1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 32 static struct { 33 bool sample_id_all; 34 bool exclude_guest; 35 bool mmap2; 36 bool cloexec; 37 bool clockid; 38 bool clockid_wrong; 39 bool lbr_flags; 40 bool write_backward; 41 } perf_missing_features; 42 43 static clockid_t clockid; 44 45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 46 { 47 return 0; 48 } 49 50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 51 { 52 } 53 54 static struct { 55 size_t size; 56 int (*init)(struct perf_evsel *evsel); 57 void (*fini)(struct perf_evsel *evsel); 58 } perf_evsel__object = { 59 .size = sizeof(struct perf_evsel), 60 .init = perf_evsel__no_extra_init, 61 .fini = perf_evsel__no_extra_fini, 62 }; 63 64 int perf_evsel__object_config(size_t object_size, 65 int (*init)(struct perf_evsel *evsel), 66 void (*fini)(struct perf_evsel *evsel)) 67 { 68 69 if (object_size == 0) 70 goto set_methods; 71 72 if (perf_evsel__object.size > object_size) 73 return -EINVAL; 74 75 perf_evsel__object.size = object_size; 76 77 set_methods: 78 if (init != NULL) 79 perf_evsel__object.init = init; 80 81 if (fini != NULL) 82 perf_evsel__object.fini = fini; 83 84 return 0; 85 } 86 87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 88 89 int __perf_evsel__sample_size(u64 sample_type) 90 { 91 u64 mask = sample_type & PERF_SAMPLE_MASK; 92 int size = 0; 93 int i; 94 95 for (i = 0; i < 64; i++) { 96 if (mask & (1ULL << i)) 97 size++; 98 } 99 100 size *= sizeof(u64); 101 102 return size; 103 } 104 105 /** 106 * __perf_evsel__calc_id_pos - calculate id_pos. 107 * @sample_type: sample type 108 * 109 * This function returns the position of the event id (PERF_SAMPLE_ID or 110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 111 * sample_event. 112 */ 113 static int __perf_evsel__calc_id_pos(u64 sample_type) 114 { 115 int idx = 0; 116 117 if (sample_type & PERF_SAMPLE_IDENTIFIER) 118 return 0; 119 120 if (!(sample_type & PERF_SAMPLE_ID)) 121 return -1; 122 123 if (sample_type & PERF_SAMPLE_IP) 124 idx += 1; 125 126 if (sample_type & PERF_SAMPLE_TID) 127 idx += 1; 128 129 if (sample_type & PERF_SAMPLE_TIME) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_ADDR) 133 idx += 1; 134 135 return idx; 136 } 137 138 /** 139 * __perf_evsel__calc_is_pos - calculate is_pos. 140 * @sample_type: sample type 141 * 142 * This function returns the position (counting backwards) of the event id 143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 144 * sample_id_all is used there is an id sample appended to non-sample events. 145 */ 146 static int __perf_evsel__calc_is_pos(u64 sample_type) 147 { 148 int idx = 1; 149 150 if (sample_type & PERF_SAMPLE_IDENTIFIER) 151 return 1; 152 153 if (!(sample_type & PERF_SAMPLE_ID)) 154 return -1; 155 156 if (sample_type & PERF_SAMPLE_CPU) 157 idx += 1; 158 159 if (sample_type & PERF_SAMPLE_STREAM_ID) 160 idx += 1; 161 162 return idx; 163 } 164 165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 166 { 167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 169 } 170 171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 172 enum perf_event_sample_format bit) 173 { 174 if (!(evsel->attr.sample_type & bit)) { 175 evsel->attr.sample_type |= bit; 176 evsel->sample_size += sizeof(u64); 177 perf_evsel__calc_id_pos(evsel); 178 } 179 } 180 181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 182 enum perf_event_sample_format bit) 183 { 184 if (evsel->attr.sample_type & bit) { 185 evsel->attr.sample_type &= ~bit; 186 evsel->sample_size -= sizeof(u64); 187 perf_evsel__calc_id_pos(evsel); 188 } 189 } 190 191 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 192 bool can_sample_identifier) 193 { 194 if (can_sample_identifier) { 195 perf_evsel__reset_sample_bit(evsel, ID); 196 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 197 } else { 198 perf_evsel__set_sample_bit(evsel, ID); 199 } 200 evsel->attr.read_format |= PERF_FORMAT_ID; 201 } 202 203 /** 204 * perf_evsel__is_function_event - Return whether given evsel is a function 205 * trace event 206 * 207 * @evsel - evsel selector to be tested 208 * 209 * Return %true if event is function trace event 210 */ 211 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 212 { 213 #define FUNCTION_EVENT "ftrace:function" 214 215 return evsel->name && 216 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 217 218 #undef FUNCTION_EVENT 219 } 220 221 void perf_evsel__init(struct perf_evsel *evsel, 222 struct perf_event_attr *attr, int idx) 223 { 224 evsel->idx = idx; 225 evsel->tracking = !idx; 226 evsel->attr = *attr; 227 evsel->leader = evsel; 228 evsel->unit = ""; 229 evsel->scale = 1.0; 230 evsel->evlist = NULL; 231 evsel->bpf_fd = -1; 232 INIT_LIST_HEAD(&evsel->node); 233 INIT_LIST_HEAD(&evsel->config_terms); 234 perf_evsel__object.init(evsel); 235 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 236 perf_evsel__calc_id_pos(evsel); 237 evsel->cmdline_group_boundary = false; 238 } 239 240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 241 { 242 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 243 244 if (evsel != NULL) 245 perf_evsel__init(evsel, attr, idx); 246 247 if (perf_evsel__is_bpf_output(evsel)) { 248 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 249 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 250 evsel->attr.sample_period = 1; 251 } 252 253 return evsel; 254 } 255 256 /* 257 * Returns pointer with encoded error via <linux/err.h> interface. 258 */ 259 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 260 { 261 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 262 int err = -ENOMEM; 263 264 if (evsel == NULL) { 265 goto out_err; 266 } else { 267 struct perf_event_attr attr = { 268 .type = PERF_TYPE_TRACEPOINT, 269 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 270 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 271 }; 272 273 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 274 goto out_free; 275 276 evsel->tp_format = trace_event__tp_format(sys, name); 277 if (IS_ERR(evsel->tp_format)) { 278 err = PTR_ERR(evsel->tp_format); 279 goto out_free; 280 } 281 282 event_attr_init(&attr); 283 attr.config = evsel->tp_format->id; 284 attr.sample_period = 1; 285 perf_evsel__init(evsel, &attr, idx); 286 } 287 288 return evsel; 289 290 out_free: 291 zfree(&evsel->name); 292 free(evsel); 293 out_err: 294 return ERR_PTR(err); 295 } 296 297 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 298 "cycles", 299 "instructions", 300 "cache-references", 301 "cache-misses", 302 "branches", 303 "branch-misses", 304 "bus-cycles", 305 "stalled-cycles-frontend", 306 "stalled-cycles-backend", 307 "ref-cycles", 308 }; 309 310 static const char *__perf_evsel__hw_name(u64 config) 311 { 312 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 313 return perf_evsel__hw_names[config]; 314 315 return "unknown-hardware"; 316 } 317 318 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 319 { 320 int colon = 0, r = 0; 321 struct perf_event_attr *attr = &evsel->attr; 322 bool exclude_guest_default = false; 323 324 #define MOD_PRINT(context, mod) do { \ 325 if (!attr->exclude_##context) { \ 326 if (!colon) colon = ++r; \ 327 r += scnprintf(bf + r, size - r, "%c", mod); \ 328 } } while(0) 329 330 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 331 MOD_PRINT(kernel, 'k'); 332 MOD_PRINT(user, 'u'); 333 MOD_PRINT(hv, 'h'); 334 exclude_guest_default = true; 335 } 336 337 if (attr->precise_ip) { 338 if (!colon) 339 colon = ++r; 340 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 341 exclude_guest_default = true; 342 } 343 344 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 345 MOD_PRINT(host, 'H'); 346 MOD_PRINT(guest, 'G'); 347 } 348 #undef MOD_PRINT 349 if (colon) 350 bf[colon - 1] = ':'; 351 return r; 352 } 353 354 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 355 { 356 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 357 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 358 } 359 360 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 361 "cpu-clock", 362 "task-clock", 363 "page-faults", 364 "context-switches", 365 "cpu-migrations", 366 "minor-faults", 367 "major-faults", 368 "alignment-faults", 