xref: /linux/tools/perf/util/evsel.c (revision dd7bd1093622621a910cbb6a77c7addeb20c9984)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 	bool write_backward;
41 } perf_missing_features;
42 
43 static clockid_t clockid;
44 
45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 	return 0;
48 }
49 
50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53 
54 static struct {
55 	size_t	size;
56 	int	(*init)(struct perf_evsel *evsel);
57 	void	(*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 	.size = sizeof(struct perf_evsel),
60 	.init = perf_evsel__no_extra_init,
61 	.fini = perf_evsel__no_extra_fini,
62 };
63 
64 int perf_evsel__object_config(size_t object_size,
65 			      int (*init)(struct perf_evsel *evsel),
66 			      void (*fini)(struct perf_evsel *evsel))
67 {
68 
69 	if (object_size == 0)
70 		goto set_methods;
71 
72 	if (perf_evsel__object.size > object_size)
73 		return -EINVAL;
74 
75 	perf_evsel__object.size = object_size;
76 
77 set_methods:
78 	if (init != NULL)
79 		perf_evsel__object.init = init;
80 
81 	if (fini != NULL)
82 		perf_evsel__object.fini = fini;
83 
84 	return 0;
85 }
86 
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88 
89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 	u64 mask = sample_type & PERF_SAMPLE_MASK;
92 	int size = 0;
93 	int i;
94 
95 	for (i = 0; i < 64; i++) {
96 		if (mask & (1ULL << i))
97 			size++;
98 	}
99 
100 	size *= sizeof(u64);
101 
102 	return size;
103 }
104 
105 /**
106  * __perf_evsel__calc_id_pos - calculate id_pos.
107  * @sample_type: sample type
108  *
109  * This function returns the position of the event id (PERF_SAMPLE_ID or
110  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111  * sample_event.
112  */
113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 	int idx = 0;
116 
117 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 		return 0;
119 
120 	if (!(sample_type & PERF_SAMPLE_ID))
121 		return -1;
122 
123 	if (sample_type & PERF_SAMPLE_IP)
124 		idx += 1;
125 
126 	if (sample_type & PERF_SAMPLE_TID)
127 		idx += 1;
128 
129 	if (sample_type & PERF_SAMPLE_TIME)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_ADDR)
133 		idx += 1;
134 
135 	return idx;
136 }
137 
138 /**
139  * __perf_evsel__calc_is_pos - calculate is_pos.
140  * @sample_type: sample type
141  *
142  * This function returns the position (counting backwards) of the event id
143  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144  * sample_id_all is used there is an id sample appended to non-sample events.
145  */
146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 	int idx = 1;
149 
150 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 		return 1;
152 
153 	if (!(sample_type & PERF_SAMPLE_ID))
154 		return -1;
155 
156 	if (sample_type & PERF_SAMPLE_CPU)
157 		idx += 1;
158 
159 	if (sample_type & PERF_SAMPLE_STREAM_ID)
160 		idx += 1;
161 
162 	return idx;
163 }
164 
165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170 
171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 				  enum perf_event_sample_format bit)
173 {
174 	if (!(evsel->attr.sample_type & bit)) {
175 		evsel->attr.sample_type |= bit;
176 		evsel->sample_size += sizeof(u64);
177 		perf_evsel__calc_id_pos(evsel);
178 	}
179 }
180 
181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 				    enum perf_event_sample_format bit)
183 {
184 	if (evsel->attr.sample_type & bit) {
185 		evsel->attr.sample_type &= ~bit;
186 		evsel->sample_size -= sizeof(u64);
187 		perf_evsel__calc_id_pos(evsel);
188 	}
189 }
190 
191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 			       bool can_sample_identifier)
193 {
194 	if (can_sample_identifier) {
195 		perf_evsel__reset_sample_bit(evsel, ID);
196 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 	} else {
198 		perf_evsel__set_sample_bit(evsel, ID);
199 	}
200 	evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202 
203 /**
204  * perf_evsel__is_function_event - Return whether given evsel is a function
205  * trace event
206  *
207  * @evsel - evsel selector to be tested
208  *
209  * Return %true if event is function trace event
210  */
211 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
212 {
213 #define FUNCTION_EVENT "ftrace:function"
214 
215 	return evsel->name &&
216 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
217 
218 #undef FUNCTION_EVENT
219 }
220 
221 void perf_evsel__init(struct perf_evsel *evsel,
222 		      struct perf_event_attr *attr, int idx)
223 {
224 	evsel->idx	   = idx;
225 	evsel->tracking	   = !idx;
226 	evsel->attr	   = *attr;
227 	evsel->leader	   = evsel;
228 	evsel->unit	   = "";
229 	evsel->scale	   = 1.0;
230 	evsel->evlist	   = NULL;
231 	evsel->bpf_fd	   = -1;
232 	INIT_LIST_HEAD(&evsel->node);
233 	INIT_LIST_HEAD(&evsel->config_terms);
234 	perf_evsel__object.init(evsel);
235 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
236 	perf_evsel__calc_id_pos(evsel);
237 	evsel->cmdline_group_boundary = false;
238 }
239 
240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
241 {
242 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 
244 	if (evsel != NULL)
245 		perf_evsel__init(evsel, attr, idx);
246 
247 	if (perf_evsel__is_bpf_output(evsel)) {
248 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
249 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
250 		evsel->attr.sample_period = 1;
251 	}
252 
253 	return evsel;
254 }
255 
256 /*
257  * Returns pointer with encoded error via <linux/err.h> interface.
258  */
259 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
260 {
261 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
262 	int err = -ENOMEM;
263 
264 	if (evsel == NULL) {
265 		goto out_err;
266 	} else {
267 		struct perf_event_attr attr = {
268 			.type	       = PERF_TYPE_TRACEPOINT,
269 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
270 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
271 		};
272 
273 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
274 			goto out_free;
275 
276 		evsel->tp_format = trace_event__tp_format(sys, name);
277 		if (IS_ERR(evsel->tp_format)) {
278 			err = PTR_ERR(evsel->tp_format);
279 			goto out_free;
280 		}
281 
282 		event_attr_init(&attr);
283 		attr.config = evsel->tp_format->id;
284 		attr.sample_period = 1;
285 		perf_evsel__init(evsel, &attr, idx);
286 	}
287 
288 	return evsel;
289 
290 out_free:
291 	zfree(&evsel->name);
292 	free(evsel);
293 out_err:
294 	return ERR_PTR(err);
295 }
296 
297 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
298 	"cycles",
299 	"instructions",
300 	"cache-references",
301 	"cache-misses",
302 	"branches",
303 	"branch-misses",
304 	"bus-cycles",
305 	"stalled-cycles-frontend",
306 	"stalled-cycles-backend",
307 	"ref-cycles",
308 };
309 
310 static const char *__perf_evsel__hw_name(u64 config)
311 {
312 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
313 		return perf_evsel__hw_names[config];
314 
315 	return "unknown-hardware";
316 }
317 
318 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
319 {
320 	int colon = 0, r = 0;
321 	struct perf_event_attr *attr = &evsel->attr;
322 	bool exclude_guest_default = false;
323 
324 #define MOD_PRINT(context, mod)	do {					\
325 		if (!attr->exclude_##context) {				\
326 			if (!colon) colon = ++r;			\
327 			r += scnprintf(bf + r, size - r, "%c", mod);	\
328 		} } while(0)
329 
330 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
331 		MOD_PRINT(kernel, 'k');
332 		MOD_PRINT(user, 'u');
333 		MOD_PRINT(hv, 'h');
334 		exclude_guest_default = true;
335 	}
336 
337 	if (attr->precise_ip) {
338 		if (!colon)
339 			colon = ++r;
340 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
341 		exclude_guest_default = true;
342 	}
343 
344 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
345 		MOD_PRINT(host, 'H');
346 		MOD_PRINT(guest, 'G');
347 	}
348 #undef MOD_PRINT
349 	if (colon)
350 		bf[colon - 1] = ':';
351 	return r;
352 }
353 
354 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
355 {
356 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
357 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
358 }
359 
360 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
361 	"cpu-clock",
362 	"task-clock",
363 	"page-faults",
364 	"context-switches",
365 	"cpu-migrations",
366 	"minor-faults",
367 	"major-faults",
368 	"alignment-faults",
369 	"emulation-faults",
370 	"dummy",
371 };
372 
373 static const char *__perf_evsel__sw_name(u64 config)
374 {
375 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
376 		return perf_evsel__sw_names[config];
377 	return "unknown-software";
378 }
379 
380 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
381 {
382 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
383 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
384 }
385 
386 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
387 {
388 	int r;
389 
390 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
391 
392 	if (type & HW_BREAKPOINT_R)
393 		r += scnprintf(bf + r, size - r, "r");
394 
395 	if (type & HW_BREAKPOINT_W)
396 		r += scnprintf(bf + r, size - r, "w");
397 
398 	if (type & HW_BREAKPOINT_X)
399 		r += scnprintf(bf + r, size - r, "x");
400 
401 	return r;
402 }
403 
