size *= sizeof(u64);
101 
102 	return size;
103 }
104 
105 /**
106  * __perf_evsel__calc_id_pos - calculate id_pos.
107  * @sample_type: sample type
108  *
109  * This function returns the position of the event id (PERF_SAMPLE_ID or
110  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111  * sample_event.
112  */
113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 	int idx = 0;
116 
117 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 		return 0;
119 
120 	if (!(sample_type & PERF_SAMPLE_ID))
121 		return -1;
122 
123 	if (sample_type & PERF_SAMPLE_IP)
124 		idx += 1;
125 
126 	if (sample_type & PERF_SAMPLE_TID)
127 		idx += 1;
128 
129 	if (sample_type & PERF_SAMPLE_TIME)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_ADDR)
133 		idx += 1;
134 
135 	return idx;
136 }
137 
138 /**
139  * __perf_evsel__calc_is_pos - calculate is_pos.
140  * @sample_type: sample type
141  *
142  * This function returns the position (counting backwards) of the event id
143  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144  * sample_id_all is used there is an id sample appended to non-sample events.
145  */
146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 	int idx = 1;
149 
150 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 		return 1;
152 
153 	if (!(sample_type & PERF_SAMPLE_ID))
154 		return -1;
155 
156 	if (sample_type & PERF_SAMPLE_CPU)
157 		idx += 1;
158 
159 	if (sample_type & PERF_SAMPLE_STREAM_ID)
160 		idx += 1;
161 
162 	return idx;
163 }
164 
165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170 
171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 				  enum perf_event_sample_format bit)
173 {
174 	if (!(evsel->attr.sample_type & bit)) {
175 		evsel->attr.sample_type |= bit;
176 		evsel->sample_size += sizeof(u64);
177 		perf_evsel__calc_id_pos(evsel);
178 	}
179 }
180 
181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 				    enum perf_event_sample_format bit)
183 {
184 	if (evsel->attr.sample_type & bit) {
185 		evsel->attr.sample_type &= ~bit;
186 		evsel->sample_size -= sizeof(u64);
187 		perf_evsel__calc_id_pos(evsel);
188 	}
189 }
190 
191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 			       bool can_sample_identifier)
193 {
194 	if (can_sample_identifier) {
195 		perf_evsel__reset_sample_bit(evsel, ID);
196 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 	} else {
198 		perf_evsel__set_sample_bit(evsel, ID);
199 	}
200 	evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202 
203 /**
204  * perf_evsel__is_function_event - Return whether given evsel is a function
205  * trace event
206  *
207  * @evsel - evsel selector to be tested
208  *
209  * Return %true if event is function trace event
210  */
211 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
212 {
213 #define FUNCTION_EVENT "ftrace:function"
214 
215 	return evsel->name &&
216 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
217 
218 #undef FUNCTION_EVENT
219 }
220 
221 void perf_evsel__init(struct perf_evsel *evsel,
222 		      struct perf_event_attr *attr, int idx)
223 {
224 	evsel->idx	   = idx;
225 	evsel->tracking	   = !idx;
226 	evsel->attr	   = *attr;
227 	evsel->leader	   = evsel;
228 	evsel->unit	   = "";
229 	evsel->scale	   = 1.0;
230 	evsel->evlist	   = NULL;
231 	evsel->bpf_fd	   = -1;
232 	INIT_LIST_HEAD(&evsel->node);
233 	INIT_LIST_HEAD(&evsel->config_terms);
234 	perf_evsel__object.init(evsel);
235 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
236 	perf_evsel__calc_id_pos(evsel);
237 	evsel->cmdline_group_boundary = false;
238 }
239 
240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
241 {
242 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 
244 	if (evsel != NULL)
245 		perf_evsel__init(evsel, attr, idx);
246 
247 	if (perf_evsel__is_bpf_output(evsel)) {
248 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
249 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
250 		evsel->attr.sample_period = 1;
251 	}
252 
253 	return evsel;
254 }
255 
256 /*
257  * Returns pointer with encoded error via <linux/err.h> interface.
258  */
259 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
260 {
261 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
262 	int err = -ENOMEM;
263 
264 	if (evsel == NULL) {
265 		goto out_err;
266 	} else {
267 		struct perf_event_attr attr = {
268 			.type	       = PERF_TYPE_TRACEPOINT,
269 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
270 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
271 		};
272 
273 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
274 			goto out_free;
275 
276 		evsel->tp_format = trace_event__tp_format(sys, name);
277 		if (IS_ERR(evsel->tp_format)) {
278 			err = PTR_ERR(evsel->tp_format);
279 			goto out_free;
280 		}
281 
282 		event_attr_init(&attr);
283 		attr.config = evsel->tp_format->id;
284 		attr.sample_period = 1;
285 		perf_evsel__init(evsel, &attr, idx);
286 	}
287 
288 	return evsel;
289 
290 out_free:
291 	zfree(&evsel->name);
292 	free(evsel);
293 out_err:
294 	return ERR_PTR(err);
295 }
296 
297 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
298 	"cycles",
299 	"instructions",
300 	"cache-references",
301 	"cache-misses",
302 	"branches",
303 	"branch-misses",
304 	"bus-cycles",
305 	"stalled-cycles-frontend",
306 	"stalled-cycles-backend",
307 	"ref-cycles",
308 };
309 
310 static const char *__perf_evsel__hw_name(u64 config)
311 {
312 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
313 		return perf_evsel__hw_names[config];
314 
315 	return "unknown-hardware";
316 }
317 
318 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
319 {
320 	int colon = 0, r = 0;
321 	struct perf_event_attr *attr = &evsel->attr;
322 	bool exclude_guest_default = false;
323 
324 #define MOD_PRINT(context, mod)	do {					\
325 		if (!attr->exclude_##context) {				\
326 			if (!colon) colon = ++r;			\
327 			r += scnprintf(bf + r, size - r, "%c", mod);	\
328 		} } while(0)
329 
330 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
331 		MOD_PRINT(kernel, 'k');
332 		MOD_PRINT(user, 'u');
333 		MOD_PRINT(hv, 'h');
334 		exclude_guest_default = true;
335 	}
336 
337 	if (attr->precise_ip) {
338 		if (!colon)
339 			colon = ++r;
340 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
341 		exclude_guest_default = true;
342 	}
343 
344 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
345 		MOD_PRINT(host, 'H');
346 		MOD_PRINT(guest, 'G');
347 	}
348 #undef MOD_PRINT
349 	if (colon)
350 		bf[colon - 1] = ':';
351 	return r;
352 }
353 
354 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
355 {
356 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
357 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
358 }
359 
360 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
361 	"cpu-clock",
362 	"task-clock",
363 	"page-faults",
364 	"context-switches",
365 	"cpu-migrations",
366 	"minor-faults",
367 	"major-faults",
368 	"alignment-faults",
369 	"emulation-faults",
370 	"dummy",
371 };
372 
373 static const char *__perf_evsel__sw_name(u64 config)
374 {
375 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
376 		return perf_evsel__sw_names[config];
377 	return "unknown-software";
378 }
379 
380 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
381 {
382 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
383 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
384 }
385 
386 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
387 {
388 	int r;
389 
390 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
391 
392 	if (type & HW_BREAKPOINT_R)
393 		r += scnprintf(bf + r, size - r, "r");
394 
395 	if (type & HW_BREAKPOINT_W)
396 		r += scnprintf(bf + r, size - r, "w");
397 
398 	if (type & HW_BREAKPOINT_X)
399 		r += scnprintf(bf + r, size - r, "x");
400 
401 	return r;
402 }
403 
404 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
405 {
406 	struct perf_event_attr *attr = &evsel->attr;
407 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
408 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
409 }
410 
411 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
412 				[PERF_EVSEL__MAX_ALIASES] = {
413  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
414  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
415  { "LLC",	"L2",							},
416  { "dTLB",	"d-tlb",	"Data-TLB",				},
417  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
418  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
419  { "node",								},
420 };
421 
422 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
423 				   [PERF_EVSEL__MAX_ALIASES] = {
424  { "load",	"loads",	"read",					},
425  { "store",	"stores",	"write",				},
426  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
427 };
428 
429 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
430 				       [PERF_EVSEL__MAX_ALIASES] = {
431  { "refs",	"Reference",	"ops",		"access",		},
432  { "misses",	"miss",							},
433 };
434 
435 #define C(x)		PERF_COUNT_HW_CACHE_##x
436 #define CACHE_READ	(1 << C(OP_READ))
437 #define CACHE_WRITE	(1 << C(OP_WRITE))
438 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
439 #define COP(x)		(1 << x)
440 
441 /*
442  * cache operartion stat
443  * L1I : Read and prefetch only
444  * ITLB and BPU : Read-only
445  */
446 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
447  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
448  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