369 "emulation-faults", 370 "dummy", 371 }; 372 373 static const char *__perf_evsel__sw_name(u64 config) 374 { 375 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 376 return perf_evsel__sw_names[config]; 377 return "unknown-software"; 378 } 379 380 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 381 { 382 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 383 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 384 } 385 386 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 387 { 388 int r; 389 390 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 391 392 if (type & HW_BREAKPOINT_R) 393 r += scnprintf(bf + r, size - r, "r"); 394 395 if (type & HW_BREAKPOINT_W) 396 r += scnprintf(bf + r, size - r, "w"); 397 398 if (type & HW_BREAKPOINT_X) 399 r += scnprintf(bf + r, size - r, "x"); 400 401 return r; 402 } 403 404 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 405 { 406 struct perf_event_attr *attr = &evsel->attr; 407 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 408 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 409 } 410 411 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 412 [PERF_EVSEL__MAX_ALIASES] = { 413 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 414 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 415 { "LLC", "L2", }, 416 { "dTLB", "d-tlb", "Data-TLB", }, 417 { "iTLB", "i-tlb", "Instruction-TLB", }, 418 { "branch", "branches", "bpu", "btb", "bpc", }, 419 { "node", }, 420 }; 421 422 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 423 [PERF_EVSEL__MAX_ALIASES] = { 424 { "load", "loads", "read", }, 425 { "store", "stores", "write", }, 426 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 427 }; 428 429 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 430 [PERF_EVSEL__MAX_ALIASES] = { 431 { "refs", "Reference", "ops", "access", }, 432 { "misses", "miss", }, 433 }; 434 435 #define C(x) PERF_COUNT_HW_CACHE_##x 436 #define CACHE_READ (1 << C(OP_READ)) 437 #define CACHE_WRITE (1 << C(OP_WRITE)) 438 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 439 #define COP(x) (1 << x) 440 441 /* 442 * cache operartion stat 443 * L1I : Read and prefetch only 444 * ITLB and BPU : Read-only 445 */ 446 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 447 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 448 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 449 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 450 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 451 [C(ITLB)] = (CACHE_READ), 452 [C(BPU)] = (CACHE_READ), 453 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 454 }; 455 456 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 457 { 458 if (perf_evsel__hw_cache_stat[type] & COP(op)) 459 return true; /* valid */ 460 else 461 return false; /* invalid */ 462 } 463 464 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 465 char *bf, size_t size) 466 { 467 if (result) { 468 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 469 perf_evsel__hw_cache_op[op][0], 470 perf_evsel__hw_cache_result[result][0]); 471 } 472 473 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 474 perf_evsel__hw_cache_op[op][1]); 475 } 476 477 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 478 { 479 u8 op, result, type = (config >> 0) & 0xff; 480 const char *err = "unknown-ext-hardware-cache-type"; 481 482 if (type > PERF_COUNT_HW_CACHE_MAX) 483 goto out_err; 484 485 op = (config >> 8) & 0xff; 486 err = "unknown-ext-hardware-cache-op"; 487 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 488 goto out_err; 489 490 result = (config >> 16) & 0xff; 491 err = "unknown-ext-hardware-cache-result"; 492 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 493 goto out_err; 494 495 err = "invalid-cache"; 496 if (!perf_evsel__is_cache_op_valid(type, op)) 497 goto out_err; 498 499 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 500 out_err: 501 return scnprintf(bf, size, "%s", err); 502 } 503 504 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 505 { 506 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 507 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 508 } 509 510 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 511 { 512 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 513 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 514 } 515 516 const char *perf_evsel__name(struct perf_evsel *evsel) 517 { 518 char bf[128]; 519 520 if (evsel->name) 521 return evsel->name; 522 523 switch (evsel->attr.type) { 524 case PERF_TYPE_RAW: 525 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 526 break; 527 528 case PERF_TYPE_HARDWARE: 529 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 530 break; 531 532 case PERF_TYPE_HW_CACHE: 533 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 534 break; 535 536 case PERF_TYPE_SOFTWARE: 537 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 538 break; 539 540 case PERF_TYPE_TRACEPOINT: 541 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 542 break; 543 544 case PERF_TYPE_BREAKPOINT: 545 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 546 break; 547 548 default: 549 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 550 evsel->attr.type); 551 break; 552 } 553 554 evsel->name = strdup(bf); 555 556 return evsel->name ?: "unknown"; 557 } 558 559 const char *perf_evsel__group_name(struct perf_evsel *evsel) 560 { 561 return evsel->group_name ?: "anon group"; 562 } 563 564 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 565 { 566 int ret; 567 struct perf_evsel *pos; 568 const char *group_name = perf_evsel__group_name(evsel); 569 570 ret = scnprintf(buf, size, "%s", group_name); 571 572 ret += scnprintf(buf + ret, size - ret, " { %s", 573 perf_evsel__name(evsel)); 574 575 for_each_group_member(pos, evsel) 576 ret += scnprintf(buf + ret, size - ret, ", %s", 577 perf_evsel__name(pos)); 578 579 ret += scnprintf(buf + ret, size - ret, " }"); 580 581 return ret; 582 } 583 584 void perf_evsel__config_callchain(struct perf_evsel *evsel, 585 struct record_opts *opts, 586 struct callchain_param *param) 587 { 588 bool function = perf_evsel__is_function_event(evsel); 589 struct perf_event_attr *attr = &evsel->attr; 590 591 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 592 593 attr->sample_max_stack = param->max_stack; 594 595 if (param->record_mode == CALLCHAIN_LBR) { 596 if (!opts->branch_stack) { 597 if (attr->exclude_user) { 598 pr_warning("LBR callstack option is only available " 599 "to get user callchain information. " 600 "Falling back to framepointers.\n"); 601 } else { 602 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 603 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 604 PERF_SAMPLE_BRANCH_CALL_STACK | 605 PERF_SAMPLE_BRANCH_NO_CYCLES | 606 PERF_SAMPLE_BRANCH_NO_FLAGS; 607 } 608 } else 609 pr_warning("Cannot use LBR callstack with branch stack. " 610 "Falling back to framepointers.\n"); 611 } 612 613 if (param->record_mode == CALLCHAIN_DWARF) { 614 if (!function) { 615 perf_evsel__set_sample_bit(evsel, REGS_USER); 616 perf_evsel__set_sample_bit(evsel, STACK_USER); 617 attr->sample_regs_user = PERF_REGS_MASK; 618 attr->sample_stack_user = param->dump_size; 619 attr->exclude_callchain_user = 1; 620 } else { 621 pr_info("Cannot use DWARF unwind for function trace event," 622 " falling back to framepointers.\n"); 623 } 624 } 625 626 if (function) { 627 pr_info("Disabling user space callchains for function trace event.