1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 static struct { 44 bool sample_id_all; 45 bool exclude_guest; 46 bool mmap2; 47 bool cloexec; 48 bool clockid; 49 bool clockid_wrong; 50 bool lbr_flags; 51 bool write_backward; 52 } perf_missing_features; 53 54 static clockid_t clockid; 55 56 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 57 { 58 return 0; 59 } 60 61 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 62 { 63 } 64 65 static struct { 66 size_t size; 67 int (*init)(struct perf_evsel *evsel); 68 void (*fini)(struct perf_evsel *evsel); 69 } perf_evsel__object = { 70 .size = sizeof(struct perf_evsel), 71 .init = perf_evsel__no_extra_init, 72 .fini = perf_evsel__no_extra_fini, 73 }; 74 75 int perf_evsel__object_config(size_t object_size, 76 int (*init)(struct perf_evsel *evsel), 77 void (*fini)(struct perf_evsel *evsel)) 78 { 79 80 if (object_size == 0) 81 goto set_methods; 82 83 if (perf_evsel__object.size > object_size) 84 return -EINVAL; 85 86 perf_evsel__object.size = object_size; 87 88 set_methods: 89 if (init != NULL) 90 perf_evsel__object.init = init; 91 92 if (fini != NULL) 93 perf_evsel__object.fini = fini; 94 95 return 0; 96 } 97 98 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 99 100 int __perf_evsel__sample_size(u64 sample_type) 101 { 102 u64 mask = sample_type & PERF_SAMPLE_MASK; 103 int size = 0; 104 int i; 105 106 for (i = 0; i < 64; i++) { 107 if (mask & (1ULL << i)) 108 size++; 109 } 110 111 size *= sizeof(u64); 112 113 return size; 114 } 115 116 /** 117 * __perf_evsel__calc_id_pos - calculate id_pos. 118 * @sample_type: sample type 119 * 120 * This function returns the position of the event id (PERF_SAMPLE_ID or 121 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 122 * sample_event. 123 */ 124 static int __perf_evsel__calc_id_pos(u64 sample_type) 125 { 126 int idx = 0; 127 128 if (sample_type & PERF_SAMPLE_IDENTIFIER) 129 return 0; 130 131 if (!(sample_type & PERF_SAMPLE_ID)) 132 return -1; 133 134 if (sample_type & PERF_SAMPLE_IP) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_TID) 138 idx += 1; 139 140 if (sample_type & PERF_SAMPLE_TIME) 141 idx += 1; 142 143 if (sample_type & PERF_SAMPLE_ADDR) 144 idx += 1; 145 146 return idx; 147 } 148 149 /** 150 * __perf_evsel__calc_is_pos - calculate is_pos. 151 * @sample_type: sample type 152 * 153 * This function returns the position (counting backwards) of the event id 154 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 155 * sample_id_all is used there is an id sample appended to non-sample events. 156 */ 157 static int __perf_evsel__calc_is_pos(u64 sample_type) 158 { 159 int idx = 1; 160 161 if (sample_type & PERF_SAMPLE_IDENTIFIER) 162 return 1; 163 164 if (!(sample_type & PERF_SAMPLE_ID)) 165 return -1; 166 167 if (sample_type & PERF_SAMPLE_CPU) 168 idx += 1; 169 170 if (sample_type & PERF_SAMPLE_STREAM_ID) 171 idx += 1; 172 173 return idx; 174 } 175 176 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 177 { 178 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 179 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 180 } 181 182 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 183 enum perf_event_sample_format bit) 184 { 185 if (!(evsel->attr.sample_type & bit)) { 186 evsel->attr.sample_type |= bit; 187 evsel->sample_size += sizeof(u64); 188 perf_evsel__calc_id_pos(evsel); 189 } 190 } 191 192 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 193 enum perf_event_sample_format bit) 194 { 195 if (evsel->attr.sample_type & bit) { 196 evsel->attr.sample_type &= ~bit; 197 evsel->sample_size -= sizeof(u64); 198 perf_evsel__calc_id_pos(evsel); 199 } 200 } 201 202 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 203 bool can_sample_identifier) 204 { 205 if (can_sample_identifier) { 206 perf_evsel__reset_sample_bit(evsel, ID); 207 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 208 } else { 209 perf_evsel__set_sample_bit(evsel, ID); 210 } 211 evsel->attr.read_format |= PERF_FORMAT_ID; 212 } 213 214 /** 215 * perf_evsel__is_function_event - Return whether given evsel is a function 216 * trace event 217 * 218 * @evsel - evsel selector to be tested 219 * 220 * Return %true if event is function trace event 221 */ 222 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 223 { 224 #define FUNCTION_EVENT "ftrace:function" 225 226 return evsel->name && 227 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 228 229 #undef FUNCTION_EVENT 230 } 231 232 void perf_evsel__init(struct perf_evsel *evsel, 233 struct perf_event_attr *attr, int idx) 234 { 235 evsel->idx = idx; 236 evsel->tracking = !idx; 237 evsel->attr = *attr; 238 evsel->leader = evsel; 239 evsel->unit = ""; 240 evsel->scale = 1.0; 241 evsel->evlist = NULL; 242 evsel->bpf_fd = -1; 243 INIT_LIST_HEAD(&evsel->node); 244 INIT_LIST_HEAD(&evsel->config_terms); 245 perf_evsel__object.init(evsel); 246 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 247 perf_evsel__calc_id_pos(evsel); 248 evsel->cmdline_group_boundary = false; 249 evsel->metric_expr = NULL; 250 evsel->metric_name = NULL; 251 evsel->metric_events = NULL; 252 evsel->collect_stat = false; 253 } 254 255 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 256 { 257 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 258 259 if (evsel != NULL) 260 perf_evsel__init(evsel, attr, idx); 261 262 if (perf_evsel__is_bpf_output(evsel)) { 263 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 264 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 265 evsel->attr.sample_period = 1; 266 } 267 268 return evsel; 269 } 270 271 struct perf_evsel *perf_evsel__new_cycles(void) 272 { 273 struct perf_event_attr attr = { 274 .type = PERF_TYPE_HARDWARE, 275 .config = PERF_COUNT_HW_CPU_CYCLES, 276 .exclude_kernel = geteuid() != 0, 277 }; 278 struct perf_evsel *evsel; 279 280 event_attr_init(&attr); 281 /* 282 * Unnamed union member, not supported as struct member named 283 * initializer in older compilers such as gcc 4.4.7 284 * 285 * Just for probing the precise_ip: 286 */ 287 attr.sample_period = 1; 288 289 perf_event_attr__set_max_precise_ip(&attr); 290 /* 291 * Now let the usual logic to set up the perf_event_attr defaults 292 * to kick in when we return and before perf_evsel__open() is called. 293 */ 294 attr.sample_period = 0; 295 296 evsel = perf_evsel__new(&attr); 297 if (evsel == NULL) 298 goto out; 299 300 /* use asprintf() because free(evsel) assumes name is allocated */ 301 if (asprintf(&evsel->name, "cycles%s%s%.*s", 302 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 303 attr.exclude_kernel ? "u" : "", 304 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 305 goto error_free; 306 out: 307 return evsel; 308 error_free: 309 perf_evsel__delete(evsel); 310 evsel = NULL; 311 goto out; 312 } 313 314 /* 315 * Returns pointer with encoded error via <linux/err.h> interface. 316 */ 317 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 318 { 319 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 320 int err = -ENOMEM; 321 322 if (evsel == NULL) { 323 goto out_err; 324 } else { 325 struct perf_event_attr attr = { 326 .type = PERF_TYPE_TRACEPOINT, 327 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 328 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 329 }; 330 331 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 332 goto out_free; 333 334 evsel->tp_format = trace_event__tp_format(sys, name); 335 if (IS_ERR(evsel->tp_format)) { 336 err = PTR_ERR(evsel->tp_format); 337 goto out_free; 338 } 339 340 event_attr_init(&attr); 341 attr.config = evsel->tp_format->id; 342 attr.sample_period = 1; 343 perf_evsel__init(evsel, &attr, idx); 344 } 345 346 return evsel; 347 348 out_free: 349 zfree(&evsel->name); 350 free(evsel); 351 out_err: 352 return ERR_PTR(err); 353 } 354 355 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 356 "cycles", 357 "instructions", 358 "cache-references", 359 "cache-misses", 360 "branches", 361 "branch-misses", 362 "bus-cycles", 363 "stalled-cycles-frontend", 364 "stalled-cycles-backend", 365 "ref-cycles", 366 }; 367 368 static const char *__perf_evsel__hw_name(u64 config) 369 { 370 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 371 return perf_evsel__hw_names[config]; 372 373 return "unknown-hardware"; 374 } 375 376 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 377 { 378 int colon = 0, r = 0; 379 struct perf_event_attr *attr = &evsel->attr; 380 bool exclude_guest_default = false; 381 382 #define MOD_PRINT(context, mod) do { \ 383 if (!attr->exclude_##context) { \ 384 if (!colon) colon = ++r; \ 385 r += scnprintf(bf + r, size - r, "%c", mod); \ 386 } } while(0) 387 388 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 