449  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
450  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
451  [C(ITLB)]	= (CACHE_READ),
452  [C(BPU)]	= (CACHE_READ),
453  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
454 };
455 
456 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
457 {
458 	if (perf_evsel__hw_cache_stat[type] & COP(op))
459 		return true;	/* valid */
460 	else
461 		return false;	/* invalid */
462 }
463 
464 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
465 					    char *bf, size_t size)
466 {
467 	if (result) {
468 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
469 				 perf_evsel__hw_cache_op[op][0],
470 				 perf_evsel__hw_cache_result[result][0]);
471 	}
472 
473 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
474 			 perf_evsel__hw_cache_op[op][1]);
475 }
476 
477 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
478 {
479 	u8 op, result, type = (config >>  0) & 0xff;
480 	const char *err = "unknown-ext-hardware-cache-type";
481 
482 	if (type > PERF_COUNT_HW_CACHE_MAX)
483 		goto out_err;
484 
485 	op = (config >>  8) & 0xff;
486 	err = "unknown-ext-hardware-cache-op";
487 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
488 		goto out_err;
489 
490 	result = (config >> 16) & 0xff;
491 	err = "unknown-ext-hardware-cache-result";
492 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
493 		goto out_err;
494 
495 	err = "invalid-cache";
496 	if (!perf_evsel__is_cache_op_valid(type, op))
497 		goto out_err;
498 
499 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
500 out_err:
501 	return scnprintf(bf, size, "%s", err);
502 }
503 
504 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
505 {
506 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
507 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
508 }
509 
510 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
511 {
512 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
513 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
514 }
515 
516 const char *perf_evsel__name(struct perf_evsel *evsel)
517 {
518 	char bf[128];
519 
520 	if (evsel->name)
521 		return evsel->name;
522 
523 	switch (evsel->attr.type) {
524 	case PERF_TYPE_RAW:
525 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
526 		break;
527 
528 	case PERF_TYPE_HARDWARE:
529 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
530 		break;
531 
532 	case PERF_TYPE_HW_CACHE:
533 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
534 		break;
535 
536 	case PERF_TYPE_SOFTWARE:
537 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
538 		break;
539 
540 	case PERF_TYPE_TRACEPOINT:
541 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
542 		break;
543 
544 	case PERF_TYPE_BREAKPOINT:
545 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
546 		break;
547 
548 	default:
549 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
550 			  evsel->attr.type);
551 		break;
552 	}
553 
554 	evsel->name = strdup(bf);
555 
556 	return evsel->name ?: "unknown";
557 }
558 
559 const char *perf_evsel__group_name(struct perf_evsel *evsel)
560 {
561 	return evsel->group_name ?: "anon group";
562 }
563 
564 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
565 {
566 	int ret;
567 	struct perf_evsel *pos;
568 	const char *group_name = perf_evsel__group_name(evsel);
569 
570 	ret = scnprintf(buf, size, "%s", group_name);
571 
572 	ret += scnprintf(buf + ret, size - ret, " { %s",
573 			 perf_evsel__name(evsel));
574 
575 	for_each_group_member(pos, evsel)
576 		ret += scnprintf(buf + ret, size - ret, ", %s",
577 				 perf_evsel__name(pos));
578 
579 	ret += scnprintf(buf + ret, size - ret, " }");
580 
581 	return ret;
582 }
583 
584 void perf_evsel__config_callchain(struct perf_evsel *evsel,
585 				  struct record_opts *opts,
586 				  struct callchain_param *param)
587 {
588 	bool function = perf_evsel__is_function_event(evsel);
589 	struct perf_event_attr *attr = &evsel->attr;
590 
591 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
592 
593 	attr->sample_max_stack = param->max_stack;
594 
595 	if (param->record_mode == CALLCHAIN_LBR) {
596 		if (!opts->branch_stack) {
597 			if (attr->exclude_user) {
598 				pr_warning("LBR callstack option is only available "
599 					   "to get user callchain information. "
600 					   "Falling back to framepointers.\n");
601 			} else {
602 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
603 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
604 							PERF_SAMPLE_BRANCH_CALL_STACK |
605 							PERF_SAMPLE_BRANCH_NO_CYCLES |
606 							PERF_SAMPLE_BRANCH_NO_FLAGS;
607 			}
608 		} else
609 			 pr_warning("Cannot use LBR callstack with branch stack. "
610 				    "Falling back to framepointers.\n");
611 	}
612 
613 	if (param->record_mode == CALLCHAIN_DWARF) {
614 		if (!function) {
615 			perf_evsel__set_sample_bit(evsel, REGS_USER);
616 			perf_evsel__set_sample_bit(evsel, STACK_USER);
617 			attr->sample_regs_user = PERF_REGS_MASK;
618 			attr->sample_stack_user = param->dump_size;
619 			attr->exclude_callchain_user = 1;
620 		} else {
621 			pr_info("Cannot use DWARF unwind for function trace event,"
622 				" falling back to framepointers.\n");
623 		}
624 	}
625 
626 	if (function) {
627 		pr_info("Disabling user space callchains for function trace event.\n");
628 		attr->exclude_callchain_user = 1;
629 	}
630 }
631 
632 static void
633 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
634 			    struct callchain_param *param)
635 {
636 	struct perf_event_attr *attr = &evsel->attr;
637 
638 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
639 	if (param->record_mode == CALLCHAIN_LBR) {
640 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
641 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
642 					      PERF_SAMPLE_BRANCH_CALL_STACK);
643 	}
644 	if (param->record_mode == CALLCHAIN_DWARF) {
645 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
646 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
647 	}
648 }
649 
650 static void apply_config_terms(struct perf_evsel *evsel,
651 			       struct record_opts *opts)
652 {
653 	struct perf_evsel_config_term *term;
654 	struct list_head *config_terms = &evsel->config_terms;
655 	struct perf_event_attr *attr = &evsel->attr;
656 	struct callchain_param param;
657 	u32 dump_size = 0;
658 	int max_stack = 0;
659 	const char *callgraph_buf = NULL;
660 
661 	/* callgraph default */
662 	param.record_mode = callchain_param.record_mode;
663 
664 	list_for_each_entry(term, config_terms, list) {
665 		switch (term->type) {
666 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
667 			attr->sample_period = term->val.period;
668 			attr->freq = 0;
669 			break;
670 		case PERF_EVSEL__CONFIG_TERM_FREQ:
671 			attr->sample_freq = term->val.freq;
672 			attr->freq = 1;
673 			break;
674 		case PERF_EVSEL__CONFIG_TERM_TIME:
675 			if (term->val.time)
676 				perf_evsel__set_sample_bit(evsel, TIME);
677 			else
678 				perf_evsel__reset_sample_bit(evsel, TIME);
679 			break;
680 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
681 			callgraph_buf = term->val.callgraph;
682 			break;
683 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
684 			dump_size = term->val.stack_user;
685 			break;
686 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
687 			max_stack = term->val.max_stack;
688 			break;
689 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
690 			/*
691 			 * attr->inherit should has already been set by
692 			 * perf_evsel__config. If user explicitly set
693 			 * inherit using config terms, override global
694 			 * opt->no_inherit setting.
695 			 */
696 			attr->inherit = term->val.inherit ? 1 : 0;
697 			break;
698 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
699 			attr->write_backward = term->val.overwrite ? 1 : 0;
700 			break;
701 		default:
702 			break;
703 		}
704 	}
705 
706 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
707 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
708 		if (max_stack) {
709 			param.max_stack = max_stack;
710 			if (callgraph_buf == NULL)
711 				callgraph_buf = "fp";
712 		}
713 
714 		/* parse callgraph parameters */
715 		if (callgraph_buf != NULL) {
716 			if (!strcmp(callgraph_buf, "no")) {
717 				param.enabled = false;
718 				param.record_mode = CALLCHAIN_NONE;
719 			} else {
720 				param.enabled = true;
721 				if (parse_callchain_record(callgraph_buf, &param)) {
722 					pr_err("per-event callgraph setting for %s failed. "
723 					       "Apply callgraph global setting for it\n",
724 					       evsel->name);
725 					return;
726 				}
727 			}
728 		}
729 		if (dump_size > 0) {
730 			dump_size = round_up(dump_size, sizeof(u64));
731 			param.dump_size = dump_size;
732 		}
733 
734 		/* If global callgraph set, clear it */
735 		if (callchain_param.enabled)
736 			perf_evsel__reset_callgraph(evsel, &callchain_param);
737 
738 		/* set perf-event callgraph */
739 		if (param.enabled)
740 			perf_evsel__config_callchain(evsel, opts, &param);
741 	}
742 }
743 
744 /*
745  * The enable_on_exec/disabled value strategy:
746  *
747  *  1) For any type of traced program:
748  *    - all independent events and group leaders are disabled
749  *    - all group members are enabled
750  *
751  *     Group members are ruled by group leaders. They need to
752  *     be enabled, because the group scheduling relies on that.
