1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "callchain.h" 19 #include "cgroup.h" 20 #include "evsel.h" 21 #include "evlist.h" 22 #include "util.h" 23 #include "cpumap.h" 24 #include "thread_map.h" 25 #include "target.h" 26 #include "perf_regs.h" 27 #include "debug.h" 28 #include "trace-event.h" 29 #include "stat.h" 30 31 static struct { 32 bool sample_id_all; 33 bool exclude_guest; 34 bool mmap2; 35 bool cloexec; 36 bool clockid; 37 bool clockid_wrong; 38 } perf_missing_features; 39 40 static clockid_t clockid; 41 42 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 43 { 44 return 0; 45 } 46 47 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 48 { 49 } 50 51 static struct { 52 size_t size; 53 int (*init)(struct perf_evsel *evsel); 54 void (*fini)(struct perf_evsel *evsel); 55 } perf_evsel__object = { 56 .size = sizeof(struct perf_evsel), 57 .init = perf_evsel__no_extra_init, 58 .fini = perf_evsel__no_extra_fini, 59 }; 60 61 int perf_evsel__object_config(size_t object_size, 62 int (*init)(struct perf_evsel *evsel), 63 void (*fini)(struct perf_evsel *evsel)) 64 { 65 66 if (object_size == 0) 67 goto set_methods; 68 69 if (perf_evsel__object.size > object_size) 70 return -EINVAL; 71 72 perf_evsel__object.size = object_size; 73 74 set_methods: 75 if (init != NULL) 76 perf_evsel__object.init = init; 77 78 if (fini != NULL) 79 perf_evsel__object.fini = fini; 80 81 return 0; 82 } 83 84 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 85 86 int __perf_evsel__sample_size(u64 sample_type) 87 { 88 u64 mask = sample_type & PERF_SAMPLE_MASK; 89 int size = 0; 90 int i; 91 92 for (i = 0; i < 64; i++) { 93 if (mask & (1ULL << i)) 94 size++; 95 } 96 97 size *= sizeof(u64); 98 99 return size; 100 } 101 102 /** 103 * __perf_evsel__calc_id_pos - calculate id_pos. 104 * @sample_type: sample type 105 * 106 * This function returns the position of the event id (PERF_SAMPLE_ID or 107 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 108 * sample_event. 109 */ 110 static int __perf_evsel__calc_id_pos(u64 sample_type) 111 { 112 int idx = 0; 113 114 if (sample_type & PERF_SAMPLE_IDENTIFIER) 115 return 0; 116 117 if (!(sample_type & PERF_SAMPLE_ID)) 118 return -1; 119 120 if (sample_type & PERF_SAMPLE_IP) 121 idx += 1; 122 123 if (sample_type & PERF_SAMPLE_TID) 124 idx += 1; 125 126 if (sample_type & PERF_SAMPLE_TIME) 127 idx += 1; 128 129 if (sample_type & PERF_SAMPLE_ADDR) 130 idx += 1; 131 132 return idx; 133 } 134 135 /** 136 * __perf_evsel__calc_is_pos - calculate is_pos. 137 * @sample_type: sample type 138 * 139 * This function returns the position (counting backwards) of the event id 140 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 141 * sample_id_all is used there is an id sample appended to non-sample events. 142 */ 143 static int __perf_evsel__calc_is_pos(u64 sample_type) 144 { 145 int idx = 1; 146 147 if (sample_type & PERF_SAMPLE_IDENTIFIER) 148 return 1; 149 150 if (!(sample_type & PERF_SAMPLE_ID)) 151 return -1; 152 153 if (sample_type & PERF_SAMPLE_CPU) 154 idx += 1; 155 156 if (sample_type & PERF_SAMPLE_STREAM_ID) 157 idx += 1; 158 159 return idx; 160 } 161 162 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 163 { 164 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 165 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 166 } 167 168 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 169 enum perf_event_sample_format bit) 170 { 171 if (!(evsel->attr.sample_type & bit)) { 172 evsel->attr.sample_type |= bit; 173 evsel->sample_size += sizeof(u64); 174 perf_evsel__calc_id_pos(evsel); 175 } 176 } 177 178 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 179 enum perf_event_sample_format bit) 180 { 181 if (evsel->attr.sample_type & bit) { 182 evsel->attr.sample_type &= ~bit; 183 evsel->sample_size -= sizeof(u64); 184 perf_evsel__calc_id_pos(evsel); 185 } 186 } 187 188 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 189 bool can_sample_identifier) 190 { 191 if (can_sample_identifier) { 192 perf_evsel__reset_sample_bit(evsel, ID); 193 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 194 } else { 195 perf_evsel__set_sample_bit(evsel, ID); 196 } 197 evsel->attr.read_format |= PERF_FORMAT_ID; 198 } 199 200 void perf_evsel__init(struct perf_evsel *evsel, 201 struct perf_event_attr *attr, int idx) 202 { 203 evsel->idx = idx; 204 evsel->tracking = !idx; 205 evsel->attr = *attr; 206 evsel->leader = evsel; 207 evsel->unit = ""; 208 evsel->scale = 1.0; 209 evsel->evlist = NULL; 210 INIT_LIST_HEAD(&evsel->node); 211 INIT_LIST_HEAD(&evsel->config_terms); 212 perf_evsel__object.init(evsel); 213 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 214 perf_evsel__calc_id_pos(evsel); 215 evsel->cmdline_group_boundary = false; 216 } 217 218 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 219 { 220 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 221 222 if (evsel != NULL) 223 perf_evsel__init(evsel, attr, idx); 224 225 return evsel; 226 } 227 228 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 229 { 230 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 231 232 if (evsel != NULL) { 233 struct perf_event_attr attr = { 234 .type = PERF_TYPE_TRACEPOINT, 235 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 236 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 237 }; 238 239 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 240 goto out_free; 241 242 evsel->tp_format = trace_event__tp_format(sys, name); 243 if (evsel->tp_format == NULL) 244 goto out_free; 245 246 event_attr_init(&attr); 247 attr.config = evsel->tp_format->id; 248 attr.sample_period = 1; 249 perf_evsel__init(evsel, &attr, idx); 250 } 251 252 return evsel; 253 254 out_free: 255 zfree(&evsel->name); 256 free(evsel); 257 return NULL; 258 } 259 260 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 261 "cycles", 262 "instructions", 263 "cache-references", 264 "cache-misses", 265 "branches", 266 "branch-misses", 267 "bus-cycles", 268 "stalled-cycles-frontend", 269 "stalled-cycles-backend", 270 "ref-cycles", 271 }; 272 273 static const char *__perf_evsel__hw_name(u64 config) 274 { 275 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 276 return perf_evsel__hw_names[config]; 277 278 return "unknown-hardware"; 279 } 280 281 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 282 { 283 int colon = 0, r = 0; 284 struct perf_event_attr *attr = &evsel->attr; 285 bool exclude_guest_default = false; 286 287 #define MOD_PRINT(context, mod) do { \ 288 if (!attr->exclude_##context) { \ 289 if (!colon) colon = ++r; \ 290 r += scnprintf(bf + r, size - r, "%c", mod); \ 291 } } while(0) 292 293 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 294 MOD_PRINT(kernel, 'k'); 295 MOD_PRINT(user, 'u'); 296 MOD_PRINT(hv, 'h'); 297 exclude_guest_default = true; 298 } 299 300 if (attr->precise_ip) { 301 if (!colon) 302 colon = ++r; 303 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 304 exclude_guest_default = true; 305 } 306 307 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 308 MOD_PRINT(host, 'H'); 309 MOD_PRINT(guest, 'G'); 310 } 311 #undef MOD_PRINT 312 if (colon) 313 bf[colon - 1] = ':'; 314 return r; 315 } 316 317 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 318 { 319 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 320 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 321 } 322 323 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 324 "cpu-clock", 325 "task-clock", 326 "page-faults", 327 "context-switches", 328 "cpu-migrations", 329 "minor-faults", 330 "major-faults", 331 "alignment-faults", 332 "emulation-faults", 333 "dummy", 334 }; 335 336 static const char *__perf_evsel__sw_name(u64 config) 337 { 338 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 339 return perf_evsel__sw_names[config]; 340 return "unknown-software"; 341 } 342 343 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 344 { 345 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 346 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 347 } 348 349 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 350 { 351 int r; 352 353 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 354 355 if (type & HW_BREAKPOINT_R) 356 r += scnprintf(bf + r, size - r, "r"); 357 358 if (type & HW_BREAKPOINT_W) 359 r += scnprintf(bf + r, size - r, "w"); 360 361 if (type & HW_BREAKPOINT_X) 362 r += scnprintf(bf + r, size - r, "x"); 363 364 return r; 365 } 366 367 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 368 { 369 struct perf_event_attr *attr = &evsel->attr; 370 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 371 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 372 } 373 374 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 375 [PERF_EVSEL__MAX_ALIASES] = { 376 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 377 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 378 { "LLC", "L2", }, 379 { "dTLB", "d-tlb", "Data-TLB", }, 380 { "iTLB", "i-tlb", "Instruction-TLB", }, 381 { "branch", "branches", "bpu", "btb", "bpc", }, 382 { "node", }, 383 }; 384 385 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 386 [PERF_EVSEL__MAX_ALIASES] = { 387 { "load", "loads", "read", }, 388 { "store", "stores", "write", }, 389 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 390 }; 391 392 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 393 [PERF_EVSEL__MAX_ALIASES] = { 394 { "refs", "Reference", "ops", "access", }, 395 { "misses", "miss", }, 396 }; 397 398 #define C(x) PERF_COUNT_HW_CACHE_##x 399 #define CACHE_READ (1 << C(OP_READ)) 400 #define CACHE_WRITE (1 << C(OP_WRITE)) 401 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 402 #define COP(x) (1 << x) 403 404 /* 405 * cache operartion stat 406 * L1I : Read and prefetch only 407 * ITLB and BPU : Read-only 408 */ 409 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 410 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 411 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 412 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 413 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 414 [C(ITLB)] = (CACHE_READ), 415 [C(BPU)] = (CACHE_READ), 416 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 417 }; 418 419 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 420 { 421 if (perf_evsel__hw_cache_stat[type] & COP(op)) 422 return true; /* valid */ 423 else 424 return false; /* invalid */ 425 } 426 427 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 428 char *bf, size_t size) 429 { 430 if (result) { 431 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 432 perf_evsel__hw_cache_op[op][0], 433 perf_evsel__hw_cache_result[result][0]); 434 } 435 436 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 437 perf_evsel__hw_cache_op[op][1]); 438 } 439 440 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 441 { 442 u8 op, result, type = (config >> 0) & 0xff; 443 const char *err = "unknown-ext-hardware-cache-type"; 444 445 if (type > PERF_COUNT_HW_CACHE_MAX) 446 goto out_err; 447 448 op = (config >> 8) & 0xff; 449 err = "unknown-ext-hardware-cache-op"; 450 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 451 goto out_err; 452 453 result = (config >> 16) & 0xff; 454 err = "unknown-ext-hardware-cache-result"; 455 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 456 goto out_err; 457 458 err = "invalid-cache"; 459 if (!perf_evsel__is_cache_op_valid(type, op)) 460 goto out_err; 461 462 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 463 out_err: 464 return scnprintf(bf, size, "%s", err); 465 } 466 467 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 468 { 469 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 470 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 471 } 472 473 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 474 { 475 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 476 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 477 } 478 479 const char *perf_evsel__name(struct perf_evsel *evsel) 480 { 481 char bf[128]; 482 483 if (evsel->name) 484 return evsel->name; 485 486 switch (evsel->attr.type) { 487 case PERF_TYPE_RAW: 488 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 489 break; 490 491 case PERF_TYPE_HARDWARE: 492 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 493 break; 494 495 case PERF_TYPE_HW_CACHE: 496 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 497 break; 498 499 case PERF_TYPE_SOFTWARE: 500 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 501 break; 502 503 case PERF_TYPE_TRACEPOINT: 504 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 505 break; 506 507 case PERF_TYPE_BREAKPOINT: 508 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 509 break; 510 511 default: 512 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 513 evsel->attr.type); 514 break; 515 } 516 517 evsel->name = strdup(bf); 518 519 return evsel->name ?: "unknown"; 520 } 521 522 const char *perf_evsel__group_name(struct perf_evsel *evsel) 523 { 524 return evsel->group_name ?: "anon group"; 525 } 526 527 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 528 { 529 int ret; 530 struct perf_evsel *pos; 531 const char *group_name = perf_evsel__group_name(evsel); 532 533 ret = scnprintf(buf, size, "%s", group_name); 534 535 ret += scnprintf(buf + ret, size - ret, " { %s", 536 perf_evsel__name(evsel)); 537 538 for_each_group_member(pos, evsel) 539 ret += scnprintf(buf + ret, size - ret, ", %s", 540 perf_evsel__name(pos)); 541 542 ret += scnprintf(buf + ret, size - ret, " }"); 543 544 return ret; 545 } 546 547 static void 548 perf_evsel__config_callgraph(struct perf_evsel *evsel, 549 struct record_opts *opts, 550 struct callchain_param *param) 551 { 552 bool function = perf_evsel__is_function_event(evsel); 553 struct perf_event_attr *attr = &evsel->attr; 554 555 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 556 557 if (param->record_mode == CALLCHAIN_LBR) { 558 if (!opts->branch_stack) { 559 if (attr->exclude_user) { 560 pr_warning("LBR callstack option is only available " 561 "to get user callchain information. " 562 "Falling back to framepointers.\n"); 563 } else { 564 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 565 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 566 PERF_SAMPLE_BRANCH_CALL_STACK; 567 } 568 } else 569 pr_warning("Cannot use LBR callstack with branch stack. " 570 "Falling back to framepointers.\n"); 571 } 572 573 if (param->record_mode == CALLCHAIN_DWARF) { 574 if (!function) { 575 perf_evsel__set_sample_bit(evsel, REGS_USER); 576 perf_evsel__set_sample_bit(evsel, STACK_USER); 577 attr->sample_regs_user = PERF_REGS_MASK; 578 attr->sample_stack_user = param->dump_size; 579 attr->exclude_callchain_user = 1; 580 } else { 581 pr_info("Cannot use DWARF unwind for function trace event," 582 " falling back to framepointers.\n"); 583 } 584 } 585 586 if (function) { 587 pr_info("Disabling user space callchains for function trace event.