389 MOD_PRINT(kernel, 'k'); 390 MOD_PRINT(user, 'u'); 391 MOD_PRINT(hv, 'h'); 392 exclude_guest_default = true; 393 } 394 395 if (attr->precise_ip) { 396 if (!colon) 397 colon = ++r; 398 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 399 exclude_guest_default = true; 400 } 401 402 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 403 MOD_PRINT(host, 'H'); 404 MOD_PRINT(guest, 'G'); 405 } 406 #undef MOD_PRINT 407 if (colon) 408 bf[colon - 1] = ':'; 409 return r; 410 } 411 412 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 413 { 414 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 415 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 416 } 417 418 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 419 "cpu-clock", 420 "task-clock", 421 "page-faults", 422 "context-switches", 423 "cpu-migrations", 424 "minor-faults", 425 "major-faults", 426 "alignment-faults", 427 "emulation-faults", 428 "dummy", 429 }; 430 431 static const char *__perf_evsel__sw_name(u64 config) 432 { 433 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 434 return perf_evsel__sw_names[config]; 435 return "unknown-software"; 436 } 437 438 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 439 { 440 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 441 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 442 } 443 444 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 445 { 446 int r; 447 448 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 449 450 if (type & HW_BREAKPOINT_R) 451 r += scnprintf(bf + r, size - r, "r"); 452 453 if (type & HW_BREAKPOINT_W) 454 r += scnprintf(bf + r, size - r, "w"); 455 456 if (type & HW_BREAKPOINT_X) 457 r += scnprintf(bf + r, size - r, "x"); 458 459 return r; 460 } 461 462 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 463 { 464 struct perf_event_attr *attr = &evsel->attr; 465 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 466 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 467 } 468 469 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 470 [PERF_EVSEL__MAX_ALIASES] = { 471 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 472 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 473 { "LLC", "L2", }, 474 { "dTLB", "d-tlb", "Data-TLB", }, 475 { "iTLB", "i-tlb", "Instruction-TLB", }, 476 { "branch", "branches", "bpu", "btb", "bpc", }, 477 { "node", }, 478 }; 479 480 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 481 [PERF_EVSEL__MAX_ALIASES] = { 482 { "load", "loads", "read", }, 483 { "store", "stores", "write", }, 484 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 485 }; 486 487 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 488 [PERF_EVSEL__MAX_ALIASES] = { 489 { "refs", "Reference", "ops", "access", }, 490 { "misses", "miss", }, 491 }; 492 493 #define C(x) PERF_COUNT_HW_CACHE_##x 494 #define CACHE_READ (1 << C(OP_READ)) 495 #define CACHE_WRITE (1 << C(OP_WRITE)) 496 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 497 #define COP(x) (1 << x) 498 499 /* 500 * cache operartion stat 501 * L1I : Read and prefetch only 502 * ITLB and BPU : Read-only 503 */ 504 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 505 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 506 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 507 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 508 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 509 [C(ITLB)] = (CACHE_READ), 510 [C(BPU)] = (CACHE_READ), 511 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 512 }; 513 514 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 515 { 516 if (perf_evsel__hw_cache_stat[type] & COP(op)) 517 return true; /* valid */ 518 else 519 return false; /* invalid */ 520 } 521 522 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 523 char *bf, size_t size) 524 { 525 if (result) { 526 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 527 perf_evsel__hw_cache_op[op][0], 528 perf_evsel__hw_cache_result[result][0]); 529 } 530 531 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 532 perf_evsel__hw_cache_op[op][1]); 533 } 534 535 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 536 { 537 u8 op, result, type = (config >> 0) & 0xff; 538 const char *err = "unknown-ext-hardware-cache-type"; 539 540 if (type >= PERF_COUNT_HW_CACHE_MAX) 541 goto out_err; 542 543 op = (config >> 8) & 0xff; 544 err = "unknown-ext-hardware-cache-op"; 545 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 546 goto out_err; 547 548 result = (config >> 16) & 0xff; 549 err = "unknown-ext-hardware-cache-result"; 550 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 551 goto out_err; 552 553 err = "invalid-cache"; 554 if (!perf_evsel__is_cache_op_valid(type, op)) 555 goto out_err; 556 557 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 558 out_err: 559 return scnprintf(bf, size, "%s", err); 560 } 561 562 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 563 { 564 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 565 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 566 } 567 568 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 569 { 570 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 571 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 572 } 573 574 const char *perf_evsel__name(struct perf_evsel *evsel) 575 { 576 char bf[128]; 577 578 if (evsel->name) 579 return evsel->name; 580 581 switch (evsel->attr.type) { 582 case PERF_TYPE_RAW: 583 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 584 break; 585 586 case PERF_TYPE_HARDWARE: 587 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 588 break; 589 590 case PERF_TYPE_HW_CACHE: 591 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 592 break; 593 594 case PERF_TYPE_SOFTWARE: 595 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 596 break; 597 598 case PERF_TYPE_TRACEPOINT: 599 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 600 break; 601 602 case PERF_TYPE_BREAKPOINT: 603 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 604 break; 605 606 default: 607 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 608 evsel->attr.type); 609 break; 610 } 611 612 evsel->name = strdup(bf); 613 614 return evsel->name ?: "unknown"; 615 } 616 617 const char *perf_evsel__group_name(struct perf_evsel *evsel) 618 { 619 return evsel->group_name ?: "anon group"; 620 } 621 622 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 623 { 624 int ret; 625 struct perf_evsel *pos; 626 const char *group_name = perf_evsel__group_name(evsel); 627 628 ret = scnprintf(buf, size, "%s", group_name); 629 630 ret += scnprintf(buf + ret, size - ret, " { %s", 631 perf_evsel__name(evsel)); 632 633 for_each_group_member(pos, evsel) 634 ret += scnprintf(buf + ret, size - ret, ", %s", 635 perf_evsel__name(pos)); 636 637 ret += scnprintf(buf + ret, size - ret, " }"); 638 639 return ret; 640 } 641 642 void perf_evsel__config_callchain(struct perf_evsel *evsel, 643 struct record_opts *opts, 644 struct callchain_param *param) 645 { 646 bool function = perf_evsel__is_function_event(evsel); 647 struct perf_event_attr *attr = &evsel->attr; 648 649 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 650 651 attr->sample_max_stack = param->max_stack; 652 653 if (param->record_mode == CALLCHAIN_LBR) { 654 if (!opts->branch_stack) { 655 if (attr->exclude_user) { 656 pr_warning("LBR callstack option is only available " 657 "to get user callchain information. " 658 "Falling back to framepointers.\n"); 659 } else { 660 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 661 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 662 PERF_SAMPLE_BRANCH_CALL_STACK | 663 PERF_SAMPLE_BRANCH_NO_CYCLES | 664 PERF_SAMPLE_BRANCH_NO_FLAGS; 665 } 666 } else 667 pr_warning("Cannot use LBR callstack with branch stack. " 668 "Falling back to framepointers.\n"); 669 } 670 671 if (param->record_mode == CALLCHAIN_DWARF) { 672 if (!function) { 673 perf_evsel__set_sample_bit(evsel, REGS_USER); 674 perf_evsel__set_sample_bit(evsel, STACK_USER); 675 attr->sample_regs_user = PERF_REGS_MASK; 676 attr->sample_stack_user = param->dump_size; 677 attr->exclude_callchain_user = 1; 678 } else { 679 pr_info("Cannot use DWARF unwind for function trace event," 680 " falling back to framepointers.\n"); 681 } 682 } 683 684 if (function) { 685 pr_info("Disabling user space callchains for function trace event.