404 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
405 {
406 	struct perf_event_attr *attr = &evsel->attr;
407 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
408 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
409 }
410 
411 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
412 				[PERF_EVSEL__MAX_ALIASES] = {
413  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
414  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
415  { "LLC",	"L2",							},
416  { "dTLB",	"d-tlb",	"Data-TLB",				},
417  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
418  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
419  { "node",								},
420 };
421 
422 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
423 				   [PERF_EVSEL__MAX_ALIASES] = {
424  { "load",	"loads",	"read",					},
425  { "store",	"stores",	"write",				},
426  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
427 };
428 
429 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
430 				       [PERF_EVSEL__MAX_ALIASES] = {
431  { "refs",	"Reference",	"ops",		"access",		},
432  { "misses",	"miss",							},
433 };
434 
435 #define C(x)		PERF_COUNT_HW_CACHE_##x
436 #define CACHE_READ	(1 << C(OP_READ))
437 #define CACHE_WRITE	(1 << C(OP_WRITE))
438 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
439 #define COP(x)		(1 << x)
440 
441 /*
442  * cache operartion stat
443  * L1I : Read and prefetch only
444  * ITLB and BPU : Read-only
445  */
446 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
447  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
448  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
449  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
450  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
451  [C(ITLB)]	= (CACHE_READ),
452  [C(BPU)]	= (CACHE_READ),
453  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
454 };
455 
456 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
457 {
458 	if (perf_evsel__hw_cache_stat[type] & COP(op))
459 		return true;	/* valid */
460 	else
461 		return false;	/* invalid */
462 }
463 
464 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
465 					    char *bf, size_t size)
466 {
467 	if (result) {
468 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
469 				 perf_evsel__hw_cache_op[op][0],
470 				 perf_evsel__hw_cache_result[result][0]);
471 	}
472 
473 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
474 			 perf_evsel__hw_cache_op[op][1]);
475 }
476 
477 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
478 {
479 	u8 op, result, type = (config >>  0) & 0xff;
480 	const char *err = "unknown-ext-hardware-cache-type";
481 
482 	if (type > PERF_COUNT_HW_CACHE_MAX)
483 		goto out_err;
484 
485 	op = (config >>  8) & 0xff;
486 	err = "unknown-ext-hardware-cache-op";
487 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
488 		goto out_err;
489 
490 	result = (config >> 16) & 0xff;
491 	err = "unknown-ext-hardware-cache-result";
492 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
493 		goto out_err;
494 
495 	err = "invalid-cache";
496 	if (!perf_evsel__is_cache_op_valid(type, op))
497 		goto out_err;
498 
499 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
500 out_err:
501 	return scnprintf(bf, size, "%s", err);
502 }
503 
504 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
505 {
506 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
507 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
508 }
509 
510 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
511 {
512 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
513 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
514 }
515 
516 const char *perf_evsel__name(struct perf_evsel *evsel)
517 {
518 	char bf[128];
519 
520 	if (evsel->name)
521 		return evsel->name;
522 
523 	switch (evsel->attr.type) {
524 	case PERF_TYPE_RAW:
525 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
526 		break;
527 
528 	case PERF_TYPE_HARDWARE:
529 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
530 		break;
531 
532 	case PERF_TYPE_HW_CACHE:
533 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
534 		break;
535 
536 	case PERF_TYPE_SOFTWARE:
537 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
538 		break;
539 
540 	case PERF_TYPE_TRACEPOINT:
541 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
542 		break;
543 
544 	case PERF_TYPE_BREAKPOINT:
545 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
546 		break;
547 
548 	default:
549 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
550 			  evsel->attr.type);
551 		break;
552 	}
553 
554 	evsel->name = strdup(bf);
555 
556 	return evsel->name ?: "unknown";
557 }
558 
559 const char *perf_evsel__group_name(struct perf_evsel *evsel)
560 {
561 	return evsel->group_name ?: "anon group";
562 }
563 
564 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
565 {
566 	int ret;
567 	struct perf_evsel *pos;
568 	const char *group_name = perf_evsel__group_name(evsel);
569 
570 	ret = scnprintf(buf, size, "%s", group_name);
571 
572 	ret += scnprintf(buf + ret, size - ret, " { %s",
573 			 perf_evsel__name(evsel));
574 
575 	for_each_group_member(pos, evsel)
576 		ret += scnprintf(buf + ret, size - ret, ", %s",
577 				 perf_evsel__name(pos));
578 
579 	ret += scnprintf(buf + ret, size - ret, " }");
580 
581 	return ret;
582 }
583 
584 void perf_evsel__config_callchain(struct perf_evsel *evsel,
585 				  struct record_opts *opts,
586 				  struct callchain_param *param)
587 {
588 	bool function = perf_evsel__is_function_event(evsel);
589 	struct perf_event_attr *attr = &evsel->attr;
590 
591 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
592 
593 	attr->sample_max_stack = param->max_stack;
594 
595 	if (param->record_mode == CALLCHAIN_LBR) {
596 		if (!opts->branch_stack) {
597 			if (attr->exclude_user) {
598 				pr_warning("LBR callstack option is only available "
599 					   "to get user callchain information. "
600 					   "Falling back to framepointers.\n");
601 			} else {
602 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
603 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
604 							PERF_SAMPLE_BRANCH_CALL_STACK |
605 							PERF_SAMPLE_BRANCH_NO_CYCLES |
606 							PERF_SAMPLE_BRANCH_NO_FLAGS;
607 			}
608 		} else
609 			 pr_warning("Cannot use LBR callstack with branch stack. "
610 				    "Falling back to framepointers.\n");
611 	}
612 
613 	if (param->record_mode == CALLCHAIN_DWARF) {
614 		if (!function) {
615 			perf_evsel__set_sample_bit(evsel, REGS_USER);
616 			perf_evsel__set_sample_bit(evsel, STACK_USER);
617 			attr->sample_regs_user = PERF_REGS_MASK;
618 			attr->sample_stack_user = param->dump_size;
619 			attr->exclude_callchain_user = 1;
620 		} else {
621 			pr_info("Cannot use DWARF unwind for function trace event,"
622 				" falling back to framepointers.\n");
623 		}
624 	}
625 
626 	if (function) {
627 		pr_info("Disabling user space callchains for function trace event.\n");
628 		attr->exclude_callchain_user = 1;
629 	}
630 }
631 
632 static void
633 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
634 			    struct callchain_param *param)
635 {
636 	struct perf_event_attr *attr = &evsel->attr;
637 
638 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
639 	if (param->record_mode == CALLCHAIN_LBR) {
640 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
641 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
642 					      PERF_SAMPLE_BRANCH_CALL_STACK);
643 	}
644 	if (param->record_mode == CALLCHAIN_DWARF) {
645 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
646 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
647 	}
648 }
649 
650 static void apply_config_terms(struct perf_evsel *evsel,
651 			       struct record_opts *opts)
652 {
653 	struct perf_evsel_config_term *term;
654 	struct list_head *config_terms = &evsel->config_terms;
655 	struct perf_event_attr *attr = &evsel->attr;
656 	struct callchain_param param;
657 	u32 dump_size = 0;
658 	int max_stack = 0;
659 	const char *callgraph_buf = NULL;
660 
661 	/* callgraph default */
662 	param.record_mode = callchain_param.record_mode;
663 
664 	list_for_each_entry(term, config_terms, list) {
665 		switch (term->type) {
666 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
667 			attr->sample_period = term->val.period;
668 			attr->freq = 0;
669 			break;
670 		case PERF_EVSEL__CONFIG_TERM_FREQ:
671 			attr->sample_freq = term->val.freq;
672 			attr->freq = 1;
673 			break;
674 		case PERF_EVSEL__CONFIG_TERM_TIME:
675 			if (term->val.time)
676 				perf_evsel__set_sample_bit(evsel, TIME);
677 			else
678 				perf_evsel__reset_sample_bit(evsel, TIME);
679 			break;
680 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
681 			callgraph_buf = term->val.callgraph;
682 			break;
683 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
684 			dump_size = term->val.stack_user;
685 			break;
686 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
687 			max_stack = term->val.max_stack;
688 			break;
689 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
690 			/*
691 			 * attr->inherit should has already been set by
692 			 * perf_evsel__config. If user explicitly set
693 			 * inherit using config terms, override global
694 			 * opt->no_inherit setting.