\n"); 588 attr->exclude_callchain_user = 1; 589 } 590 } 591 592 static void 593 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 594 struct callchain_param *param) 595 { 596 struct perf_event_attr *attr = &evsel->attr; 597 598 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 599 if (param->record_mode == CALLCHAIN_LBR) { 600 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 601 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 602 PERF_SAMPLE_BRANCH_CALL_STACK); 603 } 604 if (param->record_mode == CALLCHAIN_DWARF) { 605 perf_evsel__reset_sample_bit(evsel, REGS_USER); 606 perf_evsel__reset_sample_bit(evsel, STACK_USER); 607 } 608 } 609 610 static void apply_config_terms(struct perf_evsel *evsel, 611 struct record_opts *opts) 612 { 613 struct perf_evsel_config_term *term; 614 struct list_head *config_terms = &evsel->config_terms; 615 struct perf_event_attr *attr = &evsel->attr; 616 struct callchain_param param; 617 u32 dump_size = 0; 618 char *callgraph_buf = NULL; 619 620 /* callgraph default */ 621 param.record_mode = callchain_param.record_mode; 622 623 list_for_each_entry(term, config_terms, list) { 624 switch (term->type) { 625 case PERF_EVSEL__CONFIG_TERM_PERIOD: 626 attr->sample_period = term->val.period; 627 attr->freq = 0; 628 break; 629 case PERF_EVSEL__CONFIG_TERM_FREQ: 630 attr->sample_freq = term->val.freq; 631 attr->freq = 1; 632 break; 633 case PERF_EVSEL__CONFIG_TERM_TIME: 634 if (term->val.time) 635 perf_evsel__set_sample_bit(evsel, TIME); 636 else 637 perf_evsel__reset_sample_bit(evsel, TIME); 638 break; 639 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 640 callgraph_buf = term->val.callgraph; 641 break; 642 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 643 dump_size = term->val.stack_user; 644 break; 645 default: 646 break; 647 } 648 } 649 650 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 651 if ((callgraph_buf != NULL) || (dump_size > 0)) { 652 653 /* parse callgraph parameters */ 654 if (callgraph_buf != NULL) { 655 if (!strcmp(callgraph_buf, "no")) { 656 param.enabled = false; 657 param.record_mode = CALLCHAIN_NONE; 658 } else { 659 param.enabled = true; 660 if (parse_callchain_record(callgraph_buf, ¶m)) { 661 pr_err("per-event callgraph setting for %s failed. " 662 "Apply callgraph global setting for it\n", 663 evsel->name); 664 return; 665 } 666 } 667 } 668 if (dump_size > 0) { 669 dump_size = round_up(dump_size, sizeof(u64)); 670 param.dump_size = dump_size; 671 } 672 673 /* If global callgraph set, clear it */ 674 if (callchain_param.enabled) 675 perf_evsel__reset_callgraph(evsel, &callchain_param); 676 677 /* set perf-event callgraph */ 678 if (param.enabled) 679 perf_evsel__config_callgraph(evsel, opts, ¶m); 680 } 681 } 682 683 /* 684 * The enable_on_exec/disabled value strategy: 685 * 686 * 1) For any type of traced program: 687 * - all independent events and group leaders are disabled 688 * - all group members are enabled 689 * 690 * Group members are ruled by group leaders. They need to 691 * be enabled, because the group scheduling relies on that. 692 * 693 * 2) For traced programs executed by perf: 694 * - all independent events and group leaders have 695 * enable_on_exec set 696 * - we don't specifically enable or disable any event during 697 * the record command 698 * 699 * Independent events and group leaders are initially disabled 700 * and get enabled by exec. Group members are ruled by group 701 * leaders as stated in 1). 702 * 703 * 3) For traced programs attached by perf (pid/tid): 704 * - we specifically enable or disable all events during 705 * the record command 706 * 707 * When attaching events to already running traced we 708 * enable/disable events specifically, as there's no 709 * initial traced exec call. 710 */ 711 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 712 { 713 struct perf_evsel *leader = evsel->leader; 714 struct perf_event_attr *attr = &evsel->attr; 715 int track = evsel->tracking; 716 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 717 718 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 719 attr->inherit = !opts->no_inherit; 720 721 perf_evsel__set_sample_bit(evsel, IP); 722 perf_evsel__set_sample_bit(evsel, TID); 723 724 if (evsel->sample_read) { 725 perf_evsel__set_sample_bit(evsel, READ); 726 727 /* 728 * We need ID even in case of single event, because 729 * PERF_SAMPLE_READ process ID specific data. 730 */ 731 perf_evsel__set_sample_id(evsel, false); 732 733 /* 734 * Apply group format only if we belong to group 735 * with more than one members. 736 */ 737 if (leader->nr_members > 1) { 738 attr->read_format |= PERF_FORMAT_GROUP; 739 attr->inherit = 0; 740 } 741 } 742 743 /* 744 * We default some events to have a default interval. But keep 745 * it a weak assumption overridable by the user. 746 */ 747 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 748 opts->user_interval != ULLONG_MAX)) { 749 if (opts->freq) { 750 perf_evsel__set_sample_bit(evsel, PERIOD); 751 attr->freq = 1; 752 attr->sample_freq = opts->freq; 753 } else { 754 attr->sample_period = opts->default_interval; 755 } 756 } 757 758 /* 759 * Disable sampling for all group members other 760 * than leader in case leader 'leads' the sampling. 761 */ 762 if ((leader != evsel) && leader->sample_read) { 763 attr->sample_freq = 0; 764 attr->sample_period = 0; 765 } 766 767 if (opts->no_samples) 768 attr->sample_freq = 0; 769 770 if (opts->inherit_stat) 771 attr->inherit_stat = 1; 772 773 if (opts->sample_address) { 774 perf_evsel__set_sample_bit(evsel, ADDR); 775 attr->mmap_data = track; 776 } 777 778 /* 779 * We don't allow user space callchains for function trace 780 * event, due to issues with page faults while tracing page 781 * fault handler and its overall trickiness nature. 782 */ 783 if (perf_evsel__is_function_event(evsel)) 784 evsel->attr.exclude_callchain_user = 1; 785 786 if (callchain_param.enabled && !evsel->no_aux_samples) 787 perf_evsel__config_callgraph(evsel, opts, &callchain_param); 788 789 if (opts->sample_intr_regs) { 790 attr->sample_regs_intr = opts->sample_intr_regs; 791 perf_evsel__set_sample_bit(evsel, REGS_INTR); 792 } 793 794 if (target__has_cpu(&opts->target)) 795 perf_evsel__set_sample_bit(evsel, CPU); 796 797 if (opts->period) 798 perf_evsel__set_sample_bit(evsel, PERIOD); 799 800 /* 801 * When the user explicitely disabled time don't force it here. 802 */ 803 if (opts->sample_time && 804 (!perf_missing_features.sample_id_all && 805 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 806 opts->sample_time_set))) 807 perf_evsel__set_sample_bit(evsel, TIME); 808 809 if (opts->raw_samples && !evsel->no_aux_samples) { 810 perf_evsel__set_sample_bit(evsel, TIME); 811 perf_evsel__set_sample_bit(evsel, RAW); 812 perf_evsel__set_sample_bit(evsel, CPU); 813 } 814 815 if (opts->sample_address) 816 perf_evsel__set_sample_bit(evsel, DATA_SRC); 817 818 if (opts->no_buffering) { 819 attr->watermark = 0; 820 attr->wakeup_events = 1; 821 } 822 if (opts->branch_stack && !evsel->no_aux_samples) { 823 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 824 attr->branch_sample_type = opts->branch_stack; 825 } 826 827 if (opts->sample_weight) 828 perf_evsel__set_sample_bit(evsel, WEIGHT); 829 830 attr->task = track; 831 attr->mmap = track; 832 attr->mmap2 = track && !perf_missing_features.mmap2; 833 attr->comm = track; 834 835 if (opts->record_switch_events) 836 attr->context_switch = track; 837 838 if (opts->sample_transaction) 839 perf_evsel__set_sample_bit(evsel, TRANSACTION); 840 841 if (opts->running_time) { 842 evsel->attr.read_format |= 843 PERF_FORMAT_TOTAL_TIME_ENABLED | 844 PERF_FORMAT_TOTAL_TIME_RUNNING; 845 } 846 847 /* 848 * XXX see the function comment above 849 * 850 * Disabling only independent events or group leaders, 851 * keeping group members enabled. 