\n"); 686 attr->exclude_callchain_user = 1; 687 } 688 } 689 690 static void 691 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 692 struct callchain_param *param) 693 { 694 struct perf_event_attr *attr = &evsel->attr; 695 696 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 697 if (param->record_mode == CALLCHAIN_LBR) { 698 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 699 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 700 PERF_SAMPLE_BRANCH_CALL_STACK); 701 } 702 if (param->record_mode == CALLCHAIN_DWARF) { 703 perf_evsel__reset_sample_bit(evsel, REGS_USER); 704 perf_evsel__reset_sample_bit(evsel, STACK_USER); 705 } 706 } 707 708 static void apply_config_terms(struct perf_evsel *evsel, 709 struct record_opts *opts) 710 { 711 struct perf_evsel_config_term *term; 712 struct list_head *config_terms = &evsel->config_terms; 713 struct perf_event_attr *attr = &evsel->attr; 714 struct callchain_param param; 715 u32 dump_size = 0; 716 int max_stack = 0; 717 const char *callgraph_buf = NULL; 718 719 /* callgraph default */ 720 param.record_mode = callchain_param.record_mode; 721 722 list_for_each_entry(term, config_terms, list) { 723 switch (term->type) { 724 case PERF_EVSEL__CONFIG_TERM_PERIOD: 725 attr->sample_period = term->val.period; 726 attr->freq = 0; 727 break; 728 case PERF_EVSEL__CONFIG_TERM_FREQ: 729 attr->sample_freq = term->val.freq; 730 attr->freq = 1; 731 break; 732 case PERF_EVSEL__CONFIG_TERM_TIME: 733 if (term->val.time) 734 perf_evsel__set_sample_bit(evsel, TIME); 735 else 736 perf_evsel__reset_sample_bit(evsel, TIME); 737 break; 738 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 739 callgraph_buf = term->val.callgraph; 740 break; 741 case PERF_EVSEL__CONFIG_TERM_BRANCH: 742 if (term->val.branch && strcmp(term->val.branch, "no")) { 743 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 744 parse_branch_str(term->val.branch, 745 &attr->branch_sample_type); 746 } else 747 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 748 break; 749 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 750 dump_size = term->val.stack_user; 751 break; 752 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 753 max_stack = term->val.max_stack; 754 break; 755 case PERF_EVSEL__CONFIG_TERM_INHERIT: 756 /* 757 * attr->inherit should has already been set by 758 * perf_evsel__config. If user explicitly set 759 * inherit using config terms, override global 760 * opt->no_inherit setting. 761 */ 762 attr->inherit = term->val.inherit ? 1 : 0; 763 break; 764 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 765 attr->write_backward = term->val.overwrite ? 1 : 0; 766 break; 767 default: 768 break; 769 } 770 } 771 772 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 773 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 774 if (max_stack) { 775 param.max_stack = max_stack; 776 if (callgraph_buf == NULL) 777 callgraph_buf = "fp"; 778 } 779 780 /* parse callgraph parameters */ 781 if (callgraph_buf != NULL) { 782 if (!strcmp(callgraph_buf, "no")) { 783 param.enabled = false; 784 param.record_mode = CALLCHAIN_NONE; 785 } else { 786 param.enabled = true; 787 if (parse_callchain_record(callgraph_buf, ¶m)) { 788 pr_err("per-event callgraph setting for %s failed. " 789 "Apply callgraph global setting for it\n", 790 evsel->name); 791 return; 792 } 793 } 794 } 795 if (dump_size > 0) { 796 dump_size = round_up(dump_size, sizeof(u64)); 797 param.dump_size = dump_size; 798 } 799 800 /* If global callgraph set, clear it */ 801 if (callchain_param.enabled) 802 perf_evsel__reset_callgraph(evsel, &callchain_param); 803 804 /* set perf-event callgraph */ 805 if (param.enabled) 806 perf_evsel__config_callchain(evsel, opts, ¶m); 807 } 808 } 809 810 /* 811 * The enable_on_exec/disabled value strategy: 812 * 813 * 1) For any type of traced program: 814 * - all independent events and group leaders are disabled 815 * - all group members are enabled 816 * 817 * Group members are ruled by group leaders. They need to 818 * be enabled, because the group scheduling relies on that. 819 * 820 * 2) For traced programs executed by perf: 821 * - all independent events and group leaders have 822 * enable_on_exec set 823 * - we don't specifically enable or disable any event during 824 * the record command 825 * 826 * Independent events and group leaders are initially disabled 827 * and get enabled by exec. Group members are ruled by group 828 * leaders as stated in 1). 829 * 830 * 3) For traced programs attached by perf (pid/tid): 831 * - we specifically enable or disable all events during 832 * the record command 833 * 834 * When attaching events to already running traced we 835 * enable/disable events specifically, as there's no 836 * initial traced exec call. 837 */ 838 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 839 struct callchain_param *callchain) 840 { 841 struct perf_evsel *leader = evsel->leader; 842 struct perf_event_attr *attr = &evsel->attr; 843 int track = evsel->tracking; 844 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 845 846 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 847 attr->inherit = !opts->no_inherit; 848 attr->write_backward = opts->overwrite ? 1 : 0; 849 850 perf_evsel__set_sample_bit(evsel, IP); 851 perf_evsel__set_sample_bit(evsel, TID); 852 853 if (evsel->sample_read) { 854 perf_evsel__set_sample_bit(evsel, READ); 855 856 /* 857 * We need ID even in case of single event, because 858 * PERF_SAMPLE_READ process ID specific data. 859 */ 860 perf_evsel__set_sample_id(evsel, false); 861 862 /* 863 * Apply group format only if we belong to group 864 * with more than one members. 865 */ 866 if (leader->nr_members > 1) { 867 attr->read_format |= PERF_FORMAT_GROUP; 868 attr->inherit = 0; 869 } 870 } 871 872 /* 873 * We default some events to have a default interval. But keep 874 * it a weak assumption overridable by the user. 875 */ 876 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 877 opts->user_interval != ULLONG_MAX)) { 878 if (opts->freq) { 879 perf_evsel__set_sample_bit(evsel, PERIOD); 880 attr->freq = 1; 881 attr->sample_freq = opts->freq; 882 } else { 883 attr->sample_period = opts->default_interval; 884 } 885 } 886 887 /* 888 * Disable sampling for all group members other 889 * than leader in case leader 'leads' the sampling. 890 */ 891 if ((leader != evsel) && leader->sample_read) { 892 attr->sample_freq = 0; 893 attr->sample_period = 0; 894 } 895 896 if (opts->no_samples) 897 attr->sample_freq = 0; 898 899 if (opts->inherit_stat) 900 attr->inherit_stat = 1; 901 902 if (opts->sample_address) { 903 perf_evsel__set_sample_bit(evsel, ADDR); 904 attr->mmap_data = track; 905 } 906 907 /* 908 * We don't allow user space callchains for function trace 909 * event, due to issues with page faults while tracing page 910 * fault handler and its overall trickiness nature. 911 */ 912 if (perf_evsel__is_function_event(evsel)) 913 evsel->attr.exclude_callchain_user = 1; 914 915 if (callchain && callchain->enabled && !evsel->no_aux_samples) 916 perf_evsel__config_callchain(evsel, opts, callchain); 917 918 if (opts->sample_intr_regs) { 919 attr->sample_regs_intr = opts->sample_intr_regs; 920 perf_evsel__set_sample_bit(evsel, REGS_INTR); 921 } 922 923 if (target__has_cpu(&opts->target) || opts->sample_cpu) 924 perf_evsel__set_sample_bit(evsel, CPU); 925 926 if (opts->period) 927 perf_evsel__set_sample_bit(evsel, PERIOD); 928 929 /* 930 * When the user explicitly disabled time don't force it here. 931 */ 932 if (opts->sample_time && 933 (!perf_missing_features.sample_id_all && 934 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 935 opts->sample_time_set))) 936 perf_evsel__set_sample_bit(evsel, TIME); 937 938 if (opts->raw_samples && !evsel->no_aux_samples) { 939 perf_evsel__set_sample_bit(evsel, TIME); 940 perf_evsel__set_sample_bit(evsel, RAW); 941 perf_evsel__set_sample_bit(evsel, CPU); 942 } 943 944 if (opts->sample_address) 945 perf_evsel__set_sample_bit(evsel, DATA_SRC); 946 947 if (opts->no_buffering) { 948 attr->watermark = 0; 949 attr->wakeup_events = 1; 950 } 951 if (opts->branch_stack && !evsel->no_aux_samples) { 952 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 953 attr->branch_sample_type = opts->branch_stack; 954 } 955 956 if (opts->sample_weight) 957 perf_evsel__set_sample_bit(evsel, WEIGHT); 958 959 attr->task = track; 960 attr->mmap = track; 961 attr->mmap2 = track && !perf_missing_features.mmap2; 962 attr->comm = track; 963 964 if (opts->record_namespaces) 965 attr->namespaces = track; 966 967 if (opts->record_switch_events) 968 attr->context_switch = track; 969 970 if (opts->sample_transaction) 971 perf_evsel__set_sample_bit(evsel, TRANSACTION); 972 973 if (opts->running_time) { 974 evsel->attr.read_format |= 975 PERF_FORMAT_TOTAL_TIME_ENABLED | 976 PERF_FORMAT_TOTAL_TIME_RUNNING; 977 } 978 979 /* 980 * XXX see the function comment above 981 * 982 * Disabling only independent events or group leaders, 983 * keeping group members enabled. 