1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <sys/ioctl.h> 21 #include <sys/resource.h> 22 #include <sys/types.h> 23 #include <dirent.h> 24 #include "asm/bug.h" 25 #include "callchain.h" 26 #include "cgroup.h" 27 #include "event.h" 28 #include "evsel.h" 29 #include "evlist.h" 30 #include "util.h" 31 #include "cpumap.h" 32 #include "thread_map.h" 33 #include "target.h" 34 #include "perf_regs.h" 35 #include "debug.h" 36 #include "trace-event.h" 37 #include "stat.h" 38 #include "memswap.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 struct perf_missing_features perf_missing_features; 44 45 static clockid_t clockid; 46 47 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 48 { 49 return 0; 50 } 51 52 void __weak test_attr__ready(void) { } 53 54 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 55 { 56 } 57 58 static struct { 59 size_t size; 60 int (*init)(struct perf_evsel *evsel); 61 void (*fini)(struct perf_evsel *evsel); 62 } perf_evsel__object = { 63 .size = sizeof(struct perf_evsel), 64 .init = perf_evsel__no_extra_init, 65 .fini = perf_evsel__no_extra_fini, 66 }; 67 68 int perf_evsel__object_config(size_t object_size, 69 int (*init)(struct perf_evsel *evsel), 70 void (*fini)(struct perf_evsel *evsel)) 71 { 72 73 if (object_size == 0) 74 goto set_methods; 75 76 if (perf_evsel__object.size > object_size) 77 return -EINVAL; 78 79 perf_evsel__object.size = object_size; 80 81 set_methods: 82 if (init != NULL) 83 perf_evsel__object.init = init; 84 85 if (fini != NULL) 86 perf_evsel__object.fini = fini; 87 88 return 0; 89 } 90 91 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 92 93 int __perf_evsel__sample_size(u64 sample_type) 94 { 95 u64 mask = sample_type & PERF_SAMPLE_MASK; 96 int size = 0; 97 int i; 98 99 for (i = 0; i < 64; i++) { 100 if (mask & (1ULL << i)) 101 size++; 102 } 103 104 size *= sizeof(u64); 105 106 return size; 107 } 108 109 /** 110 * __perf_evsel__calc_id_pos - calculate id_pos. 111 * @sample_type: sample type 112 * 113 * This function returns the position of the event id (PERF_SAMPLE_ID or 114 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 115 * sample_event. 116 */ 117 static int __perf_evsel__calc_id_pos(u64 sample_type) 118 { 119 int idx = 0; 120 121 if (sample_type & PERF_SAMPLE_IDENTIFIER) 122 return 0; 123 124 if (!(sample_type & PERF_SAMPLE_ID)) 125 return -1; 126 127 if (sample_type & PERF_SAMPLE_IP) 128 idx += 1; 129 130 if (sample_type & PERF_SAMPLE_TID) 131 idx += 1; 132 133 if (sample_type & PERF_SAMPLE_TIME) 134 idx += 1; 135 136 if (sample_type & PERF_SAMPLE_ADDR) 137 idx += 1; 138 139 return idx; 140 } 141 142 /** 143 * __perf_evsel__calc_is_pos - calculate is_pos. 144 * @sample_type: sample type 145 * 146 * This function returns the position (counting backwards) of the event id 147 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 148 * sample_id_all is used there is an id sample appended to non-sample events. 149 */ 150 static int __perf_evsel__calc_is_pos(u64 sample_type) 151 { 152 int idx = 1; 153 154 if (sample_type & PERF_SAMPLE_IDENTIFIER) 155 return 1; 156 157 if (!(sample_type & PERF_SAMPLE_ID)) 158 return -1; 159 160 if (sample_type & PERF_SAMPLE_CPU) 161 idx += 1; 162 163 if (sample_type & PERF_SAMPLE_STREAM_ID) 164 idx += 1; 165 166 return idx; 167 } 168 169 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 170 { 171 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 172 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 173 } 174 175 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 176 enum perf_event_sample_format bit) 177 { 178 if (!(evsel->attr.sample_type & bit)) { 179 evsel->attr.sample_type |= bit; 180 evsel->sample_size += sizeof(u64); 181 perf_evsel__calc_id_pos(evsel); 182 } 183 } 184 185 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 186 enum perf_event_sample_format bit) 187 { 188 if (evsel->attr.sample_type & bit) { 189 evsel->attr.sample_type &= ~bit; 190 evsel->sample_size -= sizeof(u64); 191 perf_evsel__calc_id_pos(evsel); 192 } 193 } 194 195 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 196 bool can_sample_identifier) 197 { 198 if (can_sample_identifier) { 199 perf_evsel__reset_sample_bit(evsel, ID); 200 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 201 } else { 202 perf_evsel__set_sample_bit(evsel, ID); 203 } 204 evsel->attr.read_format |= PERF_FORMAT_ID; 205 } 206 207 /** 208 * perf_evsel__is_function_event - Return whether given evsel is a function 209 * trace event 210 * 211 * @evsel - evsel selector to be tested 212 * 213 * Return %true if event is function trace event 214 */ 215 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 216 { 217 #define FUNCTION_EVENT "ftrace:function" 218 219 return evsel->name && 220 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 221 222 #undef FUNCTION_EVENT 223 } 224 225 void perf_evsel__init(struct perf_evsel *evsel, 226 struct perf_event_attr *attr, int idx) 227 { 228 evsel->idx = idx; 229 evsel->tracking = !idx; 230 evsel->attr = *attr; 231 evsel->leader = evsel; 232 evsel->unit = ""; 233 evsel->scale = 1.0; 234 evsel->max_events = ULONG_MAX; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (!evsel) 255 return NULL; 256 perf_evsel__init(evsel, attr, idx); 257 258 if (perf_evsel__is_bpf_output(evsel)) { 259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 261 evsel->attr.sample_period = 1; 262 } 263 264 if (perf_evsel__is_clock(evsel)) { 265 /* 266 * The evsel->unit points to static alias->unit 267 * so it's ok to use static string in here. 268 */ 269 static const char *unit = "msec"; 270 271 evsel->unit = unit; 272 evsel->scale = 1e-6; 273 } 274 275 return evsel; 276 } 277 278 static bool perf_event_can_profile_kernel(void) 279 { 280 return geteuid() == 0 || perf_event_paranoid() == -1; 281 } 282 283 struct perf_evsel *perf_evsel__new_cycles(bool precise) 284 { 285 struct perf_event_attr attr = { 286 .type = PERF_TYPE_HARDWARE, 287 .config = PERF_COUNT_HW_CPU_CYCLES, 288 .exclude_kernel = !perf_event_can_profile_kernel(), 289 }; 290 struct perf_evsel *evsel; 291 292 event_attr_init(&attr); 293 294 if (!precise) 295 goto new_event; 296 297 /* 298 * Now let the usual logic to set up the perf_event_attr defaults 299 * to kick in when we return and before perf_evsel__open() is called. 300 */ 301 new_event: 302 evsel = perf_evsel__new(&attr); 303 if (evsel == NULL) 304 goto out; 305 306 evsel->precise_max = true; 307 308 /* use asprintf() because free(evsel) assumes name is allocated */ 309 if (asprintf(&evsel->name, "cycles%s%s%.*s", 310 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 311 attr.exclude_kernel ? "u" : "", 312 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 313 goto error_free; 314 out: 315 return evsel; 316 error_free: 317 perf_evsel__delete(evsel); 318 evsel = NULL; 319 goto out; 320 } 321 322 /* 323 * Returns pointer with encoded error via <linux/err.h> interface. 324 */ 325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 326 { 327 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 328 int err = -ENOMEM; 329 330 if (evsel == NULL) { 331 goto out_err; 332 } else { 333 struct perf_event_attr attr = { 334 .type = PERF_TYPE_TRACEPOINT, 335 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 336 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 337 }; 338 339 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 340 goto out_free; 341 342 evsel->tp_format = trace_event__tp_format(sys, name); 343 if (IS_ERR(evsel->tp_format)) { 344 err = PTR_ERR(evsel->tp_format); 345 goto out_free; 346 } 347 348 event_attr_init(&attr); 349 attr.config = evsel->tp_format->id; 350 attr.sample_period = 1; 351 perf_evsel__init(evsel, &attr, idx); 352 } 353 354 return evsel; 355 356 out_free: 357 zfree(&evsel->name); 358 free(evsel); 359 out_err: 360 return ERR_PTR(err); 361 } 362 363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 364 "cycles", 365 "instructions", 366 "cache-references", 367 "cache-misses", 368 "branches", 369 "branch-misses", 370 "bus-cycles", 371 "stalled-cycles-frontend", 372 "stalled-cycles-backend", 373 "ref-cycles", 374 }; 375 376 static const char *__perf_evsel__hw_name(u64 config) 377 { 378 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 379 return perf_evsel__hw_names[config]; 380 381 return "unknown-hardware"; 382 } 383 384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 385 { 386 int colon = 0, r = 0; 387 struct perf_event_attr *attr = &evsel->attr; 388 bool exclude_guest_default = false; 389 390 #define MOD_PRINT(context, mod) do { \ 391 if (!attr->exclude_##context) { \ 392 if (!colon) colon = ++r; \ 393 r += scnprintf(bf + r, size - r, "%c", mod); \ 394 } } while(0) 395 396 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 397 MOD_PRINT(kernel, 'k'); 398 MOD_PRINT(user, 'u'); 399 MOD_PRINT(hv, 'h'); 400 exclude_guest_default = true; 401 } 402 403 if (attr->precise_ip) { 404 if (!colon) 405 colon = ++r; 406 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 407 exclude_guest_default = true; 408 } 409 410 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 411 MOD_PRINT(host, 'H'); 412 MOD_PRINT(guest, 'G'); 413 } 414 #undef MOD_PRINT 415 if (colon) 416 bf[colon - 1] = ':'; 417 return r; 418 } 419 420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 421 { 422 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 423 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 424 } 425 426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 427 "cpu-clock", 428 "task-clock", 429 "page-faults", 430 "context-switches", 431 "cpu-migrations", 432 "minor-faults", 433 "major-faults", 434 "alignment-faults", 435 "emulation-faults", 436 "dummy", 437 }; 438 439 static const char *__perf_evsel__sw_name(u64 config) 440 { 441 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 442 return perf_evsel__sw_names[config]; 443 return "unknown-software"; 444 } 445 446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 447 { 448 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 449 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 450 } 451 452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 453 { 454 int r; 455 456 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 457 