\n"); 628 attr->exclude_callchain_user = 1; 629 } 630 } 631 632 static void 633 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 634 struct callchain_param *param) 635 { 636 struct perf_event_attr *attr = &evsel->attr; 637 638 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 639 if (param->record_mode == CALLCHAIN_LBR) { 640 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 641 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 642 PERF_SAMPLE_BRANCH_CALL_STACK); 643 } 644 if (param->record_mode == CALLCHAIN_DWARF) { 645 perf_evsel__reset_sample_bit(evsel, REGS_USER); 646 perf_evsel__reset_sample_bit(evsel, STACK_USER); 647 } 648 } 649 650 static void apply_config_terms(struct perf_evsel *evsel, 651 struct record_opts *opts) 652 { 653 struct perf_evsel_config_term *term; 654 struct list_head *config_terms = &evsel->config_terms; 655 struct perf_event_attr *attr = &evsel->attr; 656 struct callchain_param param; 657 u32 dump_size = 0; 658 int max_stack = 0; 659 const char *callgraph_buf = NULL; 660 661 /* callgraph default */ 662 param.record_mode = callchain_param.record_mode; 663 664 list_for_each_entry(term, config_terms, list) { 665 switch (term->type) { 666 case PERF_EVSEL__CONFIG_TERM_PERIOD: 667 attr->sample_period = term->val.period; 668 attr->freq = 0; 669 break; 670 case PERF_EVSEL__CONFIG_TERM_FREQ: 671 attr->sample_freq = term->val.freq; 672 attr->freq = 1; 673 break; 674 case PERF_EVSEL__CONFIG_TERM_TIME: 675 if (term->val.time) 676 perf_evsel__set_sample_bit(evsel, TIME); 677 else 678 perf_evsel__reset_sample_bit(evsel, TIME); 679 break; 680 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 681 callgraph_buf = term->val.callgraph; 682 break; 683 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 684 dump_size = term->val.stack_user; 685 break; 686 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 687 max_stack = term->val.max_stack; 688 break; 689 case PERF_EVSEL__CONFIG_TERM_INHERIT: 690 /* 691 * attr->inherit should has already been set by 692 * perf_evsel__config. If user explicitly set 693 * inherit using config terms, override global 694 * opt->no_inherit setting. 695 */ 696 attr->inherit = term->val.inherit ? 1 : 0; 697 break; 698 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 699 attr->write_backward = term->val.overwrite ? 1 : 0; 700 break; 701 default: 702 break; 703 } 704 } 705 706 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 707 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 708 if (max_stack) { 709 param.max_stack = max_stack; 710 if (callgraph_buf == NULL) 711 callgraph_buf = "fp"; 712 } 713 714 /* parse callgraph parameters */ 715 if (callgraph_buf != NULL) { 716 if (!strcmp(callgraph_buf, "no")) { 717 param.enabled = false; 718 param.record_mode = CALLCHAIN_NONE; 719 } else { 720 param.enabled = true; 721 if (parse_callchain_record(callgraph_buf, ¶m)) { 722 pr_err("per-event callgraph setting for %s failed. " 723 "Apply callgraph global setting for it\n", 724 evsel->name); 725 return; 726 } 727 } 728 } 729 if (dump_size > 0) { 730 dump_size = round_up(dump_size, sizeof(u64)); 731 param.dump_size = dump_size; 732 } 733 734 /* If global callgraph set, clear it */ 735 if (callchain_param.enabled) 736 perf_evsel__reset_callgraph(evsel, &callchain_param); 737 738 /* set perf-event callgraph */ 739 if (param.enabled) 740 perf_evsel__config_callchain(evsel, opts, ¶m); 741 } 742 } 743 744 /* 745 * The enable_on_exec/disabled value strategy: 746 * 747 * 1) For any type of traced program: 748 * - all independent events and group leaders are disabled 749 * - all group members are enabled 750 * 751 * Group members are ruled by group leaders. They need to 752 * be enabled, because the group scheduling relies on that. 753 * 754 * 2) For traced programs executed by perf: 755 * - all independent events and group leaders have 756 * enable_on_exec set 757 * - we don't specifically enable or disable any event during 758 * the record command 759 * 760 * Independent events and group leaders are initially disabled 761 * and get enabled by exec. Group members are ruled by group 762 * leaders as stated in 1). 763 * 764 * 3) For traced programs attached by perf (pid/tid): 765 * - we specifically enable or disable all events during 766 * the record command 767 * 768 * When attaching events to already running traced we 769 * enable/disable events specifically, as there's no 770 * initial traced exec call. 771 */ 772 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 773 struct callchain_param *callchain) 774 { 775 struct perf_evsel *leader = evsel->leader; 776 struct perf_event_attr *attr = &evsel->attr; 777 int track = evsel->tracking; 778 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 779 780 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 781 attr->inherit = !opts->no_inherit; 782 attr->write_backward = opts->overwrite ? 1 : 0; 783 784 perf_evsel__set_sample_bit(evsel, IP); 785 perf_evsel__set_sample_bit(evsel, TID); 786 787 if (evsel->sample_read) { 788 perf_evsel__set_sample_bit(evsel, READ); 789 790 /* 791 * We need ID even in case of single event, because 792 * PERF_SAMPLE_READ process ID specific data. 793 */ 794 perf_evsel__set_sample_id(evsel, false); 795 796 /* 797 * Apply group format only if we belong to group 798 * with more than one members. 799 */ 800 if (leader->nr_members > 1) { 801 attr->read_format |= PERF_FORMAT_GROUP; 802 attr->inherit = 0; 803 } 804 } 805 806 /* 807 * We default some events to have a default interval. But keep 808 * it a weak assumption overridable by the user. 809 */ 810 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 811 opts->user_interval != ULLONG_MAX)) { 812 if (opts->freq) { 813 perf_evsel__set_sample_bit(evsel, PERIOD); 814 attr->freq = 1; 815 attr->sample_freq = opts->freq; 816 } else { 817 attr->sample_period = opts->default_interval; 818 } 819 } 820 821 /* 822 * Disable sampling for all group members other 823 * than leader in case leader 'leads' the sampling. 824 */ 825 if ((leader != evsel) && leader->sample_read) { 826 attr->sample_freq = 0; 827 attr->sample_period = 0; 828 } 829 830 if (opts->no_samples) 831 attr->sample_freq = 0; 832 833 if (opts->inherit_stat) 834 attr->inherit_stat = 1; 835 836 if (opts->sample_address) { 837 perf_evsel__set_sample_bit(evsel, ADDR); 838 attr->mmap_data = track; 839 } 840 841 /* 842 * We don't allow user space callchains for function trace 843 * event, due to issues with page faults while tracing page 844 * fault handler and its overall trickiness nature. 845 */ 846 if (perf_evsel__is_function_event(evsel)) 847 evsel->attr.exclude_callchain_user = 1; 848 849 if (callchain && callchain->enabled && !evsel->no_aux_samples) 850 perf_evsel__config_callchain(evsel, opts, callchain); 851 852 if (opts->sample_intr_regs) { 853 attr->sample_regs_intr = opts->sample_intr_regs; 854 perf_evsel__set_sample_bit(evsel, REGS_INTR); 855 } 856 857 if (target__has_cpu(&opts->target)) 858 perf_evsel__set_sample_bit(evsel, CPU); 859 860 if (opts->period) 861 perf_evsel__set_sample_bit(evsel, PERIOD); 862 863 /* 864 * When the user explicitly disabled time don't force it here. 865 */ 866 if (opts->sample_time && 867 (!perf_missing_features.sample_id_all && 868 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 869 opts->sample_time_set))) 870 perf_evsel__set_sample_bit(evsel, TIME); 871 872 if (opts->raw_samples && !evsel->no_aux_samples) { 873 perf_evsel__set_sample_bit(evsel, TIME); 874 perf_evsel__set_sample_bit(evsel, RAW); 875 perf_evsel__set_sample_bit(evsel, CPU); 876 } 877 878 if (opts->sample_address) 879 perf_evsel__set_sample_bit(evsel, DATA_SRC); 880 881 if (opts->no_buffering) { 882 attr->watermark = 0; 883 attr->wakeup_events = 1; 884 } 885 if (opts->branch_stack && !evsel->no_aux_samples) { 886 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 887 attr->branch_sample_type = opts->branch_stack; 888 } 889 890 if (opts->sample_weight) 891 perf_evsel__set_sample_bit(evsel, WEIGHT); 892 893 attr->task = track; 894 attr->mmap = track; 895 attr->mmap2 = track && !perf_missing_features.mmap2; 896 attr->comm = track; 897 898 if (opts->record_switch_events) 899 attr->context_switch = track; 900 901 if (opts->sample_transaction) 902 perf_evsel__set_sample_bit(evsel, TRANSACTION); 903 904 if (opts->running_time) { 905 evsel->attr.read_format |= 906 PERF_FORMAT_TOTAL_TIME_ENABLED | 907 PERF_FORMAT_TOTAL_TIME_RUNNING; 908 } 909 910 /* 911 * XXX see the function comment above 912 * 913 * Disabling only independent events or group leaders, 914 * keeping group members enabled. 