984 */ 985 if (perf_evsel__is_group_leader(evsel)) 986 attr->disabled = 1; 987 988 /* 989 * Setting enable_on_exec for independent events and 990 * group leaders for traced executed by perf. 991 */ 992 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 993 !opts->initial_delay) 994 attr->enable_on_exec = 1; 995 996 if (evsel->immediate) { 997 attr->disabled = 0; 998 attr->enable_on_exec = 0; 999 } 1000 1001 clockid = opts->clockid; 1002 if (opts->use_clockid) { 1003 attr->use_clockid = 1; 1004 attr->clockid = opts->clockid; 1005 } 1006 1007 if (evsel->precise_max) 1008 perf_event_attr__set_max_precise_ip(attr); 1009 1010 if (opts->all_user) { 1011 attr->exclude_kernel = 1; 1012 attr->exclude_user = 0; 1013 } 1014 1015 if (opts->all_kernel) { 1016 attr->exclude_kernel = 0; 1017 attr->exclude_user = 1; 1018 } 1019 1020 /* 1021 * Apply event specific term settings, 1022 * it overloads any global configuration. 1023 */ 1024 apply_config_terms(evsel, opts); 1025 1026 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1027 } 1028 1029 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1030 { 1031 if (evsel->system_wide) 1032 nthreads = 1; 1033 1034 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1035 1036 if (evsel->fd) { 1037 int cpu, thread; 1038 for (cpu = 0; cpu < ncpus; cpu++) { 1039 for (thread = 0; thread < nthreads; thread++) { 1040 FD(evsel, cpu, thread) = -1; 1041 } 1042 } 1043 } 1044 1045 return evsel->fd != NULL ? 0 : -ENOMEM; 1046 } 1047 1048 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1049 int ioc, void *arg) 1050 { 1051 int cpu, thread; 1052 1053 if (evsel->system_wide) 1054 nthreads = 1; 1055 1056 for (cpu = 0; cpu < ncpus; cpu++) { 1057 for (thread = 0; thread < nthreads; thread++) { 1058 int fd = FD(evsel, cpu, thread), 1059 err = ioctl(fd, ioc, arg); 1060 1061 if (err) 1062 return err; 1063 } 1064 } 1065 1066 return 0; 1067 } 1068 1069 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1070 const char *filter) 1071 { 1072 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1073 PERF_EVENT_IOC_SET_FILTER, 1074 (void *)filter); 1075 } 1076 1077 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1078 { 1079 char *new_filter = strdup(filter); 1080 1081 if (new_filter != NULL) { 1082 free(evsel->filter); 1083 evsel->filter = new_filter; 1084 return 0; 1085 } 1086 1087 return -1; 1088 } 1089 1090 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1091 const char *fmt, const char *filter) 1092 { 1093 char *new_filter; 1094 1095 if (evsel->filter == NULL) 1096 return perf_evsel__set_filter(evsel, filter); 1097 1098 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1099 free(evsel->filter); 1100 evsel->filter = new_filter; 1101 return 0; 1102 } 1103 1104 return -1; 1105 } 1106 1107 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1108 { 1109 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1110 } 1111 1112 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1113 { 1114 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1115 } 1116 1117 int perf_evsel__enable(struct perf_evsel *evsel) 1118 { 1119 int nthreads = thread_map__nr(evsel->threads); 1120 int ncpus = cpu_map__nr(evsel->cpus); 1121 1122 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1123 PERF_EVENT_IOC_ENABLE, 1124 0); 1125 } 1126 1127 int perf_evsel__disable(struct perf_evsel *evsel) 1128 { 1129 int nthreads = thread_map__nr(evsel->threads); 1130 int ncpus = cpu_map__nr(evsel->cpus); 1131 1132 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1133 PERF_EVENT_IOC_DISABLE, 1134 0); 1135 } 1136 1137 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1138 { 1139 if (ncpus == 0 || nthreads == 0) 1140 return 0; 1141 1142 if (evsel->system_wide) 1143 nthreads = 1; 1144 1145 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1146 if (evsel->sample_id == NULL) 1147 return -ENOMEM; 1148 1149 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1150 if (evsel->id == NULL) { 1151 xyarray__delete(evsel->sample_id); 1152 evsel->sample_id = NULL; 1153 return -ENOMEM; 1154 } 1155 1156 return 0; 1157 } 1158 1159 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1160 { 1161 xyarray__delete(evsel->fd); 1162 evsel->fd = NULL; 1163 } 1164 1165 static void perf_evsel__free_id(struct perf_evsel *evsel) 1166 { 1167 xyarray__delete(evsel->sample_id); 1168 evsel->sample_id = NULL; 1169 zfree(&evsel->id); 1170 } 1171 1172 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1173 { 1174 struct perf_evsel_config_term *term, *h; 1175 1176 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1177 list_del(&term->list); 1178 free(term); 1179 } 1180 } 1181 1182 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1183 { 1184 int cpu, thread; 1185 1186 if (evsel->system_wide) 1187 nthreads = 1; 1188 1189 for (cpu = 0; cpu < ncpus; cpu++) 1190 for (thread = 0; thread < nthreads; ++thread) { 1191 close(FD(evsel, cpu, thread)); 1192 FD(evsel, cpu, thread) = -1; 1193 } 1194 } 1195 1196 void perf_evsel__exit(struct perf_evsel *evsel) 1197 { 1198 assert(list_empty(&evsel->node)); 1199 assert(evsel->evlist == NULL); 1200 perf_evsel__free_fd(evsel); 1201 perf_evsel__free_id(evsel); 1202 perf_evsel__free_config_terms(evsel); 1203 close_cgroup(evsel->cgrp); 1204 cpu_map__put(evsel->cpus); 1205 cpu_map__put(evsel->own_cpus); 1206 thread_map__put(evsel->threads); 1207 zfree(&evsel->group_name); 1208 zfree(&evsel->name); 1209 perf_evsel__object.fini(evsel); 1210 } 1211 1212 void perf_evsel__delete(struct perf_evsel *evsel) 1213 { 1214 perf_evsel__exit(evsel); 1215 free(evsel); 1216 } 1217 1218 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1219 struct perf_counts_values *count) 1220 { 1221 struct perf_counts_values tmp; 1222 1223 if (!evsel->prev_raw_counts) 1224 return; 1225 1226 if (cpu == -1) { 1227 tmp = evsel->prev_raw_counts->aggr; 1228 evsel->prev_raw_counts->aggr = *count; 1229 } else { 1230 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1231 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1232 } 1233 1234 count->val = count->val - tmp.val; 1235 count->ena = count->ena - tmp.ena; 1236 count->run = count->run - tmp.run; 1237 } 1238 1239 void perf_counts_values__scale(struct perf_counts_values *count, 1240 bool scale, s8 *pscaled) 1241 { 1242 s8 scaled = 0; 1243 1244 if (scale) { 1245 if (count->run == 0) { 1246 scaled = -1; 1247 count->val = 0; 1248 } else if (count->run < count->ena) { 1249 scaled = 1; 1250 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1251 } 1252 } else 1253 count->ena = count->run = 0; 1254 1255 if (pscaled) 1256 *pscaled = scaled; 1257 } 1258 1259 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1260 struct perf_counts_values *count) 1261 { 1262 memset(count, 0, sizeof(*count)); 1263 1264 if (FD(evsel, cpu, thread) < 0) 1265 return -EINVAL; 1266 1267 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0) 1268 return -errno; 1269 1270 return 0; 1271 } 1272 1273 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1274 int cpu, int thread, bool scale) 1275 { 1276 struct perf_counts_values count; 1277 size_t nv = scale ? 3 : 1; 1278 1279 if (FD(evsel, cpu, thread) < 0) 1280 return -EINVAL; 1281 1282 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1283 return -ENOMEM; 1284 1285 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1286 return -errno; 1287 1288 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1289 perf_counts_values__scale(&count, scale, NULL); 1290 *perf_counts(evsel->counts, cpu, thread) = count; 1291 return 0; 1292 } 1293 1294 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1295 { 1296 struct perf_evsel *leader = evsel->leader; 1297 int fd; 1298 1299 if (perf_evsel__is_group_leader(evsel)) 1300 return -1; 1301 1302 /* 1303 * Leader must be already processed/open, 1304 * if not it's a bug. 1305 */ 1306 BUG_ON(!leader->fd); 1307 1308 fd = FD(leader, cpu, thread); 1309 BUG_ON(fd == -1); 1310 1311 return fd; 1312 } 1313 1314 struct bit_names { 1315 int bit; 1316 const char *name; 1317 }; 1318 1319 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1320 { 1321 bool first_bit = true; 1322 int i = 0; 1323 1324 do { 1325 if (value & bits[i].bit) { 1326 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1327 first_bit = false; 1328 } 1329 } while (bits[++i].name != NULL); 1330 } 1331 1332 static void __p_sample_type(char *buf, size_t size, u64 value) 1333 { 1334 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1335 struct bit_names bits[] = { 1336 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1337 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1338 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1339 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1340 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1341 