695 			 */
696 			attr->inherit = term->val.inherit ? 1 : 0;
697 			break;
698 		default:
699 			break;
700 		}
701 	}
702 
703 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
704 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
705 		if (max_stack) {
706 			param.max_stack = max_stack;
707 			if (callgraph_buf == NULL)
708 				callgraph_buf = "fp";
709 		}
710 
711 		/* parse callgraph parameters */
712 		if (callgraph_buf != NULL) {
713 			if (!strcmp(callgraph_buf, "no")) {
714 				param.enabled = false;
715 				param.record_mode = CALLCHAIN_NONE;
716 			} else {
717 				param.enabled = true;
718 				if (parse_callchain_record(callgraph_buf, &param)) {
719 					pr_err("per-event callgraph setting for %s failed. "
720 					       "Apply callgraph global setting for it\n",
721 					       evsel->name);
722 					return;
723 				}
724 			}
725 		}
726 		if (dump_size > 0) {
727 			dump_size = round_up(dump_size, sizeof(u64));
728 			param.dump_size = dump_size;
729 		}
730 
731 		/* If global callgraph set, clear it */
732 		if (callchain_param.enabled)
733 			perf_evsel__reset_callgraph(evsel, &callchain_param);
734 
735 		/* set perf-event callgraph */
736 		if (param.enabled)
737 			perf_evsel__config_callchain(evsel, opts, &param);
738 	}
739 }
740 
741 /*
742  * The enable_on_exec/disabled value strategy:
743  *
744  *  1) For any type of traced program:
745  *    - all independent events and group leaders are disabled
746  *    - all group members are enabled
747  *
748  *     Group members are ruled by group leaders. They need to
749  *     be enabled, because the group scheduling relies on that.
750  *
751  *  2) For traced programs executed by perf:
752  *     - all independent events and group leaders have
753  *       enable_on_exec set
754  *     - we don't specifically enable or disable any event during
755  *       the record command
756  *
757  *     Independent events and group leaders are initially disabled
758  *     and get enabled by exec. Group members are ruled by group
759  *     leaders as stated in 1).
760  *
761  *  3) For traced programs attached by perf (pid/tid):
762  *     - we specifically enable or disable all events during
763  *       the record command
764  *
765  *     When attaching events to already running traced we
766  *     enable/disable events specifically, as there's no
767  *     initial traced exec call.
768  */
769 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
770 			struct callchain_param *callchain)
771 {
772 	struct perf_evsel *leader = evsel->leader;
773 	struct perf_event_attr *attr = &evsel->attr;
774 	int track = evsel->tracking;
775 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
776 
777 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
778 	attr->inherit	    = !opts->no_inherit;
779 
780 	perf_evsel__set_sample_bit(evsel, IP);
781 	perf_evsel__set_sample_bit(evsel, TID);
782 
783 	if (evsel->sample_read) {
784 		perf_evsel__set_sample_bit(evsel, READ);
785 
786 		/*
787 		 * We need ID even in case of single event, because
788 		 * PERF_SAMPLE_READ process ID specific data.
789 		 */
790 		perf_evsel__set_sample_id(evsel, false);
791 
792 		/*
793 		 * Apply group format only if we belong to group
794 		 * with more than one members.
795 		 */
796 		if (leader->nr_members > 1) {
797 			attr->read_format |= PERF_FORMAT_GROUP;
798 			attr->inherit = 0;
799 		}
800 	}
801 
802 	/*
803 	 * We default some events to have a default interval. But keep
804 	 * it a weak assumption overridable by the user.
805 	 */
806 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
807 				     opts->user_interval != ULLONG_MAX)) {
808 		if (opts->freq) {
809 			perf_evsel__set_sample_bit(evsel, PERIOD);
810 			attr->freq		= 1;
811 			attr->sample_freq	= opts->freq;
812 		} else {
813 			attr->sample_period = opts->default_interval;
814 		}
815 	}
816 
817 	/*
818 	 * Disable sampling for all group members other
819 	 * than leader in case leader 'leads' the sampling.
820 	 */
821 	if ((leader != evsel) && leader->sample_read) {
822 		attr->sample_freq   = 0;
823 		attr->sample_period = 0;
824 	}
825 
826 	if (opts->no_samples)
827 		attr->sample_freq = 0;
828 
829 	if (opts->inherit_stat)
830 		attr->inherit_stat = 1;
831 
832 	if (opts->sample_address) {
833 		perf_evsel__set_sample_bit(evsel, ADDR);
834 		attr->mmap_data = track;
835 	}
836 
837 	/*
838 	 * We don't allow user space callchains for  function trace
839 	 * event, due to issues with page faults while tracing page
840 	 * fault handler and its overall trickiness nature.
841 	 */
842 	if (perf_evsel__is_function_event(evsel))
843 		evsel->attr.exclude_callchain_user = 1;
844 
845 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
846 		perf_evsel__config_callchain(evsel, opts, callchain);
847 
848 	if (opts->sample_intr_regs) {
849 		attr->sample_regs_intr = opts->sample_intr_regs;
850 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
851 	}
852 
853 	if (target__has_cpu(&opts->target))
854 		perf_evsel__set_sample_bit(evsel, CPU);
855 
856 	if (opts->period)
857 		perf_evsel__set_sample_bit(evsel, PERIOD);
858 
859 	/*
860 	 * When the user explicitly disabled time don't force it here.
861 	 */
862 	if (opts->sample_time &&
863 	    (!perf_missing_features.sample_id_all &&
864 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
865 	     opts->sample_time_set)))
866 		perf_evsel__set_sample_bit(evsel, TIME);
867 
868 	if (opts->raw_samples && !evsel->no_aux_samples) {
869 		perf_evsel__set_sample_bit(evsel, TIME);
870 		perf_evsel__set_sample_bit(evsel, RAW);
871 		perf_evsel__set_sample_bit(evsel, CPU);
872 	}
873 
874 	if (opts->sample_address)
875 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
876 
877 	if (opts->no_buffering) {
878 		attr->watermark = 0;
879 		attr->wakeup_events = 1;
880 	}
881 	if (opts->branch_stack && !evsel->no_aux_samples) {
882 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
883 		attr->branch_sample_type = opts->branch_stack;
884 	}
885 
886 	if (opts->sample_weight)
887 		perf_evsel__set_sample_bit(evsel, WEIGHT);
888 
889 	attr->task  = track;
890 	attr->mmap  = track;
891 	attr->mmap2 = track && !perf_missing_features.mmap2;
892 	attr->comm  = track;
893 
894 	if (opts->record_switch_events)
895 		attr->context_switch = track;
896 
897 	if (opts->sample_transaction)
898 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
899 
900 	if (opts->running_time) {
901 		evsel->attr.read_format |=
902 			PERF_FORMAT_TOTAL_TIME_ENABLED |
903 			PERF_FORMAT_TOTAL_TIME_RUNNING;
904 	}
905 
906 	/*
907 	 * XXX see the function comment above
908 	 *
909 	 * Disabling only independent events or group leaders,
910 	 * keeping group members enabled.
911 	 */
912 	if (perf_evsel__is_group_leader(evsel))
913 		attr->disabled = 1;
914 
915 	/*
916 	 * Setting enable_on_exec for independent events and
917 	 * group leaders for traced executed by perf.
918 	 */
919 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
920 		!opts->initial_delay)
921 		attr->enable_on_exec = 1;
922 
923 	if (evsel->immediate) {
924 		attr->disabled = 0;
925 		attr->enable_on_exec = 0;
926 	}
927 
928 	clockid = opts->clockid;
929 	if (opts->use_clockid) {
930 		attr->use_clockid = 1;
931 		attr->clockid = opts->clockid;
932 	}
933 
934 	if (evsel->precise_max)
935 		perf_event_attr__set_max_precise_ip(attr);
936 
937 	if (opts->all_user) {
938 		attr->exclude_kernel = 1;
939 		attr->exclude_user   = 0;
940 	}
941 
942 	if (opts->all_kernel) {
943 		attr->exclude_kernel = 0;
944 		attr->exclude_user   = 1;
945 	}
946 
947 	/*
948 	 * Apply event specific term settings,
949 	 * it overloads any global configuration.