458 if (type & HW_BREAKPOINT_R) 459 r += scnprintf(bf + r, size - r, "r"); 460 461 if (type & HW_BREAKPOINT_W) 462 r += scnprintf(bf + r, size - r, "w"); 463 464 if (type & HW_BREAKPOINT_X) 465 r += scnprintf(bf + r, size - r, "x"); 466 467 return r; 468 } 469 470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 471 { 472 struct perf_event_attr *attr = &evsel->attr; 473 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 474 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 475 } 476 477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 478 [PERF_EVSEL__MAX_ALIASES] = { 479 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 480 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 481 { "LLC", "L2", }, 482 { "dTLB", "d-tlb", "Data-TLB", }, 483 { "iTLB", "i-tlb", "Instruction-TLB", }, 484 { "branch", "branches", "bpu", "btb", "bpc", }, 485 { "node", }, 486 }; 487 488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 489 [PERF_EVSEL__MAX_ALIASES] = { 490 { "load", "loads", "read", }, 491 { "store", "stores", "write", }, 492 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 493 }; 494 495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 496 [PERF_EVSEL__MAX_ALIASES] = { 497 { "refs", "Reference", "ops", "access", }, 498 { "misses", "miss", }, 499 }; 500 501 #define C(x) PERF_COUNT_HW_CACHE_##x 502 #define CACHE_READ (1 << C(OP_READ)) 503 #define CACHE_WRITE (1 << C(OP_WRITE)) 504 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 505 #define COP(x) (1 << x) 506 507 /* 508 * cache operartion stat 509 * L1I : Read and prefetch only 510 * ITLB and BPU : Read-only 511 */ 512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 513 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 514 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 515 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 516 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(ITLB)] = (CACHE_READ), 518 [C(BPU)] = (CACHE_READ), 519 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 }; 521 522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 523 { 524 if (perf_evsel__hw_cache_stat[type] & COP(op)) 525 return true; /* valid */ 526 else 527 return false; /* invalid */ 528 } 529 530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 531 char *bf, size_t size) 532 { 533 if (result) { 534 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 535 perf_evsel__hw_cache_op[op][0], 536 perf_evsel__hw_cache_result[result][0]); 537 } 538 539 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 540 perf_evsel__hw_cache_op[op][1]); 541 } 542 543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 544 { 545 u8 op, result, type = (config >> 0) & 0xff; 546 const char *err = "unknown-ext-hardware-cache-type"; 547 548 if (type >= PERF_COUNT_HW_CACHE_MAX) 549 goto out_err; 550 551 op = (config >> 8) & 0xff; 552 err = "unknown-ext-hardware-cache-op"; 553 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 554 goto out_err; 555 556 result = (config >> 16) & 0xff; 557 err = "unknown-ext-hardware-cache-result"; 558 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 559 goto out_err; 560 561 err = "invalid-cache"; 562 if (!perf_evsel__is_cache_op_valid(type, op)) 563 goto out_err; 564 565 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 566 out_err: 567 return scnprintf(bf, size, "%s", err); 568 } 569 570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 571 { 572 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 573 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 574 } 575 576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 577 { 578 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 579 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 580 } 581 582 static int perf_evsel__tool_name(char *bf, size_t size) 583 { 584 int ret = scnprintf(bf, size, "duration_time"); 585 return ret; 586 } 587 588 const char *perf_evsel__name(struct perf_evsel *evsel) 589 { 590 char bf[128]; 591 592 if (evsel->name) 593 return evsel->name; 594 595 switch (evsel->attr.type) { 596 case PERF_TYPE_RAW: 597 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 598 break; 599 600 case PERF_TYPE_HARDWARE: 601 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 602 break; 603 604 case PERF_TYPE_HW_CACHE: 605 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 606 break; 607 608 case PERF_TYPE_SOFTWARE: 609 if (evsel->tool_event) 610 perf_evsel__tool_name(bf, sizeof(bf)); 611 else 612 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 613 break; 614 615 case PERF_TYPE_TRACEPOINT: 616 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 617 break; 618 619 case PERF_TYPE_BREAKPOINT: 620 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 621 break; 622 623 default: 624 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 625 evsel->attr.type); 626 break; 627 } 628 629 evsel->name = strdup(bf); 630 631 return evsel->name ?: "unknown"; 632 } 633 634 const char *perf_evsel__group_name(struct perf_evsel *evsel) 635 { 636 return evsel->group_name ?: "anon group"; 637 } 638 639 /* 640 * Returns the group details for the specified leader, 641 * with following rules. 642 * 643 * For record -e '{cycles,instructions}' 644 * 'anon group { cycles:u, instructions:u }' 645 * 646 * For record -e 'cycles,instructions' and report --group 647 * 'cycles:u, instructions:u' 648 */ 649 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 650 { 651 int ret = 0; 652 struct perf_evsel *pos; 653 const char *group_name = perf_evsel__group_name(evsel); 654 655 if (!evsel->forced_leader) 656 ret = scnprintf(buf, size, "%s { ", group_name); 657 658 ret += scnprintf(buf + ret, size - ret, "%s", 659 perf_evsel__name(evsel)); 660 661 for_each_group_member(pos, evsel) 662 ret += scnprintf(buf + ret, size - ret, ", %s", 663 perf_evsel__name(pos)); 664 665 if (!evsel->forced_leader) 666 ret += scnprintf(buf + ret, size - ret, " }"); 667 668 return ret; 669 } 670 671 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 672 struct record_opts *opts, 673 struct callchain_param *param) 674 { 675 bool function = perf_evsel__is_function_event(evsel); 676 struct perf_event_attr *attr = &evsel->attr; 677 678 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 679 680 attr->sample_max_stack = param->max_stack; 681 682 if (param->record_mode == CALLCHAIN_LBR) { 683 if (!opts->branch_stack) { 684 if (attr->exclude_user) { 685 pr_warning("LBR callstack option is only available " 686 "to get user callchain information. " 687 "Falling back to framepointers.\n"); 688 } else { 689 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 690 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 691 PERF_SAMPLE_BRANCH_CALL_STACK | 692 PERF_SAMPLE_BRANCH_NO_CYCLES | 693 PERF_SAMPLE_BRANCH_NO_FLAGS; 694 } 695 } else 696 pr_warning("Cannot use LBR callstack with branch stack. " 697 "Falling back to framepointers.\n"); 698 } 699 700 if (param->record_mode == CALLCHAIN_DWARF) { 701 if (!function) { 702 perf_evsel__set_sample_bit(evsel, REGS_USER); 703 perf_evsel__set_sample_bit(evsel, STACK_USER); 704 attr->sample_regs_user |= PERF_REGS_MASK; 705 attr->sample_stack_user = param->dump_size; 706 attr->exclude_callchain_user = 1; 707 } else { 708 pr_info("Cannot use DWARF unwind for function trace event," 709 " falling back to framepointers.\n"); 710 } 711 } 712 713 if (function) { 714 pr_info("Disabling user space callchains for function trace event.\n"); 715 attr->exclude_callchain_user = 1; 716 } 717 } 718 719 void perf_evsel__config_callchain(struct perf_evsel *evsel, 720 struct record_opts *opts, 721 struct callchain_param *param) 722 { 723 if (param->enabled) 724 return __perf_evsel__config_callchain(evsel, opts, param); 725 } 726 727 static void 728 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 729 struct callchain_param *param) 730 { 731 struct perf_event_attr *attr = &evsel->attr; 732 733 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 734 if (param->record_mode == CALLCHAIN_LBR) { 735 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 736 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 737 PERF_SAMPLE_BRANCH_CALL_STACK); 738 } 739 if (param->record_mode == CALLCHAIN_DWARF) { 740 perf_evsel__reset_sample_bit(evsel, REGS_USER); 741 perf_evsel__reset_sample_bit(evsel, STACK_USER); 742 } 743 } 744 745 static void apply_config_terms(struct perf_evsel *evsel, 746 struct record_opts *opts, bool track) 747 { 748 struct perf_evsel_config_term *term; 749 struct list_head *config_terms = &evsel->config_terms; 750 struct perf_event_attr *attr = &evsel->attr; 751 /* callgraph default */ 752 struct callchain_param param = { 753 .record_mode = callchain_param.record_mode, 754 }; 755 u32 dump_size = 0; 756 int max_stack = 0; 757 const char *callgraph_buf = NULL; 758 759 list_for_each_entry(term, config_terms, list) { 760 switch (term->type) { 761 case PERF_EVSEL__CONFIG_TERM_PERIOD: 762 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 763 attr->sample_period = term->val.period; 764 attr->freq = 0; 765 perf_evsel__reset_sample_bit(evsel, PERIOD); 766 } 767 break; 768 case PERF_EVSEL__CONFIG_TERM_FREQ: 769 if (!(term->weak && opts->user_freq != UINT_MAX)) { 770 attr->sample_freq = term->val.freq; 771 attr->freq = 1; 772 perf_evsel__set_sample_bit(evsel, PERIOD); 773 } 774 break; 775 case PERF_EVSEL__CONFIG_TERM_TIME: 776 if (term->val.time) 777 perf_evsel__set_sample_bit(evsel, TIME); 778 else 779 perf_evsel__reset_sample_bit(evsel, TIME); 780 break; 781 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 782 callgraph_buf = term->val.callgraph; 783 break; 784 case PERF_EVSEL__CONFIG_TERM_BRANCH: 785 if (term->val.branch && strcmp(term->val.branch, "no")) { 786 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 787 parse_branch_str(term->val.branch, 788 &attr->branch_sample_type); 789 } else 790 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 791 break; 792 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 793 dump_size = term->val.stack_user; 794 break; 795 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 796 max_stack = term->val.max_stack; 797 break; 798 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 799 evsel->max_events = term->val.max_events; 800 break; 801 case PERF_EVSEL__CONFIG_TERM_INHERIT: 802 /* 803 * attr->inherit should has already been set by 804 * perf_evsel__config. If user explicitly set 805 * inherit using config terms, override global 806 * opt->no_inherit setting. 