915 */ 916 if (perf_evsel__is_group_leader(evsel)) 917 attr->disabled = 1; 918 919 /* 920 * Setting enable_on_exec for independent events and 921 * group leaders for traced executed by perf. 922 */ 923 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 924 !opts->initial_delay) 925 attr->enable_on_exec = 1; 926 927 if (evsel->immediate) { 928 attr->disabled = 0; 929 attr->enable_on_exec = 0; 930 } 931 932 clockid = opts->clockid; 933 if (opts->use_clockid) { 934 attr->use_clockid = 1; 935 attr->clockid = opts->clockid; 936 } 937 938 if (evsel->precise_max) 939 perf_event_attr__set_max_precise_ip(attr); 940 941 if (opts->all_user) { 942 attr->exclude_kernel = 1; 943 attr->exclude_user = 0; 944 } 945 946 if (opts->all_kernel) { 947 attr->exclude_kernel = 0; 948 attr->exclude_user = 1; 949 } 950 951 /* 952 * Apply event specific term settings, 953 * it overloads any global configuration. 954 */ 955 apply_config_terms(evsel, opts); 956 } 957 958 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 959 { 960 int cpu, thread; 961 962 if (evsel->system_wide) 963 nthreads = 1; 964 965 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 966 967 if (evsel->fd) { 968 for (cpu = 0; cpu < ncpus; cpu++) { 969 for (thread = 0; thread < nthreads; thread++) { 970 FD(evsel, cpu, thread) = -1; 971 } 972 } 973 } 974 975 return evsel->fd != NULL ? 0 : -ENOMEM; 976 } 977 978 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 979 int ioc, void *arg) 980 { 981 int cpu, thread; 982 983 if (evsel->system_wide) 984 nthreads = 1; 985 986 for (cpu = 0; cpu < ncpus; cpu++) { 987 for (thread = 0; thread < nthreads; thread++) { 988 int fd = FD(evsel, cpu, thread), 989 err = ioctl(fd, ioc, arg); 990 991 if (err) 992 return err; 993 } 994 } 995 996 return 0; 997 } 998 999 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1000 const char *filter) 1001 { 1002 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1003 PERF_EVENT_IOC_SET_FILTER, 1004 (void *)filter); 1005 } 1006 1007 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1008 { 1009 char *new_filter = strdup(filter); 1010 1011 if (new_filter != NULL) { 1012 free(evsel->filter); 1013 evsel->filter = new_filter; 1014 return 0; 1015 } 1016 1017 return -1; 1018 } 1019 1020 int perf_evsel__append_filter(struct perf_evsel *evsel, 1021 const char *op, const char *filter) 1022 { 1023 char *new_filter; 1024 1025 if (evsel->filter == NULL) 1026 return perf_evsel__set_filter(evsel, filter); 1027 1028 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 1029 free(evsel->filter); 1030 evsel->filter = new_filter; 1031 return 0; 1032 } 1033 1034 return -1; 1035 } 1036 1037 int perf_evsel__enable(struct perf_evsel *evsel) 1038 { 1039 int nthreads = thread_map__nr(evsel->threads); 1040 int ncpus = cpu_map__nr(evsel->cpus); 1041 1042 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1043 PERF_EVENT_IOC_ENABLE, 1044 0); 1045 } 1046 1047 int perf_evsel__disable(struct perf_evsel *evsel) 1048 { 1049 int nthreads = thread_map__nr(evsel->threads); 1050 int ncpus = cpu_map__nr(evsel->cpus); 1051 1052 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1053 PERF_EVENT_IOC_DISABLE, 1054 0); 1055 } 1056 1057 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1058 { 1059 if (ncpus == 0 || nthreads == 0) 1060 return 0; 1061 1062 if (evsel->system_wide) 1063 nthreads = 1; 1064 1065 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1066 if (evsel->sample_id == NULL) 1067 return -ENOMEM; 1068 1069 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1070 if (evsel->id == NULL) { 1071 xyarray__delete(evsel->sample_id); 1072 evsel->sample_id = NULL; 1073 return -ENOMEM; 1074 } 1075 1076 return 0; 1077 } 1078 1079 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1080 { 1081 xyarray__delete(evsel->fd); 1082 evsel->fd = NULL; 1083 } 1084 1085 static void perf_evsel__free_id(struct perf_evsel *evsel) 1086 { 1087 xyarray__delete(evsel->sample_id); 1088 evsel->sample_id = NULL; 1089 zfree(&evsel->id); 1090 } 1091 1092 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1093 { 1094 struct perf_evsel_config_term *term, *h; 1095 1096 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1097 list_del(&term->list); 1098 free(term); 1099 } 1100 } 1101 1102 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1103 { 1104 int cpu, thread; 1105 1106 if (evsel->system_wide) 1107 nthreads = 1; 1108 1109 for (cpu = 0; cpu < ncpus; cpu++) 1110 for (thread = 0; thread < nthreads; ++thread) { 1111 close(FD(evsel, cpu, thread)); 1112 FD(evsel, cpu, thread) = -1; 1113 } 1114 } 1115 1116 void perf_evsel__exit(struct perf_evsel *evsel) 1117 { 1118 assert(list_empty(&evsel->node)); 1119 assert(evsel->evlist == NULL); 1120 perf_evsel__free_fd(evsel); 1121 perf_evsel__free_id(evsel); 1122 perf_evsel__free_config_terms(evsel); 1123 close_cgroup(evsel->cgrp); 1124 cpu_map__put(evsel->cpus); 1125 cpu_map__put(evsel->own_cpus); 1126 thread_map__put(evsel->threads); 1127 zfree(&evsel->group_name); 1128 zfree(&evsel->name); 1129 perf_evsel__object.fini(evsel); 1130 } 1131 1132 void perf_evsel__delete(struct perf_evsel *evsel) 1133 { 1134 perf_evsel__exit(evsel); 1135 free(evsel); 1136 } 1137 1138 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1139 struct perf_counts_values *count) 1140 { 1141 struct perf_counts_values tmp; 1142 1143 if (!evsel->prev_raw_counts) 1144 return; 1145 1146 if (cpu == -1) { 1147 tmp = evsel->prev_raw_counts->aggr; 1148 evsel->prev_raw_counts->aggr = *count; 1149 } else { 1150 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1151 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1152 } 1153 1154 count->val = count->val - tmp.val; 1155 count->ena = count->ena - tmp.ena; 1156 count->run = count->run - tmp.run; 1157 } 1158 1159 void perf_counts_values__scale(struct perf_counts_values *count, 1160 bool scale, s8 *pscaled) 1161 { 1162 s8 scaled = 0; 1163 1164 if (scale) { 1165 if (count->run == 0) { 1166 scaled = -1; 1167 count->val = 0; 1168 } else if (count->run < count->ena) { 1169 scaled = 1; 1170 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1171 } 1172 } else 1173 count->ena = count->run = 0; 1174 1175 if (pscaled) 1176 *pscaled = scaled; 1177 } 1178 1179 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1180 struct perf_counts_values *count) 1181 { 1182 memset(count, 0, sizeof(*count)); 1183 1184 if (FD(evsel, cpu, thread) < 0) 1185 return -EINVAL; 1186 1187 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1188 return -errno; 1189 1190 return 0; 1191 } 1192 1193 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1194 int cpu, int thread, bool scale) 1195 { 1196 struct perf_counts_values count; 1197 size_t nv = scale ? 3 : 1; 1198 1199 if (FD(evsel, cpu, thread) < 0) 1200 return -EINVAL; 1201 1202 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1203 return -ENOMEM; 1204 1205 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1206 return -errno; 1207 1208 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1209 perf_counts_values__scale(&count, scale, NULL); 1210 *perf_counts(evsel->counts, cpu, thread) = count; 1211 return 0; 1212 } 1213 1214 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1215 { 1216 struct perf_evsel *leader = evsel->leader; 1217 int fd; 1218 1219 if (perf_evsel__is_group_leader(evsel)) 1220 return -1; 1221 1222 /* 1223 * Leader must be already processed/open, 1224 * if not it's a bug. 1225 */ 1226 BUG_ON(!leader->fd); 1227 1228 fd = FD(leader, cpu, thread); 1229 BUG_ON(fd == -1); 1230 1231 return fd; 1232 } 1233 1234 struct bit_names { 1235 int bit; 1236 const char *name; 1237 }; 1238 1239 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1240 { 1241 bool first_bit = true; 1242 int i = 0; 1243 1244 do { 1245 if (value & bits[i].bit) { 1246 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1247 first_bit = false; 1248 } 1249 } while (bits[++i].name != NULL); 1250 } 1251 1252 static void __p_sample_type(char *buf, size_t size, u64 value) 1253 { 1254 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1255 struct bit_names bits[] = { 1256 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1257 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1258 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1259 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1260 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1261 bit_name(WEIGHT), 1262 { .name = NULL, } 1263 }; 1264 #undef bit_name 1265 __p_bits(buf, size, value, bits); 1266 } 1267 