852 */ 853 if (perf_evsel__is_group_leader(evsel)) 854 attr->disabled = 1; 855 856 /* 857 * Setting enable_on_exec for independent events and 858 * group leaders for traced executed by perf. 859 */ 860 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 861 !opts->initial_delay) 862 attr->enable_on_exec = 1; 863 864 if (evsel->immediate) { 865 attr->disabled = 0; 866 attr->enable_on_exec = 0; 867 } 868 869 clockid = opts->clockid; 870 if (opts->use_clockid) { 871 attr->use_clockid = 1; 872 attr->clockid = opts->clockid; 873 } 874 875 /* 876 * Apply event specific term settings, 877 * it overloads any global configuration. 878 */ 879 apply_config_terms(evsel, opts); 880 } 881 882 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 883 { 884 int cpu, thread; 885 886 if (evsel->system_wide) 887 nthreads = 1; 888 889 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 890 891 if (evsel->fd) { 892 for (cpu = 0; cpu < ncpus; cpu++) { 893 for (thread = 0; thread < nthreads; thread++) { 894 FD(evsel, cpu, thread) = -1; 895 } 896 } 897 } 898 899 return evsel->fd != NULL ? 0 : -ENOMEM; 900 } 901 902 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 903 int ioc, void *arg) 904 { 905 int cpu, thread; 906 907 if (evsel->system_wide) 908 nthreads = 1; 909 910 for (cpu = 0; cpu < ncpus; cpu++) { 911 for (thread = 0; thread < nthreads; thread++) { 912 int fd = FD(evsel, cpu, thread), 913 err = ioctl(fd, ioc, arg); 914 915 if (err) 916 return err; 917 } 918 } 919 920 return 0; 921 } 922 923 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 924 const char *filter) 925 { 926 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 927 PERF_EVENT_IOC_SET_FILTER, 928 (void *)filter); 929 } 930 931 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 932 { 933 char *new_filter = strdup(filter); 934 935 if (new_filter != NULL) { 936 free(evsel->filter); 937 evsel->filter = new_filter; 938 return 0; 939 } 940 941 return -1; 942 } 943 944 int perf_evsel__append_filter(struct perf_evsel *evsel, 945 const char *op, const char *filter) 946 { 947 char *new_filter; 948 949 if (evsel->filter == NULL) 950 return perf_evsel__set_filter(evsel, filter); 951 952 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 953 free(evsel->filter); 954 evsel->filter = new_filter; 955 return 0; 956 } 957 958 return -1; 959 } 960 961 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 962 { 963 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 964 PERF_EVENT_IOC_ENABLE, 965 0); 966 } 967 968 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 969 { 970 if (ncpus == 0 || nthreads == 0) 971 return 0; 972 973 if (evsel->system_wide) 974 nthreads = 1; 975 976 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 977 if (evsel->sample_id == NULL) 978 return -ENOMEM; 979 980 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 981 if (evsel->id == NULL) { 982 xyarray__delete(evsel->sample_id); 983 evsel->sample_id = NULL; 984 return -ENOMEM; 985 } 986 987 return 0; 988 } 989 990 static void perf_evsel__free_fd(struct perf_evsel *evsel) 991 { 992 xyarray__delete(evsel->fd); 993 evsel->fd = NULL; 994 } 995 996 static void perf_evsel__free_id(struct perf_evsel *evsel) 997 { 998 xyarray__delete(evsel->sample_id); 999 evsel->sample_id = NULL; 1000 zfree(&evsel->id); 1001 } 1002 1003 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1004 { 1005 struct perf_evsel_config_term *term, *h; 1006 1007 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1008 list_del(&term->list); 1009 free(term); 1010 } 1011 } 1012 1013 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1014 { 1015 int cpu, thread; 1016 1017 if (evsel->system_wide) 1018 nthreads = 1; 1019 1020 for (cpu = 0; cpu < ncpus; cpu++) 1021 for (thread = 0; thread < nthreads; ++thread) { 1022 close(FD(evsel, cpu, thread)); 1023 FD(evsel, cpu, thread) = -1; 1024 } 1025 } 1026 1027 void perf_evsel__exit(struct perf_evsel *evsel) 1028 { 1029 assert(list_empty(&evsel->node)); 1030 assert(evsel->evlist == NULL); 1031 perf_evsel__free_fd(evsel); 1032 perf_evsel__free_id(evsel); 1033 perf_evsel__free_config_terms(evsel); 1034 close_cgroup(evsel->cgrp); 1035 cpu_map__put(evsel->cpus); 1036 thread_map__put(evsel->threads); 1037 zfree(&evsel->group_name); 1038 zfree(&evsel->name); 1039 perf_evsel__object.fini(evsel); 1040 } 1041 1042 void perf_evsel__delete(struct perf_evsel *evsel) 1043 { 1044 perf_evsel__exit(evsel); 1045 free(evsel); 1046 } 1047 1048 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1049 struct perf_counts_values *count) 1050 { 1051 struct perf_counts_values tmp; 1052 1053 if (!evsel->prev_raw_counts) 1054 return; 1055 1056 if (cpu == -1) { 1057 tmp = evsel->prev_raw_counts->aggr; 1058 evsel->prev_raw_counts->aggr = *count; 1059 } else { 1060 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1061 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1062 } 1063 1064 count->val = count->val - tmp.val; 1065 count->ena = count->ena - tmp.ena; 1066 count->run = count->run - tmp.run; 1067 } 1068 1069 void perf_counts_values__scale(struct perf_counts_values *count, 1070 bool scale, s8 *pscaled) 1071 { 1072 s8 scaled = 0; 1073 1074 if (scale) { 1075 if (count->run == 0) { 1076 scaled = -1; 1077 count->val = 0; 1078 } else if (count->run < count->ena) { 1079 scaled = 1; 1080 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1081 } 1082 } else 1083 count->ena = count->run = 0; 1084 1085 if (pscaled) 1086 *pscaled = scaled; 1087 } 1088 1089 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1090 struct perf_counts_values *count) 1091 { 1092 memset(count, 0, sizeof(*count)); 1093 1094 if (FD(evsel, cpu, thread) < 0) 1095 return -EINVAL; 1096 1097 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1098 return -errno; 1099 1100 return 0; 1101 } 1102 1103 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1104 int cpu, int thread, bool scale) 1105 { 1106 struct perf_counts_values count; 1107 size_t nv = scale ? 3 : 1; 1108 1109 if (FD(evsel, cpu, thread) < 0) 1110 return -EINVAL; 1111 1112 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1113 return -ENOMEM; 1114 1115 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1116 return -errno; 1117 1118 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1119 perf_counts_values__scale(&count, scale, NULL); 1120 *perf_counts(evsel->counts, cpu, thread) = count; 1121 return 0; 1122 } 1123 1124 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1125 { 1126 struct perf_evsel *leader = evsel->leader; 1127 int fd; 1128 1129 if (perf_evsel__is_group_leader(evsel)) 1130 return -1; 1131 1132 /* 1133 * Leader must be already processed/open, 1134 * if not it's a bug. 1135 */ 1136 BUG_ON(!leader->fd); 1137 1138 fd = FD(leader, cpu, thread); 1139 BUG_ON(fd == -1); 1140 1141 return fd; 1142 } 1143 1144 struct bit_names { 1145 int bit; 1146 const char *name; 1147 }; 1148 1149 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1150 { 1151 bool first_bit = true; 1152 int i = 0; 1153 1154 do { 1155 if (value & bits[i].bit) { 1156 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1157 first_bit = false; 1158 } 1159 } while (bits[++i].name != NULL); 1160 } 1161 1162 static void __p_sample_type(char *buf, size_t size, u64 value) 1163 { 1164 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1165 struct bit_names bits[] = { 1166 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1167 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1168 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1169 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1170 bit_name(IDENTIFIER), bit_name(REGS_INTR), 1171 { .name = NULL, } 1172 }; 1173 #undef bit_name 1174 __p_bits(buf, size, value, bits); 1175 } 1176 1177 static void __p_read_format(char *buf, size_t size, u64 value) 1178 { 1179 #define bit_name(n) { PERF_FORMAT_##n, #n } 1180 struct bit_names bits[] = { 1181 