950 	 */
951 	apply_config_terms(evsel, opts);
952 }
953 
954 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
955 {
956 	int cpu, thread;
957 
958 	if (evsel->system_wide)
959 		nthreads = 1;
960 
961 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
962 
963 	if (evsel->fd) {
964 		for (cpu = 0; cpu < ncpus; cpu++) {
965 			for (thread = 0; thread < nthreads; thread++) {
966 				FD(evsel, cpu, thread) = -1;
967 			}
968 		}
969 	}
970 
971 	return evsel->fd != NULL ? 0 : -ENOMEM;
972 }
973 
974 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
975 			  int ioc,  void *arg)
976 {
977 	int cpu, thread;
978 
979 	if (evsel->system_wide)
980 		nthreads = 1;
981 
982 	for (cpu = 0; cpu < ncpus; cpu++) {
983 		for (thread = 0; thread < nthreads; thread++) {
984 			int fd = FD(evsel, cpu, thread),
985 			    err = ioctl(fd, ioc, arg);
986 
987 			if (err)
988 				return err;
989 		}
990 	}
991 
992 	return 0;
993 }
994 
995 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
996 			     const char *filter)
997 {
998 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
999 				     PERF_EVENT_IOC_SET_FILTER,
1000 				     (void *)filter);
1001 }
1002 
1003 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1004 {
1005 	char *new_filter = strdup(filter);
1006 
1007 	if (new_filter != NULL) {
1008 		free(evsel->filter);
1009 		evsel->filter = new_filter;
1010 		return 0;
1011 	}
1012 
1013 	return -1;
1014 }
1015 
1016 int perf_evsel__append_filter(struct perf_evsel *evsel,
1017 			      const char *op, const char *filter)
1018 {
1019 	char *new_filter;
1020 
1021 	if (evsel->filter == NULL)
1022 		return perf_evsel__set_filter(evsel, filter);
1023 
1024 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
1025 		free(evsel->filter);
1026 		evsel->filter = new_filter;
1027 		return 0;
1028 	}
1029 
1030 	return -1;
1031 }
1032 
1033 int perf_evsel__enable(struct perf_evsel *evsel)
1034 {
1035 	int nthreads = thread_map__nr(evsel->threads);
1036 	int ncpus = cpu_map__nr(evsel->cpus);
1037 
1038 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1039 				     PERF_EVENT_IOC_ENABLE,
1040 				     0);
1041 }
1042 
1043 int perf_evsel__disable(struct perf_evsel *evsel)
1044 {
1045 	int nthreads = thread_map__nr(evsel->threads);
1046 	int ncpus = cpu_map__nr(evsel->cpus);
1047 
1048 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1049 				     PERF_EVENT_IOC_DISABLE,
1050 				     0);
1051 }
1052 
1053 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1054 {
1055 	if (ncpus == 0 || nthreads == 0)
1056 		return 0;
1057 
1058 	if (evsel->system_wide)
1059 		nthreads = 1;
1060 
1061 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1062 	if (evsel->sample_id == NULL)
1063 		return -ENOMEM;
1064 
1065 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1066 	if (evsel->id == NULL) {
1067 		xyarray__delete(evsel->sample_id);
1068 		evsel->sample_id = NULL;
1069 		return -ENOMEM;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1076 {
1077 	xyarray__delete(evsel->fd);
1078 	evsel->fd = NULL;
1079 }
1080 
1081 static void perf_evsel__free_id(struct perf_evsel *evsel)
1082 {
1083 	xyarray__delete(evsel->sample_id);
1084 	evsel->sample_id = NULL;
1085 	zfree(&evsel->id);
1086 }
1087 
1088 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1089 {
1090 	struct perf_evsel_config_term *term, *h;
1091 
1092 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1093 		list_del(&term->list);
1094 		free(term);
1095 	}
1096 }
1097 
1098 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1099 {
1100 	int cpu, thread;
1101 
1102 	if (evsel->system_wide)
1103 		nthreads = 1;
1104 
1105 	for (cpu = 0; cpu < ncpus; cpu++)
1106 		for (thread = 0; thread < nthreads; ++thread) {
1107 			close(FD(evsel, cpu, thread));
1108 			FD(evsel, cpu, thread) = -1;
1109 		}
1110 }
1111 
1112 void perf_evsel__exit(struct perf_evsel *evsel)
1113 {
1114 	assert(list_empty(&evsel->node));
1115 	assert(evsel->evlist == NULL);
1116 	perf_evsel__free_fd(evsel);
1117 	perf_evsel__free_id(evsel);
1118 	perf_evsel__free_config_terms(evsel);
1119 	close_cgroup(evsel->cgrp);
1120 	cpu_map__put(evsel->cpus);
1121 	cpu_map__put(evsel->own_cpus);
1122 	thread_map__put(evsel->threads);
1123 	zfree(&evsel->group_name);
1124 	zfree(&evsel->name);
1125 	perf_evsel__object.fini(evsel);
1126 }
1127 
1128 void perf_evsel__delete(struct perf_evsel *evsel)
1129 {
1130 	perf_evsel__exit(evsel);
1131 	free(evsel);
1132 }
1133 
1134 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1135 				struct perf_counts_values *count)
1136 {
1137 	struct perf_counts_values tmp;
1138 
1139 	if (!evsel->prev_raw_counts)
1140 		return;
1141 
1142 	if (cpu == -1) {
1143 		tmp = evsel->prev_raw_counts->aggr;
1144 		evsel->prev_raw_counts->aggr = *count;
1145 	} else {
1146 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1147 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1148 	}
1149 
1150 	count->val = count->val - tmp.val;
1151 	count->ena = count->ena - tmp.ena;
1152 	count->run = count->run - tmp.run;
1153 }
1154 
1155 void perf_counts_values__scale(struct perf_counts_values *count,
1156 			       bool scale, s8 *pscaled)
1157 {
1158 	s8 scaled = 0;
1159 
1160 	if (scale) {
1161 		if (count->run == 0) {
1162 			scaled = -1;
1163 			count->val = 0;
1164 		} else if (count->run < count->ena) {
1165 			scaled = 1;
1166 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1167 		}
1168 	} else
1169 		count->ena = count->run = 0;
1170 
1171 	if (pscaled)
1172 		*pscaled = scaled;
1173 }
1174 
1175 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1176 		     struct perf_counts_values *count)
1177 {
1178 	memset(count, 0, sizeof(*count));
1179 
1180 	if (FD(evsel, cpu, thread) < 0)
1181 		return -EINVAL;
1182 
1183 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1184 		return -errno;
1185 
1186 	return 0;
1187 }
1188 
1189 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1190 			      int cpu, int thread, bool scale)
1191 {
1192 	struct perf_counts_values count;
1193 	size_t nv = scale ? 3 : 1;
1194 
1195 	if (FD(evsel, cpu, thread) < 0)
1196 		return -EINVAL;
1197 
1198 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1199 		return -ENOMEM;
1200 
1201 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1202 		return -errno;
1203 
1204 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1205 	perf_counts_values__scale(&count, scale, NULL);
1206 	*perf_counts(evsel->counts, cpu, thread) = count;
1207 	return 0;
1208 }
1209 
1210 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1211 {
1212 	struct perf_evsel *leader = evsel->leader;
1213 	int fd;
1214 
1215 	if (perf_evsel__is_group_leader(evsel))
1216 		return -1;
1217 
1218 	/*
1219 	 * Leader must be already processed/open,
1220 	 * if not it's a bug.
1221 	 */
1222 	BUG_ON(!leader->fd);
1223 
1224 	fd = FD(leader, cpu, thread);
1225 	BUG_ON(fd == -1);
1226 
1227 	return fd;
1228 }
1229 
1230 struct bit_names {
1231 	int bit;
1232 	const char *name;
1233 };
1234 
1235 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1236 {
1237 	bool first_bit = true;
1238 	int i = 0;
1239 
1240 	do {
1241 		if (value & bits[i].bit) {
1242 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1243 			first_bit = false;
1244 		}
1245 	} while (bits[++i].name != NULL);
1246 }
1247 
1248 static void __p_sample_type(char *buf, size_t size, u64 value)
1249 {
1250 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1251 	struct bit_names bits[] = {
1252 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1253 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1254 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1255 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1256 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1257 		bit_name(WEIGHT),
1258 		{ .name = NULL, }
1259 	};
1260 #undef bit_name
1261 	__p_bits(buf, size, value, bits);
1262 }
1263 
1264 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1265 {
1266 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1267 	struct bit_names bits[] = {