1268 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1269 { 1270 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1271 struct bit_names bits[] = { 1272 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1273 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1274 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1275 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1276 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1277 { .name = NULL, } 1278 }; 1279 #undef bit_name 1280 __p_bits(buf, size, value, bits); 1281 } 1282 1283 static void __p_read_format(char *buf, size_t size, u64 value) 1284 { 1285 #define bit_name(n) { PERF_FORMAT_##n, #n } 1286 struct bit_names bits[] = { 1287 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1288 bit_name(ID), bit_name(GROUP), 1289 { .name = NULL, } 1290 }; 1291 #undef bit_name 1292 __p_bits(buf, size, value, bits); 1293 } 1294 1295 #define BUF_SIZE 1024 1296 1297 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1298 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1299 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1300 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1301 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1302 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1303 1304 #define PRINT_ATTRn(_n, _f, _p) \ 1305 do { \ 1306 if (attr->_f) { \ 1307 _p(attr->_f); \ 1308 ret += attr__fprintf(fp, _n, buf, priv);\ 1309 } \ 1310 } while (0) 1311 1312 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1313 1314 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1315 attr__fprintf_f attr__fprintf, void *priv) 1316 { 1317 char buf[BUF_SIZE]; 1318 int ret = 0; 1319 1320 PRINT_ATTRf(type, p_unsigned); 1321 PRINT_ATTRf(size, p_unsigned); 1322 PRINT_ATTRf(config, p_hex); 1323 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1324 PRINT_ATTRf(sample_type, p_sample_type); 1325 PRINT_ATTRf(read_format, p_read_format); 1326 1327 PRINT_ATTRf(disabled, p_unsigned); 1328 PRINT_ATTRf(inherit, p_unsigned); 1329 PRINT_ATTRf(pinned, p_unsigned); 1330 PRINT_ATTRf(exclusive, p_unsigned); 1331 PRINT_ATTRf(exclude_user, p_unsigned); 1332 PRINT_ATTRf(exclude_kernel, p_unsigned); 1333 PRINT_ATTRf(exclude_hv, p_unsigned); 1334 PRINT_ATTRf(exclude_idle, p_unsigned); 1335 PRINT_ATTRf(mmap, p_unsigned); 1336 PRINT_ATTRf(comm, p_unsigned); 1337 PRINT_ATTRf(freq, p_unsigned); 1338 PRINT_ATTRf(inherit_stat, p_unsigned); 1339 PRINT_ATTRf(enable_on_exec, p_unsigned); 1340 PRINT_ATTRf(task, p_unsigned); 1341 PRINT_ATTRf(watermark, p_unsigned); 1342 PRINT_ATTRf(precise_ip, p_unsigned); 1343 PRINT_ATTRf(mmap_data, p_unsigned); 1344 PRINT_ATTRf(sample_id_all, p_unsigned); 1345 PRINT_ATTRf(exclude_host, p_unsigned); 1346 PRINT_ATTRf(exclude_guest, p_unsigned); 1347 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1348 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1349 PRINT_ATTRf(mmap2, p_unsigned); 1350 PRINT_ATTRf(comm_exec, p_unsigned); 1351 PRINT_ATTRf(use_clockid, p_unsigned); 1352 PRINT_ATTRf(context_switch, p_unsigned); 1353 PRINT_ATTRf(write_backward, p_unsigned); 1354 1355 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1356 PRINT_ATTRf(bp_type, p_unsigned); 1357 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1358 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1359 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1360 PRINT_ATTRf(sample_regs_user, p_hex); 1361 PRINT_ATTRf(sample_stack_user, p_unsigned); 1362 PRINT_ATTRf(clockid, p_signed); 1363 PRINT_ATTRf(sample_regs_intr, p_hex); 1364 PRINT_ATTRf(aux_watermark, p_unsigned); 1365 PRINT_ATTRf(sample_max_stack, p_unsigned); 1366 1367 return ret; 1368 } 1369 1370 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1371 void *priv __attribute__((unused))) 1372 { 1373 return fprintf(fp, " %-32s %s\n", name, val); 1374 } 1375 1376 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1377 struct thread_map *threads) 1378 { 1379 int cpu, thread, nthreads; 1380 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1381 int pid = -1, err; 1382 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1383 1384 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1385 return -EINVAL; 1386 1387 if (evsel->system_wide) 1388 nthreads = 1; 1389 else 1390 nthreads = threads->nr; 1391 1392 if (evsel->fd == NULL && 1393 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1394 return -ENOMEM; 1395 1396 if (evsel->cgrp) { 1397 flags |= PERF_FLAG_PID_CGROUP; 1398 pid = evsel->cgrp->fd; 1399 } 1400 1401 fallback_missing_features: 1402 if (perf_missing_features.clockid_wrong) 1403 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1404 if (perf_missing_features.clockid) { 1405 evsel->attr.use_clockid = 0; 1406 evsel->attr.clockid = 0; 1407 } 1408 if (perf_missing_features.cloexec) 1409 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1410 if (perf_missing_features.mmap2) 1411 evsel->attr.mmap2 = 0; 1412 if (perf_missing_features.exclude_guest) 1413 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1414 if (perf_missing_features.lbr_flags) 1415 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1416 PERF_SAMPLE_BRANCH_NO_CYCLES); 1417 retry_sample_id: 1418 if (perf_missing_features.sample_id_all) 1419 evsel->attr.sample_id_all = 0; 1420 1421 if (verbose >= 2) { 1422 fprintf(stderr, "%.60s\n", graph_dotted_line); 1423 fprintf(stderr, "perf_event_attr:\n"); 1424 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1425 fprintf(stderr, "%.60s\n", graph_dotted_line); 1426 } 1427 1428 for (cpu = 0; cpu < cpus->nr; cpu++) { 1429 1430 for (thread = 0; thread < nthreads; thread++) { 1431 int group_fd; 1432 1433 if (!evsel->cgrp && !evsel->system_wide) 1434 pid = thread_map__pid(threads, thread); 1435 1436 group_fd = get_group_fd(evsel, cpu, thread); 1437 retry_open: 1438 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1439 pid, cpus->map[cpu], group_fd, flags); 1440 1441 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1442 pid, 1443 cpus->map[cpu], 1444 group_fd, flags); 1445 if (FD(evsel, cpu, thread) < 0) { 1446 err = -errno; 1447 pr_debug2("sys_perf_event_open failed, error %d\n", 1448 err); 1449 goto try_fallback; 1450 } 1451 1452 if (evsel->bpf_fd >= 0) { 1453 int evt_fd = FD(evsel, cpu, thread); 1454 int bpf_fd = evsel->bpf_fd; 1455 1456 err = ioctl(evt_fd, 1457 PERF_EVENT_IOC_SET_BPF, 1458 bpf_fd); 1459 if (err && errno != EEXIST) { 1460 pr_err("failed to attach bpf fd %d: %s\n", 1461 bpf_fd, strerror(errno)); 1462 err = -EINVAL; 1463 goto out_close; 1464 } 1465 } 1466 1467 set_rlimit = NO_CHANGE; 1468 1469 /* 1470 * If we succeeded but had to kill clockid, fail and 1471 * have perf_evsel__open_strerror() print us a nice 1472 * error. 1473 */ 1474 if (perf_missing_features.clockid || 1475 perf_missing_features.clockid_wrong) { 1476 err = -EINVAL; 1477 goto out_close; 1478 } 1479 } 1480 } 1481 1482 return 0; 1483 1484 try_fallback: 1485 /* 1486 * perf stat needs between 5 and 22 fds per CPU. When we run out 1487 * of them try to increase the limits. 1488 */ 1489 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1490 struct rlimit l; 1491 int old_errno = errno; 1492 1493 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1494 if (set_rlimit == NO_CHANGE) 1495 l.rlim_cur = l.rlim_max; 1496 else { 1497 l.rlim_cur = l.rlim_max + 1000; 1498 l.rlim_max = l.rlim_cur; 1499 } 1500 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1501 set_rlimit++; 1502 errno = old_errno; 1503 goto retry_open; 1504 } 1505 } 1506 errno = old_errno; 1507 } 1508 1509 if (err != -EINVAL || cpu > 0 || thread > 0) 1510 goto out_close; 1511 1512 /* 1513 * Must probe features in the order they were added to the 1514 * perf_event_attr interface. 