807 */ 808 attr->inherit = term->val.inherit ? 1 : 0; 809 break; 810 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 811 attr->write_backward = term->val.overwrite ? 1 : 0; 812 break; 813 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 814 break; 815 case PERF_EVSEL__CONFIG_TERM_PERCORE: 816 break; 817 default: 818 break; 819 } 820 } 821 822 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 823 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 824 bool sample_address = false; 825 826 if (max_stack) { 827 param.max_stack = max_stack; 828 if (callgraph_buf == NULL) 829 callgraph_buf = "fp"; 830 } 831 832 /* parse callgraph parameters */ 833 if (callgraph_buf != NULL) { 834 if (!strcmp(callgraph_buf, "no")) { 835 param.enabled = false; 836 param.record_mode = CALLCHAIN_NONE; 837 } else { 838 param.enabled = true; 839 if (parse_callchain_record(callgraph_buf, ¶m)) { 840 pr_err("per-event callgraph setting for %s failed. " 841 "Apply callgraph global setting for it\n", 842 evsel->name); 843 return; 844 } 845 if (param.record_mode == CALLCHAIN_DWARF) 846 sample_address = true; 847 } 848 } 849 if (dump_size > 0) { 850 dump_size = round_up(dump_size, sizeof(u64)); 851 param.dump_size = dump_size; 852 } 853 854 /* If global callgraph set, clear it */ 855 if (callchain_param.enabled) 856 perf_evsel__reset_callgraph(evsel, &callchain_param); 857 858 /* set perf-event callgraph */ 859 if (param.enabled) { 860 if (sample_address) { 861 perf_evsel__set_sample_bit(evsel, ADDR); 862 perf_evsel__set_sample_bit(evsel, DATA_SRC); 863 evsel->attr.mmap_data = track; 864 } 865 perf_evsel__config_callchain(evsel, opts, ¶m); 866 } 867 } 868 } 869 870 static bool is_dummy_event(struct perf_evsel *evsel) 871 { 872 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 873 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 874 } 875 876 /* 877 * The enable_on_exec/disabled value strategy: 878 * 879 * 1) For any type of traced program: 880 * - all independent events and group leaders are disabled 881 * - all group members are enabled 882 * 883 * Group members are ruled by group leaders. They need to 884 * be enabled, because the group scheduling relies on that. 885 * 886 * 2) For traced programs executed by perf: 887 * - all independent events and group leaders have 888 * enable_on_exec set 889 * - we don't specifically enable or disable any event during 890 * the record command 891 * 892 * Independent events and group leaders are initially disabled 893 * and get enabled by exec. Group members are ruled by group 894 * leaders as stated in 1). 895 * 896 * 3) For traced programs attached by perf (pid/tid): 897 * - we specifically enable or disable all events during 898 * the record command 899 * 900 * When attaching events to already running traced we 901 * enable/disable events specifically, as there's no 902 * initial traced exec call. 903 */ 904 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 905 struct callchain_param *callchain) 906 { 907 struct perf_evsel *leader = evsel->leader; 908 struct perf_event_attr *attr = &evsel->attr; 909 int track = evsel->tracking; 910 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 911 912 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 913 attr->inherit = !opts->no_inherit; 914 attr->write_backward = opts->overwrite ? 1 : 0; 915 916 perf_evsel__set_sample_bit(evsel, IP); 917 perf_evsel__set_sample_bit(evsel, TID); 918 919 if (evsel->sample_read) { 920 perf_evsel__set_sample_bit(evsel, READ); 921 922 /* 923 * We need ID even in case of single event, because 924 * PERF_SAMPLE_READ process ID specific data. 925 */ 926 perf_evsel__set_sample_id(evsel, false); 927 928 /* 929 * Apply group format only if we belong to group 930 * with more than one members. 931 */ 932 if (leader->nr_members > 1) { 933 attr->read_format |= PERF_FORMAT_GROUP; 934 attr->inherit = 0; 935 } 936 } 937 938 /* 939 * We default some events to have a default interval. But keep 940 * it a weak assumption overridable by the user. 941 */ 942 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 943 opts->user_interval != ULLONG_MAX)) { 944 if (opts->freq) { 945 perf_evsel__set_sample_bit(evsel, PERIOD); 946 attr->freq = 1; 947 attr->sample_freq = opts->freq; 948 } else { 949 attr->sample_period = opts->default_interval; 950 } 951 } 952 953 /* 954 * Disable sampling for all group members other 955 * than leader in case leader 'leads' the sampling. 956 */ 957 if ((leader != evsel) && leader->sample_read) { 958 attr->freq = 0; 959 attr->sample_freq = 0; 960 attr->sample_period = 0; 961 attr->write_backward = 0; 962 963 /* 964 * We don't get sample for slave events, we make them 965 * when delivering group leader sample. Set the slave 966 * event to follow the master sample_type to ease up 967 * report. 968 */ 969 attr->sample_type = leader->attr.sample_type; 970 } 971 972 if (opts->no_samples) 973 attr->sample_freq = 0; 974 975 if (opts->inherit_stat) { 976 evsel->attr.read_format |= 977 PERF_FORMAT_TOTAL_TIME_ENABLED | 978 PERF_FORMAT_TOTAL_TIME_RUNNING | 979 PERF_FORMAT_ID; 980 attr->inherit_stat = 1; 981 } 982 983 if (opts->sample_address) { 984 perf_evsel__set_sample_bit(evsel, ADDR); 985 attr->mmap_data = track; 986 } 987 988 /* 989 * We don't allow user space callchains for function trace 990 * event, due to issues with page faults while tracing page 991 * fault handler and its overall trickiness nature. 992 */ 993 if (perf_evsel__is_function_event(evsel)) 994 evsel->attr.exclude_callchain_user = 1; 995 996 if (callchain && callchain->enabled && !evsel->no_aux_samples) 997 perf_evsel__config_callchain(evsel, opts, callchain); 998 999 if (opts->sample_intr_regs) { 1000 attr->sample_regs_intr = opts->sample_intr_regs; 1001 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1002 } 1003 1004 if (opts->sample_user_regs) { 1005 attr->sample_regs_user |= opts->sample_user_regs; 1006 perf_evsel__set_sample_bit(evsel, REGS_USER); 1007 } 1008 1009 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1010 perf_evsel__set_sample_bit(evsel, CPU); 1011 1012 /* 1013 * When the user explicitly disabled time don't force it here. 1014 */ 1015 if (opts->sample_time && 1016 (!perf_missing_features.sample_id_all && 1017 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1018 opts->sample_time_set))) 1019 perf_evsel__set_sample_bit(evsel, TIME); 1020 1021 if (opts->raw_samples && !evsel->no_aux_samples) { 1022 perf_evsel__set_sample_bit(evsel, TIME); 1023 perf_evsel__set_sample_bit(evsel, RAW); 1024 perf_evsel__set_sample_bit(evsel, CPU); 1025 } 1026 1027 if (opts->sample_address) 1028 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1029 1030 if (opts->sample_phys_addr) 1031 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1032 1033 if (opts->no_buffering) { 1034 attr->watermark = 0; 1035 attr->wakeup_events = 1; 1036 } 1037 if (opts->branch_stack && !evsel->no_aux_samples) { 1038 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1039 attr->branch_sample_type = opts->branch_stack; 1040 } 1041 1042 if (opts->sample_weight) 1043 perf_evsel__set_sample_bit(evsel, WEIGHT); 1044 1045 attr->task = track; 1046 attr->mmap = track; 1047 attr->mmap2 = track && !perf_missing_features.mmap2; 1048 attr->comm = track; 1049 attr->ksymbol = track && !perf_missing_features.ksymbol; 1050 attr->bpf_event = track && !opts->no_bpf_event && 1051 !perf_missing_features.bpf_event; 1052 1053 if (opts->record_namespaces) 1054 attr->namespaces = track; 1055 1056 if (opts->record_switch_events) 1057 attr->context_switch = track; 1058 1059 if (opts->sample_transaction) 1060 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1061 1062 if (opts->running_time) { 1063 evsel->attr.read_format |= 1064 PERF_FORMAT_TOTAL_TIME_ENABLED | 1065 PERF_FORMAT_TOTAL_TIME_RUNNING; 1066 } 1067 1068 /* 1069 * XXX see the function comment above 1070 * 1071 * Disabling only independent events or group leaders, 1072 * keeping group members enabled. 1073 */ 1074 if (perf_evsel__is_group_leader(evsel)) 1075 attr->disabled = 1; 1076 1077 /* 1078 * Setting enable_on_exec for independent events and 1079 * group leaders for traced executed by perf. 1080 */ 1081 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1082 !opts->initial_delay) 1083 attr->enable_on_exec = 1; 1084 1085 if (evsel->immediate) { 1086 attr->disabled = 0; 1087 attr->enable_on_exec = 0; 1088 } 1089 1090 clockid = opts->clockid; 1091 if (opts->use_clockid) { 1092 attr->use_clockid = 1; 1093 attr->clockid = opts->clockid; 1094 } 1095 1096 if (evsel->precise_max) 1097 attr->precise_ip = 3; 1098 1099 if (opts->all_user) { 1100 attr->exclude_kernel = 1; 1101 attr->exclude_user = 0; 1102 } 1103 1104 if (opts->all_kernel) { 1105 attr->exclude_kernel = 0; 1106 attr->exclude_user = 1; 1107 } 1108 1109 if (evsel->own_cpus || evsel->unit) 1110 evsel->attr.read_format |= PERF_FORMAT_ID; 1111 1112 /* 1113 * Apply event specific term settings, 1114 * it overloads any global configuration. 1115 */ 1116 apply_config_terms(evsel, opts, track); 1117 1118 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1119 1120 /* The --period option takes the precedence. */ 1121 if (opts->period_set) { 1122 if (opts->period) 1123 perf_evsel__set_sample_bit(evsel, PERIOD); 1124 else 1125 perf_evsel__reset_sample_bit(evsel, PERIOD); 1126 } 1127 1128 /* 1129 * For initial_delay, a dummy event is added implicitly. 1130 * The software event will trigger -EOPNOTSUPP error out, 1131 * if BRANCH_STACK bit is set. 1132 */ 1133 if (opts->initial_delay && is_dummy_event(evsel)) 1134 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1135 } 1136 1137 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1138 { 1139 if (evsel->system_wide) 1140 nthreads = 1; 1141 1142 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1143 1144 if (evsel->fd) { 1145 int cpu, thread; 1146 for (cpu = 0; cpu < ncpus; cpu++) { 1147 for (thread = 0; thread < nthreads; thread++) { 1148 FD(evsel, cpu, thread) = -1; 1149 } 1150 } 1151 } 1152 1153 return evsel->fd != NULL ? 