bit_name(WEIGHT), 1342 { .name = NULL, } 1343 }; 1344 #undef bit_name 1345 __p_bits(buf, size, value, bits); 1346 } 1347 1348 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1349 { 1350 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1351 struct bit_names bits[] = { 1352 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1353 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1354 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1355 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1356 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1357 { .name = NULL, } 1358 }; 1359 #undef bit_name 1360 __p_bits(buf, size, value, bits); 1361 } 1362 1363 static void __p_read_format(char *buf, size_t size, u64 value) 1364 { 1365 #define bit_name(n) { PERF_FORMAT_##n, #n } 1366 struct bit_names bits[] = { 1367 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1368 bit_name(ID), bit_name(GROUP), 1369 { .name = NULL, } 1370 }; 1371 #undef bit_name 1372 __p_bits(buf, size, value, bits); 1373 } 1374 1375 #define BUF_SIZE 1024 1376 1377 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1378 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1379 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1380 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1381 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1382 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1383 1384 #define PRINT_ATTRn(_n, _f, _p) \ 1385 do { \ 1386 if (attr->_f) { \ 1387 _p(attr->_f); \ 1388 ret += attr__fprintf(fp, _n, buf, priv);\ 1389 } \ 1390 } while (0) 1391 1392 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1393 1394 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1395 attr__fprintf_f attr__fprintf, void *priv) 1396 { 1397 char buf[BUF_SIZE]; 1398 int ret = 0; 1399 1400 PRINT_ATTRf(type, p_unsigned); 1401 PRINT_ATTRf(size, p_unsigned); 1402 PRINT_ATTRf(config, p_hex); 1403 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1404 PRINT_ATTRf(sample_type, p_sample_type); 1405 PRINT_ATTRf(read_format, p_read_format); 1406 1407 PRINT_ATTRf(disabled, p_unsigned); 1408 PRINT_ATTRf(inherit, p_unsigned); 1409 PRINT_ATTRf(pinned, p_unsigned); 1410 PRINT_ATTRf(exclusive, p_unsigned); 1411 PRINT_ATTRf(exclude_user, p_unsigned); 1412 PRINT_ATTRf(exclude_kernel, p_unsigned); 1413 PRINT_ATTRf(exclude_hv, p_unsigned); 1414 PRINT_ATTRf(exclude_idle, p_unsigned); 1415 PRINT_ATTRf(mmap, p_unsigned); 1416 PRINT_ATTRf(comm, p_unsigned); 1417 PRINT_ATTRf(freq, p_unsigned); 1418 PRINT_ATTRf(inherit_stat, p_unsigned); 1419 PRINT_ATTRf(enable_on_exec, p_unsigned); 1420 PRINT_ATTRf(task, p_unsigned); 1421 PRINT_ATTRf(watermark, p_unsigned); 1422 PRINT_ATTRf(precise_ip, p_unsigned); 1423 PRINT_ATTRf(mmap_data, p_unsigned); 1424 PRINT_ATTRf(sample_id_all, p_unsigned); 1425 PRINT_ATTRf(exclude_host, p_unsigned); 1426 PRINT_ATTRf(exclude_guest, p_unsigned); 1427 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1428 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1429 PRINT_ATTRf(mmap2, p_unsigned); 1430 PRINT_ATTRf(comm_exec, p_unsigned); 1431 PRINT_ATTRf(use_clockid, p_unsigned); 1432 PRINT_ATTRf(context_switch, p_unsigned); 1433 PRINT_ATTRf(write_backward, p_unsigned); 1434 1435 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1436 PRINT_ATTRf(bp_type, p_unsigned); 1437 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1438 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1439 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1440 PRINT_ATTRf(sample_regs_user, p_hex); 1441 PRINT_ATTRf(sample_stack_user, p_unsigned); 1442 PRINT_ATTRf(clockid, p_signed); 1443 PRINT_ATTRf(sample_regs_intr, p_hex); 1444 PRINT_ATTRf(aux_watermark, p_unsigned); 1445 PRINT_ATTRf(sample_max_stack, p_unsigned); 1446 1447 return ret; 1448 } 1449 1450 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1451 void *priv __maybe_unused) 1452 { 1453 return fprintf(fp, " %-32s %s\n", name, val); 1454 } 1455 1456 static bool ignore_missing_thread(struct perf_evsel *evsel, 1457 struct thread_map *threads, 1458 int thread, int err) 1459 { 1460 if (!evsel->ignore_missing_thread) 1461 return false; 1462 1463 /* The system wide setup does not work with threads. */ 1464 if (evsel->system_wide) 1465 return false; 1466 1467 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1468 if (err != -ESRCH) 1469 return false; 1470 1471 /* If there's only one thread, let it fail. */ 1472 if (threads->nr == 1) 1473 return false; 1474 1475 if (thread_map__remove(threads, thread)) 1476 return false; 1477 1478 pr_warning("WARNING: Ignored open failure for pid %d\n", 1479 thread_map__pid(threads, thread)); 1480 return true; 1481 } 1482 1483 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1484 struct thread_map *threads) 1485 { 1486 int cpu, thread, nthreads; 1487 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1488 int pid = -1, err; 1489 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1490 1491 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1492 return -EINVAL; 1493 1494 if (cpus == NULL) { 1495 static struct cpu_map *empty_cpu_map; 1496 1497 if (empty_cpu_map == NULL) { 1498 empty_cpu_map = cpu_map__dummy_new(); 1499 if (empty_cpu_map == NULL) 1500 return -ENOMEM; 1501 } 1502 1503 cpus = empty_cpu_map; 1504 } 1505 1506 if (threads == NULL) { 1507 static struct thread_map *empty_thread_map; 1508 1509 if (empty_thread_map == NULL) { 1510 empty_thread_map = thread_map__new_by_tid(-1); 1511 if (empty_thread_map == NULL) 1512 return -ENOMEM; 1513 } 1514 1515 threads = empty_thread_map; 1516 } 1517 1518 if (evsel->system_wide) 1519 nthreads = 1; 1520 else 1521 nthreads = threads->nr; 1522 1523 if (evsel->fd == NULL && 1524 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1525 return -ENOMEM; 1526 1527 if (evsel->cgrp) { 1528 flags |= PERF_FLAG_PID_CGROUP; 1529 pid = evsel->cgrp->fd; 1530 } 1531 1532 fallback_missing_features: 1533 if (perf_missing_features.clockid_wrong) 1534 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1535 if (perf_missing_features.clockid) { 1536 evsel->attr.use_clockid = 0; 1537 evsel->attr.clockid = 0; 1538 } 1539 if (perf_missing_features.cloexec) 1540 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1541 if (perf_missing_features.mmap2) 1542 evsel->attr.mmap2 = 0; 1543 if (perf_missing_features.exclude_guest) 1544 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1545 if (perf_missing_features.lbr_flags) 1546 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1547 PERF_SAMPLE_BRANCH_NO_CYCLES); 1548 retry_sample_id: 1549 if (perf_missing_features.sample_id_all) 1550 evsel->attr.sample_id_all = 0; 1551 1552 if (verbose >= 2) { 1553 fprintf(stderr, "%.60s\n", graph_dotted_line); 1554 fprintf(stderr, "perf_event_attr:\n"); 1555 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1556 fprintf(stderr, "%.60s\n", graph_dotted_line); 1557 } 1558 1559 for (cpu = 0; cpu < cpus->nr; cpu++) { 1560 1561 for (thread = 0; thread < nthreads; thread++) { 1562 int fd, group_fd; 1563 1564 if (!evsel->cgrp && !evsel->system_wide) 1565 pid = thread_map__pid(threads, thread); 1566 1567 group_fd = get_group_fd(evsel, cpu, thread); 1568 retry_open: 1569 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1570 pid, cpus->map[cpu], group_fd, flags); 1571 1572 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1573 group_fd, flags); 1574 1575 FD(evsel, cpu, thread) = fd; 1576 1577 if (fd < 0) { 1578 err = -errno; 1579 1580 if (ignore_missing_thread(evsel, threads, thread, err)) { 1581 /* 1582 * We just removed 1 thread, so take a step 1583 * back on thread index and lower the upper 1584 * nthreads limit. 1585 */ 1586 nthreads--; 1587 thread--; 1588 1589 /* ... and pretend like nothing have happened. */ 1590 err = 0; 1591 continue; 1592 } 1593 1594 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1595 err); 1596 goto try_fallback; 1597 } 1598 1599 pr_debug2(" = %d\n", fd); 1600 1601 if (evsel->bpf_fd >= 0) { 1602 int evt_fd = fd; 1603 int bpf_fd = evsel->bpf_fd; 1604 1605 err = ioctl(evt_fd, 1606 PERF_EVENT_IOC_SET_BPF, 1607 bpf_fd); 1608 if (err && errno != EEXIST) { 1609 pr_err("failed to attach bpf fd %d: %s\n", 1610 bpf_fd, strerror(errno)); 1611 err = -EINVAL; 1612 goto out_close; 1613 } 1614 } 1615 1616 set_rlimit = NO_CHANGE; 1617 1618 /* 1619 * If we succeeded but had to kill clockid, fail and 1620 * have perf_evsel__open_strerror() print us a nice 1621 * error. 1622 */ 1623 if (perf_missing_features.clockid || 1624 perf_missing_features.clockid_wrong) { 1625 err = -EINVAL; 1626 goto out_close; 1627 } 1628 } 1629 } 1630 1631 return 0; 1632 1633 try_fallback: 1634 /* 1635 * perf stat needs between 5 and 22 fds per CPU. When we run out 1636 * of them try to increase the limits. 