1268 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1269 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1270 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1271 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1272 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1273 		{ .name = NULL, }
1274 	};
1275 #undef bit_name
1276 	__p_bits(buf, size, value, bits);
1277 }
1278 
1279 static void __p_read_format(char *buf, size_t size, u64 value)
1280 {
1281 #define bit_name(n) { PERF_FORMAT_##n, #n }
1282 	struct bit_names bits[] = {
1283 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1284 		bit_name(ID), bit_name(GROUP),
1285 		{ .name = NULL, }
1286 	};
1287 #undef bit_name
1288 	__p_bits(buf, size, value, bits);
1289 }
1290 
1291 #define BUF_SIZE		1024
1292 
1293 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1294 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1295 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1296 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1297 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1298 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1299 
1300 #define PRINT_ATTRn(_n, _f, _p)				\
1301 do {							\
1302 	if (attr->_f) {					\
1303 		_p(attr->_f);				\
1304 		ret += attr__fprintf(fp, _n, buf, priv);\
1305 	}						\
1306 } while (0)
1307 
1308 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1309 
1310 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1311 			     attr__fprintf_f attr__fprintf, void *priv)
1312 {
1313 	char buf[BUF_SIZE];
1314 	int ret = 0;
1315 
1316 	PRINT_ATTRf(type, p_unsigned);
1317 	PRINT_ATTRf(size, p_unsigned);
1318 	PRINT_ATTRf(config, p_hex);
1319 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1320 	PRINT_ATTRf(sample_type, p_sample_type);
1321 	PRINT_ATTRf(read_format, p_read_format);
1322 
1323 	PRINT_ATTRf(disabled, p_unsigned);
1324 	PRINT_ATTRf(inherit, p_unsigned);
1325 	PRINT_ATTRf(pinned, p_unsigned);
1326 	PRINT_ATTRf(exclusive, p_unsigned);
1327 	PRINT_ATTRf(exclude_user, p_unsigned);
1328 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1329 	PRINT_ATTRf(exclude_hv, p_unsigned);
1330 	PRINT_ATTRf(exclude_idle, p_unsigned);
1331 	PRINT_ATTRf(mmap, p_unsigned);
1332 	PRINT_ATTRf(comm, p_unsigned);
1333 	PRINT_ATTRf(freq, p_unsigned);
1334 	PRINT_ATTRf(inherit_stat, p_unsigned);
1335 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1336 	PRINT_ATTRf(task, p_unsigned);
1337 	PRINT_ATTRf(watermark, p_unsigned);
1338 	PRINT_ATTRf(precise_ip, p_unsigned);
1339 	PRINT_ATTRf(mmap_data, p_unsigned);
1340 	PRINT_ATTRf(sample_id_all, p_unsigned);
1341 	PRINT_ATTRf(exclude_host, p_unsigned);
1342 	PRINT_ATTRf(exclude_guest, p_unsigned);
1343 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1344 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1345 	PRINT_ATTRf(mmap2, p_unsigned);
1346 	PRINT_ATTRf(comm_exec, p_unsigned);
1347 	PRINT_ATTRf(use_clockid, p_unsigned);
1348 	PRINT_ATTRf(context_switch, p_unsigned);
1349 	PRINT_ATTRf(write_backward, p_unsigned);
1350 
1351 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1352 	PRINT_ATTRf(bp_type, p_unsigned);
1353 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1354 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1355 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1356 	PRINT_ATTRf(sample_regs_user, p_hex);
1357 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1358 	PRINT_ATTRf(clockid, p_signed);
1359 	PRINT_ATTRf(sample_regs_intr, p_hex);
1360 	PRINT_ATTRf(aux_watermark, p_unsigned);
1361 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1362 
1363 	return ret;
1364 }
1365 
1366 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1367 				void *priv __attribute__((unused)))
1368 {
1369 	return fprintf(fp, "  %-32s %s\n", name, val);
1370 }
1371 
1372 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1373 			      struct thread_map *threads)
1374 {
1375 	int cpu, thread, nthreads;
1376 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1377 	int pid = -1, err;
1378 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1379 
1380 	if (evsel->system_wide)
1381 		nthreads = 1;
1382 	else
1383 		nthreads = threads->nr;
1384 
1385 	if (evsel->fd == NULL &&
1386 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1387 		return -ENOMEM;
1388 
1389 	if (evsel->cgrp) {
1390 		flags |= PERF_FLAG_PID_CGROUP;
1391 		pid = evsel->cgrp->fd;
1392 	}
1393 
1394 fallback_missing_features:
1395 	if (perf_missing_features.clockid_wrong)
1396 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1397 	if (perf_missing_features.clockid) {
1398 		evsel->attr.use_clockid = 0;
1399 		evsel->attr.clockid = 0;
1400 	}
1401 	if (perf_missing_features.cloexec)
1402 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1403 	if (perf_missing_features.mmap2)
1404 		evsel->attr.mmap2 = 0;
1405 	if (perf_missing_features.exclude_guest)
1406 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1407 	if (perf_missing_features.lbr_flags)
1408 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1409 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1410 	if (perf_missing_features.write_backward) {
1411 		if (evsel->overwrite)
1412 			return -EINVAL;
1413 		evsel->attr.write_backward = false;
1414 	}
1415 retry_sample_id:
1416 	if (perf_missing_features.sample_id_all)
1417 		evsel->attr.sample_id_all = 0;
1418 
1419 	if (verbose >= 2) {
1420 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1421 		fprintf(stderr, "perf_event_attr:\n");
1422 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1423 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1424 	}
1425 
1426 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1427 
1428 		for (thread = 0; thread < nthreads; thread++) {
1429 			int group_fd;
1430 
1431 			if (!evsel->cgrp && !evsel->system_wide)
1432 				pid = thread_map__pid(threads, thread);
1433 
1434 			group_fd = get_group_fd(evsel, cpu, thread);
1435 retry_open:
1436 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1437 				  pid, cpus->map[cpu], group_fd, flags);
1438 
1439 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1440 								     pid,
1441 								     cpus->map[cpu],
1442 								     group_fd, flags);
1443 			if (FD(evsel, cpu, thread) < 0) {
1444 				err = -errno;
1445 				pr_debug2("sys_perf_event_open failed, error %d\n",
1446 					  err);
1447 				goto try_fallback;
1448 			}
1449 
1450 			if (evsel->bpf_fd >= 0) {
1451 				int evt_fd = FD(evsel, cpu, thread);
1452 				int bpf_fd = evsel->bpf_fd;
1453 
1454 				err = ioctl(evt_fd,
1455 					    PERF_EVENT_IOC_SET_BPF,
1456 					    bpf_fd);
1457 				if (err && errno != EEXIST) {
1458 					pr_err("failed to attach bpf fd %d: %s\n",
1459 					       bpf_fd, strerror(errno));
1460 					err = -EINVAL;
1461 					goto out_close;
1462 				}
1463 			}
1464 
1465 			set_rlimit = NO_CHANGE;
1466 
1467 			/*
1468 			 * If we succeeded but had to kill clockid, fail and
1469 			 * have perf_evsel__open_strerror() print us a nice
1470 			 * error.
1471 			 */
1472 			if (perf_missing_features.clockid ||
1473 			    perf_missing_features.clockid_wrong) {
1474 				err = -EINVAL;
1475 				goto out_close;
1476 			}
1477 		}
1478 	}
1479 
1480 	return 0;
1481 
1482 try_fallback:
1483 	/*
1484 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1485 	 * of them try to increase the limits.
1486 	 */
1487 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1488 		struct rlimit l;
1489 		int old_errno = errno;
1490 
1491 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1492 			if (set_rlimit == NO_CHANGE)
1493 				l.rlim_cur = l.rlim_max;
1494 			else {
1495 				l.rlim_cur = l.rlim_max + 1000;
1496 				l.rlim_max = l.rlim_cur;
1497 			}
1498 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1499 				set_rlimit++;
1500 				errno = old_errno;
1501 				goto retry_open;
1502 			}
1503 		}
1504 		errno = old_errno;
1505 	}
1506 
1507 	if (err != -EINVAL || cpu > 0 || thread > 0)
1508 		goto out_close;
1509 
1510 	/*
1511 	 * Must probe features in the order they were added to the
1512 	 * perf_event_attr interface.