0 : -ENOMEM; 1154 } 1155 1156 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1157 int ioc, void *arg) 1158 { 1159 int cpu, thread; 1160 1161 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1162 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1163 int fd = FD(evsel, cpu, thread), 1164 err = ioctl(fd, ioc, arg); 1165 1166 if (err) 1167 return err; 1168 } 1169 } 1170 1171 return 0; 1172 } 1173 1174 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1175 { 1176 return perf_evsel__run_ioctl(evsel, 1177 PERF_EVENT_IOC_SET_FILTER, 1178 (void *)filter); 1179 } 1180 1181 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1182 { 1183 char *new_filter = strdup(filter); 1184 1185 if (new_filter != NULL) { 1186 free(evsel->filter); 1187 evsel->filter = new_filter; 1188 return 0; 1189 } 1190 1191 return -1; 1192 } 1193 1194 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1195 const char *fmt, const char *filter) 1196 { 1197 char *new_filter; 1198 1199 if (evsel->filter == NULL) 1200 return perf_evsel__set_filter(evsel, filter); 1201 1202 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1203 free(evsel->filter); 1204 evsel->filter = new_filter; 1205 return 0; 1206 } 1207 1208 return -1; 1209 } 1210 1211 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1212 { 1213 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1214 } 1215 1216 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1217 { 1218 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1219 } 1220 1221 int perf_evsel__enable(struct perf_evsel *evsel) 1222 { 1223 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1224 1225 if (!err) 1226 evsel->disabled = false; 1227 1228 return err; 1229 } 1230 1231 int perf_evsel__disable(struct perf_evsel *evsel) 1232 { 1233 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1234 /* 1235 * We mark it disabled here so that tools that disable a event can 1236 * ignore events after they disable it. I.e. the ring buffer may have 1237 * already a few more events queued up before the kernel got the stop 1238 * request. 1239 */ 1240 if (!err) 1241 evsel->disabled = true; 1242 1243 return err; 1244 } 1245 1246 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1247 { 1248 if (ncpus == 0 || nthreads == 0) 1249 return 0; 1250 1251 if (evsel->system_wide) 1252 nthreads = 1; 1253 1254 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1255 if (evsel->sample_id == NULL) 1256 return -ENOMEM; 1257 1258 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1259 if (evsel->id == NULL) { 1260 xyarray__delete(evsel->sample_id); 1261 evsel->sample_id = NULL; 1262 return -ENOMEM; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1269 { 1270 xyarray__delete(evsel->fd); 1271 evsel->fd = NULL; 1272 } 1273 1274 static void perf_evsel__free_id(struct perf_evsel *evsel) 1275 { 1276 xyarray__delete(evsel->sample_id); 1277 evsel->sample_id = NULL; 1278 zfree(&evsel->id); 1279 } 1280 1281 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1282 { 1283 struct perf_evsel_config_term *term, *h; 1284 1285 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1286 list_del(&term->list); 1287 free(term); 1288 } 1289 } 1290 1291 void perf_evsel__close_fd(struct perf_evsel *evsel) 1292 { 1293 int cpu, thread; 1294 1295 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1296 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1297 close(FD(evsel, cpu, thread)); 1298 FD(evsel, cpu, thread) = -1; 1299 } 1300 } 1301 1302 void perf_evsel__exit(struct perf_evsel *evsel) 1303 { 1304 assert(list_empty(&evsel->node)); 1305 assert(evsel->evlist == NULL); 1306 perf_evsel__free_counts(evsel); 1307 perf_evsel__free_fd(evsel); 1308 perf_evsel__free_id(evsel); 1309 perf_evsel__free_config_terms(evsel); 1310 cgroup__put(evsel->cgrp); 1311 cpu_map__put(evsel->cpus); 1312 cpu_map__put(evsel->own_cpus); 1313 thread_map__put(evsel->threads); 1314 zfree(&evsel->group_name); 1315 zfree(&evsel->name); 1316 perf_evsel__object.fini(evsel); 1317 } 1318 1319 void perf_evsel__delete(struct perf_evsel *evsel) 1320 { 1321 perf_evsel__exit(evsel); 1322 free(evsel); 1323 } 1324 1325 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1326 struct perf_counts_values *count) 1327 { 1328 struct perf_counts_values tmp; 1329 1330 if (!evsel->prev_raw_counts) 1331 return; 1332 1333 if (cpu == -1) { 1334 tmp = evsel->prev_raw_counts->aggr; 1335 evsel->prev_raw_counts->aggr = *count; 1336 } else { 1337 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1338 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1339 } 1340 1341 count->val = count->val - tmp.val; 1342 count->ena = count->ena - tmp.ena; 1343 count->run = count->run - tmp.run; 1344 } 1345 1346 void perf_counts_values__scale(struct perf_counts_values *count, 1347 bool scale, s8 *pscaled) 1348 { 1349 s8 scaled = 0; 1350 1351 if (scale) { 1352 if (count->run == 0) { 1353 scaled = -1; 1354 count->val = 0; 1355 } else if (count->run < count->ena) { 1356 scaled = 1; 1357 count->val = (u64)((double) count->val * count->ena / count->run); 1358 } 1359 } 1360 1361 if (pscaled) 1362 *pscaled = scaled; 1363 } 1364 1365 static int perf_evsel__read_size(struct perf_evsel *evsel) 1366 { 1367 u64 read_format = evsel->attr.read_format; 1368 int entry = sizeof(u64); /* value */ 1369 int size = 0; 1370 int nr = 1; 1371 1372 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1373 size += sizeof(u64); 1374 1375 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1376 size += sizeof(u64); 1377 1378 if (read_format & PERF_FORMAT_ID) 1379 entry += sizeof(u64); 1380 1381 if (read_format & PERF_FORMAT_GROUP) { 1382 nr = evsel->nr_members; 1383 size += sizeof(u64); 1384 } 1385 1386 size += entry * nr; 1387 return size; 1388 } 1389 1390 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1391 struct perf_counts_values *count) 1392 { 1393 size_t size = perf_evsel__read_size(evsel); 1394 1395 memset(count, 0, sizeof(*count)); 1396 1397 if (FD(evsel, cpu, thread) < 0) 1398 return -EINVAL; 1399 1400 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1401 return -errno; 1402 1403 return 0; 1404 } 1405 1406 static int 1407 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1408 { 1409 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1410 1411 return perf_evsel__read(evsel, cpu, thread, count); 1412 } 1413 1414 static void 1415 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1416 u64 val, u64 ena, u64 run) 1417 { 1418 struct perf_counts_values *count; 1419 1420 count = perf_counts(counter->counts, cpu, thread); 1421 1422 count->val = val; 1423 count->ena = ena; 1424 count->run = run; 1425 count->loaded = true; 1426 } 1427 1428 static int 1429 perf_evsel__process_group_data(struct perf_evsel *leader, 1430 int cpu, int thread, u64 *data) 1431 { 1432 u64 read_format = leader->attr.read_format; 1433 struct sample_read_value *v; 1434 u64 nr, ena = 0, run = 0, i; 1435 1436 nr = *data++; 1437 1438 if (nr != (u64) leader->nr_members) 1439 return -EINVAL; 1440 1441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1442 ena = *data++; 1443 1444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1445 run = *data++; 1446 1447 v = (struct sample_read_value *) data; 1448 1449 perf_evsel__set_count(leader, cpu, thread, 1450 v[0].value, ena, run); 1451 1452 for (i = 1; i < nr; i++) { 1453 struct perf_evsel *counter; 1454 1455 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1456 if (!counter) 1457 return -EINVAL; 1458 1459 perf_evsel__set_count(counter, cpu, thread, 1460 v[i].value, ena, run); 1461 } 1462 1463 return 0; 1464 } 1465 1466 static int 1467 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1468 { 1469 struct perf_stat_evsel *ps = leader->stats; 1470 u64 read_format = leader->attr.read_format; 1471 int size = perf_evsel__read_size(leader); 1472 u64 *data = ps->group_data; 1473 1474 if (!(read_format & PERF_FORMAT_ID)) 1475 return -EINVAL; 1476 1477 if (!perf_evsel__is_group_leader(leader)) 1478 return -EINVAL; 1479 1480 if (!data) { 1481 data = zalloc(size); 1482 if (!data) 1483 return -ENOMEM; 1484 1485 ps->group_data = data; 1486 } 1487 1488 if (FD(leader, cpu, thread) < 0) 1489 return -EINVAL; 1490 1491 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1492 return -errno; 1493 1494 return perf_evsel__process_group_data(leader, cpu, thread, data); 1495 } 1496 1497 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1498 { 1499 u64 read_format = evsel->attr.read_format; 1500 1501 if (read_format & PERF_FORMAT_GROUP) 1502 return perf_evsel__read_group(evsel, cpu, thread); 1503 else 1504 return perf_evsel__read_one(evsel, cpu, thread); 1505 } 1506 1507 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1508 int cpu, int thread, bool scale) 1509 { 1510 struct perf_counts_values count; 1511 size_t nv = scale ? 