1637 */ 1638 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1639 struct rlimit l; 1640 int old_errno = errno; 1641 1642 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1643 if (set_rlimit == NO_CHANGE) 1644 l.rlim_cur = l.rlim_max; 1645 else { 1646 l.rlim_cur = l.rlim_max + 1000; 1647 l.rlim_max = l.rlim_cur; 1648 } 1649 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1650 set_rlimit++; 1651 errno = old_errno; 1652 goto retry_open; 1653 } 1654 } 1655 errno = old_errno; 1656 } 1657 1658 if (err != -EINVAL || cpu > 0 || thread > 0) 1659 goto out_close; 1660 1661 /* 1662 * Must probe features in the order they were added to the 1663 * perf_event_attr interface. 1664 */ 1665 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1666 perf_missing_features.write_backward = true; 1667 goto out_close; 1668 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1669 perf_missing_features.clockid_wrong = true; 1670 goto fallback_missing_features; 1671 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1672 perf_missing_features.clockid = true; 1673 goto fallback_missing_features; 1674 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1675 perf_missing_features.cloexec = true; 1676 goto fallback_missing_features; 1677 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1678 perf_missing_features.mmap2 = true; 1679 goto fallback_missing_features; 1680 } else if (!perf_missing_features.exclude_guest && 1681 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1682 perf_missing_features.exclude_guest = true; 1683 goto fallback_missing_features; 1684 } else if (!perf_missing_features.sample_id_all) { 1685 perf_missing_features.sample_id_all = true; 1686 goto retry_sample_id; 1687 } else if (!perf_missing_features.lbr_flags && 1688 (evsel->attr.branch_sample_type & 1689 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1690 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1691 perf_missing_features.lbr_flags = true; 1692 goto fallback_missing_features; 1693 } 1694 out_close: 1695 do { 1696 while (--thread >= 0) { 1697 close(FD(evsel, cpu, thread)); 1698 FD(evsel, cpu, thread) = -1; 1699 } 1700 thread = nthreads; 1701 } while (--cpu >= 0); 1702 return err; 1703 } 1704 1705 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1706 { 1707 if (evsel->fd == NULL) 1708 return; 1709 1710 perf_evsel__close_fd(evsel, ncpus, nthreads); 1711 perf_evsel__free_fd(evsel); 1712 } 1713 1714 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1715 struct cpu_map *cpus) 1716 { 1717 return perf_evsel__open(evsel, cpus, NULL); 1718 } 1719 1720 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1721 struct thread_map *threads) 1722 { 1723 return perf_evsel__open(evsel, NULL, threads); 1724 } 1725 1726 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1727 const union perf_event *event, 1728 struct perf_sample *sample) 1729 { 1730 u64 type = evsel->attr.sample_type; 1731 const u64 *array = event->sample.array; 1732 bool swapped = evsel->needs_swap; 1733 union u64_swap u; 1734 1735 array += ((event->header.size - 1736 sizeof(event->header)) / sizeof(u64)) - 1; 1737 1738 if (type & PERF_SAMPLE_IDENTIFIER) { 1739 sample->id = *array; 1740 array--; 1741 } 1742 1743 if (type & PERF_SAMPLE_CPU) { 1744 u.val64 = *array; 1745 if (swapped) { 1746 /* undo swap of u64, then swap on individual u32s */ 1747 u.val64 = bswap_64(u.val64); 1748 u.val32[0] = bswap_32(u.val32[0]); 1749 } 1750 1751 sample->cpu = u.val32[0]; 1752 array--; 1753 } 1754 1755 if (type & PERF_SAMPLE_STREAM_ID) { 1756 sample->stream_id = *array; 1757 array--; 1758 } 1759 1760 if (type & PERF_SAMPLE_ID) { 1761 sample->id = *array; 1762 array--; 1763 } 1764 1765 if (type & PERF_SAMPLE_TIME) { 1766 sample->time = *array; 1767 array--; 1768 } 1769 1770 if (type & PERF_SAMPLE_TID) { 1771 u.val64 = *array; 1772 if (swapped) { 1773 /* undo swap of u64, then swap on individual u32s */ 1774 u.val64 = bswap_64(u.val64); 1775 u.val32[0] = bswap_32(u.val32[0]); 1776 u.val32[1] = bswap_32(u.val32[1]); 1777 } 1778 1779 sample->pid = u.val32[0]; 1780 sample->tid = u.val32[1]; 1781 array--; 1782 } 1783 1784 return 0; 1785 } 1786 1787 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1788 u64 size) 1789 { 1790 return size > max_size || offset + size > endp; 1791 } 1792 1793 #define OVERFLOW_CHECK(offset, size, max_size) \ 1794 do { \ 1795 if (overflow(endp, (max_size), (offset), (size))) \ 1796 return -EFAULT; \ 1797 } while (0) 1798 1799 #define OVERFLOW_CHECK_u64(offset) \ 1800 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1801 1802 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1803 struct perf_sample *data) 1804 { 1805 u64 type = evsel->attr.sample_type; 1806 bool swapped = evsel->needs_swap; 1807 const u64 *array; 1808 u16 max_size = event->header.size; 1809 const void *endp = (void *)event + max_size; 1810 u64 sz; 1811 1812 /* 1813 * used for cross-endian analysis. See git commit 65014ab3 1814 * for why this goofiness is needed. 1815 */ 1816 union u64_swap u; 1817 1818 memset(data, 0, sizeof(*data)); 1819 data->cpu = data->pid = data->tid = -1; 1820 data->stream_id = data->id = data->time = -1ULL; 1821 data->period = evsel->attr.sample_period; 1822 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1823 1824 if (event->header.type != PERF_RECORD_SAMPLE) { 1825 if (!evsel->attr.sample_id_all) 1826 return 0; 1827 return perf_evsel__parse_id_sample(evsel, event, data); 1828 } 1829 1830 array = event->sample.array; 1831 1832 /* 1833 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1834 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1835 * check the format does not go past the end of the event. 1836 */ 1837 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1838 return -EFAULT; 1839 1840 data->id = -1ULL; 1841 if (type & PERF_SAMPLE_IDENTIFIER) { 1842 data->id = *array; 1843 array++; 1844 } 1845 1846 if (type & PERF_SAMPLE_IP) { 1847 data->ip = *array; 1848 array++; 1849 } 1850 1851 if (type & PERF_SAMPLE_TID) { 1852 u.val64 = *array; 1853 if (swapped) { 1854 /* undo swap of u64, then swap on individual u32s */ 1855 u.val64 = bswap_64(u.val64); 1856 u.val32[0] = bswap_32(u.val32[0]); 1857 u.val32[1] = bswap_32(u.val32[1]); 1858 } 1859 1860 data->pid = u.val32[0]; 1861 data->tid = u.val32[1]; 1862 array++; 1863 } 1864 1865 if (type & PERF_SAMPLE_TIME) { 1866 data->time = *array; 1867 array++; 1868 } 1869 1870 data->addr = 0; 1871 if (type & PERF_SAMPLE_ADDR) { 1872 data->addr = *array; 1873 array++; 1874 } 1875 1876 if (type & PERF_SAMPLE_ID) { 1877 data->id = *array; 1878 array++; 1879 } 1880 1881 if (type & PERF_SAMPLE_STREAM_ID) { 1882 data->stream_id = *array; 1883 array++; 1884 } 1885 1886 if (type & PERF_SAMPLE_CPU) { 1887 1888 u.val64 = *array; 1889 if (swapped) { 1890 /* undo swap of u64, then swap on individual u32s */ 1891 u.val64 = bswap_64(u.val64); 1892 u.val32[0] = bswap_32(u.val32[0]); 1893 } 1894 1895 data->cpu = u.val32[0]; 1896 array++; 1897 } 1898 1899 if (type & PERF_SAMPLE_PERIOD) { 1900 data->period = *array; 1901 array++; 1902 } 1903 1904 if (type & PERF_SAMPLE_READ) { 1905 u64 read_format = evsel->attr.read_format; 1906 1907 OVERFLOW_CHECK_u64(array); 1908 if (read_format & PERF_FORMAT_GROUP) 1909 data->read.group.nr = *array; 1910 else 1911 data->read.one.value = *array; 1912 1913 array++; 1914 1915 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1916 OVERFLOW_CHECK_u64(array); 1917 data->read.time_enabled = *array; 1918 array++; 1919 } 1920 1921 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1922 OVERFLOW_CHECK_u64(array); 1923 data->read.time_running = *array; 1924 array++; 1925 } 1926 1927 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1928 if (read_format & PERF_FORMAT_GROUP) { 1929 const u64 max_group_nr = UINT64_MAX / 1930 sizeof(struct sample_read_value); 1931 1932 if (data->read.group.nr > max_group_nr) 1933 return -EFAULT; 1934 sz = data->read.group.nr * 1935 sizeof(struct sample_read_value); 1936 OVERFLOW_CHECK(array, sz, max_size); 1937 data->read.group.values = 1938 (struct sample_read_value *)array; 1939 array = (void *)array + sz; 1940 } else { 1941 OVERFLOW_CHECK_u64(array); 1942 data->read.one.id = *array; 1943 array++; 1944 } 1945 } 1946 1947 if (type & PERF_SAMPLE_CALLCHAIN) { 1948 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1949 1950 OVERFLOW_CHECK_u64(array); 1951 data->callchain = (struct ip_callchain *)array++; 1952 if (data->callchain->nr > max_callchain_nr) 1953 return -EFAULT; 1954 sz = data->callchain->nr * sizeof(u64); 1955 OVERFLOW_CHECK(array, sz, max_size); 1956 array = (void *)array + sz; 1957 } 1958 1959 if (type & PERF_SAMPLE_RAW) { 1960 OVERFLOW_CHECK_u64(array); 1961 u.val64 = *array; 1962 if (WARN_ONCE(swapped, 1963 "Endianness of raw data not corrected!