1515 */ 1516 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1517 perf_missing_features.write_backward = true; 1518 goto out_close; 1519 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1520 perf_missing_features.clockid_wrong = true; 1521 goto fallback_missing_features; 1522 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1523 perf_missing_features.clockid = true; 1524 goto fallback_missing_features; 1525 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1526 perf_missing_features.cloexec = true; 1527 goto fallback_missing_features; 1528 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1529 perf_missing_features.mmap2 = true; 1530 goto fallback_missing_features; 1531 } else if (!perf_missing_features.exclude_guest && 1532 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1533 perf_missing_features.exclude_guest = true; 1534 goto fallback_missing_features; 1535 } else if (!perf_missing_features.sample_id_all) { 1536 perf_missing_features.sample_id_all = true; 1537 goto retry_sample_id; 1538 } else if (!perf_missing_features.lbr_flags && 1539 (evsel->attr.branch_sample_type & 1540 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1541 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1542 perf_missing_features.lbr_flags = true; 1543 goto fallback_missing_features; 1544 } 1545 out_close: 1546 do { 1547 while (--thread >= 0) { 1548 close(FD(evsel, cpu, thread)); 1549 FD(evsel, cpu, thread) = -1; 1550 } 1551 thread = nthreads; 1552 } while (--cpu >= 0); 1553 return err; 1554 } 1555 1556 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1557 { 1558 if (evsel->fd == NULL) 1559 return; 1560 1561 perf_evsel__close_fd(evsel, ncpus, nthreads); 1562 perf_evsel__free_fd(evsel); 1563 } 1564 1565 static struct { 1566 struct cpu_map map; 1567 int cpus[1]; 1568 } empty_cpu_map = { 1569 .map.nr = 1, 1570 .cpus = { -1, }, 1571 }; 1572 1573 static struct { 1574 struct thread_map map; 1575 int threads[1]; 1576 } empty_thread_map = { 1577 .map.nr = 1, 1578 .threads = { -1, }, 1579 }; 1580 1581 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1582 struct thread_map *threads) 1583 { 1584 if (cpus == NULL) { 1585 /* Work around old compiler warnings about strict aliasing */ 1586 cpus = &empty_cpu_map.map; 1587 } 1588 1589 if (threads == NULL) 1590 threads = &empty_thread_map.map; 1591 1592 return __perf_evsel__open(evsel, cpus, threads); 1593 } 1594 1595 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1596 struct cpu_map *cpus) 1597 { 1598 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1599 } 1600 1601 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1602 struct thread_map *threads) 1603 { 1604 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1605 } 1606 1607 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1608 const union perf_event *event, 1609 struct perf_sample *sample) 1610 { 1611 u64 type = evsel->attr.sample_type; 1612 const u64 *array = event->sample.array; 1613 bool swapped = evsel->needs_swap; 1614 union u64_swap u; 1615 1616 array += ((event->header.size - 1617 sizeof(event->header)) / sizeof(u64)) - 1; 1618 1619 if (type & PERF_SAMPLE_IDENTIFIER) { 1620 sample->id = *array; 1621 array--; 1622 } 1623 1624 if (type & PERF_SAMPLE_CPU) { 1625 u.val64 = *array; 1626 if (swapped) { 1627 /* undo swap of u64, then swap on individual u32s */ 1628 u.val64 = bswap_64(u.val64); 1629 u.val32[0] = bswap_32(u.val32[0]); 1630 } 1631 1632 sample->cpu = u.val32[0]; 1633 array--; 1634 } 1635 1636 if (type & PERF_SAMPLE_STREAM_ID) { 1637 sample->stream_id = *array; 1638 array--; 1639 } 1640 1641 if (type & PERF_SAMPLE_ID) { 1642 sample->id = *array; 1643 array--; 1644 } 1645 1646 if (type & PERF_SAMPLE_TIME) { 1647 sample->time = *array; 1648 array--; 1649 } 1650 1651 if (type & PERF_SAMPLE_TID) { 1652 u.val64 = *array; 1653 if (swapped) { 1654 /* undo swap of u64, then swap on individual u32s */ 1655 u.val64 = bswap_64(u.val64); 1656 u.val32[0] = bswap_32(u.val32[0]); 1657 u.val32[1] = bswap_32(u.val32[1]); 1658 } 1659 1660 sample->pid = u.val32[0]; 1661 sample->tid = u.val32[1]; 1662 array--; 1663 } 1664 1665 return 0; 1666 } 1667 1668 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1669 u64 size) 1670 { 1671 return size > max_size || offset + size > endp; 1672 } 1673 1674 #define OVERFLOW_CHECK(offset, size, max_size) \ 1675 do { \ 1676 if (overflow(endp, (max_size), (offset), (size))) \ 1677 return -EFAULT; \ 1678 } while (0) 1679 1680 #define OVERFLOW_CHECK_u64(offset) \ 1681 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1682 1683 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1684 struct perf_sample *data) 1685 { 1686 u64 type = evsel->attr.sample_type; 1687 bool swapped = evsel->needs_swap; 1688 const u64 *array; 1689 u16 max_size = event->header.size; 1690 const void *endp = (void *)event + max_size; 1691 u64 sz; 1692 1693 /* 1694 * used for cross-endian analysis. See git commit 65014ab3 1695 * for why this goofiness is needed. 1696 */ 1697 union u64_swap u; 1698 1699 memset(data, 0, sizeof(*data)); 1700 data->cpu = data->pid = data->tid = -1; 1701 data->stream_id = data->id = data->time = -1ULL; 1702 data->period = evsel->attr.sample_period; 1703 data->weight = 0; 1704 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1705 1706 if (event->header.type != PERF_RECORD_SAMPLE) { 1707 if (!evsel->attr.sample_id_all) 1708 return 0; 1709 return perf_evsel__parse_id_sample(evsel, event, data); 1710 } 1711 1712 array = event->sample.array; 1713 1714 /* 1715 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1716 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1717 * check the format does not go past the end of the event. 1718 */ 1719 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1720 return -EFAULT; 1721 1722 data->id = -1ULL; 1723 if (type & PERF_SAMPLE_IDENTIFIER) { 1724 data->id = *array; 1725 array++; 1726 } 1727 1728 if (type & PERF_SAMPLE_IP) { 1729 data->ip = *array; 1730 array++; 1731 } 1732 1733 if (type & PERF_SAMPLE_TID) { 1734 u.val64 = *array; 1735 if (swapped) { 1736 /* undo swap of u64, then swap on individual u32s */ 1737 u.val64 = bswap_64(u.val64); 1738 u.val32[0] = bswap_32(u.val32[0]); 1739 u.val32[1] = bswap_32(u.val32[1]); 1740 } 1741 1742 data->pid = u.val32[0]; 1743 data->tid = u.val32[1]; 1744 array++; 1745 } 1746 1747 if (type & PERF_SAMPLE_TIME) { 1748 data->time = *array; 1749 array++; 1750 } 1751 1752 data->addr = 0; 1753 if (type & PERF_SAMPLE_ADDR) { 1754 data->addr = *array; 1755 array++; 1756 } 1757 1758 if (type & PERF_SAMPLE_ID) { 1759 data->id = *array; 1760 array++; 1761 } 1762 1763 if (type & PERF_SAMPLE_STREAM_ID) { 1764 data->stream_id = *array; 1765 array++; 1766 } 1767 1768 if (type & PERF_SAMPLE_CPU) { 1769 1770 u.val64 = *array; 1771 if (swapped) { 1772 /* undo swap of u64, then swap on individual u32s */ 1773 u.val64 = bswap_64(u.val64); 1774 u.val32[0] = bswap_32(u.val32[0]); 1775 } 1776 1777 data->cpu = u.val32[0]; 1778 array++; 1779 } 1780 1781 if (type & PERF_SAMPLE_PERIOD) { 1782 data->period = *array; 1783 array++; 1784 } 1785 1786 if (type & PERF_SAMPLE_READ) { 1787 u64 read_format = evsel->attr.read_format; 1788 1789 OVERFLOW_CHECK_u64(array); 1790 if (read_format & PERF_FORMAT_GROUP) 1791 data->read.group.nr = *array; 1792 else 1793 data->read.one.value = *array; 1794 1795 array++; 1796 1797 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1798 OVERFLOW_CHECK_u64(array); 1799 data->read.time_enabled = *array; 1800 array++; 1801 } 1802 1803 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1804 OVERFLOW_CHECK_u64(array); 1805 data->read.time_running = *array; 1806 array++; 1807 } 1808 1809 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1810 if (read_format & PERF_FORMAT_GROUP) { 1811 const u64 max_group_nr = UINT64_MAX / 1812 sizeof(struct sample_read_value); 1813 1814 if (data->read.group.nr > max_group_nr) 1815 return -EFAULT; 1816 sz = data->read.group.nr * 1817 sizeof(struct sample_read_value); 1818 OVERFLOW_CHECK(array, sz, max_size); 1819 data->read.group.values = 1820 (struct sample_read_value *)array; 1821 array = (void *)array + sz; 1822 } else { 1823 OVERFLOW_CHECK_u64(array); 1824 data->read.one.id = *array; 1825 array++; 1826 } 1827 } 1828 1829 if (type & PERF_SAMPLE_CALLCHAIN) { 1830 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1831 1832 OVERFLOW_CHECK_u64(array); 1833 data->callchain = (struct ip_callchain *)array++; 1834 if (data->callchain->nr > max_callchain_nr) 1835 return -EFAULT; 1836 sz = data->callchain->nr * sizeof(u64); 1837 OVERFLOW_CHECK(array, sz, max_size); 1838 array = (void *)array + sz; 1839 } 1840 1841 if (type & PERF_SAMPLE_RAW) { 1842 OVERFLOW_CHECK_u64(array); 1843 u.val64 = *array; 1844 if (WARN_ONCE(swapped, 1845 "Endianness of raw data not corrected!