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1182 bit_name(ID), bit_name(GROUP), 1183 { .name = NULL, } 1184 }; 1185 #undef bit_name 1186 __p_bits(buf, size, value, bits); 1187 } 1188 1189 #define BUF_SIZE 1024 1190 1191 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1192 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1193 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1194 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1195 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1196 1197 #define PRINT_ATTRn(_n, _f, _p) \ 1198 do { \ 1199 if (attr->_f) { \ 1200 _p(attr->_f); \ 1201 ret += attr__fprintf(fp, _n, buf, priv);\ 1202 } \ 1203 } while (0) 1204 1205 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1206 1207 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1208 attr__fprintf_f attr__fprintf, void *priv) 1209 { 1210 char buf[BUF_SIZE]; 1211 int ret = 0; 1212 1213 PRINT_ATTRf(type, p_unsigned); 1214 PRINT_ATTRf(size, p_unsigned); 1215 PRINT_ATTRf(config, p_hex); 1216 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1217 PRINT_ATTRf(sample_type, p_sample_type); 1218 PRINT_ATTRf(read_format, p_read_format); 1219 1220 PRINT_ATTRf(disabled, p_unsigned); 1221 PRINT_ATTRf(inherit, p_unsigned); 1222 PRINT_ATTRf(pinned, p_unsigned); 1223 PRINT_ATTRf(exclusive, p_unsigned); 1224 PRINT_ATTRf(exclude_user, p_unsigned); 1225 PRINT_ATTRf(exclude_kernel, p_unsigned); 1226 PRINT_ATTRf(exclude_hv, p_unsigned); 1227 PRINT_ATTRf(exclude_idle, p_unsigned); 1228 PRINT_ATTRf(mmap, p_unsigned); 1229 PRINT_ATTRf(comm, p_unsigned); 1230 PRINT_ATTRf(freq, p_unsigned); 1231 PRINT_ATTRf(inherit_stat, p_unsigned); 1232 PRINT_ATTRf(enable_on_exec, p_unsigned); 1233 PRINT_ATTRf(task, p_unsigned); 1234 PRINT_ATTRf(watermark, p_unsigned); 1235 PRINT_ATTRf(precise_ip, p_unsigned); 1236 PRINT_ATTRf(mmap_data, p_unsigned); 1237 PRINT_ATTRf(sample_id_all, p_unsigned); 1238 PRINT_ATTRf(exclude_host, p_unsigned); 1239 PRINT_ATTRf(exclude_guest, p_unsigned); 1240 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1241 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1242 PRINT_ATTRf(mmap2, p_unsigned); 1243 PRINT_ATTRf(comm_exec, p_unsigned); 1244 PRINT_ATTRf(use_clockid, p_unsigned); 1245 PRINT_ATTRf(context_switch, p_unsigned); 1246 1247 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1248 PRINT_ATTRf(bp_type, p_unsigned); 1249 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1250 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1251 PRINT_ATTRf(sample_regs_user, p_hex); 1252 PRINT_ATTRf(sample_stack_user, p_unsigned); 1253 PRINT_ATTRf(clockid, p_signed); 1254 PRINT_ATTRf(sample_regs_intr, p_hex); 1255 PRINT_ATTRf(aux_watermark, p_unsigned); 1256 1257 return ret; 1258 } 1259 1260 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1261 void *priv __attribute__((unused))) 1262 { 1263 return fprintf(fp, " %-32s %s\n", name, val); 1264 } 1265 1266 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1267 struct thread_map *threads) 1268 { 1269 int cpu, thread, nthreads; 1270 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1271 int pid = -1, err; 1272 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1273 1274 if (evsel->system_wide) 1275 nthreads = 1; 1276 else 1277 nthreads = threads->nr; 1278 1279 if (evsel->fd == NULL && 1280 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1281 return -ENOMEM; 1282 1283 if (evsel->cgrp) { 1284 flags |= PERF_FLAG_PID_CGROUP; 1285 pid = evsel->cgrp->fd; 1286 } 1287 1288 fallback_missing_features: 1289 if (perf_missing_features.clockid_wrong) 1290 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1291 if (perf_missing_features.clockid) { 1292 evsel->attr.use_clockid = 0; 1293 evsel->attr.clockid = 0; 1294 } 1295 if (perf_missing_features.cloexec) 1296 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1297 if (perf_missing_features.mmap2) 1298 evsel->attr.mmap2 = 0; 1299 if (perf_missing_features.exclude_guest) 1300 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1301 retry_sample_id: 1302 if (perf_missing_features.sample_id_all) 1303 evsel->attr.sample_id_all = 0; 1304 1305 if (verbose >= 2) { 1306 fprintf(stderr, "%.60s\n", graph_dotted_line); 1307 fprintf(stderr, "perf_event_attr:\n"); 1308 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1309 fprintf(stderr, "%.60s\n", graph_dotted_line); 1310 } 1311 1312 for (cpu = 0; cpu < cpus->nr; cpu++) { 1313 1314 for (thread = 0; thread < nthreads; thread++) { 1315 int group_fd; 1316 1317 if (!evsel->cgrp && !evsel->system_wide) 1318 pid = thread_map__pid(threads, thread); 1319 1320 group_fd = get_group_fd(evsel, cpu, thread); 1321 retry_open: 1322 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1323 pid, cpus->map[cpu], group_fd, flags); 1324 1325 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1326 pid, 1327 cpus->map[cpu], 1328 group_fd, flags); 1329 if (FD(evsel, cpu, thread) < 0) { 1330 err = -errno; 1331 pr_debug2("sys_perf_event_open failed, error %d\n", 1332 err); 1333 goto try_fallback; 1334 } 1335 set_rlimit = NO_CHANGE; 1336 1337 /* 1338 * If we succeeded but had to kill clockid, fail and 1339 * have perf_evsel__open_strerror() print us a nice 1340 * error. 1341 */ 1342 if (perf_missing_features.clockid || 1343 perf_missing_features.clockid_wrong) { 1344 err = -EINVAL; 1345 goto out_close; 1346 } 1347 } 1348 } 1349 1350 return 0; 1351 1352 try_fallback: 1353 /* 1354 * perf stat needs between 5 and 22 fds per CPU. When we run out 1355 * of them try to increase the limits. 1356 */ 1357 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1358 struct rlimit l; 1359 int old_errno = errno; 1360 1361 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1362 if (set_rlimit == NO_CHANGE) 1363 l.rlim_cur = l.rlim_max; 1364 else { 1365 l.rlim_cur = l.rlim_max + 1000; 1366 l.rlim_max = l.rlim_cur; 1367 } 1368 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1369 set_rlimit++; 1370 errno = old_errno; 1371 goto retry_open; 1372 } 1373 } 1374 errno = old_errno; 1375 } 1376 1377 if (err != -EINVAL || cpu > 0 || thread > 0) 1378 goto out_close; 1379 1380 /* 1381 * Must probe features in the order they were added to the 1382 * perf_event_attr interface. 1383 */ 1384 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1385 perf_missing_features.clockid_wrong = true; 1386 goto fallback_missing_features; 1387 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1388 perf_missing_features.clockid = true; 1389 goto fallback_missing_features; 1390 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1391 perf_missing_features.cloexec = true; 1392 goto fallback_missing_features; 1393 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1394 perf_missing_features.mmap2 = true; 1395 goto fallback_missing_features; 1396 } else if (!perf_missing_features.exclude_guest && 1397 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1398 perf_missing_features.exclude_guest = true; 1399 goto fallback_missing_features; 1400 } else if (!perf_missing_features.sample_id_all) { 1401 perf_missing_features.sample_id_all = true; 1402 goto retry_sample_id; 1403 } 1404 1405 out_close: 1406 do { 1407 while (--thread >= 0) { 1408 close(FD(evsel, cpu, thread)); 1409 FD(evsel, cpu, thread) = -1; 1410 } 1411 thread = nthreads; 1412 } while (--cpu >= 0); 1413 return err; 1414 } 1415 1416 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1417 { 1418 if (evsel->fd == NULL) 1419 return; 1420 1421 perf_evsel__close_fd(evsel, ncpus, nthreads); 1422 perf_evsel__free_fd(evsel); 1423 } 1424 1425 static struct { 1426 struct cpu_map map; 1427 int cpus[1]; 1428 } empty_cpu_map = { 1429 .map.nr = 1, 1430 .cpus = { -1, }, 1431 }; 1432 1433 static struct { 1434 struct thread_map map; 1435 int threads[1]; 1436 } empty_thread_map = { 1437 .map.nr = 1, 1438 .threads = { -1, }, 1439 }; 1440 1441 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1442 struct thread_map *threads) 1443 { 1444 if (cpus == NULL) { 1445 /* Work around old compiler warnings about strict aliasing */ 1446 cpus = &empty_cpu_map.map; 1447 } 1448 1449 if (threads == NULL) 1450 threads = &empty_thread_map.map; 1451 1452 return __perf_evsel__open(evsel, cpus, threads); 1453 } 1454 1455 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1456 struct cpu_map *cpus) 1457 { 1458 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1459 } 1460 1461 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1462 struct thread_map *threads) 1463 { 1464 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1465 } 1466 1467 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1468 const union perf_event *event, 1469 struct perf_sample *sample) 1470 { 1471 u64 type = evsel->attr.sample_type; 1472 const u64 *array = event->sample.array; 1473 bool swapped = evsel->needs_swap; 1474 union u64_swap u; 1475 1476 array += ((event->header.size - 1477 sizeof(event->header)) / sizeof(u64)) - 1; 1478 1479 if (type & PERF_SAMPLE_IDENTIFIER) { 1480 sample->id = *array; 1481 array--; 1482 } 1483 1484 if (type & PERF_SAMPLE_CPU) { 1485 u.val64 = *array; 1486 if (swapped) { 1487 /* undo swap of u64, then swap on individual u32s */ 1488 u.val64 = bswap_64(u.val64); 1489 u.val32[0] = bswap_32(u.val32[0]); 1490 } 1491 1492 sample->cpu = u.val32[0]; 1493 array--; 1494 } 1495 1496 if (type & PERF_SAMPLE_STREAM_ID) { 1497 sample->stream_id = *array; 1498 array--; 1499 } 1500 1501 if (type & PERF_SAMPLE_ID) { 1502 sample->id = *array; 1503 array--; 1504 } 1505 1506 if (type & PERF_SAMPLE_TIME) { 1507 sample->time = *array; 1508 array--; 1509 } 1510 1511 if (type & PERF_SAMPLE_TID) { 1512 u.val64 = *array; 1513 if (swapped) { 1514 /* undo swap of u64, then swap on individual u32s */ 1515 u.val64 = bswap_64(u.val64); 1516 u.val32[0] = bswap_32(u.val32[0]); 1517 u.val32[1] = bswap_32(u.val32[1]); 1518 } 1519 1520 sample->pid = u.val32[0]; 1521 sample->tid = u.val32[1]; 1522 array--; 1523 } 1524 1525 return 0; 1526 } 1527 1528 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1529 u64 size) 1530 { 1531 return size > max_size || offset + size > endp; 1532 } 1533 1534 #define OVERFLOW_CHECK(offset, size, max_size) \ 1535 do { \ 1536 if (overflow(endp, (max_size), (offset), (size))) \ 1537 return -EFAULT; \ 1538 } while (0) 1539 1540 #define OVERFLOW_CHECK_u64(offset) \ 1541 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1542 1543 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1544 struct perf_sample *data) 1545 { 1546 u64 type = evsel->attr.sample_type; 1547 bool swapped = evsel->needs_swap; 1548 const u64 *array; 1549 u16 max_size = event->header.size; 1550 const void *endp = (void *)event + max_size; 1551 u64 sz; 1552 1553 /* 1554 * used for cross-endian analysis. See git commit 65014ab3 1555 * for why this goofiness is needed. 1556 */ 1557 union u64_swap u; 1558 1559 memset(data, 0, sizeof(*data)); 1560 data->cpu = data->pid = data->tid = -1; 1561 data->stream_id = data->id = data->time = -1ULL; 1562 data->period = evsel->attr.sample_period; 1563 data->weight = 0; 1564 1565 if (event->header.type != PERF_RECORD_SAMPLE) { 1566 if (!evsel->attr.sample_id_all) 1567 return 0; 1568 return perf_evsel__parse_id_sample(evsel, event, data); 1569 } 1570 1571 array = event->sample.array; 1572 1573 /* 1574 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1575 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1576 * check the format does not go past the end of the event. 1577 */ 1578 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1579 return -EFAULT; 1580 1581 data->id = -1ULL; 1582 if (type & PERF_SAMPLE_IDENTIFIER) { 1583 data->id = *array; 1584 array++; 1585 } 1586 1587 if (type & PERF_SAMPLE_IP) { 1588 data->ip = *array; 1589 array++; 1590 } 1591 1592 if (type & PERF_SAMPLE_TID) { 1593 u.val64 = *array; 1594 if (swapped) { 1595 /* undo swap of u64, then swap on individual u32s */ 1596 u.val64 = bswap_64(u.val64); 1597 u.val32[0] = bswap_32(u.val32[0]); 1598 u.val32[1] = bswap_32(u.val32[1]); 1599 } 1600 1601 data->pid = u.val32[0]; 1602 data->tid = u.val32[1]; 1603 array++; 1604 } 1605 1606 if (type & PERF_SAMPLE_TIME) { 1607 data->time = *array; 1608 array++; 1609 } 1610 1611 data->addr = 0; 1612 if (type & PERF_SAMPLE_ADDR) { 1613 data->addr = *array; 1614 array++; 1615 } 1616 1617 if (type & PERF_SAMPLE_ID) { 1618 data->id = *array; 1619 array++; 1620 } 1621 1622 if (type & PERF_SAMPLE_STREAM_ID) { 1623 data->stream_id = *array; 1624 array++; 1625 } 1626 1627 if (type & PERF_SAMPLE_CPU) { 1628 1629 u.val64 = *array; 1630 if (swapped) { 1631 /* undo swap of u64, then swap on individual u32s */ 1632 u.val64 = bswap_64(u.val64); 1633 u.val32[0] = bswap_32(u.val32[0]); 1634 } 1635 1636 data->cpu = u.val32[0]; 1637 array++; 1638 } 1639 1640 if (type & PERF_SAMPLE_PERIOD) { 1641 data->period = *array; 1642 array++; 1643 } 1644 1645 if (type & PERF_SAMPLE_READ) { 1646 u64 read_format = evsel->attr.read_format; 1647 1648 OVERFLOW_CHECK_u64(array); 1649 if (read_format & PERF_FORMAT_GROUP) 1650 data->read.group.nr = *array; 1651 else 1652 data->read.one.value = *array; 1653 1654 array++; 1655 1656 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1657 OVERFLOW_CHECK_u64(array); 1658 data->read.time_enabled = *array; 1659 array++; 1660 } 1661 1662 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1663 OVERFLOW_CHECK_u64(array); 1664 data->read.time_running = *array; 1665 array++; 1666 } 1667 1668 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1669 if (read_format & PERF_FORMAT_GROUP) { 1670 const u64 max_group_nr = UINT64_MAX / 1671 sizeof(struct sample_read_value); 1672 1673 if (data->read.group.nr > max_group_nr) 1674 return -EFAULT; 1675 sz = data->read.group.nr * 1676 sizeof(struct sample_read_value); 1677 OVERFLOW_CHECK(array, sz, max_size); 1678 data->read.group.values = 1679 (struct sample_read_value *)array; 1680 array = (void *)array + sz; 1681 } else { 1682 OVERFLOW_CHECK_u64(array); 1683 data->read.one.id = *array; 1684 array++; 1685 } 1686 } 1687 1688 if (type & PERF_SAMPLE_CALLCHAIN) { 1689 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1690 1691 OVERFLOW_CHECK_u64(array); 1692 data->callchain = (struct ip_callchain *)array++; 1693 if (data->callchain->nr > max_callchain_nr) 1694 return -EFAULT; 1695 sz = data->callchain->nr * sizeof(u64); 1696 OVERFLOW_CHECK(array, sz, max_size); 1697 array = (void *)array + sz; 1698 } 1699 1700 if (type & PERF_SAMPLE_RAW) { 1701 OVERFLOW_CHECK_u64(array); 1702 u.val64 = *array; 1703 if (WARN_ONCE(swapped, 1704 "Endianness of raw data not corrected!