\n")) { 1964 /* undo swap of u64, then swap on individual u32s */ 1965 u.val64 = bswap_64(u.val64); 1966 u.val32[0] = bswap_32(u.val32[0]); 1967 u.val32[1] = bswap_32(u.val32[1]); 1968 } 1969 data->raw_size = u.val32[0]; 1970 array = (void *)array + sizeof(u32); 1971 1972 OVERFLOW_CHECK(array, data->raw_size, max_size); 1973 data->raw_data = (void *)array; 1974 array = (void *)array + data->raw_size; 1975 } 1976 1977 if (type & PERF_SAMPLE_BRANCH_STACK) { 1978 const u64 max_branch_nr = UINT64_MAX / 1979 sizeof(struct branch_entry); 1980 1981 OVERFLOW_CHECK_u64(array); 1982 data->branch_stack = (struct branch_stack *)array++; 1983 1984 if (data->branch_stack->nr > max_branch_nr) 1985 return -EFAULT; 1986 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1987 OVERFLOW_CHECK(array, sz, max_size); 1988 array = (void *)array + sz; 1989 } 1990 1991 if (type & PERF_SAMPLE_REGS_USER) { 1992 OVERFLOW_CHECK_u64(array); 1993 data->user_regs.abi = *array; 1994 array++; 1995 1996 if (data->user_regs.abi) { 1997 u64 mask = evsel->attr.sample_regs_user; 1998 1999 sz = hweight_long(mask) * sizeof(u64); 2000 OVERFLOW_CHECK(array, sz, max_size); 2001 data->user_regs.mask = mask; 2002 data->user_regs.regs = (u64 *)array; 2003 array = (void *)array + sz; 2004 } 2005 } 2006 2007 if (type & PERF_SAMPLE_STACK_USER) { 2008 OVERFLOW_CHECK_u64(array); 2009 sz = *array++; 2010 2011 data->user_stack.offset = ((char *)(array - 1) 2012 - (char *) event); 2013 2014 if (!sz) { 2015 data->user_stack.size = 0; 2016 } else { 2017 OVERFLOW_CHECK(array, sz, max_size); 2018 data->user_stack.data = (char *)array; 2019 array = (void *)array + sz; 2020 OVERFLOW_CHECK_u64(array); 2021 data->user_stack.size = *array++; 2022 if (WARN_ONCE(data->user_stack.size > sz, 2023 "user stack dump failure\n")) 2024 return -EFAULT; 2025 } 2026 } 2027 2028 if (type & PERF_SAMPLE_WEIGHT) { 2029 OVERFLOW_CHECK_u64(array); 2030 data->weight = *array; 2031 array++; 2032 } 2033 2034 data->data_src = PERF_MEM_DATA_SRC_NONE; 2035 if (type & PERF_SAMPLE_DATA_SRC) { 2036 OVERFLOW_CHECK_u64(array); 2037 data->data_src = *array; 2038 array++; 2039 } 2040 2041 data->transaction = 0; 2042 if (type & PERF_SAMPLE_TRANSACTION) { 2043 OVERFLOW_CHECK_u64(array); 2044 data->transaction = *array; 2045 array++; 2046 } 2047 2048 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2049 if (type & PERF_SAMPLE_REGS_INTR) { 2050 OVERFLOW_CHECK_u64(array); 2051 data->intr_regs.abi = *array; 2052 array++; 2053 2054 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2055 u64 mask = evsel->attr.sample_regs_intr; 2056 2057 sz = hweight_long(mask) * sizeof(u64); 2058 OVERFLOW_CHECK(array, sz, max_size); 2059 data->intr_regs.mask = mask; 2060 data->intr_regs.regs = (u64 *)array; 2061 array = (void *)array + sz; 2062 } 2063 } 2064 2065 return 0; 2066 } 2067 2068 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2069 u64 read_format) 2070 { 2071 size_t sz, result = sizeof(struct sample_event); 2072 2073 if (type & PERF_SAMPLE_IDENTIFIER) 2074 result += sizeof(u64); 2075 2076 if (type & PERF_SAMPLE_IP) 2077 result += sizeof(u64); 2078 2079 if (type & PERF_SAMPLE_TID) 2080 result += sizeof(u64); 2081 2082 if (type & PERF_SAMPLE_TIME) 2083 result += sizeof(u64); 2084 2085 if (type & PERF_SAMPLE_ADDR) 2086 result += sizeof(u64); 2087 2088 if (type & PERF_SAMPLE_ID) 2089 result += sizeof(u64); 2090 2091 if (type & PERF_SAMPLE_STREAM_ID) 2092 result += sizeof(u64); 2093 2094 if (type & PERF_SAMPLE_CPU) 2095 result += sizeof(u64); 2096 2097 if (type & PERF_SAMPLE_PERIOD) 2098 result += sizeof(u64); 2099 2100 if (type & PERF_SAMPLE_READ) { 2101 result += sizeof(u64); 2102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2103 result += sizeof(u64); 2104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2105 result += sizeof(u64); 2106 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2107 if (read_format & PERF_FORMAT_GROUP) { 2108 sz = sample->read.group.nr * 2109 sizeof(struct sample_read_value); 2110 result += sz; 2111 } else { 2112 result += sizeof(u64); 2113 } 2114 } 2115 2116 if (type & PERF_SAMPLE_CALLCHAIN) { 2117 sz = (sample->callchain->nr + 1) * sizeof(u64); 2118 result += sz; 2119 } 2120 2121 if (type & PERF_SAMPLE_RAW) { 2122 result += sizeof(u32); 2123 result += sample->raw_size; 2124 } 2125 2126 if (type & PERF_SAMPLE_BRANCH_STACK) { 2127 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2128 sz += sizeof(u64); 2129 result += sz; 2130 } 2131 2132 if (type & PERF_SAMPLE_REGS_USER) { 2133 if (sample->user_regs.abi) { 2134 result += sizeof(u64); 2135 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2136 result += sz; 2137 } else { 2138 result += sizeof(u64); 2139 } 2140 } 2141 2142 if (type & PERF_SAMPLE_STACK_USER) { 2143 sz = sample->user_stack.size; 2144 result += sizeof(u64); 2145 if (sz) { 2146 result += sz; 2147 result += sizeof(u64); 2148 } 2149 } 2150 2151 if (type & PERF_SAMPLE_WEIGHT) 2152 result += sizeof(u64); 2153 2154 if (type & PERF_SAMPLE_DATA_SRC) 2155 result += sizeof(u64); 2156 2157 if (type & PERF_SAMPLE_TRANSACTION) 2158 result += sizeof(u64); 2159 2160 if (type & PERF_SAMPLE_REGS_INTR) { 2161 if (sample->intr_regs.abi) { 2162 result += sizeof(u64); 2163 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2164 result += sz; 2165 } else { 2166 result += sizeof(u64); 2167 } 2168 } 2169 2170 return result; 2171 } 2172 2173 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2174 u64 read_format, 2175 const struct perf_sample *sample, 2176 bool swapped) 2177 { 2178 u64 *array; 2179 size_t sz; 2180 /* 2181 * used for cross-endian analysis. See git commit 65014ab3 2182 * for why this goofiness is needed. 2183 */ 2184 union u64_swap u; 2185 2186 array = event->sample.array; 2187 2188 if (type & PERF_SAMPLE_IDENTIFIER) { 2189 *array = sample->id; 2190 array++; 2191 } 2192 2193 if (type & PERF_SAMPLE_IP) { 2194 *array = sample->ip; 2195 array++; 2196 } 2197 2198 if (type & PERF_SAMPLE_TID) { 2199 u.val32[0] = sample->pid; 2200 u.val32[1] = sample->tid; 2201 if (swapped) { 2202 /* 2203 * Inverse of what is done in perf_evsel__parse_sample 2204 */ 2205 u.val32[0] = bswap_32(u.val32[0]); 2206 u.val32[1] = bswap_32(u.val32[1]); 2207 u.val64 = bswap_64(u.val64); 2208 } 2209 2210 *array = u.val64; 2211 array++; 2212 } 2213 2214 if (type & PERF_SAMPLE_TIME) { 2215 *array = sample->time; 2216 array++; 2217 } 2218 2219 if (type & PERF_SAMPLE_ADDR) { 2220 *array = sample->addr; 2221 array++; 2222 } 2223 2224 if (type & PERF_SAMPLE_ID) { 2225 *array = sample->id; 2226 array++; 2227 } 2228 2229 if (type & PERF_SAMPLE_STREAM_ID) { 2230 *array = sample->stream_id; 2231 array++; 2232 } 2233 2234 if (type & PERF_SAMPLE_CPU) { 2235 u.val32[0] = sample->cpu; 2236 if (swapped) { 2237 /* 2238 * Inverse of what is done in perf_evsel__parse_sample 2239 */ 2240 u.val32[0] = bswap_32(u.val32[0]); 2241 u.val64 = bswap_64(u.val64); 2242 } 2243 *array = u.val64; 2244 array++; 2245 } 2246 2247 if (type & PERF_SAMPLE_PERIOD) { 2248 *array = sample->period; 2249 array++; 2250 } 2251 2252 if (type & PERF_SAMPLE_READ) { 2253 if (read_format & PERF_FORMAT_GROUP) 2254 *array = sample->read.group.nr; 2255 else 2256 *array = sample->read.one.value; 2257 array++; 2258 2259 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2260 *array = sample->read.time_enabled; 2261 array++; 2262 } 2263 2264 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2265 *array = sample->read.time_running; 2266 array++; 2267 } 2268 2269 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2270 if (read_format & PERF_FORMAT_GROUP) { 2271 sz = sample->read.group.nr * 2272 sizeof(struct sample_read_value); 2273 memcpy(array, sample->read.group.values, sz); 2274 array = (void *)array + sz; 2275 } else { 2276 *array = sample->read.one.id; 2277 array++; 2278 } 2279 } 2280 2281 if (type & PERF_SAMPLE_CALLCHAIN) { 2282 sz = (sample->callchain->nr + 1) * sizeof(u64); 2283 memcpy(array, sample->callchain, sz); 2284 array = (void *)array + sz; 2285 } 2286 2287 if (type & PERF_SAMPLE_RAW) { 2288 u.val32[0] = sample->raw_size; 2289 if (WARN_ONCE(swapped, 2290 "Endianness of raw data not corrected!