753  *
754  *  2) For traced programs executed by perf:
755  *     - all independent events and group leaders have
756  *       enable_on_exec set
757  *     - we don't specifically enable or disable any event during
758  *       the record command
759  *
760  *     Independent events and group leaders are initially disabled
761  *     and get enabled by exec. Group members are ruled by group
762  *     leaders as stated in 1).
763  *
764  *  3) For traced programs attached by perf (pid/tid):
765  *     - we specifically enable or disable all events during
766  *       the record command
767  *
768  *     When attaching events to already running traced we
769  *     enable/disable events specifically, as there's no
770  *     initial traced exec call.
771  */
772 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
773 			struct callchain_param *callchain)
774 {
775 	struct perf_evsel *leader = evsel->leader;
776 	struct perf_event_attr *attr = &evsel->attr;
777 	int track = evsel->tracking;
778 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
779 
780 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
781 	attr->inherit	    = !opts->no_inherit;
782 	attr->write_backward = opts->overwrite ? 1 : 0;
783 
784 	perf_evsel__set_sample_bit(evsel, IP);
785 	perf_evsel__set_sample_bit(evsel, TID);
786 
787 	if (evsel->sample_read) {
788 		perf_evsel__set_sample_bit(evsel, READ);
789 
790 		/*
791 		 * We need ID even in case of single event, because
792 		 * PERF_SAMPLE_READ process ID specific data.
793 		 */
794 		perf_evsel__set_sample_id(evsel, false);
795 
796 		/*
797 		 * Apply group format only if we belong to group
798 		 * with more than one members.
799 		 */
800 		if (leader->nr_members > 1) {
801 			attr->read_format |= PERF_FORMAT_GROUP;
802 			attr->inherit = 0;
803 		}
804 	}
805 
806 	/*
807 	 * We default some events to have a default interval. But keep
808 	 * it a weak assumption overridable by the user.
809 	 */
810 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
811 				     opts->user_interval != ULLONG_MAX)) {
812 		if (opts->freq) {
813 			perf_evsel__set_sample_bit(evsel, PERIOD);
814 			attr->freq		= 1;
815 			attr->sample_freq	= opts->freq;
816 		} else {
817 			attr->sample_period = opts->default_interval;
818 		}
819 	}
820 
821 	/*
822 	 * Disable sampling for all group members other
823 	 * than leader in case leader 'leads' the sampling.
824 	 */
825 	if ((leader != evsel) && leader->sample_read) {
826 		attr->sample_freq   = 0;
827 		attr->sample_period = 0;
828 	}
829 
830 	if (opts->no_samples)
831 		attr->sample_freq = 0;
832 
833 	if (opts->inherit_stat)
834 		attr->inherit_stat = 1;
835 
836 	if (opts->sample_address) {
837 		perf_evsel__set_sample_bit(evsel, ADDR);
838 		attr->mmap_data = track;
839 	}
840 
841 	/*
842 	 * We don't allow user space callchains for  function trace
843 	 * event, due to issues with page faults while tracing page
844 	 * fault handler and its overall trickiness nature.
845 	 */
846 	if (perf_evsel__is_function_event(evsel))
847 		evsel->attr.exclude_callchain_user = 1;
848 
849 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
850 		perf_evsel__config_callchain(evsel, opts, callchain);
851 
852 	if (opts->sample_intr_regs) {
853 		attr->sample_regs_intr = opts->sample_intr_regs;
854 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
855 	}
856 
857 	if (target__has_cpu(&opts->target))
858 		perf_evsel__set_sample_bit(evsel, CPU);
859 
860 	if (opts->period)
861 		perf_evsel__set_sample_bit(evsel, PERIOD);
862 
863 	/*
864 	 * When the user explicitly disabled time don't force it here.
865 	 */
866 	if (opts->sample_time &&
867 	    (!perf_missing_features.sample_id_all &&
868 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
869 	     opts->sample_time_set)))
870 		perf_evsel__set_sample_bit(evsel, TIME);
871 
872 	if (opts->raw_samples && !evsel->no_aux_samples) {
873 		perf_evsel__set_sample_bit(evsel, TIME);
874 		perf_evsel__set_sample_bit(evsel, RAW);
875 		perf_evsel__set_sample_bit(evsel, CPU);
876 	}
877 
878 	if (opts->sample_address)
879 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
880 
881 	if (opts->no_buffering) {
882 		attr->watermark = 0;
883 		attr->wakeup_events = 1;
884 	}
885 	if (opts->branch_stack && !evsel->no_aux_samples) {
886 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
887 		attr->branch_sample_type = opts->branch_stack;
888 	}
889 
890 	if (opts->sample_weight)
891 		perf_evsel__set_sample_bit(evsel, WEIGHT);
892 
893 	attr->task  = track;
894 	attr->mmap  = track;
895 	attr->mmap2 = track && !perf_missing_features.mmap2;
896 	attr->comm  = track;
897 
898 	if (opts->record_switch_events)
899 		attr->context_switch = track;
900 
901 	if (opts->sample_transaction)
902 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
903 
904 	if (opts->running_time) {
905 		evsel->attr.read_format |=
906 			PERF_FORMAT_TOTAL_TIME_ENABLED |
907 			PERF_FORMAT_TOTAL_TIME_RUNNING;
908 	}
909 
910 	/*
911 	 * XXX see the function comment above
912 	 *
913 	 * Disabling only independent events or group leaders,
914 	 * keeping group members enabled.
915 	 */
916 	if (perf_evsel__is_group_leader(evsel))
917 		attr->disabled = 1;
918 
919 	/*
920 	 * Setting enable_on_exec for independent events and
921 	 * group leaders for traced executed by perf.
922 	 */
923 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
924 		!opts->initial_delay)
925 		attr->enable_on_exec = 1;
926 
927 	if (evsel->immediate) {
928 		attr->disabled = 0;
929 		attr->enable_on_exec = 0;
930 	}
931 
932 	clockid = opts->clockid;
933 	if (opts->use_clockid) {
934 		attr->use_clockid = 1;
935 		attr->clockid = opts->clockid;
936 	}
937 
938 	if (evsel->precise_max)
939 		perf_event_attr__set_max_precise_ip(attr);
940 
941 	if (opts->all_user) {
942 		attr->exclude_kernel = 1;
943 		attr->exclude_user   = 0;
944 	}
945 
946 	if (opts->all_kernel) {
947 		attr->exclude_kernel = 0;
948 		attr->exclude_user   = 1;
949 	}
950 
951 	/*
952 	 * Apply event specific term settings,
953 	 * it overloads any global configuration.