1513 	 */
1514 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1515 		perf_missing_features.write_backward = true;
1516 		goto fallback_missing_features;
1517 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1518 		perf_missing_features.clockid_wrong = true;
1519 		goto fallback_missing_features;
1520 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1521 		perf_missing_features.clockid = true;
1522 		goto fallback_missing_features;
1523 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1524 		perf_missing_features.cloexec = true;
1525 		goto fallback_missing_features;
1526 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1527 		perf_missing_features.mmap2 = true;
1528 		goto fallback_missing_features;
1529 	} else if (!perf_missing_features.exclude_guest &&
1530 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1531 		perf_missing_features.exclude_guest = true;
1532 		goto fallback_missing_features;
1533 	} else if (!perf_missing_features.sample_id_all) {
1534 		perf_missing_features.sample_id_all = true;
1535 		goto retry_sample_id;
1536 	} else if (!perf_missing_features.lbr_flags &&
1537 			(evsel->attr.branch_sample_type &
1538 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1539 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1540 		perf_missing_features.lbr_flags = true;
1541 		goto fallback_missing_features;
1542 	}
1543 out_close:
1544 	do {
1545 		while (--thread >= 0) {
1546 			close(FD(evsel, cpu, thread));
1547 			FD(evsel, cpu, thread) = -1;
1548 		}
1549 		thread = nthreads;
1550 	} while (--cpu >= 0);
1551 	return err;
1552 }
1553 
1554 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1555 {
1556 	if (evsel->fd == NULL)
1557 		return;
1558 
1559 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1560 	perf_evsel__free_fd(evsel);
1561 }
1562 
1563 static struct {
1564 	struct cpu_map map;
1565 	int cpus[1];
1566 } empty_cpu_map = {
1567 	.map.nr	= 1,
1568 	.cpus	= { -1, },
1569 };
1570 
1571 static struct {
1572 	struct thread_map map;
1573 	int threads[1];
1574 } empty_thread_map = {
1575 	.map.nr	 = 1,
1576 	.threads = { -1, },
1577 };
1578 
1579 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1580 		     struct thread_map *threads)
1581 {
1582 	if (cpus == NULL) {
1583 		/* Work around old compiler warnings about strict aliasing */
1584 		cpus = &empty_cpu_map.map;
1585 	}
1586 
1587 	if (threads == NULL)
1588 		threads = &empty_thread_map.map;
1589 
1590 	return __perf_evsel__open(evsel, cpus, threads);
1591 }
1592 
1593 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1594 			     struct cpu_map *cpus)
1595 {
1596 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1597 }
1598 
1599 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1600 				struct thread_map *threads)
1601 {
1602 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1603 }
1604 
1605 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1606 				       const union perf_event *event,
1607 				       struct perf_sample *sample)
1608 {
1609 	u64 type = evsel->attr.sample_type;
1610 	const u64 *array = event->sample.array;
1611 	bool swapped = evsel->needs_swap;
1612 	union u64_swap u;
1613 
1614 	array += ((event->header.size -
1615 		   sizeof(event->header)) / sizeof(u64)) - 1;
1616 
1617 	if (type & PERF_SAMPLE_IDENTIFIER) {
1618 		sample->id = *array;
1619 		array--;
1620 	}
1621 
1622 	if (type & PERF_SAMPLE_CPU) {
1623 		u.val64 = *array;
1624 		if (swapped) {
1625 			/* undo swap of u64, then swap on individual u32s */
1626 			u.val64 = bswap_64(u.val64);
1627 			u.val32[0] = bswap_32(u.val32[0]);
1628 		}
1629 
1630 		sample->cpu = u.val32[0];
1631 		array--;
1632 	}
1633 
1634 	if (type & PERF_SAMPLE_STREAM_ID) {
1635 		sample->stream_id = *array;
1636 		array--;
1637 	}
1638 
1639 	if (type & PERF_SAMPLE_ID) {
1640 		sample->id = *array;
1641 		array--;
1642 	}
1643 
1644 	if (type & PERF_SAMPLE_TIME) {
1645 		sample->time = *array;
1646 		array--;
1647 	}
1648 
1649 	if (type & PERF_SAMPLE_TID) {
1650 		u.val64 = *array;
1651 		if (swapped) {
1652 			/* undo swap of u64, then swap on individual u32s */
1653 			u.val64 = bswap_64(u.val64);
1654 			u.val32[0] = bswap_32(u.val32[0]);
1655 			u.val32[1] = bswap_32(u.val32[1]);
1656 		}
1657 
1658 		sample->pid = u.val32[0];
1659 		sample->tid = u.val32[1];
1660 		array--;
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1667 			    u64 size)
1668 {
1669 	return size > max_size || offset + size > endp;
1670 }
1671 
1672 #define OVERFLOW_CHECK(offset, size, max_size)				\
1673 	do {								\
1674 		if (overflow(endp, (max_size), (offset), (size)))	\
1675 			return -EFAULT;					\
1676 	} while (0)
1677 
1678 #define OVERFLOW_CHECK_u64(offset) \
1679 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1680 
1681 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1682 			     struct perf_sample *data)
1683 {
1684 	u64 type = evsel->attr.sample_type;
1685 	bool swapped = evsel->needs_swap;
1686 	const u64 *array;
1687 	u16 max_size = event->header.size;
1688 	const void *endp = (void *)event + max_size;
1689 	u64 sz;
1690 
1691 	/*
1692 	 * used for cross-endian analysis. See git commit 65014ab3
1693 	 * for why this goofiness is needed.
1694 	 */
1695 	union u64_swap u;
1696 
1697 	memset(data, 0, sizeof(*data));
1698 	data->cpu = data->pid = data->tid = -1;
1699 	data->stream_id = data->id = data->time = -1ULL;
1700 	data->period = evsel->attr.sample_period;
1701 	data->weight = 0;
1702 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1703 
1704 	if (event->header.type != PERF_RECORD_SAMPLE) {
1705 		if (!evsel->attr.sample_id_all)
1706 			return 0;
1707 		return perf_evsel__parse_id_sample(evsel, event, data);
1708 	}
1709 
1710 	array = event->sample.array;
1711 
1712 	/*
1713 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1714 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1715 	 * check the format does not go past the end of the event.
1716 	 */
1717 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1718 		return -EFAULT;
1719 
1720 	data->id = -1ULL;
1721 	if (type & PERF_SAMPLE_IDENTIFIER) {
1722 		data->id = *array;
1723 		array++;
1724 	}
1725 
1726 	if (type & PERF_SAMPLE_IP) {
1727 		data->ip = *array;
1728 		array++;
1729 	}
1730 
1731 	if (type & PERF_SAMPLE_TID) {
1732 		u.val64 = *array;
1733 		if (swapped) {
1734 			/* undo swap of u64, then swap on individual u32s */
1735 			u.val64 = bswap_64(u.val64);
1736 			u.val32[0] = bswap_32(u.val32[0]);
1737 			u.val32[1] = bswap_32(u.val32[1]);
1738 		}
1739 
1740 		data->pid = u.val32[0];
1741 		data->tid = u.val32[1];
1742 		array++;
1743 	}
1744 
1745 	if (type & PERF_SAMPLE_TIME) {
1746 		data->time = *array;
1747 		array++;
1748 	}
1749 
1750 	data->addr = 0;
1751 	if (type & PERF_SAMPLE_ADDR) {
1752 		data->addr = *array;
1753 		array++;
1754 	}
1755 
1756 	if (type & PERF_SAMPLE_ID) {
1757 		data->id = *array;
1758 		array++;
1759 	}
1760 
1761 	if (type & PERF_SAMPLE_STREAM_ID) {
1762 		data->stream_id = *array;
1763 		array++;
1764 	}
1765 
1766 	if (type & PERF_SAMPLE_CPU) {
1767 
1768 		u.val64 = *array;
1769 		if (swapped) {
1770 			/* undo swap of u64, then swap on individual u32s */
1771 			u.val64 = bswap_64(u.val64);
1772 			u.val32[0] = bswap_32(u.val32[0]);
1773 		}
1774 
1775 		data->cpu = u.val32[0];
1776 		array++;
1777 	}
1778 
1779 	if (type & PERF_SAMPLE_PERIOD) {
1780 		data->period = *array;
1781 		array++;
1782 	}
1783 
1784 	if (type & PERF_SAMPLE_READ) {
1785 		u64 read_format = evsel->attr.read_format;
1786 
1787 		OVERFLOW_CHECK_u64(array);
1788 		if (read_format & PERF_FORMAT_GROUP)
1789 			data->read.group.nr = *array;
1790 		else