3 : 1; 1512 1513 if (FD(evsel, cpu, thread) < 0) 1514 return -EINVAL; 1515 1516 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1517 return -ENOMEM; 1518 1519 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1520 return -errno; 1521 1522 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1523 perf_counts_values__scale(&count, scale, NULL); 1524 *perf_counts(evsel->counts, cpu, thread) = count; 1525 return 0; 1526 } 1527 1528 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1529 { 1530 struct perf_evsel *leader = evsel->leader; 1531 int fd; 1532 1533 if (perf_evsel__is_group_leader(evsel)) 1534 return -1; 1535 1536 /* 1537 * Leader must be already processed/open, 1538 * if not it's a bug. 1539 */ 1540 BUG_ON(!leader->fd); 1541 1542 fd = FD(leader, cpu, thread); 1543 BUG_ON(fd == -1); 1544 1545 return fd; 1546 } 1547 1548 struct bit_names { 1549 int bit; 1550 const char *name; 1551 }; 1552 1553 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1554 { 1555 bool first_bit = true; 1556 int i = 0; 1557 1558 do { 1559 if (value & bits[i].bit) { 1560 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1561 first_bit = false; 1562 } 1563 } while (bits[++i].name != NULL); 1564 } 1565 1566 static void __p_sample_type(char *buf, size_t size, u64 value) 1567 { 1568 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1569 struct bit_names bits[] = { 1570 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1571 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1572 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1573 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1574 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1575 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1576 { .name = NULL, } 1577 }; 1578 #undef bit_name 1579 __p_bits(buf, size, value, bits); 1580 } 1581 1582 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1583 { 1584 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1585 struct bit_names bits[] = { 1586 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1587 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1588 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1589 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1590 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1591 { .name = NULL, } 1592 }; 1593 #undef bit_name 1594 __p_bits(buf, size, value, bits); 1595 } 1596 1597 static void __p_read_format(char *buf, size_t size, u64 value) 1598 { 1599 #define bit_name(n) { PERF_FORMAT_##n, #n } 1600 struct bit_names bits[] = { 1601 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1602 bit_name(ID), bit_name(GROUP), 1603 { .name = NULL, } 1604 }; 1605 #undef bit_name 1606 __p_bits(buf, size, value, bits); 1607 } 1608 1609 #define BUF_SIZE 1024 1610 1611 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1612 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1613 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1614 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1615 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1616 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1617 1618 #define PRINT_ATTRn(_n, _f, _p) \ 1619 do { \ 1620 if (attr->_f) { \ 1621 _p(attr->_f); \ 1622 ret += attr__fprintf(fp, _n, buf, priv);\ 1623 } \ 1624 } while (0) 1625 1626 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1627 1628 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1629 attr__fprintf_f attr__fprintf, void *priv) 1630 { 1631 char buf[BUF_SIZE]; 1632 int ret = 0; 1633 1634 PRINT_ATTRf(type, p_unsigned); 1635 PRINT_ATTRf(size, p_unsigned); 1636 PRINT_ATTRf(config, p_hex); 1637 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1638 PRINT_ATTRf(sample_type, p_sample_type); 1639 PRINT_ATTRf(read_format, p_read_format); 1640 1641 PRINT_ATTRf(disabled, p_unsigned); 1642 PRINT_ATTRf(inherit, p_unsigned); 1643 PRINT_ATTRf(pinned, p_unsigned); 1644 PRINT_ATTRf(exclusive, p_unsigned); 1645 PRINT_ATTRf(exclude_user, p_unsigned); 1646 PRINT_ATTRf(exclude_kernel, p_unsigned); 1647 PRINT_ATTRf(exclude_hv, p_unsigned); 1648 PRINT_ATTRf(exclude_idle, p_unsigned); 1649 PRINT_ATTRf(mmap, p_unsigned); 1650 PRINT_ATTRf(comm, p_unsigned); 1651 PRINT_ATTRf(freq, p_unsigned); 1652 PRINT_ATTRf(inherit_stat, p_unsigned); 1653 PRINT_ATTRf(enable_on_exec, p_unsigned); 1654 PRINT_ATTRf(task, p_unsigned); 1655 PRINT_ATTRf(watermark, p_unsigned); 1656 PRINT_ATTRf(precise_ip, p_unsigned); 1657 PRINT_ATTRf(mmap_data, p_unsigned); 1658 PRINT_ATTRf(sample_id_all, p_unsigned); 1659 PRINT_ATTRf(exclude_host, p_unsigned); 1660 PRINT_ATTRf(exclude_guest, p_unsigned); 1661 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1662 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1663 PRINT_ATTRf(mmap2, p_unsigned); 1664 PRINT_ATTRf(comm_exec, p_unsigned); 1665 PRINT_ATTRf(use_clockid, p_unsigned); 1666 PRINT_ATTRf(context_switch, p_unsigned); 1667 PRINT_ATTRf(write_backward, p_unsigned); 1668 PRINT_ATTRf(namespaces, p_unsigned); 1669 PRINT_ATTRf(ksymbol, p_unsigned); 1670 PRINT_ATTRf(bpf_event, p_unsigned); 1671 1672 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1673 PRINT_ATTRf(bp_type, p_unsigned); 1674 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1675 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1676 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1677 PRINT_ATTRf(sample_regs_user, p_hex); 1678 PRINT_ATTRf(sample_stack_user, p_unsigned); 1679 PRINT_ATTRf(clockid, p_signed); 1680 PRINT_ATTRf(sample_regs_intr, p_hex); 1681 PRINT_ATTRf(aux_watermark, p_unsigned); 1682 PRINT_ATTRf(sample_max_stack, p_unsigned); 1683 1684 return ret; 1685 } 1686 1687 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1688 void *priv __maybe_unused) 1689 { 1690 return fprintf(fp, " %-32s %s\n", name, val); 1691 } 1692 1693 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1694 int nr_cpus, int nr_threads, 1695 int thread_idx) 1696 { 1697 for (int cpu = 0; cpu < nr_cpus; cpu++) 1698 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1699 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1700 } 1701 1702 static int update_fds(struct perf_evsel *evsel, 1703 int nr_cpus, int cpu_idx, 1704 int nr_threads, int thread_idx) 1705 { 1706 struct perf_evsel *pos; 1707 1708 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1709 return -EINVAL; 1710 1711 evlist__for_each_entry(evsel->evlist, pos) { 1712 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1713 1714 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1715 1716 /* 1717 * Since fds for next evsel has not been created, 1718 * there is no need to iterate whole event list. 1719 */ 1720 if (pos == evsel) 1721 break; 1722 } 1723 return 0; 1724 } 1725 1726 static bool ignore_missing_thread(struct perf_evsel *evsel, 1727 int nr_cpus, int cpu, 1728 struct thread_map *threads, 1729 int thread, int err) 1730 { 1731 pid_t ignore_pid = thread_map__pid(threads, thread); 1732 1733 if (!evsel->ignore_missing_thread) 1734 return false; 1735 1736 /* The system wide setup does not work with threads. */ 1737 if (evsel->system_wide) 1738 return false; 1739 1740 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1741 if (err != -ESRCH) 1742 return false; 1743 1744 /* If there's only one thread, let it fail. */ 1745 if (threads->nr == 1) 1746 return false; 1747 1748 /* 1749 * We should remove fd for missing_thread first 1750 * because thread_map__remove() will decrease threads->nr. 1751 */ 1752 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1753 return false; 1754 1755 if (thread_map__remove(threads, thread)) 1756 return false; 1757 1758 pr_warning("WARNING: Ignored open failure for pid %d\n", 1759 ignore_pid); 1760 return true; 1761 } 1762 1763 static void display_attr(struct perf_event_attr *attr) 1764 { 1765 if (verbose >= 2) { 1766 fprintf(stderr, "%.60s\n", graph_dotted_line); 1767 fprintf(stderr, "perf_event_attr:\n"); 1768 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1769 fprintf(stderr, "%.60s\n", graph_dotted_line); 1770 } 1771 } 1772 1773 static int perf_event_open(struct perf_evsel *evsel, 1774 pid_t pid, int cpu, int group_fd, 1775 unsigned long flags) 1776 { 1777 int precise_ip = evsel->attr.precise_ip; 1778 int fd; 1779 1780 while (1) { 1781 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1782 pid, cpu, group_fd, flags); 1783 1784 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1785 if (fd >= 0) 1786 break; 1787 1788 /* 1789 * Do quick precise_ip fallback if: 1790 * - there is precise_ip set in perf_event_attr 1791 * - maximum precise is requested 1792 * - sys_perf_event_open failed with ENOTSUP error, 1793 * which is associated with wrong precise_ip 1794 */ 1795 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP)) 1796 break; 1797 1798 /* 1799 * We tried all the precise_ip values, and it's 1800 * still failing, so leave it to standard fallback. 1801 */ 1802 if (!evsel->attr.precise_ip) { 1803 evsel->attr.precise_ip = precise_ip; 1804 break; 1805 } 1806 1807 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1808 evsel->attr.precise_ip--; 1809 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1810 display_attr(&evsel->attr); 1811 } 1812 1813 return fd; 1814 } 1815 1816 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1817 struct thread_map *threads) 1818 { 1819 int cpu, thread, nthreads; 1820 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1821 int pid = -1, err; 1822 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1823 1824 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1825 return -EINVAL; 1826 1827 if (cpus == NULL) { 1828 static struct cpu_map *empty_cpu_map; 1829 1830 if (empty_cpu_map == NULL) { 1831 empty_cpu_map = cpu_map__dummy_new(); 1832 if (empty_cpu_map == NULL) 1833 return -ENOMEM; 1834 } 1835 1836 cpus = empty_cpu_map; 1837 } 1838 1839 if (threads == NULL) { 1840 static struct thread_map *empty_thread_map; 1841 1842 if (empty_thread_map == NULL) { 1843 empty_thread_map = thread_map__new_by_tid(-1); 1844 if (empty_thread_map == NULL) 1845 return -ENOMEM; 1846 } 1847 1848 threads = empty_thread_map; 1849 } 1850 1851 if (evsel->system_wide) 1852 nthreads = 1; 1853 else 1854 nthreads = threads->nr; 1855 1856 if (evsel->fd == NULL && 1857 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1858 return -ENOMEM; 1859 1860 if (evsel->cgrp) { 1861 flags |= PERF_FLAG_PID_CGROUP; 1862 pid = evsel->cgrp->fd; 1863 } 1864 1865 fallback_missing_features: 1866 if (perf_missing_features.clockid_wrong) 1867 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1868 if (perf_missing_features.clockid) { 1869 evsel->attr.use_clockid = 0; 1870 evsel->attr.clockid = 0; 1871 } 1872 if (perf_missing_features.cloexec) 1873 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1874 if (perf_missing_features.mmap2) 1875 evsel->attr.mmap2 = 0; 1876 if (perf_missing_features.exclude_guest) 1877 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1878 if (perf_missing_features.lbr_flags) 1879 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1880 PERF_SAMPLE_BRANCH_NO_CYCLES); 1881 if (perf_missing_features.group_read && evsel->attr.inherit) 1882 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1883 if (perf_missing_features.ksymbol) 1884 evsel->attr.ksymbol = 0; 1885 if (perf_missing_features.bpf_event) 1886 evsel->attr.bpf_event = 0; 1887 retry_sample_id: 1888 if (perf_missing_features.sample_id_all) 1889 evsel->attr.sample_id_all = 0; 1890 1891 display_attr(&evsel->attr); 1892 1893 for (cpu = 0; cpu < cpus->nr; cpu++) { 1894 1895 for (thread = 0; thread < nthreads; thread++) { 1896 int fd, group_fd; 1897 1898 if (!evsel->cgrp && !evsel->system_wide) 1899 pid = thread_map__pid(threads, thread); 1900 1901 group_fd = get_group_fd(evsel, cpu, thread); 1902 retry_open: 1903 test_attr__ready(); 1904 1905 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1906 group_fd, flags); 1907 1908 FD(evsel, cpu, thread) = fd; 1909 1910 if (fd < 0) { 1911 err = -errno; 1912 1913 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1914 /* 1915 * We just removed 1 thread, so take a step 1916 * back on thread index and lower the upper 1917 * nthreads limit. 