954 	 */
955 	apply_config_terms(evsel, opts);
956 }
957 
958 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
959 {
960 	int cpu, thread;
961 
962 	if (evsel->system_wide)
963 		nthreads = 1;
964 
965 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
966 
967 	if (evsel->fd) {
968 		for (cpu = 0; cpu < ncpus; cpu++) {
969 			for (thread = 0; thread < nthreads; thread++) {
970 				FD(evsel, cpu, thread) = -1;
971 			}
972 		}
973 	}
974 
975 	return evsel->fd != NULL ? 0 : -ENOMEM;
976 }
977 
978 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
979 			  int ioc,  void *arg)
980 {
981 	int cpu, thread;
982 
983 	if (evsel->system_wide)
984 		nthreads = 1;
985 
986 	for (cpu = 0; cpu < ncpus; cpu++) {
987 		for (thread = 0; thread < nthreads; thread++) {
988 			int fd = FD(evsel, cpu, thread),
989 			    err = ioctl(fd, ioc, arg);
990 
991 			if (err)
992 				return err;
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1000 			     const char *filter)
1001 {
1002 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1003 				     PERF_EVENT_IOC_SET_FILTER,
1004 				     (void *)filter);
1005 }
1006 
1007 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1008 {
1009 	char *new_filter = strdup(filter);
1010 
1011 	if (new_filter != NULL) {
1012 		free(evsel->filter);
1013 		evsel->filter = new_filter;
1014 		return 0;
1015 	}
1016 
1017 	return -1;
1018 }
1019 
1020 int perf_evsel__append_filter(struct perf_evsel *evsel,
1021 			      const char *op, const char *filter)
1022 {
1023 	char *new_filter;
1024 
1025 	if (evsel->filter == NULL)
1026 		return perf_evsel__set_filter(evsel, filter);
1027 
1028 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
1029 		free(evsel->filter);
1030 		evsel->filter = new_filter;
1031 		return 0;
1032 	}
1033 
1034 	return -1;
1035 }
1036 
1037 int perf_evsel__enable(struct perf_evsel *evsel)
1038 {
1039 	int nthreads = thread_map__nr(evsel->threads);
1040 	int ncpus = cpu_map__nr(evsel->cpus);
1041 
1042 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1043 				     PERF_EVENT_IOC_ENABLE,
1044 				     0);
1045 }
1046 
1047 int perf_evsel__disable(struct perf_evsel *evsel)
1048 {
1049 	int nthreads = thread_map__nr(evsel->threads);
1050 	int ncpus = cpu_map__nr(evsel->cpus);
1051 
1052 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1053 				     PERF_EVENT_IOC_DISABLE,
1054 				     0);
1055 }
1056 
1057 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1058 {
1059 	if (ncpus == 0 || nthreads == 0)
1060 		return 0;
1061 
1062 	if (evsel->system_wide)
1063 		nthreads = 1;
1064 
1065 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1066 	if (evsel->sample_id == NULL)
1067 		return -ENOMEM;
1068 
1069 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1070 	if (evsel->id == NULL) {
1071 		xyarray__delete(evsel->sample_id);
1072 		evsel->sample_id = NULL;
1073 		return -ENOMEM;
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1080 {
1081 	xyarray__delete(evsel->fd);
1082 	evsel->fd = NULL;
1083 }
1084 
1085 static void perf_evsel__free_id(struct perf_evsel *evsel)
1086 {
1087 	xyarray__delete(evsel->sample_id);
1088 	evsel->sample_id = NULL;
1089 	zfree(&evsel->id);
1090 }
1091 
1092 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1093 {
1094 	struct perf_evsel_config_term *term, *h;
1095 
1096 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1097 		list_del(&term->list);
1098 		free(term);
1099 	}
1100 }
1101 
1102 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1103 {
1104 	int cpu, thread;
1105 
1106 	if (evsel->system_wide)
1107 		nthreads = 1;
1108 
1109 	for (cpu = 0; cpu < ncpus; cpu++)
1110 		for (thread = 0; thread < nthreads; ++thread) {
1111 			close(FD(evsel, cpu, thread));
1112 			FD(evsel, cpu, thread) = -1;
1113 		}
1114 }
1115 
1116 void perf_evsel__exit(struct perf_evsel *evsel)
1117 {
1118 	assert(list_empty(&evsel->node));
1119 	assert(evsel->evlist == NULL);
1120 	perf_evsel__free_fd(evsel);
1121 	perf_evsel__free_id(evsel);
1122 	perf_evsel__free_config_terms(evsel);
1123 	close_cgroup(evsel->cgrp);
1124 	cpu_map__put(evsel->cpus);
1125 	cpu_map__put(evsel->own_cpus);
1126 	thread_map__put(evsel->threads);
1127 	zfree(&evsel->group_name);
1128 	zfree(&evsel->name);
1129 	perf_evsel__object.fini(evsel);
1130 }
1131 
1132 void perf_evsel__delete(struct perf_evsel *evsel)
1133 {
1134 	perf_evsel__exit(evsel);
1135 	free(evsel);
1136 }
1137 
1138 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1139 				struct perf_counts_values *count)
1140 {
1141 	struct perf_counts_values tmp;
1142 
1143 	if (!evsel->prev_raw_counts)
1144 		return;
1145 
1146 	if (cpu == -1) {
1147 		tmp = evsel->prev_raw_counts->aggr;
1148 		evsel->prev_raw_counts->aggr = *count;
1149 	} else {
1150 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1151 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1152 	}
1153 
1154 	count->val = count->val - tmp.val;
1155 	count->ena = count->ena - tmp.ena;
1156 	count->run = count->run - tmp.run;
1157 }
1158 
1159 void perf_counts_values__scale(struct perf_counts_values *count,
1160 			       bool scale, s8 *pscaled)
1161 {
1162 	s8 scaled = 0;
1163 
1164 	if (scale) {
1165 		if (count->run == 0) {
1166 			scaled = -1;
1167 			count->val = 0;
1168 		} else if (count->run < count->ena) {
1169 			scaled = 1;
1170 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1171 		}
1172 	} else
1173 		count->ena = count->run = 0;
1174 
1175 	if (pscaled)
1176 		*pscaled = scaled;
1177 }
1178 
1179 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1180 		     struct perf_counts_values *count)
1181 {
1182 	memset(count, 0, sizeof(*count));
1183 
1184 	if (FD(evsel, cpu, thread) < 0)
1185 		return -EINVAL;
1186 
1187 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1188 		return -errno;
1189 
1190 	return 0;
1191 }
1192 
1193 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1194 			      int cpu, int thread, bool scale)
1195 {
1196 	struct perf_counts_values count;
1197 	size_t nv = scale ? 3 : 1;
1198 
1199 	if (FD(evsel, cpu, thread) < 0)
1200 		return -EINVAL;
1201 
1202 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1203 		return -ENOMEM;
1204 
1205 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1206 		return -errno;
1207 
1208 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1209 	perf_counts_values__scale(&count, scale, NULL);
1210 	*perf_counts(evsel->counts, cpu, thread) = count;
1211 	return 0;
1212 }
1213 
1214 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1215 {
1216 	struct perf_evsel *leader = evsel->leader;
1217 	int fd;
1218 
1219 	if (perf_evsel__is_group_leader(evsel))
1220 		return -1;
1221 
1222 	/*
1223 	 * Leader must be already processed/open,
1224 	 * if not it's a bug.
1225 	 */
1226 	BUG_ON(!leader->fd);
1227 
1228 	fd = FD(leader, cpu, thread);
1229 	BUG_ON(fd == -1);
1230 
1231 	return fd;
1232 }
1233 
1234 struct bit_names {
1235 	int bit;
1236 	const char *name;
1237 };
1238 
1239 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1240 {
1241 	bool first_bit = true;
1242 	int i = 0;
1243 