1791 			data->read.one.value = *array;
1792 
1793 		array++;
1794 
1795 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1796 			OVERFLOW_CHECK_u64(array);
1797 			data->read.time_enabled = *array;
1798 			array++;
1799 		}
1800 
1801 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1802 			OVERFLOW_CHECK_u64(array);
1803 			data->read.time_running = *array;
1804 			array++;
1805 		}
1806 
1807 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1808 		if (read_format & PERF_FORMAT_GROUP) {
1809 			const u64 max_group_nr = UINT64_MAX /
1810 					sizeof(struct sample_read_value);
1811 
1812 			if (data->read.group.nr > max_group_nr)
1813 				return -EFAULT;
1814 			sz = data->read.group.nr *
1815 			     sizeof(struct sample_read_value);
1816 			OVERFLOW_CHECK(array, sz, max_size);
1817 			data->read.group.values =
1818 					(struct sample_read_value *)array;
1819 			array = (void *)array + sz;
1820 		} else {
1821 			OVERFLOW_CHECK_u64(array);
1822 			data->read.one.id = *array;
1823 			array++;
1824 		}
1825 	}
1826 
1827 	if (type & PERF_SAMPLE_CALLCHAIN) {
1828 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1829 
1830 		OVERFLOW_CHECK_u64(array);
1831 		data->callchain = (struct ip_callchain *)array++;
1832 		if (data->callchain->nr > max_callchain_nr)
1833 			return -EFAULT;
1834 		sz = data->callchain->nr * sizeof(u64);
1835 		OVERFLOW_CHECK(array, sz, max_size);
1836 		array = (void *)array + sz;
1837 	}
1838 
1839 	if (type & PERF_SAMPLE_RAW) {
1840 		OVERFLOW_CHECK_u64(array);
1841 		u.val64 = *array;
1842 		if (WARN_ONCE(swapped,
1843 			      "Endianness of raw data not corrected!\n")) {
1844 			/* undo swap of u64, then swap on individual u32s */
1845 			u.val64 = bswap_64(u.val64);
1846 			u.val32[0] = bswap_32(u.val32[0]);
1847 			u.val32[1] = bswap_32(u.val32[1]);
1848 		}
1849 		data->raw_size = u.val32[0];
1850 		array = (void *)array + sizeof(u32);
1851 
1852 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1853 		data->raw_data = (void *)array;
1854 		array = (void *)array + data->raw_size;
1855 	}
1856 
1857 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1858 		const u64 max_branch_nr = UINT64_MAX /
1859 					  sizeof(struct branch_entry);
1860 
1861 		OVERFLOW_CHECK_u64(array);
1862 		data->branch_stack = (struct branch_stack *)array++;
1863 
1864 		if (data->branch_stack->nr > max_branch_nr)
1865 			return -EFAULT;
1866 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1867 		OVERFLOW_CHECK(array, sz, max_size);
1868 		array = (void *)array + sz;
1869 	}
1870 
1871 	if (type & PERF_SAMPLE_REGS_USER) {
1872 		OVERFLOW_CHECK_u64(array);
1873 		data->user_regs.abi = *array;
1874 		array++;
1875 
1876 		if (data->user_regs.abi) {
1877 			u64 mask = evsel->attr.sample_regs_user;
1878 
1879 			sz = hweight_long(mask) * sizeof(u64);
1880 			OVERFLOW_CHECK(array, sz, max_size);
1881 			data->user_regs.mask = mask;
1882 			data->user_regs.regs = (u64 *)array;
1883 			array = (void *)array + sz;
1884 		}
1885 	}
1886 
1887 	if (type & PERF_SAMPLE_STACK_USER) {
1888 		OVERFLOW_CHECK_u64(array);
1889 		sz = *array++;
1890 
1891 		data->user_stack.offset = ((char *)(array - 1)
1892 					  - (char *) event);
1893 
1894 		if (!sz) {
1895 			data->user_stack.size = 0;
1896 		} else {
1897 			OVERFLOW_CHECK(array, sz, max_size);
1898 			data->user_stack.data = (char *)array;
1899 			array = (void *)array + sz;
1900 			OVERFLOW_CHECK_u64(array);
1901 			data->user_stack.size = *array++;
1902 			if (WARN_ONCE(data->user_stack.size > sz,
1903 				      "user stack dump failure\n"))
1904 				return -EFAULT;
1905 		}
1906 	}
1907 
1908 	data->weight = 0;
1909 	if (type & PERF_SAMPLE_WEIGHT) {
1910 		OVERFLOW_CHECK_u64(array);
1911 		data->weight = *array;
1912 		array++;
1913 	}
1914 
1915 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1916 	if (type & PERF_SAMPLE_DATA_SRC) {
1917 		OVERFLOW_CHECK_u64(array);
1918 		data->data_src = *array;
1919 		array++;
1920 	}
1921 
1922 	data->transaction = 0;
1923 	if (type & PERF_SAMPLE_TRANSACTION) {
1924 		OVERFLOW_CHECK_u64(array);
1925 		data->transaction = *array;
1926 		array++;
1927 	}
1928 
1929 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1930 	if (type & PERF_SAMPLE_REGS_INTR) {
1931 		OVERFLOW_CHECK_u64(array);
1932 		data->intr_regs.abi = *array;
1933 		array++;
1934 
1935 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1936 			u64 mask = evsel->attr.sample_regs_intr;
1937 
1938 			sz = hweight_long(mask) * sizeof(u64);
1939 			OVERFLOW_CHECK(array, sz, max_size);
1940 			data->intr_regs.mask = mask;
1941 			data->intr_regs.regs = (u64 *)array;
1942 			array = (void *)array + sz;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1950 				     u64 read_format)
1951 {
1952 	size_t sz, result = sizeof(struct sample_event);
1953 
1954 	if (type & PERF_SAMPLE_IDENTIFIER)
1955 		result += sizeof(u64);
1956 
1957 	if (type & PERF_SAMPLE_IP)
1958 		result += sizeof(u64);
1959 
1960 	if (type & PERF_SAMPLE_TID)
1961 		result += sizeof(u64);
1962 
1963 	if (type & PERF_SAMPLE_TIME)
1964 		result += sizeof(u64);
1965 
1966 	if (type & PERF_SAMPLE_ADDR)
1967 		result += sizeof(u64);
1968 
1969 	if (type & PERF_SAMPLE_ID)
1970 		result += sizeof(u64);
1971 
1972 	if (type & PERF_SAMPLE_STREAM_ID)
1973 		result += sizeof(u64);
1974 
1975 	if (type & PERF_SAMPLE_CPU)
1976 		result += sizeof(u64);
1977 
1978 	if (type & PERF_SAMPLE_PERIOD)
1979 		result += sizeof(u64);
1980 
1981 	if (type & PERF_SAMPLE_READ) {
1982 		result += sizeof(u64);
1983 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1984 			result += sizeof(u64);
1985 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1986 			result += sizeof(u64);
1987 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1988 		if (read_format & PERF_FORMAT_GROUP) {
1989 			sz = sample->read.group.nr *
1990 			     sizeof(struct sample_read_value);
1991 			result += sz;
1992 		} else {
1993 			result += sizeof(u64);
1994 		}
1995 	}
1996 
1997 	if (type & PERF_SAMPLE_CALLCHAIN) {
1998 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1999 		result += sz;
2000 	}
2001 
2002 	if (type & PERF_SAMPLE_RAW) {
2003 		result += sizeof(u32);
2004 		result += sample->raw_size;
2005 	}
2006 
2007 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2008 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2009 		sz += sizeof(u64);
2010 		result += sz;
2011 	}
2012 
2013 	if (type & PERF_SAMPLE_REGS_USER) {
2014 		if (sample->user_regs.abi) {
2015 			result += sizeof(u64);
2016 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2017 			result += sz;
2018 		} else {
2019 			result += sizeof(u64);
2020 		}
2021 	}
2022 
2023 	if (type & PERF_SAMPLE_STACK_USER) {
2024 		sz = sample->user_stack.size;
2025 		result += sizeof(u64);
2026 		if (sz) {
2027 			result += sz;
2028 			result += sizeof(u64);
2029 		}
2030 	}
2031 
2032 	if (type & PERF_SAMPLE_WEIGHT)
2033 		result += sizeof(u64);
2034 
2035 	if (type & PERF_SAMPLE_DATA_SRC)
2036 		result += sizeof(u64);
2037 
2038 	if (type & PERF_SAMPLE_TRANSACTION)
2039 		result += sizeof(u64);
2040 
2041 	if (type & PERF_SAMPLE_REGS_INTR) {
2042 		if (sample->intr_regs.abi) {
2043 			result += sizeof(u64);
2044 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2045 			result += sz;
2046 		} else {
2047 			result += sizeof(u64);
2048 		}
2049 	}
2050 
2051 	return result;
2052 }
2053 
2054 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2055 				  u64 read_format,
2056 				  const struct perf_sample *sample,
2057 				  bool swapped)
2058 {
2059 	u64 *array;
2060 	size_t sz;
2061 	/*
2062 	 * used for cross-endian analysis. See git commit 65014ab3
2063 	 * for why this goofiness is needed.