\n")) { 1705 /* undo swap of u64, then swap on individual u32s */ 1706 u.val64 = bswap_64(u.val64); 1707 u.val32[0] = bswap_32(u.val32[0]); 1708 u.val32[1] = bswap_32(u.val32[1]); 1709 } 1710 data->raw_size = u.val32[0]; 1711 array = (void *)array + sizeof(u32); 1712 1713 OVERFLOW_CHECK(array, data->raw_size, max_size); 1714 data->raw_data = (void *)array; 1715 array = (void *)array + data->raw_size; 1716 } 1717 1718 if (type & PERF_SAMPLE_BRANCH_STACK) { 1719 const u64 max_branch_nr = UINT64_MAX / 1720 sizeof(struct branch_entry); 1721 1722 OVERFLOW_CHECK_u64(array); 1723 data->branch_stack = (struct branch_stack *)array++; 1724 1725 if (data->branch_stack->nr > max_branch_nr) 1726 return -EFAULT; 1727 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1728 OVERFLOW_CHECK(array, sz, max_size); 1729 array = (void *)array + sz; 1730 } 1731 1732 if (type & PERF_SAMPLE_REGS_USER) { 1733 OVERFLOW_CHECK_u64(array); 1734 data->user_regs.abi = *array; 1735 array++; 1736 1737 if (data->user_regs.abi) { 1738 u64 mask = evsel->attr.sample_regs_user; 1739 1740 sz = hweight_long(mask) * sizeof(u64); 1741 OVERFLOW_CHECK(array, sz, max_size); 1742 data->user_regs.mask = mask; 1743 data->user_regs.regs = (u64 *)array; 1744 array = (void *)array + sz; 1745 } 1746 } 1747 1748 if (type & PERF_SAMPLE_STACK_USER) { 1749 OVERFLOW_CHECK_u64(array); 1750 sz = *array++; 1751 1752 data->user_stack.offset = ((char *)(array - 1) 1753 - (char *) event); 1754 1755 if (!sz) { 1756 data->user_stack.size = 0; 1757 } else { 1758 OVERFLOW_CHECK(array, sz, max_size); 1759 data->user_stack.data = (char *)array; 1760 array = (void *)array + sz; 1761 OVERFLOW_CHECK_u64(array); 1762 data->user_stack.size = *array++; 1763 if (WARN_ONCE(data->user_stack.size > sz, 1764 "user stack dump failure\n")) 1765 return -EFAULT; 1766 } 1767 } 1768 1769 data->weight = 0; 1770 if (type & PERF_SAMPLE_WEIGHT) { 1771 OVERFLOW_CHECK_u64(array); 1772 data->weight = *array; 1773 array++; 1774 } 1775 1776 data->data_src = PERF_MEM_DATA_SRC_NONE; 1777 if (type & PERF_SAMPLE_DATA_SRC) { 1778 OVERFLOW_CHECK_u64(array); 1779 data->data_src = *array; 1780 array++; 1781 } 1782 1783 data->transaction = 0; 1784 if (type & PERF_SAMPLE_TRANSACTION) { 1785 OVERFLOW_CHECK_u64(array); 1786 data->transaction = *array; 1787 array++; 1788 } 1789 1790 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1791 if (type & PERF_SAMPLE_REGS_INTR) { 1792 OVERFLOW_CHECK_u64(array); 1793 data->intr_regs.abi = *array; 1794 array++; 1795 1796 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1797 u64 mask = evsel->attr.sample_regs_intr; 1798 1799 sz = hweight_long(mask) * sizeof(u64); 1800 OVERFLOW_CHECK(array, sz, max_size); 1801 data->intr_regs.mask = mask; 1802 data->intr_regs.regs = (u64 *)array; 1803 array = (void *)array + sz; 1804 } 1805 } 1806 1807 return 0; 1808 } 1809 1810 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1811 u64 read_format) 1812 { 1813 size_t sz, result = sizeof(struct sample_event); 1814 1815 if (type & PERF_SAMPLE_IDENTIFIER) 1816 result += sizeof(u64); 1817 1818 if (type & PERF_SAMPLE_IP) 1819 result += sizeof(u64); 1820 1821 if (type & PERF_SAMPLE_TID) 1822 result += sizeof(u64); 1823 1824 if (type & PERF_SAMPLE_TIME) 1825 result += sizeof(u64); 1826 1827 if (type & PERF_SAMPLE_ADDR) 1828 result += sizeof(u64); 1829 1830 if (type & PERF_SAMPLE_ID) 1831 result += sizeof(u64); 1832 1833 if (type & PERF_SAMPLE_STREAM_ID) 1834 result += sizeof(u64); 1835 1836 if (type & PERF_SAMPLE_CPU) 1837 result += sizeof(u64); 1838 1839 if (type & PERF_SAMPLE_PERIOD) 1840 result += sizeof(u64); 1841 1842 if (type & PERF_SAMPLE_READ) { 1843 result += sizeof(u64); 1844 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1845 result += sizeof(u64); 1846 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1847 result += sizeof(u64); 1848 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1849 if (read_format & PERF_FORMAT_GROUP) { 1850 sz = sample->read.group.nr * 1851 sizeof(struct sample_read_value); 1852 result += sz; 1853 } else { 1854 result += sizeof(u64); 1855 } 1856 } 1857 1858 if (type & PERF_SAMPLE_CALLCHAIN) { 1859 sz = (sample->callchain->nr + 1) * sizeof(u64); 1860 result += sz; 1861 } 1862 1863 if (type & PERF_SAMPLE_RAW) { 1864 result += sizeof(u32); 1865 result += sample->raw_size; 1866 } 1867 1868 if (type & PERF_SAMPLE_BRANCH_STACK) { 1869 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1870 sz += sizeof(u64); 1871 result += sz; 1872 } 1873 1874 if (type & PERF_SAMPLE_REGS_USER) { 1875 if (sample->user_regs.abi) { 1876 result += sizeof(u64); 1877 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1878 result += sz; 1879 } else { 1880 result += sizeof(u64); 1881 } 1882 } 1883 1884 if (type & PERF_SAMPLE_STACK_USER) { 1885 sz = sample->user_stack.size; 1886 result += sizeof(u64); 1887 if (sz) { 1888 result += sz; 1889 result += sizeof(u64); 1890 } 1891 } 1892 1893 if (type & PERF_SAMPLE_WEIGHT) 1894 result += sizeof(u64); 1895 1896 if (type & PERF_SAMPLE_DATA_SRC) 1897 result += sizeof(u64); 1898 1899 if (type & PERF_SAMPLE_TRANSACTION) 1900 result += sizeof(u64); 1901 1902 if (type & PERF_SAMPLE_REGS_INTR) { 1903 if (sample->intr_regs.abi) { 1904 result += sizeof(u64); 1905 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 1906 result += sz; 1907 } else { 1908 result += sizeof(u64); 1909 } 1910 } 1911 1912 return result; 1913 } 1914 1915 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1916 u64 read_format, 1917 const struct perf_sample *sample, 1918 bool swapped) 1919 { 1920 u64 *array; 1921 size_t sz; 1922 /* 1923 * used for cross-endian analysis. See git commit 65014ab3 1924 * for why this goofiness is needed. 1925 */ 1926 union u64_swap u; 1927 1928 array = event->sample.array; 1929 1930 if (type & PERF_SAMPLE_IDENTIFIER) { 1931 *array = sample->id; 1932 array++; 1933 } 1934 1935 if (type & PERF_SAMPLE_IP) { 1936 *array = sample->ip; 1937 array++; 1938 } 1939 1940 if (type & PERF_SAMPLE_TID) { 1941 u.val32[0] = sample->pid; 1942 u.val32[1] = sample->tid; 1943 if (swapped) { 1944 /* 1945 * Inverse of what is done in perf_evsel__parse_sample 1946 */ 1947 u.val32[0] = bswap_32(u.val32[0]); 1948 u.val32[1] = bswap_32(u.val32[1]); 1949 u.val64 = bswap_64(u.val64); 1950 } 1951 1952 *array = u.val64; 1953 array++; 1954 } 1955 1956 if (type & PERF_SAMPLE_TIME) { 1957 *array = sample->time; 1958 array++; 1959 } 1960 1961 if (type & PERF_SAMPLE_ADDR) { 1962 *array = sample->addr; 1963 array++; 1964 } 1965 1966 if (type & PERF_SAMPLE_ID) { 1967 *array = sample->id; 1968 array++; 1969 } 1970 1971 if (type & PERF_SAMPLE_STREAM_ID) { 1972 *array = sample->stream_id; 1973 array++; 1974 } 1975 1976 if (type & PERF_SAMPLE_CPU) { 1977 u.val32[0] = sample->cpu; 1978 if (swapped) { 1979 /* 1980 * Inverse of what is done in perf_evsel__parse_sample 1981 */ 1982 u.val32[0] = bswap_32(u.val32[0]); 1983 u.val64 = bswap_64(u.val64); 1984 } 1985 *array = u.val64; 1986 array++; 1987 } 1988 1989 if (type & PERF_SAMPLE_PERIOD) { 1990 *array = sample->period; 1991 array++; 1992 } 1993 1994 if (type & PERF_SAMPLE_READ) { 1995 if (read_format & PERF_FORMAT_GROUP) 1996 *array = sample->read.group.nr; 1997 else 1998 *array = sample->read.one.value; 1999 array++; 2000 2001 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2002 *array = sample->read.time_enabled; 2003 array++; 2004 } 2005 2006 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2007 *array = sample->read.time_running; 2008 array++; 2009 } 2010 2011 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2012 if (read_format & PERF_FORMAT_GROUP) { 2013 sz = sample->read.group.nr * 2014 sizeof(struct sample_read_value); 2015 memcpy(array, sample->read.group.values, sz); 2016 array = (void *)array + sz; 2017 } else { 2018 *array = sample->read.one.id; 2019 array++; 2020 } 2021 } 2022 2023 if (type & PERF_SAMPLE_CALLCHAIN) { 2024 sz = (sample->callchain->nr + 1) * sizeof(u64); 2025 memcpy(array, sample->callchain, sz); 2026 array = (void *)array + sz; 2027 } 2028 2029 if (type & PERF_SAMPLE_RAW) { 2030 u.val32[0] = sample->raw_size; 2031 if (WARN_ONCE(swapped, 2032 "Endianness of raw data not corrected!