1244 	do {
1245 		if (value & bits[i].bit) {
1246 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1247 			first_bit = false;
1248 		}
1249 	} while (bits[++i].name != NULL);
1250 }
1251 
1252 static void __p_sample_type(char *buf, size_t size, u64 value)
1253 {
1254 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1255 	struct bit_names bits[] = {
1256 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1257 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1258 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1259 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1260 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1261 		bit_name(WEIGHT),
1262 		{ .name = NULL, }
1263 	};
1264 #undef bit_name
1265 	__p_bits(buf, size, value, bits);
1266 }
1267 
1268 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1269 {
1270 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1271 	struct bit_names bits[] = {
1272 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1273 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1274 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1275 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1276 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1277 		{ .name = NULL, }
1278 	};
1279 #undef bit_name
1280 	__p_bits(buf, size, value, bits);
1281 }
1282 
1283 static void __p_read_format(char *buf, size_t size, u64 value)
1284 {
1285 #define bit_name(n) { PERF_FORMAT_##n, #n }
1286 	struct bit_names bits[] = {
1287 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1288 		bit_name(ID), bit_name(GROUP),
1289 		{ .name = NULL, }
1290 	};
1291 #undef bit_name
1292 	__p_bits(buf, size, value, bits);
1293 }
1294 
1295 #define BUF_SIZE		1024
1296 
1297 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1298 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1299 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1300 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1301 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1302 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1303 
1304 #define PRINT_ATTRn(_n, _f, _p)				\
1305 do {							\
1306 	if (attr->_f) {					\
1307 		_p(attr->_f);				\
1308 		ret += attr__fprintf(fp, _n, buf, priv);\
1309 	}						\
1310 } while (0)
1311 
1312 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1313 
1314 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1315 			     attr__fprintf_f attr__fprintf, void *priv)
1316 {
1317 	char buf[BUF_SIZE];
1318 	int ret = 0;
1319 
1320 	PRINT_ATTRf(type, p_unsigned);
1321 	PRINT_ATTRf(size, p_unsigned);
1322 	PRINT_ATTRf(config, p_hex);
1323 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1324 	PRINT_ATTRf(sample_type, p_sample_type);
1325 	PRINT_ATTRf(read_format, p_read_format);
1326 
1327 	PRINT_ATTRf(disabled, p_unsigned);
1328 	PRINT_ATTRf(inherit, p_unsigned);
1329 	PRINT_ATTRf(pinned, p_unsigned);
1330 	PRINT_ATTRf(exclusive, p_unsigned);
1331 	PRINT_ATTRf(exclude_user, p_unsigned);
1332 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1333 	PRINT_ATTRf(exclude_hv, p_unsigned);
1334 	PRINT_ATTRf(exclude_idle, p_unsigned);
1335 	PRINT_ATTRf(mmap, p_unsigned);
1336 	PRINT_ATTRf(comm, p_unsigned);
1337 	PRINT_ATTRf(freq, p_unsigned);
1338 	PRINT_ATTRf(inherit_stat, p_unsigned);
1339 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1340 	PRINT_ATTRf(task, p_unsigned);
1341 	PRINT_ATTRf(watermark, p_unsigned);
1342 	PRINT_ATTRf(precise_ip, p_unsigned);
1343 	PRINT_ATTRf(mmap_data, p_unsigned);
1344 	PRINT_ATTRf(sample_id_all, p_unsigned);
1345 	PRINT_ATTRf(exclude_host, p_unsigned);
1346 	PRINT_ATTRf(exclude_guest, p_unsigned);
1347 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1348 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1349 	PRINT_ATTRf(mmap2, p_unsigned);
1350 	PRINT_ATTRf(comm_exec, p_unsigned);
1351 	PRINT_ATTRf(use_clockid, p_unsigned);
1352 	PRINT_ATTRf(context_switch, p_unsigned);
1353 	PRINT_ATTRf(write_backward, p_unsigned);
1354 
1355 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1356 	PRINT_ATTRf(bp_type, p_unsigned);
1357 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1358 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1359 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1360 	PRINT_ATTRf(sample_regs_user, p_hex);
1361 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1362 	PRINT_ATTRf(clockid, p_signed);
1363 	PRINT_ATTRf(sample_regs_intr, p_hex);
1364 	PRINT_ATTRf(aux_watermark, p_unsigned);
1365 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1366 
1367 	return ret;
1368 }
1369 
1370 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1371 				void *priv __attribute__((unused)))
1372 {
1373 	return fprintf(fp, "  %-32s %s\n", name, val);
1374 }
1375 
1376 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1377 			      struct thread_map *threads)
1378 {
1379 	int cpu, thread, nthreads;
1380 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1381 	int pid = -1, err;
1382 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1383 
1384 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1385 		return -EINVAL;
1386 
1387 	if (evsel->system_wide)
1388 		nthreads = 1;
1389 	else
1390 		nthreads = threads->nr;
1391 
1392 	if (evsel->fd == NULL &&
1393 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1394 		return -ENOMEM;
1395 
1396 	if (evsel->cgrp) {
1397 		flags |= PERF_FLAG_PID_CGROUP;
1398 		pid = evsel->cgrp->fd;
1399 	}
1400 
1401 fallback_missing_features:
1402 	if (perf_missing_features.clockid_wrong)
1403 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1404 	if (perf_missing_features.clockid) {
1405 		evsel->attr.use_clockid = 0;
1406 		evsel->attr.clockid = 0;
1407 	}
1408 	if (perf_missing_features.cloexec)
1409 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1410 	if (perf_missing_features.mmap2)
1411 		evsel->attr.mmap2 = 0;
1412 	if (perf_missing_features.exclude_guest)
1413 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1414 	if (perf_missing_features.lbr_flags)
1415 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1416 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1417 retry_sample_id:
1418 	if (perf_missing_features.sample_id_all)
1419 		evsel->attr.sample_id_all = 0;
1420 
1421 	if (verbose >= 2) {
1422 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1423 		fprintf(stderr, "perf_event_attr:\n");
1424 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1425 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1426 	}
1427 
1428 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1429 
1430 		for (thread = 0; thread < nthreads; thread++) {
1431 			int group_fd;
1432 
1433 			if (!evsel->cgrp && !evsel->system_wide)
1434 				pid = thread_map__pid(threads, thread);
1435 
1436 			group_fd = get_group_fd(evsel, cpu, thread);
1437 retry_open:
1438 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1439 				  pid, cpus->map[cpu], group_fd, flags);
1440 
1441 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1442 								     pid,
1443 								     cpus->map[cpu],
1444 								     group_fd, flags);