1918 */ 1919 nthreads--; 1920 thread--; 1921 1922 /* ... and pretend like nothing have happened. */ 1923 err = 0; 1924 continue; 1925 } 1926 1927 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1928 err); 1929 goto try_fallback; 1930 } 1931 1932 pr_debug2(" = %d\n", fd); 1933 1934 if (evsel->bpf_fd >= 0) { 1935 int evt_fd = fd; 1936 int bpf_fd = evsel->bpf_fd; 1937 1938 err = ioctl(evt_fd, 1939 PERF_EVENT_IOC_SET_BPF, 1940 bpf_fd); 1941 if (err && errno != EEXIST) { 1942 pr_err("failed to attach bpf fd %d: %s\n", 1943 bpf_fd, strerror(errno)); 1944 err = -EINVAL; 1945 goto out_close; 1946 } 1947 } 1948 1949 set_rlimit = NO_CHANGE; 1950 1951 /* 1952 * If we succeeded but had to kill clockid, fail and 1953 * have perf_evsel__open_strerror() print us a nice 1954 * error. 1955 */ 1956 if (perf_missing_features.clockid || 1957 perf_missing_features.clockid_wrong) { 1958 err = -EINVAL; 1959 goto out_close; 1960 } 1961 } 1962 } 1963 1964 return 0; 1965 1966 try_fallback: 1967 /* 1968 * perf stat needs between 5 and 22 fds per CPU. When we run out 1969 * of them try to increase the limits. 1970 */ 1971 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1972 struct rlimit l; 1973 int old_errno = errno; 1974 1975 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1976 if (set_rlimit == NO_CHANGE) 1977 l.rlim_cur = l.rlim_max; 1978 else { 1979 l.rlim_cur = l.rlim_max + 1000; 1980 l.rlim_max = l.rlim_cur; 1981 } 1982 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1983 set_rlimit++; 1984 errno = old_errno; 1985 goto retry_open; 1986 } 1987 } 1988 errno = old_errno; 1989 } 1990 1991 if (err != -EINVAL || cpu > 0 || thread > 0) 1992 goto out_close; 1993 1994 /* 1995 * Must probe features in the order they were added to the 1996 * perf_event_attr interface. 1997 */ 1998 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 1999 perf_missing_features.bpf_event = true; 2000 pr_debug2("switching off bpf_event\n"); 2001 goto fallback_missing_features; 2002 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 2003 perf_missing_features.ksymbol = true; 2004 pr_debug2("switching off ksymbol\n"); 2005 goto fallback_missing_features; 2006 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 2007 perf_missing_features.write_backward = true; 2008 pr_debug2("switching off write_backward\n"); 2009 goto out_close; 2010 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2011 perf_missing_features.clockid_wrong = true; 2012 pr_debug2("switching off clockid\n"); 2013 goto fallback_missing_features; 2014 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2015 perf_missing_features.clockid = true; 2016 pr_debug2("switching off use_clockid\n"); 2017 goto fallback_missing_features; 2018 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2019 perf_missing_features.cloexec = true; 2020 pr_debug2("switching off cloexec flag\n"); 2021 goto fallback_missing_features; 2022 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2023 perf_missing_features.mmap2 = true; 2024 pr_debug2("switching off mmap2\n"); 2025 goto fallback_missing_features; 2026 } else if (!perf_missing_features.exclude_guest && 2027 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2028 perf_missing_features.exclude_guest = true; 2029 pr_debug2("switching off exclude_guest, exclude_host\n"); 2030 goto fallback_missing_features; 2031 } else if (!perf_missing_features.sample_id_all) { 2032 perf_missing_features.sample_id_all = true; 2033 pr_debug2("switching off sample_id_all\n"); 2034 goto retry_sample_id; 2035 } else if (!perf_missing_features.lbr_flags && 2036 (evsel->attr.branch_sample_type & 2037 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2038 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2039 perf_missing_features.lbr_flags = true; 2040 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2041 goto fallback_missing_features; 2042 } else if (!perf_missing_features.group_read && 2043 evsel->attr.inherit && 2044 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2045 perf_evsel__is_group_leader(evsel)) { 2046 perf_missing_features.group_read = true; 2047 pr_debug2("switching off group read\n"); 2048 goto fallback_missing_features; 2049 } 2050 out_close: 2051 if (err) 2052 threads->err_thread = thread; 2053 2054 do { 2055 while (--thread >= 0) { 2056 close(FD(evsel, cpu, thread)); 2057 FD(evsel, cpu, thread) = -1; 2058 } 2059 thread = nthreads; 2060 } while (--cpu >= 0); 2061 return err; 2062 } 2063 2064 void perf_evsel__close(struct perf_evsel *evsel) 2065 { 2066 if (evsel->fd == NULL) 2067 return; 2068 2069 perf_evsel__close_fd(evsel); 2070 perf_evsel__free_fd(evsel); 2071 } 2072 2073 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2074 struct cpu_map *cpus) 2075 { 2076 return perf_evsel__open(evsel, cpus, NULL); 2077 } 2078 2079 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2080 struct thread_map *threads) 2081 { 2082 return perf_evsel__open(evsel, NULL, threads); 2083 } 2084 2085 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2086 const union perf_event *event, 2087 struct perf_sample *sample) 2088 { 2089 u64 type = evsel->attr.sample_type; 2090 const u64 *array = event->sample.array; 2091 bool swapped = evsel->needs_swap; 2092 union u64_swap u; 2093 2094 array += ((event->header.size - 2095 sizeof(event->header)) / sizeof(u64)) - 1; 2096 2097 if (type & PERF_SAMPLE_IDENTIFIER) { 2098 sample->id = *array; 2099 array--; 2100 } 2101 2102 if (type & PERF_SAMPLE_CPU) { 2103 u.val64 = *array; 2104 if (swapped) { 2105 /* undo swap of u64, then swap on individual u32s */ 2106 u.val64 = bswap_64(u.val64); 2107 u.val32[0] = bswap_32(u.val32[0]); 2108 } 2109 2110 sample->cpu = u.val32[0]; 2111 array--; 2112 } 2113 2114 if (type & PERF_SAMPLE_STREAM_ID) { 2115 sample->stream_id = *array; 2116 array--; 2117 } 2118 2119 if (type & PERF_SAMPLE_ID) { 2120 sample->id = *array; 2121 array--; 2122 } 2123 2124 if (type & PERF_SAMPLE_TIME) { 2125 sample->time = *array; 2126 array--; 2127 } 2128 2129 if (type & PERF_SAMPLE_TID) { 2130 u.val64 = *array; 2131 if (swapped) { 2132 /* undo swap of u64, then swap on individual u32s */ 2133 u.val64 = bswap_64(u.val64); 2134 u.val32[0] = bswap_32(u.val32[0]); 2135 u.val32[1] = bswap_32(u.val32[1]); 2136 } 2137 2138 sample->pid = u.val32[0]; 2139 sample->tid = u.val32[1]; 2140 array--; 2141 } 2142 2143 return 0; 2144 } 2145 2146 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2147 u64 size) 2148 { 2149 return size > max_size || offset + size > endp; 2150 } 2151 2152 #define OVERFLOW_CHECK(offset, size, max_size) \ 2153 do { \ 2154 if (overflow(endp, (max_size), (offset), (size))) \ 2155 return -EFAULT; \ 2156 } while (0) 2157 2158 #define OVERFLOW_CHECK_u64(offset) \ 2159 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2160 2161 static int 2162 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2163 { 2164 /* 2165 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2166 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2167 * check the format does not go past the end of the event. 2168 */ 2169 if (sample_size + sizeof(event->header) > event->header.size) 2170 return -EFAULT; 2171 2172 return 0; 2173 } 2174 2175 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2176 struct perf_sample *data) 2177 { 2178 u64 type = evsel->attr.sample_type; 2179 bool swapped = evsel->needs_swap; 2180 const u64 *array; 2181 u16 max_size = event->header.size; 2182 const void *endp = (void *)event + max_size; 2183 u64 sz; 2184 2185 /* 2186 * used for cross-endian analysis. See git commit 65014ab3 2187 * for why this goofiness is needed. 2188 */ 2189 union u64_swap u; 2190 2191 memset(data, 0, sizeof(*data)); 2192 data->cpu = data->pid = data->tid = -1; 2193 data->stream_id = data->id = data->time = -1ULL; 2194 data->period = evsel->attr.sample_period; 2195 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2196 data->misc = event->header.misc; 2197 data->id = -1ULL; 2198 data->data_src = PERF_MEM_DATA_SRC_NONE; 2199 2200 if (event->header.type != PERF_RECORD_SAMPLE) { 2201 if (!evsel->attr.sample_id_all) 2202 return 0; 2203 return perf_evsel__parse_id_sample(evsel, event, data); 2204 } 2205 2206 array = event->sample.array; 2207 2208 if (perf_event__check_size(event, evsel->sample_size)) 2209 return -EFAULT; 2210 2211 if (type & PERF_SAMPLE_IDENTIFIER) { 2212 data->id = *array; 2213 array++; 2214 } 2215 2216 if (type & PERF_SAMPLE_IP) { 2217 data->ip = *array; 2218 array++; 2219 } 2220 2221 if (type & PERF_SAMPLE_TID) { 2222 u.val64 = *array; 2223 if (swapped) { 2224 /* undo swap of u64, then swap on individual u32s */ 2225 u.val64 = bswap_64(u.val64); 2226 u.val32[0] = bswap_32(u.val32[0]); 2227 u.val32[1] = bswap_32(u.val32[1]); 2228 } 2229 2230 data->pid = u.val32[0]; 2231 data->tid = u.val32[1]; 2232 array++; 2233 } 2234 2235 if (type & PERF_SAMPLE_TIME) { 2236 data->time = *array; 2237 array++; 2238 } 2239 2240 if (type & PERF_SAMPLE_ADDR) { 2241 data->addr = *array; 2242 array++; 2243 } 2244 2245 if (type & PERF_SAMPLE_ID) { 2246 data->id = *array; 2247 array++; 2248 } 2249 2250 if (type & PERF_SAMPLE_STREAM_ID) { 2251 data->stream_id = *array; 2252 array++; 2253 } 2254 2255 if (type & PERF_SAMPLE_CPU) { 2256 2257 u.val64 = *array; 2258 if (swapped) { 2259 /* undo swap of u64, then swap on individual u32s */ 2260 u.val64 = bswap_64(u.val64); 2261 u.val32[0] = bswap_32(u.val32[0]); 2262 } 2263 2264 data->cpu = u.val32[0]; 2265 array++; 2266 } 2267 2268 if (type & PERF_SAMPLE_PERIOD) { 2269 data->period = *array; 2270 array++; 2271 } 2272 2273 if (type & PERF_SAMPLE_READ) { 2274 u64 read_format = evsel->attr.read_format; 2275 2276 OVERFLOW_CHECK_u64(array); 2277 if (read_format & PERF_FORMAT_GROUP) 