\n")) { 1846 /* undo swap of u64, then swap on individual u32s */ 1847 u.val64 = bswap_64(u.val64); 1848 u.val32[0] = bswap_32(u.val32[0]); 1849 u.val32[1] = bswap_32(u.val32[1]); 1850 } 1851 data->raw_size = u.val32[0]; 1852 array = (void *)array + sizeof(u32); 1853 1854 OVERFLOW_CHECK(array, data->raw_size, max_size); 1855 data->raw_data = (void *)array; 1856 array = (void *)array + data->raw_size; 1857 } 1858 1859 if (type & PERF_SAMPLE_BRANCH_STACK) { 1860 const u64 max_branch_nr = UINT64_MAX / 1861 sizeof(struct branch_entry); 1862 1863 OVERFLOW_CHECK_u64(array); 1864 data->branch_stack = (struct branch_stack *)array++; 1865 1866 if (data->branch_stack->nr > max_branch_nr) 1867 return -EFAULT; 1868 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1869 OVERFLOW_CHECK(array, sz, max_size); 1870 array = (void *)array + sz; 1871 } 1872 1873 if (type & PERF_SAMPLE_REGS_USER) { 1874 OVERFLOW_CHECK_u64(array); 1875 data->user_regs.abi = *array; 1876 array++; 1877 1878 if (data->user_regs.abi) { 1879 u64 mask = evsel->attr.sample_regs_user; 1880 1881 sz = hweight_long(mask) * sizeof(u64); 1882 OVERFLOW_CHECK(array, sz, max_size); 1883 data->user_regs.mask = mask; 1884 data->user_regs.regs = (u64 *)array; 1885 array = (void *)array + sz; 1886 } 1887 } 1888 1889 if (type & PERF_SAMPLE_STACK_USER) { 1890 OVERFLOW_CHECK_u64(array); 1891 sz = *array++; 1892 1893 data->user_stack.offset = ((char *)(array - 1) 1894 - (char *) event); 1895 1896 if (!sz) { 1897 data->user_stack.size = 0; 1898 } else { 1899 OVERFLOW_CHECK(array, sz, max_size); 1900 data->user_stack.data = (char *)array; 1901 array = (void *)array + sz; 1902 OVERFLOW_CHECK_u64(array); 1903 data->user_stack.size = *array++; 1904 if (WARN_ONCE(data->user_stack.size > sz, 1905 "user stack dump failure\n")) 1906 return -EFAULT; 1907 } 1908 } 1909 1910 data->weight = 0; 1911 if (type & PERF_SAMPLE_WEIGHT) { 1912 OVERFLOW_CHECK_u64(array); 1913 data->weight = *array; 1914 array++; 1915 } 1916 1917 data->data_src = PERF_MEM_DATA_SRC_NONE; 1918 if (type & PERF_SAMPLE_DATA_SRC) { 1919 OVERFLOW_CHECK_u64(array); 1920 data->data_src = *array; 1921 array++; 1922 } 1923 1924 data->transaction = 0; 1925 if (type & PERF_SAMPLE_TRANSACTION) { 1926 OVERFLOW_CHECK_u64(array); 1927 data->transaction = *array; 1928 array++; 1929 } 1930 1931 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1932 if (type & PERF_SAMPLE_REGS_INTR) { 1933 OVERFLOW_CHECK_u64(array); 1934 data->intr_regs.abi = *array; 1935 array++; 1936 1937 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1938 u64 mask = evsel->attr.sample_regs_intr; 1939 1940 sz = hweight_long(mask) * sizeof(u64); 1941 OVERFLOW_CHECK(array, sz, max_size); 1942 data->intr_regs.mask = mask; 1943 data->intr_regs.regs = (u64 *)array; 1944 array = (void *)array + sz; 1945 } 1946 } 1947 1948 return 0; 1949 } 1950 1951 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1952 u64 read_format) 1953 { 1954 size_t sz, result = sizeof(struct sample_event); 1955 1956 if (type & PERF_SAMPLE_IDENTIFIER) 1957 result += sizeof(u64); 1958 1959 if (type & PERF_SAMPLE_IP) 1960 result += sizeof(u64); 1961 1962 if (type & PERF_SAMPLE_TID) 1963 result += sizeof(u64); 1964 1965 if (type & PERF_SAMPLE_TIME) 1966 result += sizeof(u64); 1967 1968 if (type & PERF_SAMPLE_ADDR) 1969 result += sizeof(u64); 1970 1971 if (type & PERF_SAMPLE_ID) 1972 result += sizeof(u64); 1973 1974 if (type & PERF_SAMPLE_STREAM_ID) 1975 result += sizeof(u64); 1976 1977 if (type & PERF_SAMPLE_CPU) 1978 result += sizeof(u64); 1979 1980 if (type & PERF_SAMPLE_PERIOD) 1981 result += sizeof(u64); 1982 1983 if (type & PERF_SAMPLE_READ) { 1984 result += sizeof(u64); 1985 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1986 result += sizeof(u64); 1987 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1988 result += sizeof(u64); 1989 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1990 if (read_format & PERF_FORMAT_GROUP) { 1991 sz = sample->read.group.nr * 1992 sizeof(struct sample_read_value); 1993 result += sz; 1994 } else { 1995 result += sizeof(u64); 1996 } 1997 } 1998 1999 if (type & PERF_SAMPLE_CALLCHAIN) { 2000 sz = (sample->callchain->nr + 1) * sizeof(u64); 2001 result += sz; 2002 } 2003 2004 if (type & PERF_SAMPLE_RAW) { 2005 result += sizeof(u32); 2006 result += sample->raw_size; 2007 } 2008 2009 if (type & PERF_SAMPLE_BRANCH_STACK) { 2010 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2011 sz += sizeof(u64); 2012 result += sz; 2013 } 2014 2015 if (type & PERF_SAMPLE_REGS_USER) { 2016 if (sample->user_regs.abi) { 2017 result += sizeof(u64); 2018 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2019 result += sz; 2020 } else { 2021 result += sizeof(u64); 2022 } 2023 } 2024 2025 if (type & PERF_SAMPLE_STACK_USER) { 2026 sz = sample->user_stack.size; 2027 result += sizeof(u64); 2028 if (sz) { 2029 result += sz; 2030 result += sizeof(u64); 2031 } 2032 } 2033 2034 if (type & PERF_SAMPLE_WEIGHT) 2035 result += sizeof(u64); 2036 2037 if (type & PERF_SAMPLE_DATA_SRC) 2038 result += sizeof(u64); 2039 2040 if (type & PERF_SAMPLE_TRANSACTION) 2041 result += sizeof(u64); 2042 2043 if (type & PERF_SAMPLE_REGS_INTR) { 2044 if (sample->intr_regs.abi) { 2045 result += sizeof(u64); 2046 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2047 result += sz; 2048 } else { 2049 result += sizeof(u64); 2050 } 2051 } 2052 2053 return result; 2054 } 2055 2056 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2057 u64 read_format, 2058 const struct perf_sample *sample, 2059 bool swapped) 2060 { 2061 u64 *array; 2062 size_t sz; 2063 /* 2064 * used for cross-endian analysis. See git commit 65014ab3 2065 * for why this goofiness is needed. 2066 */ 2067 union u64_swap u; 2068 2069 array = event->sample.array; 2070 2071 if (type & PERF_SAMPLE_IDENTIFIER) { 2072 *array = sample->id; 2073 array++; 2074 } 2075 2076 if (type & PERF_SAMPLE_IP) { 2077 *array = sample->ip; 2078 array++; 2079 } 2080 2081 if (type & PERF_SAMPLE_TID) { 2082 u.val32[0] = sample->pid; 2083 u.val32[1] = sample->tid; 2084 if (swapped) { 2085 /* 2086 * Inverse of what is done in perf_evsel__parse_sample 2087 */ 2088 u.val32[0] = bswap_32(u.val32[0]); 2089 u.val32[1] = bswap_32(u.val32[1]); 2090 u.val64 = bswap_64(u.val64); 2091 } 2092 2093 *array = u.val64; 2094 array++; 2095 } 2096 2097 if (type & PERF_SAMPLE_TIME) { 2098 *array = sample->time; 2099 array++; 2100 } 2101 2102 if (type & PERF_SAMPLE_ADDR) { 2103 *array = sample->addr; 2104 array++; 2105 } 2106 2107 if (type & PERF_SAMPLE_ID) { 2108 *array = sample->id; 2109 array++; 2110 } 2111 2112 if (type & PERF_SAMPLE_STREAM_ID) { 2113 *array = sample->stream_id; 2114 array++; 2115 } 2116 2117 if (type & PERF_SAMPLE_CPU) { 2118 u.val32[0] = sample->cpu; 2119 if (swapped) { 2120 /* 2121 * Inverse of what is done in perf_evsel__parse_sample 2122 */ 2123 u.val32[0] = bswap_32(u.val32[0]); 2124 u.val64 = bswap_64(u.val64); 2125 } 2126 *array = u.val64; 2127 array++; 2128 } 2129 2130 if (type & PERF_SAMPLE_PERIOD) { 2131 *array = sample->period; 2132 array++; 2133 } 2134 2135 if (type & PERF_SAMPLE_READ) { 2136 if (read_format & PERF_FORMAT_GROUP) 2137 *array = sample->read.group.nr; 2138 else 2139 *array = sample->read.one.value; 2140 array++; 2141 2142 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2143 *array = sample->read.time_enabled; 2144 array++; 2145 } 2146 2147 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2148 *array = sample->read.time_running; 2149 array++; 2150 } 2151 2152 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2153 if (read_format & PERF_FORMAT_GROUP) { 2154 sz = sample->read.group.nr * 2155 sizeof(struct sample_read_value); 2156 memcpy(array, sample->read.group.values, sz); 2157 array = (void *)array + sz; 2158 } else { 2159 *array = sample->read.one.id; 2160 array++; 2161 } 2162 } 2163 2164 if (type & PERF_SAMPLE_CALLCHAIN) { 2165 sz = (sample->callchain->nr + 1) * sizeof(u64); 2166 memcpy(array, sample->callchain, sz); 2167 array = (void *)array + sz; 2168 } 2169 2170 if (type & PERF_SAMPLE_RAW) { 2171 u.val32[0] = sample->raw_size; 2172 if (WARN_ONCE(swapped, 2173 "Endianness of raw data not corrected!