1445 			if (FD(evsel, cpu, thread) < 0) {
1446 				err = -errno;
1447 				pr_debug2("sys_perf_event_open failed, error %d\n",
1448 					  err);
1449 				goto try_fallback;
1450 			}
1451 
1452 			if (evsel->bpf_fd >= 0) {
1453 				int evt_fd = FD(evsel, cpu, thread);
1454 				int bpf_fd = evsel->bpf_fd;
1455 
1456 				err = ioctl(evt_fd,
1457 					    PERF_EVENT_IOC_SET_BPF,
1458 					    bpf_fd);
1459 				if (err && errno != EEXIST) {
1460 					pr_err("failed to attach bpf fd %d: %s\n",
1461 					       bpf_fd, strerror(errno));
1462 					err = -EINVAL;
1463 					goto out_close;
1464 				}
1465 			}
1466 
1467 			set_rlimit = NO_CHANGE;
1468 
1469 			/*
1470 			 * If we succeeded but had to kill clockid, fail and
1471 			 * have perf_evsel__open_strerror() print us a nice
1472 			 * error.
1473 			 */
1474 			if (perf_missing_features.clockid ||
1475 			    perf_missing_features.clockid_wrong) {
1476 				err = -EINVAL;
1477 				goto out_close;
1478 			}
1479 		}
1480 	}
1481 
1482 	return 0;
1483 
1484 try_fallback:
1485 	/*
1486 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1487 	 * of them try to increase the limits.
1488 	 */
1489 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1490 		struct rlimit l;
1491 		int old_errno = errno;
1492 
1493 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1494 			if (set_rlimit == NO_CHANGE)
1495 				l.rlim_cur = l.rlim_max;
1496 			else {
1497 				l.rlim_cur = l.rlim_max + 1000;
1498 				l.rlim_max = l.rlim_cur;
1499 			}
1500 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1501 				set_rlimit++;
1502 				errno = old_errno;
1503 				goto retry_open;
1504 			}
1505 		}
1506 		errno = old_errno;
1507 	}
1508 
1509 	if (err != -EINVAL || cpu > 0 || thread > 0)
1510 		goto out_close;
1511 
1512 	/*
1513 	 * Must probe features in the order they were added to the
1514 	 * perf_event_attr interface.
1515 	 */
1516 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1517 		perf_missing_features.write_backward = true;
1518 		goto out_close;
1519 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1520 		perf_missing_features.clockid_wrong = true;
1521 		goto fallback_missing_features;
1522 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1523 		perf_missing_features.clockid = true;
1524 		goto fallback_missing_features;
1525 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1526 		perf_missing_features.cloexec = true;
1527 		goto fallback_missing_features;
1528 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1529 		perf_missing_features.mmap2 = true;
1530 		goto fallback_missing_features;
1531 	} else if (!perf_missing_features.exclude_guest &&
1532 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1533 		perf_missing_features.exclude_guest = true;
1534 		goto fallback_missing_features;
1535 	} else if (!perf_missing_features.sample_id_all) {
1536 		perf_missing_features.sample_id_all = true;
1537 		goto retry_sample_id;
1538 	} else if (!perf_missing_features.lbr_flags &&
1539 			(evsel->attr.branch_sample_type &
1540 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1541 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1542 		perf_missing_features.lbr_flags = true;
1543 		goto fallback_missing_features;
1544 	}
1545 out_close:
1546 	do {
1547 		while (--thread >= 0) {
1548 			close(FD(evsel, cpu, thread));
1549 			FD(evsel, cpu, thread) = -1;
1550 		}
1551 		thread = nthreads;
1552 	} while (--cpu >= 0);
1553 	return err;
1554 }
1555 
1556 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1557 {
1558 	if (evsel->fd == NULL)
1559 		return;
1560 
1561 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1562 	perf_evsel__free_fd(evsel);
1563 }
1564 
1565 static struct {
1566 	struct cpu_map map;
1567 	int cpus[1];
1568 } empty_cpu_map = {
1569 	.map.nr	= 1,
1570 	.cpus	= { -1, },
1571 };
1572 
1573 static struct {
1574 	struct thread_map map;
1575 	int threads[1];
1576 } empty_thread_map = {
1577 	.map.nr	 = 1,
1578 	.threads = { -1, },
1579 };
1580 
1581 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1582 		     struct thread_map *threads)
1583 {
1584 	if (cpus == NULL) {
1585 		/* Work around old compiler warnings about strict aliasing */
1586 		cpus = &empty_cpu_map.map;
1587 	}
1588 
1589 	if (threads == NULL)
1590 		threads = &empty_thread_map.map;
1591 
1592 	return __perf_evsel__open(evsel, cpus, threads);
1593 }
1594 
1595 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1596 			     struct cpu_map *cpus)
1597 {
1598 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1599 }
1600 
1601 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1602 				struct thread_map *threads)
1603 {
1604 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1605 }
1606 
1607 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1608 				       const union perf_event *event,
1609 				       struct perf_sample *sample)
1610 {
1611 	u64 type = evsel->attr.sample_type;
1612 	const u64 *array = event->sample.array;
1613 	bool swapped = evsel->needs_swap;
1614 	union u64_swap u;
1615 
1616 	array += ((event->header.size -
1617 		   sizeof(event->header)) / sizeof(u64)) - 1;
1618 
1619 	if (type & PERF_SAMPLE_IDENTIFIER) {
1620 		sample->id = *array;
1621 		array--;
1622 	}
1623 
1624 	if (type & PERF_SAMPLE_CPU) {
1625 		u.val64 = *array;
1626 		if (swapped) {
1627 			/* undo swap of u64, then swap on individual u32s */
1628 			u.val64 = bswap_64(u.val64);
1629 			u.val32[0] = bswap_32(u.val32[0]);
1630 		}
1631 
1632 		sample->cpu = u.val32[0];
1633 		array--;
1634 	}
1635 
1636 	if (type & PERF_SAMPLE_STREAM_ID) {
1637 		sample->stream_id = *array;
1638 		array--;
1639 	}
1640 
1641 	if (type & PERF_SAMPLE_ID) {
1642 		sample->id = *array;
1643 		array--;
1644 	}
1645 
1646 	if (type & PERF_SAMPLE_TIME) {
1647 		sample->time = *array;
1648 		array--;
1649 	}
1650 
1651 	if (type & PERF_SAMPLE_TID) {
1652 		u.val64 = *array;
1653 		if (swapped) {
1654 			/* undo swap of u64, then swap on individual u32s */
1655 			u.val64 = bswap_64(u.val64);
1656 			u.val32[0] = bswap_32(u.val32[0]);
1657 			u.val32[1] = bswap_32(u.val32[1]);
1658 		}
1659 
1660 		sample->pid = u.val32[0];
1661 		sample->tid = u.val32[1];
1662 		array--;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1669 			    u64 size)
1670 {
1671 	return size > max_size || offset + size > endp;
1672 }
1673 
1674 #define OVERFLOW_CHECK(offset, size, max_size)				\
1675 	do {								\
1676 		if (overflow(endp, (max_size), (offset), (size)))	\
1677 			return -EFAULT;					\
1678 	} while (0)
1679 
1680 #define OVERFLOW_CHECK_u64(offset) \
1681 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1682 
1683 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1684 			     struct perf_sample *data)
1685 {
1686 	u64 type = evsel->attr.sample_type;
1687 	bool swapped = evsel->needs_swap;
1688 	const u64 *array;
1689 	u16 max_size = event->header.size;
1690 	const void *endp = (void *)event + max_size;
1691 	u64 sz;
1692 
1693 	/*
1694 	 * used for cross-endian analysis. See git commit 65014ab3
1695 	 * for why this goofiness is needed.