2278 data->read.group.nr = *array; 2279 else 2280 data->read.one.value = *array; 2281 2282 array++; 2283 2284 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2285 OVERFLOW_CHECK_u64(array); 2286 data->read.time_enabled = *array; 2287 array++; 2288 } 2289 2290 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2291 OVERFLOW_CHECK_u64(array); 2292 data->read.time_running = *array; 2293 array++; 2294 } 2295 2296 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2297 if (read_format & PERF_FORMAT_GROUP) { 2298 const u64 max_group_nr = UINT64_MAX / 2299 sizeof(struct sample_read_value); 2300 2301 if (data->read.group.nr > max_group_nr) 2302 return -EFAULT; 2303 sz = data->read.group.nr * 2304 sizeof(struct sample_read_value); 2305 OVERFLOW_CHECK(array, sz, max_size); 2306 data->read.group.values = 2307 (struct sample_read_value *)array; 2308 array = (void *)array + sz; 2309 } else { 2310 OVERFLOW_CHECK_u64(array); 2311 data->read.one.id = *array; 2312 array++; 2313 } 2314 } 2315 2316 if (evsel__has_callchain(evsel)) { 2317 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2318 2319 OVERFLOW_CHECK_u64(array); 2320 data->callchain = (struct ip_callchain *)array++; 2321 if (data->callchain->nr > max_callchain_nr) 2322 return -EFAULT; 2323 sz = data->callchain->nr * sizeof(u64); 2324 OVERFLOW_CHECK(array, sz, max_size); 2325 array = (void *)array + sz; 2326 } 2327 2328 if (type & PERF_SAMPLE_RAW) { 2329 OVERFLOW_CHECK_u64(array); 2330 u.val64 = *array; 2331 2332 /* 2333 * Undo swap of u64, then swap on individual u32s, 2334 * get the size of the raw area and undo all of the 2335 * swap. The pevent interface handles endianity by 2336 * itself. 2337 */ 2338 if (swapped) { 2339 u.val64 = bswap_64(u.val64); 2340 u.val32[0] = bswap_32(u.val32[0]); 2341 u.val32[1] = bswap_32(u.val32[1]); 2342 } 2343 data->raw_size = u.val32[0]; 2344 2345 /* 2346 * The raw data is aligned on 64bits including the 2347 * u32 size, so it's safe to use mem_bswap_64. 2348 */ 2349 if (swapped) 2350 mem_bswap_64((void *) array, data->raw_size); 2351 2352 array = (void *)array + sizeof(u32); 2353 2354 OVERFLOW_CHECK(array, data->raw_size, max_size); 2355 data->raw_data = (void *)array; 2356 array = (void *)array + data->raw_size; 2357 } 2358 2359 if (type & PERF_SAMPLE_BRANCH_STACK) { 2360 const u64 max_branch_nr = UINT64_MAX / 2361 sizeof(struct branch_entry); 2362 2363 OVERFLOW_CHECK_u64(array); 2364 data->branch_stack = (struct branch_stack *)array++; 2365 2366 if (data->branch_stack->nr > max_branch_nr) 2367 return -EFAULT; 2368 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2369 OVERFLOW_CHECK(array, sz, max_size); 2370 array = (void *)array + sz; 2371 } 2372 2373 if (type & PERF_SAMPLE_REGS_USER) { 2374 OVERFLOW_CHECK_u64(array); 2375 data->user_regs.abi = *array; 2376 array++; 2377 2378 if (data->user_regs.abi) { 2379 u64 mask = evsel->attr.sample_regs_user; 2380 2381 sz = hweight64(mask) * sizeof(u64); 2382 OVERFLOW_CHECK(array, sz, max_size); 2383 data->user_regs.mask = mask; 2384 data->user_regs.regs = (u64 *)array; 2385 array = (void *)array + sz; 2386 } 2387 } 2388 2389 if (type & PERF_SAMPLE_STACK_USER) { 2390 OVERFLOW_CHECK_u64(array); 2391 sz = *array++; 2392 2393 data->user_stack.offset = ((char *)(array - 1) 2394 - (char *) event); 2395 2396 if (!sz) { 2397 data->user_stack.size = 0; 2398 } else { 2399 OVERFLOW_CHECK(array, sz, max_size); 2400 data->user_stack.data = (char *)array; 2401 array = (void *)array + sz; 2402 OVERFLOW_CHECK_u64(array); 2403 data->user_stack.size = *array++; 2404 if (WARN_ONCE(data->user_stack.size > sz, 2405 "user stack dump failure\n")) 2406 return -EFAULT; 2407 } 2408 } 2409 2410 if (type & PERF_SAMPLE_WEIGHT) { 2411 OVERFLOW_CHECK_u64(array); 2412 data->weight = *array; 2413 array++; 2414 } 2415 2416 if (type & PERF_SAMPLE_DATA_SRC) { 2417 OVERFLOW_CHECK_u64(array); 2418 data->data_src = *array; 2419 array++; 2420 } 2421 2422 if (type & PERF_SAMPLE_TRANSACTION) { 2423 OVERFLOW_CHECK_u64(array); 2424 data->transaction = *array; 2425 array++; 2426 } 2427 2428 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2429 if (type & PERF_SAMPLE_REGS_INTR) { 2430 OVERFLOW_CHECK_u64(array); 2431 data->intr_regs.abi = *array; 2432 array++; 2433 2434 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2435 u64 mask = evsel->attr.sample_regs_intr; 2436 2437 sz = hweight64(mask) * sizeof(u64); 2438 OVERFLOW_CHECK(array, sz, max_size); 2439 data->intr_regs.mask = mask; 2440 data->intr_regs.regs = (u64 *)array; 2441 array = (void *)array + sz; 2442 } 2443 } 2444 2445 data->phys_addr = 0; 2446 if (type & PERF_SAMPLE_PHYS_ADDR) { 2447 data->phys_addr = *array; 2448 array++; 2449 } 2450 2451 return 0; 2452 } 2453 2454 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2455 union perf_event *event, 2456 u64 *timestamp) 2457 { 2458 u64 type = evsel->attr.sample_type; 2459 const u64 *array; 2460 2461 if (!(type & PERF_SAMPLE_TIME)) 2462 return -1; 2463 2464 if (event->header.type != PERF_RECORD_SAMPLE) { 2465 struct perf_sample data = { 2466 .time = -1ULL, 2467 }; 2468 2469 if (!evsel->attr.sample_id_all) 2470 return -1; 2471 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2472 return -1; 2473 2474 *timestamp = data.time; 2475 return 0; 2476 } 2477 2478 array = event->sample.array; 2479 2480 if (perf_event__check_size(event, evsel->sample_size)) 2481 return -EFAULT; 2482 2483 if (type & PERF_SAMPLE_IDENTIFIER) 2484 array++; 2485 2486 if (type & PERF_SAMPLE_IP) 2487 array++; 2488 2489 if (type & PERF_SAMPLE_TID) 2490 array++; 2491 2492 if (type & PERF_SAMPLE_TIME) 2493 *timestamp = *array; 2494 2495 return 0; 2496 } 2497 2498 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2499 u64 read_format) 2500 { 2501 size_t sz, result = sizeof(struct sample_event); 2502 2503 if (type & PERF_SAMPLE_IDENTIFIER) 2504 result += sizeof(u64); 2505 2506 if (type & PERF_SAMPLE_IP) 2507 result += sizeof(u64); 2508 2509 if (type & PERF_SAMPLE_TID) 2510 result += sizeof(u64); 2511 2512 if (type & PERF_SAMPLE_TIME) 2513 result += sizeof(u64); 2514 2515 if (type & PERF_SAMPLE_ADDR) 2516 result += sizeof(u64); 2517 2518 if (type & PERF_SAMPLE_ID) 2519 result += sizeof(u64); 2520 2521 if (type & PERF_SAMPLE_STREAM_ID) 2522 result += sizeof(u64); 2523 2524 if (type & PERF_SAMPLE_CPU) 2525 result += sizeof(u64); 2526 2527 if (type & PERF_SAMPLE_PERIOD) 2528 result += sizeof(u64); 2529 2530 if (type & PERF_SAMPLE_READ) { 2531 result += sizeof(u64); 2532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2533 result += sizeof(u64); 2534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2535 result += sizeof(u64); 2536 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2537 if (read_format & PERF_FORMAT_GROUP) { 2538 sz = sample->read.group.nr * 2539 sizeof(struct sample_read_value); 2540 result += sz; 2541 } else { 2542 result += sizeof(u64); 2543 } 2544 } 2545 2546 if (type & PERF_SAMPLE_CALLCHAIN) { 2547 sz = (sample->callchain->nr + 1) * sizeof(u64); 2548 result += sz; 2549 } 2550 2551 if (type & PERF_SAMPLE_RAW) { 2552 result += sizeof(u32); 2553 result += sample->raw_size; 2554 } 2555 2556 if (type & PERF_SAMPLE_BRANCH_STACK) { 2557 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2558 sz += sizeof(u64); 2559 result += sz; 2560 } 2561 2562 if (type & PERF_SAMPLE_REGS_USER) { 2563 if (sample->user_regs.abi) { 2564 result += sizeof(u64); 2565 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2566 result += sz; 2567 } else { 2568 result += sizeof(u64); 2569 } 2570 } 2571 2572 if (type & PERF_SAMPLE_STACK_USER) { 2573 sz = sample->user_stack.size; 2574 result += sizeof(u64); 2575 if (sz) { 2576 result += sz; 2577 result += sizeof(u64); 2578 } 2579 } 2580 2581 if (type & PERF_SAMPLE_WEIGHT) 2582 result += sizeof(u64); 2583 2584 if (type & PERF_SAMPLE_DATA_SRC) 2585 result += sizeof(u64); 2586 2587 if (type & PERF_SAMPLE_TRANSACTION) 2588 result += sizeof(u64); 2589 2590 if (type & PERF_SAMPLE_REGS_INTR) { 2591 if (sample->intr_regs.abi) { 2592 result += sizeof(u64); 2593 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2594 result += sz; 2595 } else { 2596 result += sizeof(u64); 2597 } 2598 } 2599 2600 if (type & PERF_SAMPLE_PHYS_ADDR) 2601 result += sizeof(u64); 2602 2603 return result; 2604 } 2605 2606 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2607 u64 read_format, 2608 const struct perf_sample *sample) 2609 { 2610 u64 *array; 2611 size_t sz; 2612 /* 2613 * used for cross-endian analysis. See git commit 65014ab3 2614 * for why this goofiness is needed. 2615 */ 2616 union u64_swap u; 2617 2618 array = event->sample.array; 2619 2620 if (type & PERF_SAMPLE_IDENTIFIER) { 2621 *array = sample->id; 2622 array++; 2623 } 2624 2625 if (type & PERF_SAMPLE_IP) { 2626 *array = sample->ip; 2627 array++; 2628 } 2629 2630 if (type & PERF_SAMPLE_TID) { 2631 u.val32[0] = sample->pid; 2632 u.val32[1] = sample->tid; 2633 *array = u.val64; 2634 array++; 2635 } 2636 2637 if (type & PERF_SAMPLE_TIME) { 2638 *array = sample->time; 2639 array++; 2640 } 2641 2642 if (type & PERF_SAMPLE_ADDR) { 2643 *array = sample->addr; 2644 array++; 2645 } 2646 2647 if (type & PERF_SAMPLE_ID) { 2648 *array = sample->id; 2649 array++; 2650 } 2651 2652 if (type & PERF_SAMPLE_STREAM_ID) { 2653 *array = sample->stream_id; 2654 array++; 2655 } 2656 2657 if (type & PERF_SAMPLE_CPU) { 2658 u.val32[0] = sample->cpu; 2659 u.val32[1] = 0; 2660 *array = u.val64; 2661 array++; 2662 } 2663 2664 if (type & PERF_SAMPLE_PERIOD) { 2665 *array = sample->period; 2666 array++; 2667 } 2668 2669 if (type & PERF_SAMPLE_READ) { 2670 if (read_format & PERF_FORMAT_GROUP) 2671 *array = sample->read.group.nr; 2672 else 2673 *array = sample->read.one.value; 2674 array++; 2675 2676 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2677 *array = sample->read.time_enabled; 2678 array++; 2679 } 2680 2681 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2682 *array = sample->read.time_running; 2683 array++; 2684 } 2685 2686 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2687 if (read_format & PERF_FORMAT_GROUP) { 2688 sz = sample->read.group.nr * 2689 sizeof(struct sample_read_value); 2690 memcpy(array, sample->read.group.values, sz); 2691 array = (void *)array + sz; 