\n")) { 2174 /* 2175 * Inverse of what is done in perf_evsel__parse_sample 2176 */ 2177 u.val32[0] = bswap_32(u.val32[0]); 2178 u.val32[1] = bswap_32(u.val32[1]); 2179 u.val64 = bswap_64(u.val64); 2180 } 2181 *array = u.val64; 2182 array = (void *)array + sizeof(u32); 2183 2184 memcpy(array, sample->raw_data, sample->raw_size); 2185 array = (void *)array + sample->raw_size; 2186 } 2187 2188 if (type & PERF_SAMPLE_BRANCH_STACK) { 2189 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2190 sz += sizeof(u64); 2191 memcpy(array, sample->branch_stack, sz); 2192 array = (void *)array + sz; 2193 } 2194 2195 if (type & PERF_SAMPLE_REGS_USER) { 2196 if (sample->user_regs.abi) { 2197 *array++ = sample->user_regs.abi; 2198 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2199 memcpy(array, sample->user_regs.regs, sz); 2200 array = (void *)array + sz; 2201 } else { 2202 *array++ = 0; 2203 } 2204 } 2205 2206 if (type & PERF_SAMPLE_STACK_USER) { 2207 sz = sample->user_stack.size; 2208 *array++ = sz; 2209 if (sz) { 2210 memcpy(array, sample->user_stack.data, sz); 2211 array = (void *)array + sz; 2212 *array++ = sz; 2213 } 2214 } 2215 2216 if (type & PERF_SAMPLE_WEIGHT) { 2217 *array = sample->weight; 2218 array++; 2219 } 2220 2221 if (type & PERF_SAMPLE_DATA_SRC) { 2222 *array = sample->data_src; 2223 array++; 2224 } 2225 2226 if (type & PERF_SAMPLE_TRANSACTION) { 2227 *array = sample->transaction; 2228 array++; 2229 } 2230 2231 if (type & PERF_SAMPLE_REGS_INTR) { 2232 if (sample->intr_regs.abi) { 2233 *array++ = sample->intr_regs.abi; 2234 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2235 memcpy(array, sample->intr_regs.regs, sz); 2236 array = (void *)array + sz; 2237 } else { 2238 *array++ = 0; 2239 } 2240 } 2241 2242 return 0; 2243 } 2244 2245 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2246 { 2247 return pevent_find_field(evsel->tp_format, name); 2248 } 2249 2250 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2251 const char *name) 2252 { 2253 struct format_field *field = perf_evsel__field(evsel, name); 2254 int offset; 2255 2256 if (!field) 2257 return NULL; 2258 2259 offset = field->offset; 2260 2261 if (field->flags & FIELD_IS_DYNAMIC) { 2262 offset = *(int *)(sample->raw_data + field->offset); 2263 offset &= 0xffff; 2264 } 2265 2266 return sample->raw_data + offset; 2267 } 2268 2269 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2270 bool needs_swap) 2271 { 2272 u64 value; 2273 void *ptr = sample->raw_data + field->offset; 2274 2275 switch (field->size) { 2276 case 1: 2277 return *(u8 *)ptr; 2278 case 2: 2279 value = *(u16 *)ptr; 2280 break; 2281 case 4: 2282 value = *(u32 *)ptr; 2283 break; 2284 case 8: 2285 memcpy(&value, ptr, sizeof(u64)); 2286 break; 2287 default: 2288 return 0; 2289 } 2290 2291 if (!needs_swap) 2292 return value; 2293 2294 switch (field->size) { 2295 case 2: 2296 return bswap_16(value); 2297 case 4: 2298 return bswap_32(value); 2299 case 8: 2300 return bswap_64(value); 2301 default: 2302 return 0; 2303 } 2304 2305 return 0; 2306 } 2307 2308 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2309 const char *name) 2310 { 2311 struct format_field *field = perf_evsel__field(evsel, name); 2312 2313 if (!field) 2314 return 0; 2315 2316 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2317 } 2318 2319 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2320 char *msg, size_t msgsize) 2321 { 2322 int paranoid; 2323 2324 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2325 evsel->attr.type == PERF_TYPE_HARDWARE && 2326 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2327 /* 2328 * If it's cycles then fall back to hrtimer based 2329 * cpu-clock-tick sw counter, which is always available even if 2330 * no PMU support. 2331 * 2332 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2333 * b0a873e). 2334 */ 2335 scnprintf(msg, msgsize, "%s", 2336 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2337 2338 evsel->attr.type = PERF_TYPE_SOFTWARE; 2339 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2340 2341 zfree(&evsel->name); 2342 return true; 2343 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2344 (paranoid = perf_event_paranoid()) > 1) { 2345 const char *name = perf_evsel__name(evsel); 2346 char *new_name; 2347 2348 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2349 return false; 2350 2351 if (evsel->name) 2352 free(evsel->name); 2353 evsel->name = new_name; 2354 scnprintf(msg, msgsize, 2355 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2356 evsel->attr.exclude_kernel = 1; 2357 2358 return true; 2359 } 2360 2361 return false; 2362 } 2363 2364 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2365 int err, char *msg, size_t size) 2366 { 2367 char sbuf[STRERR_BUFSIZE]; 2368 2369 switch (err) { 2370 case EPERM: 2371 case EACCES: 2372 return scnprintf(msg, size, 2373 "You may not have permission to collect %sstats.\n\n" 2374 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2375 "which controls use of the performance events system by\n" 2376 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2377 "The current value is %d:\n\n" 2378 " -1: Allow use of (almost) all events by all users\n" 2379 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2380 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2381 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN", 2382 target->system_wide ? "system-wide " : "", 2383 perf_event_paranoid()); 2384 case ENOENT: 2385 return scnprintf(msg, size, "The %s event is not supported.", 2386 perf_evsel__name(evsel)); 2387 case EMFILE: 2388 return scnprintf(msg, size, "%s", 2389 "Too many events are opened.\n" 2390 "Probably the maximum number of open file descriptors has been reached.\n" 2391 "Hint: Try again after reducing the number of events.\n" 2392 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2393 case ENOMEM: 2394 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2395 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2396 return scnprintf(msg, size, 2397 "Not enough memory to setup event with callchain.\n" 2398 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2399 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2400 break; 2401 case ENODEV: 2402 if (target->cpu_list) 2403 return scnprintf(msg, size, "%s", 2404 "No such device - did you specify an out-of-range profile CPU?"); 2405 break; 2406 case EOPNOTSUPP: 2407 if (evsel->attr.sample_period != 0) 2408 return scnprintf(msg, size, "%s", 2409 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2410 if (evsel->attr.precise_ip) 2411 return scnprintf(msg, size, "%s", 2412 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2413 #if defined(__i386__) || defined(__x86_64__) 2414 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2415 return scnprintf(msg, size, "%s", 2416 "No hardware sampling interrupt available.\n" 2417 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2418 #endif 2419 break; 2420 case EBUSY: 2421 if (find_process("oprofiled")) 2422 return scnprintf(msg, size, 2423 "The PMU counters are busy/taken by another profiler.\n" 2424 "We found oprofile daemon running, please stop it and try again."); 2425 break; 2426 case EINVAL: 2427 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2428 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2429 if (perf_missing_features.clockid) 2430 return scnprintf(msg, size, "clockid feature not supported."); 2431 if (perf_missing_features.clockid_wrong) 2432 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2433 break; 2434 default: 2435 break; 2436 } 2437 2438 return scnprintf(msg, size, 2439 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2440 "/bin/dmesg may provide additional information.\n" 2441 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2442 err, str_error_r(err, sbuf, sizeof(sbuf)), 2443 perf_evsel__name(evsel)); 2444 } 2445 2446 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2447 { 2448 if (evsel && evsel->evlist && evsel->evlist->env) 2449 return evsel->evlist->env->arch; 2450 return NULL; 2451 } 2452