\n")) { 2291 /* 2292 * Inverse of what is done in perf_evsel__parse_sample 2293 */ 2294 u.val32[0] = bswap_32(u.val32[0]); 2295 u.val32[1] = bswap_32(u.val32[1]); 2296 u.val64 = bswap_64(u.val64); 2297 } 2298 *array = u.val64; 2299 array = (void *)array + sizeof(u32); 2300 2301 memcpy(array, sample->raw_data, sample->raw_size); 2302 array = (void *)array + sample->raw_size; 2303 } 2304 2305 if (type & PERF_SAMPLE_BRANCH_STACK) { 2306 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2307 sz += sizeof(u64); 2308 memcpy(array, sample->branch_stack, sz); 2309 array = (void *)array + sz; 2310 } 2311 2312 if (type & PERF_SAMPLE_REGS_USER) { 2313 if (sample->user_regs.abi) { 2314 *array++ = sample->user_regs.abi; 2315 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2316 memcpy(array, sample->user_regs.regs, sz); 2317 array = (void *)array + sz; 2318 } else { 2319 *array++ = 0; 2320 } 2321 } 2322 2323 if (type & PERF_SAMPLE_STACK_USER) { 2324 sz = sample->user_stack.size; 2325 *array++ = sz; 2326 if (sz) { 2327 memcpy(array, sample->user_stack.data, sz); 2328 array = (void *)array + sz; 2329 *array++ = sz; 2330 } 2331 } 2332 2333 if (type & PERF_SAMPLE_WEIGHT) { 2334 *array = sample->weight; 2335 array++; 2336 } 2337 2338 if (type & PERF_SAMPLE_DATA_SRC) { 2339 *array = sample->data_src; 2340 array++; 2341 } 2342 2343 if (type & PERF_SAMPLE_TRANSACTION) { 2344 *array = sample->transaction; 2345 array++; 2346 } 2347 2348 if (type & PERF_SAMPLE_REGS_INTR) { 2349 if (sample->intr_regs.abi) { 2350 *array++ = sample->intr_regs.abi; 2351 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2352 memcpy(array, sample->intr_regs.regs, sz); 2353 array = (void *)array + sz; 2354 } else { 2355 *array++ = 0; 2356 } 2357 } 2358 2359 return 0; 2360 } 2361 2362 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2363 { 2364 return pevent_find_field(evsel->tp_format, name); 2365 } 2366 2367 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2368 const char *name) 2369 { 2370 struct format_field *field = perf_evsel__field(evsel, name); 2371 int offset; 2372 2373 if (!field) 2374 return NULL; 2375 2376 offset = field->offset; 2377 2378 if (field->flags & FIELD_IS_DYNAMIC) { 2379 offset = *(int *)(sample->raw_data + field->offset); 2380 offset &= 0xffff; 2381 } 2382 2383 return sample->raw_data + offset; 2384 } 2385 2386 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2387 bool needs_swap) 2388 { 2389 u64 value; 2390 void *ptr = sample->raw_data + field->offset; 2391 2392 switch (field->size) { 2393 case 1: 2394 return *(u8 *)ptr; 2395 case 2: 2396 value = *(u16 *)ptr; 2397 break; 2398 case 4: 2399 value = *(u32 *)ptr; 2400 break; 2401 case 8: 2402 memcpy(&value, ptr, sizeof(u64)); 2403 break; 2404 default: 2405 return 0; 2406 } 2407 2408 if (!needs_swap) 2409 return value; 2410 2411 switch (field->size) { 2412 case 2: 2413 return bswap_16(value); 2414 case 4: 2415 return bswap_32(value); 2416 case 8: 2417 return bswap_64(value); 2418 default: 2419 return 0; 2420 } 2421 2422 return 0; 2423 } 2424 2425 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2426 const char *name) 2427 { 2428 struct format_field *field = perf_evsel__field(evsel, name); 2429 2430 if (!field) 2431 return 0; 2432 2433 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2434 } 2435 2436 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2437 char *msg, size_t msgsize) 2438 { 2439 int paranoid; 2440 2441 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2442 evsel->attr.type == PERF_TYPE_HARDWARE && 2443 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2444 /* 2445 * If it's cycles then fall back to hrtimer based 2446 * cpu-clock-tick sw counter, which is always available even if 2447 * no PMU support. 2448 * 2449 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2450 * b0a873e). 2451 */ 2452 scnprintf(msg, msgsize, "%s", 2453 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2454 2455 evsel->attr.type = PERF_TYPE_SOFTWARE; 2456 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2457 2458 zfree(&evsel->name); 2459 return true; 2460 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2461 (paranoid = perf_event_paranoid()) > 1) { 2462 const char *name = perf_evsel__name(evsel); 2463 char *new_name; 2464 2465 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2466 return false; 2467 2468 if (evsel->name) 2469 free(evsel->name); 2470 evsel->name = new_name; 2471 scnprintf(msg, msgsize, 2472 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2473 evsel->attr.exclude_kernel = 1; 2474 2475 return true; 2476 } 2477 2478 return false; 2479 } 2480 2481 static bool find_process(const char *name) 2482 { 2483 size_t len = strlen(name); 2484 DIR *dir; 2485 struct dirent *d; 2486 int ret = -1; 2487 2488 dir = opendir(procfs__mountpoint()); 2489 if (!dir) 2490 return false; 2491 2492 /* Walk through the directory. */ 2493 while (ret && (d = readdir(dir)) != NULL) { 2494 char path[PATH_MAX]; 2495 char *data; 2496 size_t size; 2497 2498 if ((d->d_type != DT_DIR) || 2499 !strcmp(".", d->d_name) || 2500 !strcmp("..", d->d_name)) 2501 continue; 2502 2503 scnprintf(path, sizeof(path), "%s/%s/comm", 2504 procfs__mountpoint(), d->d_name); 2505 2506 if (filename__read_str(path, &data, &size)) 2507 continue; 2508 2509 ret = strncmp(name, data, len); 2510 free(data); 2511 } 2512 2513 closedir(dir); 2514 return ret ? false : true; 2515 } 2516 2517 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2518 int err, char *msg, size_t size) 2519 { 2520 char sbuf[STRERR_BUFSIZE]; 2521 int printed = 0; 2522 2523 switch (err) { 2524 case EPERM: 2525 case EACCES: 2526 if (err == EPERM) 2527 printed = scnprintf(msg, size, 2528 "No permission to enable %s event.\n\n", 2529 perf_evsel__name(evsel)); 2530 2531 return scnprintf(msg + printed, size - printed, 2532 "You may not have permission to collect %sstats.\n\n" 2533 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2534 "which controls use of the performance events system by\n" 2535 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2536 "The current value is %d:\n\n" 2537 " -1: Allow use of (almost) all events by all users\n" 2538 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2539 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2540 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2541 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2542 " kernel.perf_event_paranoid = -1\n" , 2543 target->system_wide ? "system-wide " : "", 2544 perf_event_paranoid()); 2545 case ENOENT: 2546 return scnprintf(msg, size, "The %s event is not supported.", 2547 perf_evsel__name(evsel)); 2548 case EMFILE: 2549 return scnprintf(msg, size, "%s", 2550 "Too many events are opened.\n" 2551 "Probably the maximum number of open file descriptors has been reached.\n" 2552 "Hint: Try again after reducing the number of events.\n" 2553 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2554 case ENOMEM: 2555 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2556 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2557 return scnprintf(msg, size, 2558 "Not enough memory to setup event with callchain.\n" 2559 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2560 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2561 break; 2562 case ENODEV: 2563 if (target->cpu_list) 2564 return scnprintf(msg, size, "%s", 2565 "No such device - did you specify an out-of-range profile CPU?"); 2566 break; 2567 case EOPNOTSUPP: 2568 if (evsel->attr.sample_period != 0) 2569 return scnprintf(msg, size, "%s", 2570 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2571 if (evsel->attr.precise_ip) 2572 return scnprintf(msg, size, "%s", 2573 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2574 #if defined(__i386__) || defined(__x86_64__) 2575 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2576 return scnprintf(msg, size, "%s", 2577 "No hardware sampling interrupt available.\n" 2578 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2579 #endif 2580 break; 2581 case EBUSY: 2582 if (find_process("oprofiled")) 2583 return scnprintf(msg, size, 2584 "The PMU counters are busy/taken by another profiler.\n" 2585 "We found oprofile daemon running, please stop it and try again."); 2586 break; 2587 case EINVAL: 2588 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2589 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2590 if (perf_missing_features.clockid) 2591 return scnprintf(msg, size, "clockid feature not supported."); 2592 if (perf_missing_features.clockid_wrong) 2593 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2594 break; 2595 default: 2596 break; 2597 } 2598 2599 return scnprintf(msg, size, 2600 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2601 "/bin/dmesg may provide additional information.\n" 2602 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2603 err, str_error_r(err, sbuf, sizeof(sbuf)), 2604 perf_evsel__name(evsel)); 2605 } 2606 2607 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2608 { 2609 if (evsel && evsel->evlist && evsel->evlist->env) 2610 return evsel->evlist->env->arch; 2611 return NULL; 2612 } 2613