1696 	 */
1697 	union u64_swap u;
1698 
1699 	memset(data, 0, sizeof(*data));
1700 	data->cpu = data->pid = data->tid = -1;
1701 	data->stream_id = data->id = data->time = -1ULL;
1702 	data->period = evsel->attr.sample_period;
1703 	data->weight = 0;
1704 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1705 
1706 	if (event->header.type != PERF_RECORD_SAMPLE) {
1707 		if (!evsel->attr.sample_id_all)
1708 			return 0;
1709 		return perf_evsel__parse_id_sample(evsel, event, data);
1710 	}
1711 
1712 	array = event->sample.array;
1713 
1714 	/*
1715 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1716 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1717 	 * check the format does not go past the end of the event.
1718 	 */
1719 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1720 		return -EFAULT;
1721 
1722 	data->id = -1ULL;
1723 	if (type & PERF_SAMPLE_IDENTIFIER) {
1724 		data->id = *array;
1725 		array++;
1726 	}
1727 
1728 	if (type & PERF_SAMPLE_IP) {
1729 		data->ip = *array;
1730 		array++;
1731 	}
1732 
1733 	if (type & PERF_SAMPLE_TID) {
1734 		u.val64 = *array;
1735 		if (swapped) {
1736 			/* undo swap of u64, then swap on individual u32s */
1737 			u.val64 = bswap_64(u.val64);
1738 			u.val32[0] = bswap_32(u.val32[0]);
1739 			u.val32[1] = bswap_32(u.val32[1]);
1740 		}
1741 
1742 		data->pid = u.val32[0];
1743 		data->tid = u.val32[1];
1744 		array++;
1745 	}
1746 
1747 	if (type & PERF_SAMPLE_TIME) {
1748 		data->time = *array;
1749 		array++;
1750 	}
1751 
1752 	data->addr = 0;
1753 	if (type & PERF_SAMPLE_ADDR) {
1754 		data->addr = *array;
1755 		array++;
1756 	}
1757 
1758 	if (type & PERF_SAMPLE_ID) {
1759 		data->id = *array;
1760 		array++;
1761 	}
1762 
1763 	if (type & PERF_SAMPLE_STREAM_ID) {
1764 		data->stream_id = *array;
1765 		array++;
1766 	}
1767 
1768 	if (type & PERF_SAMPLE_CPU) {
1769 
1770 		u.val64 = *array;
1771 		if (swapped) {
1772 			/* undo swap of u64, then swap on individual u32s */
1773 			u.val64 = bswap_64(u.val64);
1774 			u.val32[0] = bswap_32(u.val32[0]);
1775 		}
1776 
1777 		data->cpu = u.val32[0];
1778 		array++;
1779 	}
1780 
1781 	if (type & PERF_SAMPLE_PERIOD) {
1782 		data->period = *array;
1783 		array++;
1784 	}
1785 
1786 	if (type & PERF_SAMPLE_READ) {
1787 		u64 read_format = evsel->attr.read_format;
1788 
1789 		OVERFLOW_CHECK_u64(array);
1790 		if (read_format & PERF_FORMAT_GROUP)
1791 			data->read.group.nr = *array;
1792 		else
1793 			data->read.one.value = *array;
1794 
1795 		array++;
1796 
1797 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1798 			OVERFLOW_CHECK_u64(array);
1799 			data->read.time_enabled = *array;
1800 			array++;
1801 		}
1802 
1803 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1804 			OVERFLOW_CHECK_u64(array);
1805 			data->read.time_running = *array;
1806 			array++;
1807 		}
1808 
1809 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1810 		if (read_format & PERF_FORMAT_GROUP) {
1811 			const u64 max_group_nr = UINT64_MAX /
1812 					sizeof(struct sample_read_value);
1813 
1814 			if (data->read.group.nr > max_group_nr)
1815 				return -EFAULT;
1816 			sz = data->read.group.nr *
1817 			     sizeof(struct sample_read_value);
1818 			OVERFLOW_CHECK(array, sz, max_size);
1819 			data->read.group.values =
1820 					(struct sample_read_value *)array;
1821 			array = (void *)array + sz;
1822 		} else {
1823 			OVERFLOW_CHECK_u64(array);
1824 			data->read.one.id = *array;
1825 			array++;
1826 		}
1827 	}
1828 
1829 	if (type & PERF_SAMPLE_CALLCHAIN) {
1830 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1831 
1832 		OVERFLOW_CHECK_u64(array);
1833 		data->callchain = (struct ip_callchain *)array++;
1834 		if (data->callchain->nr > max_callchain_nr)
1835 			return -EFAULT;
1836 		sz = data->callchain->nr * sizeof(u64);
1837 		OVERFLOW_CHECK(array, sz, max_size);
1838 		array = (void *)array + sz;
1839 	}
1840 
1841 	if (type & PERF_SAMPLE_RAW) {
1842 		OVERFLOW_CHECK_u64(array);
1843 		u.val64 = *array;
1844 		if (WARN_ONCE(swapped,
1845 			      "Endianness of raw data not corrected!\n")) {
1846 			/* undo swap of u64, then swap on individual u32s */
1847 			u.val64 = bswap_64(u.val64);
1848 			u.val32[0] = bswap_32(u.val32[0]);
1849 			u.val32[1] = bswap_32(u.val32[1]);
1850 		}
1851 		data->raw_size = u.val32[0];
1852 		array = (void *)array + sizeof(u32);
1853 
1854 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1855 		data->raw_data = (void *)array;
1856 		array = (void *)array + data->raw_size;
1857 	}
1858 
1859 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1860 		const u64 max_branch_nr = UINT64_MAX /
1861 					  sizeof(struct branch_entry);
1862 
1863 		OVERFLOW_CHECK_u64(array);
1864 		data->branch_stack = (struct branch_stack *)array++;
1865 
1866 		if (data->branch_stack->nr > max_branch_nr)
1867 			return -EFAULT;
1868 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1869 		OVERFLOW_CHECK(array, sz, max_size);
1870 		array = (void *)array + sz;
1871 	}
1872 
1873 	if (type & PERF_SAMPLE_REGS_USER) {
1874 		OVERFLOW_CHECK_u64(array);
1875 		data->user_regs.abi = *array;
1876 		array++;
1877 
1878 		if (data->user_regs.abi) {
1879 			u64 mask = evsel->attr.sample_regs_user;
1880 
1881 			sz = hweight_long(mask) * sizeof(u64);
1882 			OVERFLOW_CHECK(array, sz, max_size);
1883 			data->user_regs.mask = mask;
1884 			data->user_regs.regs = (u64 *)array;
1885 			array = (void *)array + sz;
1886 		}
1887 	}
1888 
1889 	if (type & PERF_SAMPLE_STACK_USER) {
1890 		OVERFLOW_CHECK_u64(array);
1891 		sz = *array++;
1892 
1893 		data->user_stack.offset = ((char *)(array - 1)
1894 					  - (char *) event);
1895 
1896 		if (!sz) {
1897 			data->user_stack.size = 0;
1898 		} else {
1899 			OVERFLOW_CHECK(array, sz, max_size);
1900 			data->user_stack.data = (char *)array;
1901 			array = (void *)array + sz;
1902 			OVERFLOW_CHECK_u64(array);
1903 			data->user_stack.size = *array++;
1904 			if (WARN_ONCE(data->user_stack.size > sz,
1905 				      "user stack dump failure\n"))
1906 				return -EFAULT;
1907 		}
1908 	}
1909 
1910 	data->weight = 0;
1911 	if (type & PERF_SAMPLE_WEIGHT) {
1912 		OVERFLOW_CHECK_u64(array);
1913 		data->weight = *array;
1914 		array++;
1915 	}
1916 
1917 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1918 	if (type & PERF_SAMPLE_DATA_SRC) {
1919 		OVERFLOW_CHECK_u64(array);
1920 		data->data_src = *array;
1921 		array++;
1922 	}
1923 
1924 	data->transaction = 0;
1925 	if (type & PERF_SAMPLE_TRANSACTION) {
1926 		OVERFLOW_CHECK_u64(array);
1927 		data->transaction = *array;
1928 		array++;
1929 	}
1930 
1931 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1932 	if (type & PERF_SAMPLE_REGS_INTR) {
1933 		OVERFLOW_CHECK_u64(array);
1934 		data->intr_regs.abi = *array;
1935 		array++;
1936 
1937 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1938 			u64 mask = evsel->attr.sample_regs_intr;
1939 
1940 			sz = hweight_long(mask) * sizeof(u64);
1941 			OVERFLOW_CHECK(array, sz, max_size);
1942 			data->intr_regs.mask = mask;
1943 			data->intr_regs.regs = (u64 *)array;
1944 			array = (void *)array + sz;
1945 		}
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1952 				     u64 read_format)
1953 {
1954 	size_t sz, result = sizeof(struct sample_event);
1955 
1956 	if (type & PERF_SAMPLE_IDENTIFIER)
1957 		result += sizeof(u64);
1958 
1959 	if (type & PERF_SAMPLE_IP)
1960 		result += sizeof(u64);
1961 
1962 	if (type & PERF_SAMPLE_TID)
1963 		result += sizeof(u64);
1964 
1965 	if (type & PERF_SAMPLE_TIME)
1966 		result += sizeof(u64);
1967 
1968 	if (type & PERF_SAMPLE_ADDR)
1969 		result += sizeof(u64);
1970 
1971 	if (type & PERF_SAMPLE_ID)
1972 		result += sizeof(u64);
1973 
1974 	if (type & PERF_SAMPLE_STREAM_ID)
1975 		result += sizeof(u64);
1976 
1977 	if (type & PERF_SAMPLE_CPU)
1978 		result += sizeof(u64);
1979 
1980 	if (type & PERF_SAMPLE_PERIOD)
1981 		result += sizeof(u64);
1982 
1983 	if (type & PERF_SAMPLE_READ) {
1984 		result += sizeof(u64);
1985 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1986 			result += sizeof(u64);
1987 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1988 			result += sizeof(u64);
1989 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1990 		if (read_format & PERF_FORMAT_GROUP) {
1991 			sz = sample->read.group.nr *
1992 			     sizeof(struct sample_read_value);
1993 			result += sz;
1994 		} else {
1995 			result += sizeof(u64);
1996 		}
1997 	}
1998 
1999 	if (type & PERF_SAMPLE_CALLCHAIN) {
2000 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2001 		result += sz;
2002 	}
2003 
2004 	if (type & PERF_SAMPLE_RAW) {
2005 		result += sizeof(u32);
2006 		result += sample->raw_size;
2007 	}
2008 
2009 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2010 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2011 		sz += sizeof(u64);
2012 		result += sz;
2013 	}
2014 
2015 	if (type & PERF_SAMPLE_REGS_USER) {
2016 		if (sample->user_regs.abi) {
2017 			result += sizeof(u64);
2018 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2019 			result += sz;
2020 		} else {
2021 			result += sizeof(u64);
2022 		}
2023 	}
2024 
2025 	if (type & PERF_SAMPLE_STACK_USER) {
2026 		sz = sample->user_stack.size;
2027 		result += sizeof(u64);
2028 		if (sz) {
2029 			result += sz;
2030 			result += sizeof(u64);
2031 		}
2032 	}
2033 
2034 	if (type & PERF_SAMPLE_WEIGHT)
2035 		result += sizeof(u64);
2036 
2037 	if (type & PERF_SAMPLE_DATA_SRC)
2038 		result += sizeof(u64);
2039 
2040 	if (type & PERF_SAMPLE_TRANSACTION)
2041 		result += sizeof(u64);
2042 
2043 	if (type & PERF_SAMPLE_REGS_INTR) {
2044 		if (sample->intr_regs.abi) {
2045 			result += sizeof(u64);
2046 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2047 			result += sz;
2048 		} else {
2049 			result += sizeof(u64);
2050 		}
2051 	}
2052 
2053 	return result;
2054 }
2055 
2056 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2057 				  u64 read_format,
2058 				  const struct perf_sample *sample,
2059 				  bool swapped)
2060 {
2061 	u64 *array;
2062 	size_t sz;
2063 	/*
2064 	 * used for cross-endian analysis. See git commit 65014ab3
2065 	 * for why this goofiness is needed.