2692 } else { 2693 *array = sample->read.one.id; 2694 array++; 2695 } 2696 } 2697 2698 if (type & PERF_SAMPLE_CALLCHAIN) { 2699 sz = (sample->callchain->nr + 1) * sizeof(u64); 2700 memcpy(array, sample->callchain, sz); 2701 array = (void *)array + sz; 2702 } 2703 2704 if (type & PERF_SAMPLE_RAW) { 2705 u.val32[0] = sample->raw_size; 2706 *array = u.val64; 2707 array = (void *)array + sizeof(u32); 2708 2709 memcpy(array, sample->raw_data, sample->raw_size); 2710 array = (void *)array + sample->raw_size; 2711 } 2712 2713 if (type & PERF_SAMPLE_BRANCH_STACK) { 2714 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2715 sz += sizeof(u64); 2716 memcpy(array, sample->branch_stack, sz); 2717 array = (void *)array + sz; 2718 } 2719 2720 if (type & PERF_SAMPLE_REGS_USER) { 2721 if (sample->user_regs.abi) { 2722 *array++ = sample->user_regs.abi; 2723 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2724 memcpy(array, sample->user_regs.regs, sz); 2725 array = (void *)array + sz; 2726 } else { 2727 *array++ = 0; 2728 } 2729 } 2730 2731 if (type & PERF_SAMPLE_STACK_USER) { 2732 sz = sample->user_stack.size; 2733 *array++ = sz; 2734 if (sz) { 2735 memcpy(array, sample->user_stack.data, sz); 2736 array = (void *)array + sz; 2737 *array++ = sz; 2738 } 2739 } 2740 2741 if (type & PERF_SAMPLE_WEIGHT) { 2742 *array = sample->weight; 2743 array++; 2744 } 2745 2746 if (type & PERF_SAMPLE_DATA_SRC) { 2747 *array = sample->data_src; 2748 array++; 2749 } 2750 2751 if (type & PERF_SAMPLE_TRANSACTION) { 2752 *array = sample->transaction; 2753 array++; 2754 } 2755 2756 if (type & PERF_SAMPLE_REGS_INTR) { 2757 if (sample->intr_regs.abi) { 2758 *array++ = sample->intr_regs.abi; 2759 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2760 memcpy(array, sample->intr_regs.regs, sz); 2761 array = (void *)array + sz; 2762 } else { 2763 *array++ = 0; 2764 } 2765 } 2766 2767 if (type & PERF_SAMPLE_PHYS_ADDR) { 2768 *array = sample->phys_addr; 2769 array++; 2770 } 2771 2772 return 0; 2773 } 2774 2775 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2776 { 2777 return tep_find_field(evsel->tp_format, name); 2778 } 2779 2780 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2781 const char *name) 2782 { 2783 struct tep_format_field *field = perf_evsel__field(evsel, name); 2784 int offset; 2785 2786 if (!field) 2787 return NULL; 2788 2789 offset = field->offset; 2790 2791 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2792 offset = *(int *)(sample->raw_data + field->offset); 2793 offset &= 0xffff; 2794 } 2795 2796 return sample->raw_data + offset; 2797 } 2798 2799 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2800 bool needs_swap) 2801 { 2802 u64 value; 2803 void *ptr = sample->raw_data + field->offset; 2804 2805 switch (field->size) { 2806 case 1: 2807 return *(u8 *)ptr; 2808 case 2: 2809 value = *(u16 *)ptr; 2810 break; 2811 case 4: 2812 value = *(u32 *)ptr; 2813 break; 2814 case 8: 2815 memcpy(&value, ptr, sizeof(u64)); 2816 break; 2817 default: 2818 return 0; 2819 } 2820 2821 if (!needs_swap) 2822 return value; 2823 2824 switch (field->size) { 2825 case 2: 2826 return bswap_16(value); 2827 case 4: 2828 return bswap_32(value); 2829 case 8: 2830 return bswap_64(value); 2831 default: 2832 return 0; 2833 } 2834 2835 return 0; 2836 } 2837 2838 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2839 const char *name) 2840 { 2841 struct tep_format_field *field = perf_evsel__field(evsel, name); 2842 2843 if (!field) 2844 return 0; 2845 2846 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2847 } 2848 2849 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2850 char *msg, size_t msgsize) 2851 { 2852 int paranoid; 2853 2854 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2855 evsel->attr.type == PERF_TYPE_HARDWARE && 2856 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2857 /* 2858 * If it's cycles then fall back to hrtimer based 2859 * cpu-clock-tick sw counter, which is always available even if 2860 * no PMU support. 2861 * 2862 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2863 * b0a873e). 2864 */ 2865 scnprintf(msg, msgsize, "%s", 2866 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2867 2868 evsel->attr.type = PERF_TYPE_SOFTWARE; 2869 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2870 2871 zfree(&evsel->name); 2872 return true; 2873 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2874 (paranoid = perf_event_paranoid()) > 1) { 2875 const char *name = perf_evsel__name(evsel); 2876 char *new_name; 2877 const char *sep = ":"; 2878 2879 /* Is there already the separator in the name. */ 2880 if (strchr(name, '/') || 2881 strchr(name, ':')) 2882 sep = ""; 2883 2884 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2885 return false; 2886 2887 if (evsel->name) 2888 free(evsel->name); 2889 evsel->name = new_name; 2890 scnprintf(msg, msgsize, 2891 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2892 evsel->attr.exclude_kernel = 1; 2893 2894 return true; 2895 } 2896 2897 return false; 2898 } 2899 2900 static bool find_process(const char *name) 2901 { 2902 size_t len = strlen(name); 2903 DIR *dir; 2904 struct dirent *d; 2905 int ret = -1; 2906 2907 dir = opendir(procfs__mountpoint()); 2908 if (!dir) 2909 return false; 2910 2911 /* Walk through the directory. */ 2912 while (ret && (d = readdir(dir)) != NULL) { 2913 char path[PATH_MAX]; 2914 char *data; 2915 size_t size; 2916 2917 if ((d->d_type != DT_DIR) || 2918 !strcmp(".", d->d_name) || 2919 !strcmp("..", d->d_name)) 2920 continue; 2921 2922 scnprintf(path, sizeof(path), "%s/%s/comm", 2923 procfs__mountpoint(), d->d_name); 2924 2925 if (filename__read_str(path, &data, &size)) 2926 continue; 2927 2928 ret = strncmp(name, data, len); 2929 free(data); 2930 } 2931 2932 closedir(dir); 2933 return ret ? false : true; 2934 } 2935 2936 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2937 int err, char *msg, size_t size) 2938 { 2939 char sbuf[STRERR_BUFSIZE]; 2940 int printed = 0; 2941 2942 switch (err) { 2943 case EPERM: 2944 case EACCES: 2945 if (err == EPERM) 2946 printed = scnprintf(msg, size, 2947 "No permission to enable %s event.\n\n", 2948 perf_evsel__name(evsel)); 2949 2950 return scnprintf(msg + printed, size - printed, 2951 "You may not have permission to collect %sstats.\n\n" 2952 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2953 "which controls use of the performance events system by\n" 2954 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2955 "The current value is %d:\n\n" 2956 " -1: Allow use of (almost) all events by all users\n" 2957 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2958 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2959 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2960 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2961 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2962 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2963 " kernel.perf_event_paranoid = -1\n" , 2964 target->system_wide ? "system-wide " : "", 2965 perf_event_paranoid()); 2966 case ENOENT: 2967 return scnprintf(msg, size, "The %s event is not supported.", 2968 perf_evsel__name(evsel)); 2969 case EMFILE: 2970 return scnprintf(msg, size, "%s", 2971 "Too many events are opened.\n" 2972 "Probably the maximum number of open file descriptors has been reached.\n" 2973 "Hint: Try again after reducing the number of events.\n" 2974 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2975 case ENOMEM: 2976 if (evsel__has_callchain(evsel) && 2977 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2978 return scnprintf(msg, size, 2979 "Not enough memory to setup event with callchain.\n" 2980 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2981 "Hint: Current value: %d", sysctl__max_stack()); 2982 break; 2983 case ENODEV: 2984 if (target->cpu_list) 2985 return scnprintf(msg, size, "%s", 2986 "No such device - did you specify an out-of-range profile CPU?"); 2987 break; 2988 case EOPNOTSUPP: 2989 if (evsel->attr.sample_period != 0) 2990 return scnprintf(msg, size, 2991 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2992 perf_evsel__name(evsel)); 2993 if (evsel->attr.precise_ip) 2994 return scnprintf(msg, size, "%s", 2995 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2996 #if defined(__i386__) || defined(__x86_64__) 2997 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2998 return scnprintf(msg, size, "%s", 2999 "No hardware sampling interrupt available.\n"); 3000 #endif 3001 break; 3002 case EBUSY: 3003 if (find_process("oprofiled")) 3004 return scnprintf(msg, size, 3005 "The PMU counters are busy/taken by another profiler.\n" 3006 "We found oprofile daemon running, please stop it and try again."); 3007 break; 3008 case EINVAL: 3009 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3010 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3011 if (perf_missing_features.clockid) 3012 return scnprintf(msg, size, "clockid feature not supported."); 3013 if (perf_missing_features.clockid_wrong) 3014 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3015 break; 3016 default: 3017 break; 3018 } 3019 3020 return scnprintf(msg, size, 3021 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3022 "/bin/dmesg | grep -i perf may provide additional information.\n", 3023 err, str_error_r(err, sbuf, sizeof(sbuf)), 3024 perf_evsel__name(evsel)); 3025 } 3026 3027 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3028 { 3029 if (evsel && evsel->evlist) 3030 return evsel->evlist->env; 3031 return NULL; 3032 } 3033 3034 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3035 { 3036 int cpu, thread; 3037 3038 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3039 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3040 thread++) { 3041 int fd = FD(evsel, cpu, thread); 3042 3043 if (perf_evlist__id_add_fd(evlist, evsel, 3044 cpu, thread, fd) < 0) 3045 return -1; 3046 } 3047 } 3048 3049 return 0; 3050 } 3051 3052 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3053 { 3054 struct cpu_map *cpus = evsel->cpus; 3055 struct thread_map *threads = evsel->threads; 3056 3057 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3058 return -ENOMEM; 3059 3060 return store_evsel_ids(evsel, evlist); 3061 } 3062