2064 	 */
2065 	union u64_swap u;
2066 
2067 	array = event->sample.array;
2068 
2069 	if (type & PERF_SAMPLE_IDENTIFIER) {
2070 		*array = sample->id;
2071 		array++;
2072 	}
2073 
2074 	if (type & PERF_SAMPLE_IP) {
2075 		*array = sample->ip;
2076 		array++;
2077 	}
2078 
2079 	if (type & PERF_SAMPLE_TID) {
2080 		u.val32[0] = sample->pid;
2081 		u.val32[1] = sample->tid;
2082 		if (swapped) {
2083 			/*
2084 			 * Inverse of what is done in perf_evsel__parse_sample
2085 			 */
2086 			u.val32[0] = bswap_32(u.val32[0]);
2087 			u.val32[1] = bswap_32(u.val32[1]);
2088 			u.val64 = bswap_64(u.val64);
2089 		}
2090 
2091 		*array = u.val64;
2092 		array++;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_TIME) {
2096 		*array = sample->time;
2097 		array++;
2098 	}
2099 
2100 	if (type & PERF_SAMPLE_ADDR) {
2101 		*array = sample->addr;
2102 		array++;
2103 	}
2104 
2105 	if (type & PERF_SAMPLE_ID) {
2106 		*array = sample->id;
2107 		array++;
2108 	}
2109 
2110 	if (type & PERF_SAMPLE_STREAM_ID) {
2111 		*array = sample->stream_id;
2112 		array++;
2113 	}
2114 
2115 	if (type & PERF_SAMPLE_CPU) {
2116 		u.val32[0] = sample->cpu;
2117 		if (swapped) {
2118 			/*
2119 			 * Inverse of what is done in perf_evsel__parse_sample
2120 			 */
2121 			u.val32[0] = bswap_32(u.val32[0]);
2122 			u.val64 = bswap_64(u.val64);
2123 		}
2124 		*array = u.val64;
2125 		array++;
2126 	}
2127 
2128 	if (type & PERF_SAMPLE_PERIOD) {
2129 		*array = sample->period;
2130 		array++;
2131 	}
2132 
2133 	if (type & PERF_SAMPLE_READ) {
2134 		if (read_format & PERF_FORMAT_GROUP)
2135 			*array = sample->read.group.nr;
2136 		else
2137 			*array = sample->read.one.value;
2138 		array++;
2139 
2140 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2141 			*array = sample->read.time_enabled;
2142 			array++;
2143 		}
2144 
2145 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2146 			*array = sample->read.time_running;
2147 			array++;
2148 		}
2149 
2150 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2151 		if (read_format & PERF_FORMAT_GROUP) {
2152 			sz = sample->read.group.nr *
2153 			     sizeof(struct sample_read_value);
2154 			memcpy(array, sample->read.group.values, sz);
2155 			array = (void *)array + sz;
2156 		} else {
2157 			*array = sample->read.one.id;
2158 			array++;
2159 		}
2160 	}
2161 
2162 	if (type & PERF_SAMPLE_CALLCHAIN) {
2163 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2164 		memcpy(array, sample->callchain, sz);
2165 		array = (void *)array + sz;
2166 	}
2167 
2168 	if (type & PERF_SAMPLE_RAW) {
2169 		u.val32[0] = sample->raw_size;
2170 		if (WARN_ONCE(swapped,
2171 			      "Endianness of raw data not corrected!\n")) {
2172 			/*
2173 			 * Inverse of what is done in perf_evsel__parse_sample
2174 			 */
2175 			u.val32[0] = bswap_32(u.val32[0]);
2176 			u.val32[1] = bswap_32(u.val32[1]);
2177 			u.val64 = bswap_64(u.val64);
2178 		}
2179 		*array = u.val64;
2180 		array = (void *)array + sizeof(u32);
2181 
2182 		memcpy(array, sample->raw_data, sample->raw_size);
2183 		array = (void *)array + sample->raw_size;
2184 	}
2185 
2186 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2187 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2188 		sz += sizeof(u64);
2189 		memcpy(array, sample->branch_stack, sz);
2190 		array = (void *)array + sz;
2191 	}
2192 
2193 	if (type & PERF_SAMPLE_REGS_USER) {
2194 		if (sample->user_regs.abi) {
2195 			*array++ = sample->user_regs.abi;
2196 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2197 			memcpy(array, sample->user_regs.regs, sz);
2198 			array = (void *)array + sz;
2199 		} else {
2200 			*array++ = 0;
2201 		}
2202 	}
2203 
2204 	if (type & PERF_SAMPLE_STACK_USER) {
2205 		sz = sample->user_stack.size;
2206 		*array++ = sz;
2207 		if (sz) {
2208 			memcpy(array, sample->user_stack.data, sz);
2209 			array = (void *)array + sz;
2210 			*array++ = sz;
2211 		}
2212 	}
2213 
2214 	if (type & PERF_SAMPLE_WEIGHT) {
2215 		*array = sample->weight;
2216 		array++;
2217 	}
2218 
2219 	if (type & PERF_SAMPLE_DATA_SRC) {
2220 		*array = sample->data_src;
2221 		array++;
2222 	}
2223 
2224 	if (type & PERF_SAMPLE_TRANSACTION) {
2225 		*array = sample->transaction;
2226 		array++;
2227 	}
2228 
2229 	if (type & PERF_SAMPLE_REGS_INTR) {
2230 		if (sample->intr_regs.abi) {
2231 			*array++ = sample->intr_regs.abi;
2232 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2233 			memcpy(array, sample->intr_regs.regs, sz);
2234 			array = (void *)array + sz;
2235 		} else {
2236 			*array++ = 0;
2237 		}
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2244 {
2245 	return pevent_find_field(evsel->tp_format, name);
2246 }
2247 
2248 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2249 			 const char *name)
2250 {
2251 	struct format_field *field = perf_evsel__field(evsel, name);
2252 	int offset;
2253 
2254 	if (!field)
2255 		return NULL;
2256 
2257 	offset = field->offset;
2258 
2259 	if (field->flags & FIELD_IS_DYNAMIC) {
2260 		offset = *(int *)(sample->raw_data + field->offset);
2261 		offset &= 0xffff;
2262 	}
2263 
2264 	return sample->raw_data + offset;
2265 }
2266 
2267 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2268 			 bool needs_swap)
2269 {
2270 	u64 value;
2271 	void *ptr = sample->raw_data + field->offset;
2272 
2273 	switch (field->size) {
2274 	case 1:
2275 		return *(u8 *)ptr;
2276 	case 2:
2277 		value = *(u16 *)ptr;
2278 		break;
2279 	case 4:
2280 		value = *(u32 *)ptr;
2281 		break;
2282 	case 8:
2283 		memcpy(&value, ptr, sizeof(u64));
2284 		break;
2285 	default:
2286 		return 0;
2287 	}
2288 
2289 	if (!needs_swap)
2290 		return value;
2291 
2292 	switch (field->size) {
2293 	case 2:
2294 		return bswap_16(value);
2295 	case 4:
2296 		return bswap_32(value);
2297 	case 8:
2298 		return bswap_64(value);
2299 	default:
2300 		return 0;
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2307 		       const char *name)
2308 {
2309 	struct format_field *field = perf_evsel__field(evsel, name);
2310 
2311 	if (!field)
2312 		return 0;
2313 
2314 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2315 }
2316 
2317 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2318 			  char *msg, size_t msgsize)
2319 {
2320 	int paranoid;
2321 
2322 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2323 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2324 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2325 		/*
2326 		 * If it's cycles then fall back to hrtimer based
2327 		 * cpu-clock-tick sw counter, which is always available even if
2328 		 * no PMU support.
2329 		 *
2330 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2331 		 * b0a873e).
2332 		 */
2333 		scnprintf(msg, msgsize, "%s",
2334 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2335 
2336 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2337 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2338 
2339 		zfree(&evsel->name);
2340 		return true;
2341 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2342 		   (paranoid = perf_event_paranoid()) > 1) {
2343 		const char *name = perf_evsel__name(evsel);
2344 		char *new_name;
2345 
2346 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2347 			return false;
2348 
2349 		if (evsel->name)
2350 			free(evsel->name);
2351 		evsel->name = new_name;
2352 		scnprintf(msg, msgsize,
2353 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2354 		evsel->attr.exclude_kernel = 1;
2355 
2356 		return true;
2357 	}
2358 
2359 	return false;
2360 }
2361 
2362 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2363 			      int err, char *msg, size_t size)
2364 {
2365 	char sbuf[STRERR_BUFSIZE];
2366 
2367 	switch (err) {
2368 	case EPERM:
2369 	case EACCES:
2370 		return scnprintf(msg, size,
2371 		 "You may not have permission to collect %sstats.\n\n"
2372 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2373 		 "which controls use of the performance events system by\n"
2374 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2375 		 "The current value is %d:\n\n"
2376 		 "  -1: Allow use of (almost) all events by all users\n"
2377 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2378 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2379 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2380 				 target->system_wide ? "system-wide " : "",
2381 				 perf_event_paranoid());
2382 	case ENOENT:
2383 		return scnprintf(msg, size, "The %s event is not supported.",
2384 				 perf_evsel__name(evsel));
2385 	case EMFILE:
2386 		return scnprintf(msg, size, "%s",
2387 			 "Too many events are opened.\n"
2388 			 "Probably the maximum number of open file descriptors has been reached.\n"
2389 			 "Hint: Try again after reducing the number of events.\n"
2390 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2391 	case ENOMEM:
2392 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2393 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2394 			return scnprintf(msg, size,
2395 					 "Not enough memory to setup event with callchain.\n"
2396 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2397 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2398 		break;
2399 	case ENODEV:
2400 		if (target->cpu_list)
2401 			return scnprintf(msg, size, "%s",
2402 	 "No such device - did you specify an out-of-range profile CPU?");
2403 		break;
2404 	case EOPNOTSUPP:
2405 		if (evsel->attr.sample_period != 0)
2406 			return scnprintf(msg, size, "%s",
2407 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2408 		if (evsel->attr.precise_ip)
2409 			return scnprintf(msg, size, "%s",
2410 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2411 #if defined(__i386__) || defined(__x86_64__)
2412 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2413 			return scnprintf(msg, size, "%s",
2414 	"No hardware sampling interrupt available.\n"
2415 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2416 #endif
2417 		break;
2418 	case EBUSY:
2419 		if (find_process("oprofiled"))
2420 			return scnprintf(msg, size,
2421 	"The PMU counters are busy/taken by another profiler.\n"
2422 	"We found oprofile daemon running, please stop it and try again.");
2423 		break;
2424 	case EINVAL:
2425 		if (evsel->overwrite && perf_missing_features.write_backward)
2426 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2427 		if (perf_missing_features.clockid)
2428 			return scnprintf(msg, size, "clockid feature not supported.");
2429 		if (perf_missing_features.clockid_wrong)
2430 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2431 		break;
2432 	default:
2433 		break;
2434 	}
2435 
2436 	return scnprintf(msg, size,
2437 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2438 	"/bin/dmesg may provide additional information.\n"
2439 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2440 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2441 			 perf_evsel__name(evsel));
2442 }
2443 
2444 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2445 {
2446 	if (evsel && evsel->evlist && evsel->evlist->env)
2447 		return evsel->evlist->env->arch;
2448 	return NULL;
2449 }
2450