2066 	 */
2067 	union u64_swap u;
2068 
2069 	array = event->sample.array;
2070 
2071 	if (type & PERF_SAMPLE_IDENTIFIER) {
2072 		*array = sample->id;
2073 		array++;
2074 	}
2075 
2076 	if (type & PERF_SAMPLE_IP) {
2077 		*array = sample->ip;
2078 		array++;
2079 	}
2080 
2081 	if (type & PERF_SAMPLE_TID) {
2082 		u.val32[0] = sample->pid;
2083 		u.val32[1] = sample->tid;
2084 		if (swapped) {
2085 			/*
2086 			 * Inverse of what is done in perf_evsel__parse_sample
2087 			 */
2088 			u.val32[0] = bswap_32(u.val32[0]);
2089 			u.val32[1] = bswap_32(u.val32[1]);
2090 			u.val64 = bswap_64(u.val64);
2091 		}
2092 
2093 		*array = u.val64;
2094 		array++;
2095 	}
2096 
2097 	if (type & PERF_SAMPLE_TIME) {
2098 		*array = sample->time;
2099 		array++;
2100 	}
2101 
2102 	if (type & PERF_SAMPLE_ADDR) {
2103 		*array = sample->addr;
2104 		array++;
2105 	}
2106 
2107 	if (type & PERF_SAMPLE_ID) {
2108 		*array = sample->id;
2109 		array++;
2110 	}
2111 
2112 	if (type & PERF_SAMPLE_STREAM_ID) {
2113 		*array = sample->stream_id;
2114 		array++;
2115 	}
2116 
2117 	if (type & PERF_SAMPLE_CPU) {
2118 		u.val32[0] = sample->cpu;
2119 		if (swapped) {
2120 			/*
2121 			 * Inverse of what is done in perf_evsel__parse_sample
2122 			 */
2123 			u.val32[0] = bswap_32(u.val32[0]);
2124 			u.val64 = bswap_64(u.val64);
2125 		}
2126 		*array = u.val64;
2127 		array++;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_PERIOD) {
2131 		*array = sample->period;
2132 		array++;
2133 	}
2134 
2135 	if (type & PERF_SAMPLE_READ) {
2136 		if (read_format & PERF_FORMAT_GROUP)
2137 			*array = sample->read.group.nr;
2138 		else
2139 			*array = sample->read.one.value;
2140 		array++;
2141 
2142 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2143 			*array = sample->read.time_enabled;
2144 			array++;
2145 		}
2146 
2147 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2148 			*array = sample->read.time_running;
2149 			array++;
2150 		}
2151 
2152 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2153 		if (read_format & PERF_FORMAT_GROUP) {
2154 			sz = sample->read.group.nr *
2155 			     sizeof(struct sample_read_value);
2156 			memcpy(array, sample->read.group.values, sz);
2157 			array = (void *)array + sz;
2158 		} else {
2159 			*array = sample->read.one.id;
2160 			array++;
2161 		}
2162 	}
2163 
2164 	if (type & PERF_SAMPLE_CALLCHAIN) {
2165 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2166 		memcpy(array, sample->callchain, sz);
2167 		array = (void *)array + sz;
2168 	}
2169 
2170 	if (type & PERF_SAMPLE_RAW) {
2171 		u.val32[0] = sample->raw_size;
2172 		if (WARN_ONCE(swapped,
2173 			      "Endianness of raw data not corrected!\n")) {
2174 			/*
2175 			 * Inverse of what is done in perf_evsel__parse_sample
2176 			 */
2177 			u.val32[0] = bswap_32(u.val32[0]);
2178 			u.val32[1] = bswap_32(u.val32[1]);
2179 			u.val64 = bswap_64(u.val64);
2180 		}
2181 		*array = u.val64;
2182 		array = (void *)array + sizeof(u32);
2183 
2184 		memcpy(array, sample->raw_data, sample->raw_size);
2185 		array = (void *)array + sample->raw_size;
2186 	}
2187 
2188 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2189 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2190 		sz += sizeof(u64);
2191 		memcpy(array, sample->branch_stack, sz);
2192 		array = (void *)array + sz;
2193 	}
2194 
2195 	if (type & PERF_SAMPLE_REGS_USER) {
2196 		if (sample->user_regs.abi) {
2197 			*array++ = sample->user_regs.abi;
2198 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2199 			memcpy(array, sample->user_regs.regs, sz);
2200 			array = (void *)array + sz;
2201 		} else {
2202 			*array++ = 0;
2203 		}
2204 	}
2205 
2206 	if (type & PERF_SAMPLE_STACK_USER) {
2207 		sz = sample->user_stack.size;
2208 		*array++ = sz;
2209 		if (sz) {
2210 			memcpy(array, sample->user_stack.data, sz);
2211 			array = (void *)array + sz;
2212 			*array++ = sz;
2213 		}
2214 	}
2215 
2216 	if (type & PERF_SAMPLE_WEIGHT) {
2217 		*array = sample->weight;
2218 		array++;
2219 	}
2220 
2221 	if (type & PERF_SAMPLE_DATA_SRC) {
2222 		*array = sample->data_src;
2223 		array++;
2224 	}
2225 
2226 	if (type & PERF_SAMPLE_TRANSACTION) {
2227 		*array = sample->transaction;
2228 		array++;
2229 	}
2230 
2231 	if (type & PERF_SAMPLE_REGS_INTR) {
2232 		if (sample->intr_regs.abi) {
2233 			*array++ = sample->intr_regs.abi;
2234 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2235 			memcpy(array, sample->intr_regs.regs, sz);
2236 			array = (void *)array + sz;
2237 		} else {
2238 			*array++ = 0;
2239 		}
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2246 {
2247 	return pevent_find_field(evsel->tp_format, name);
2248 }
2249 
2250 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2251 			 const char *name)
2252 {
2253 	struct format_field *field = perf_evsel__field(evsel, name);
2254 	int offset;
2255 
2256 	if (!field)
2257 		return NULL;
2258 
2259 	offset = field->offset;
2260 
2261 	if (field->flags & FIELD_IS_DYNAMIC) {
2262 		offset = *(int *)(sample->raw_data + field->offset);
2263 		offset &= 0xffff;
2264 	}
2265 
2266 	return sample->raw_data + offset;
2267 }
2268 
2269 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2270 			 bool needs_swap)
2271 {
2272 	u64 value;
2273 	void *ptr = sample->raw_data + field->offset;
2274 
2275 	switch (field->size) {
2276 	case 1:
2277 		return *(u8 *)ptr;
2278 	case 2:
2279 		value = *(u16 *)ptr;
2280 		break;
2281 	case 4:
2282 		value = *(u32 *)ptr;
2283 		break;
2284 	case 8:
2285 		memcpy(&value, ptr, sizeof(u64));
2286 		break;
2287 	default:
2288 		return 0;
2289 	}
2290 
2291 	if (!needs_swap)
2292 		return value;
2293 
2294 	switch (field->size) {
2295 	case 2:
2296 		return bswap_16(value);
2297 	case 4:
2298 		return bswap_32(value);
2299 	case 8:
2300 		return bswap_64(value);
2301 	default:
2302 		return 0;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2309 		       const char *name)
2310 {
2311 	struct format_field *field = perf_evsel__field(evsel, name);
2312 
2313 	if (!field)
2314 		return 0;
2315 
2316 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2317 }
2318 
2319 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2320 			  char *msg, size_t msgsize)
2321 {
2322 	int paranoid;
2323 
2324 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2325 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2326 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2327 		/*
2328 		 * If it's cycles then fall back to hrtimer based
2329 		 * cpu-clock-tick sw counter, which is always available even if
2330 		 * no PMU support.
2331 		 *
2332 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2333 		 * b0a873e).
2334 		 */
2335 		scnprintf(msg, msgsize, "%s",
2336 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2337 
2338 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2339 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2340 
2341 		zfree(&evsel->name);
2342 		return true;
2343 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2344 		   (paranoid = perf_event_paranoid()) > 1) {
2345 		const char *name = perf_evsel__name(evsel);
2346 		char *new_name;
2347 
2348 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2349 			return false;
2350 
2351 		if (evsel->name)
2352 			free(evsel->name);
2353 		evsel->name = new_name;
2354 		scnprintf(msg, msgsize,
2355 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2356 		evsel->attr.exclude_kernel = 1;
2357 
2358 		return true;
2359 	}
2360 
2361 	return false;
2362 }
2363 
2364 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2365 			      int err, char *msg, size_t size)
2366 {
2367 	char sbuf[STRERR_BUFSIZE];
2368 
2369 	switch (err) {
2370 	case EPERM:
2371 	case EACCES:
2372 		return scnprintf(msg, size,
2373 		 "You may not have permission to collect %sstats.\n\n"
2374 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2375 		 "which controls use of the performance events system by\n"
2376 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2377 		 "The current value is %d:\n\n"
2378 		 "  -1: Allow use of (almost) all events by all users\n"
2379 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2380 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2381 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2382 				 target->system_wide ? "system-wide " : "",
2383 				 perf_event_paranoid());
2384 	case ENOENT:
2385 		return scnprintf(msg, size, "The %s event is not supported.",
2386 				 perf_evsel__name(evsel));
2387 	case EMFILE:
2388 		return scnprintf(msg, size, "%s",
2389 			 "Too many events are opened.\n"
2390 			 "Probably the maximum number of open file descriptors has been reached.\n"
2391 			 "Hint: Try again after reducing the number of events.\n"
2392 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2393 	case ENOMEM:
2394 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2395 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2396 			return scnprintf(msg, size,
2397 					 "Not enough memory to setup event with callchain.\n"
2398 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2399 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2400 		break;
2401 	case ENODEV:
2402 		if (target->cpu_list)
2403 			return scnprintf(msg, size, "%s",
2404 	 "No such device - did you specify an out-of-range profile CPU?");
2405 		break;
2406 	case EOPNOTSUPP:
2407 		if (evsel->attr.sample_period != 0)
2408 			return scnprintf(msg, size, "%s",
2409 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2410 		if (evsel->attr.precise_ip)
2411 			return scnprintf(msg, size, "%s",
2412 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2413 #if defined(__i386__) || defined(__x86_64__)
2414 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2415 			return scnprintf(msg, size, "%s",
2416 	"No hardware sampling interrupt available.\n"
2417 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2418 #endif
2419 		break;
2420 	case EBUSY:
2421 		if (find_process("oprofiled"))
2422 			return scnprintf(msg, size,
2423 	"The PMU counters are busy/taken by another profiler.\n"
2424 	"We found oprofile daemon running, please stop it and try again.");
2425 		break;
2426 	case EINVAL:
2427 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2428 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2429 		if (perf_missing_features.clockid)
2430 			return scnprintf(msg, size, "clockid feature not supported.");
2431 		if (perf_missing_features.clockid_wrong)
2432 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2433 		break;
2434 	default:
2435 		break;
2436 	}
2437 
2438 	return scnprintf(msg, size,
2439 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2440 	"/bin/dmesg may provide additional information.\n"
2441 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2442 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2443 			 perf_evsel__name(evsel));
2444 }
2445 
2446 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2447 {
2448 	if (evsel && evsel->evlist && evsel->evlist->env)
2449 		return evsel->evlist->env->arch;
2450 	return NULL;
2451 }
2452