\n")) { 2033 /* 2034 * Inverse of what is done in perf_evsel__parse_sample 2035 */ 2036 u.val32[0] = bswap_32(u.val32[0]); 2037 u.val32[1] = bswap_32(u.val32[1]); 2038 u.val64 = bswap_64(u.val64); 2039 } 2040 *array = u.val64; 2041 array = (void *)array + sizeof(u32); 2042 2043 memcpy(array, sample->raw_data, sample->raw_size); 2044 array = (void *)array + sample->raw_size; 2045 } 2046 2047 if (type & PERF_SAMPLE_BRANCH_STACK) { 2048 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2049 sz += sizeof(u64); 2050 memcpy(array, sample->branch_stack, sz); 2051 array = (void *)array + sz; 2052 } 2053 2054 if (type & PERF_SAMPLE_REGS_USER) { 2055 if (sample->user_regs.abi) { 2056 *array++ = sample->user_regs.abi; 2057 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2058 memcpy(array, sample->user_regs.regs, sz); 2059 array = (void *)array + sz; 2060 } else { 2061 *array++ = 0; 2062 } 2063 } 2064 2065 if (type & PERF_SAMPLE_STACK_USER) { 2066 sz = sample->user_stack.size; 2067 *array++ = sz; 2068 if (sz) { 2069 memcpy(array, sample->user_stack.data, sz); 2070 array = (void *)array + sz; 2071 *array++ = sz; 2072 } 2073 } 2074 2075 if (type & PERF_SAMPLE_WEIGHT) { 2076 *array = sample->weight; 2077 array++; 2078 } 2079 2080 if (type & PERF_SAMPLE_DATA_SRC) { 2081 *array = sample->data_src; 2082 array++; 2083 } 2084 2085 if (type & PERF_SAMPLE_TRANSACTION) { 2086 *array = sample->transaction; 2087 array++; 2088 } 2089 2090 if (type & PERF_SAMPLE_REGS_INTR) { 2091 if (sample->intr_regs.abi) { 2092 *array++ = sample->intr_regs.abi; 2093 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2094 memcpy(array, sample->intr_regs.regs, sz); 2095 array = (void *)array + sz; 2096 } else { 2097 *array++ = 0; 2098 } 2099 } 2100 2101 return 0; 2102 } 2103 2104 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2105 { 2106 return pevent_find_field(evsel->tp_format, name); 2107 } 2108 2109 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2110 const char *name) 2111 { 2112 struct format_field *field = perf_evsel__field(evsel, name); 2113 int offset; 2114 2115 if (!field) 2116 return NULL; 2117 2118 offset = field->offset; 2119 2120 if (field->flags & FIELD_IS_DYNAMIC) { 2121 offset = *(int *)(sample->raw_data + field->offset); 2122 offset &= 0xffff; 2123 } 2124 2125 return sample->raw_data + offset; 2126 } 2127 2128 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2129 const char *name) 2130 { 2131 struct format_field *field = perf_evsel__field(evsel, name); 2132 void *ptr; 2133 u64 value; 2134 2135 if (!field) 2136 return 0; 2137 2138 ptr = sample->raw_data + field->offset; 2139 2140 switch (field->size) { 2141 case 1: 2142 return *(u8 *)ptr; 2143 case 2: 2144 value = *(u16 *)ptr; 2145 break; 2146 case 4: 2147 value = *(u32 *)ptr; 2148 break; 2149 case 8: 2150 memcpy(&value, ptr, sizeof(u64)); 2151 break; 2152 default: 2153 return 0; 2154 } 2155 2156 if (!evsel->needs_swap) 2157 return value; 2158 2159 switch (field->size) { 2160 case 2: 2161 return bswap_16(value); 2162 case 4: 2163 return bswap_32(value); 2164 case 8: 2165 return bswap_64(value); 2166 default: 2167 return 0; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 2174 { 2175 va_list args; 2176 int ret = 0; 2177 2178 if (!*first) { 2179 ret += fprintf(fp, ","); 2180 } else { 2181 ret += fprintf(fp, ":"); 2182 *first = false; 2183 } 2184 2185 va_start(args, fmt); 2186 ret += vfprintf(fp, fmt, args); 2187 va_end(args); 2188 return ret; 2189 } 2190 2191 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv) 2192 { 2193 return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val); 2194 } 2195 2196 int perf_evsel__fprintf(struct perf_evsel *evsel, 2197 struct perf_attr_details *details, FILE *fp) 2198 { 2199 bool first = true; 2200 int printed = 0; 2201 2202 if (details->event_group) { 2203 struct perf_evsel *pos; 2204 2205 if (!perf_evsel__is_group_leader(evsel)) 2206 return 0; 2207 2208 if (evsel->nr_members > 1) 2209 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 2210 2211 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2212 for_each_group_member(pos, evsel) 2213 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 2214 2215 if (evsel->nr_members > 1) 2216 printed += fprintf(fp, "}"); 2217 goto out; 2218 } 2219 2220 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 2221 2222 if (details->verbose) { 2223 printed += perf_event_attr__fprintf(fp, &evsel->attr, 2224 __print_attr__fprintf, &first); 2225 } else if (details->freq) { 2226 const char *term = "sample_freq"; 2227 2228 if (!evsel->attr.freq) 2229 term = "sample_period"; 2230 2231 printed += comma_fprintf(fp, &first, " %s=%" PRIu64, 2232 term, (u64)evsel->attr.sample_freq); 2233 } 2234 out: 2235 fputc('\n', fp); 2236 return ++printed; 2237 } 2238 2239 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2240 char *msg, size_t msgsize) 2241 { 2242 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2243 evsel->attr.type == PERF_TYPE_HARDWARE && 2244 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2245 /* 2246 * If it's cycles then fall back to hrtimer based 2247 * cpu-clock-tick sw counter, which is always available even if 2248 * no PMU support. 2249 * 2250 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2251 * b0a873e). 2252 */ 2253 scnprintf(msg, msgsize, "%s", 2254 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2255 2256 evsel->attr.type = PERF_TYPE_SOFTWARE; 2257 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2258 2259 zfree(&evsel->name); 2260 return true; 2261 } 2262 2263 return false; 2264 } 2265 2266 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2267 int err, char *msg, size_t size) 2268 { 2269 char sbuf[STRERR_BUFSIZE]; 2270 2271 switch (err) { 2272 case EPERM: 2273 case EACCES: 2274 return scnprintf(msg, size, 2275 "You may not have permission to collect %sstats.\n" 2276 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 2277 " -1 - Not paranoid at all\n" 2278 " 0 - Disallow raw tracepoint access for unpriv\n" 2279 " 1 - Disallow cpu events for unpriv\n" 2280 " 2 - Disallow kernel profiling for unpriv", 2281 target->system_wide ? "system-wide " : ""); 2282 case ENOENT: 2283 return scnprintf(msg, size, "The %s event is not supported.", 2284 perf_evsel__name(evsel)); 2285 case EMFILE: 2286 return scnprintf(msg, size, "%s", 2287 "Too many events are opened.\n" 2288 "Probably the maximum number of open file descriptors has been reached.\n" 2289 "Hint: Try again after reducing the number of events.\n" 2290 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2291 case ENODEV: 2292 if (target->cpu_list) 2293 return scnprintf(msg, size, "%s", 2294 "No such device - did you specify an out-of-range profile CPU?\n"); 2295 break; 2296 case EOPNOTSUPP: 2297 if (evsel->attr.precise_ip) 2298 return scnprintf(msg, size, "%s", 2299 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2300 #if defined(__i386__) || defined(__x86_64__) 2301 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2302 return scnprintf(msg, size, "%s", 2303 "No hardware sampling interrupt available.\n" 2304 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2305 #endif 2306 break; 2307 case EBUSY: 2308 if (find_process("oprofiled")) 2309 return scnprintf(msg, size, 2310 "The PMU counters are busy/taken by another profiler.\n" 2311 "We found oprofile daemon running, please stop it and try again."); 2312 break; 2313 case EINVAL: 2314 if (perf_missing_features.clockid) 2315 return scnprintf(msg, size, "clockid feature not supported."); 2316 if (perf_missing_features.clockid_wrong) 2317 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2318 break; 2319 default: 2320 break; 2321 } 2322 2323 return scnprintf(msg, size, 2324 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2325 "/bin/dmesg may provide additional information.\n" 2326 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2327 err, strerror_r(err, sbuf, sizeof(sbuf)), 2328 perf_evsel__name(evsel)); 2329 } 2330