xref: /linux/tools/perf/util/evsel.c (revision b6815f354518591400ce4c3a5fd63337643710ff)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 static struct {
45 	bool sample_id_all;
46 	bool exclude_guest;
47 	bool mmap2;
48 	bool cloexec;
49 	bool clockid;
50 	bool clockid_wrong;
51 	bool lbr_flags;
52 	bool write_backward;
53 	bool group_read;
54 } perf_missing_features;
55 
56 static clockid_t clockid;
57 
58 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
59 {
60 	return 0;
61 }
62 
63 void __weak test_attr__ready(void) { }
64 
65 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
66 {
67 }
68 
69 static struct {
70 	size_t	size;
71 	int	(*init)(struct perf_evsel *evsel);
72 	void	(*fini)(struct perf_evsel *evsel);
73 } perf_evsel__object = {
74 	.size = sizeof(struct perf_evsel),
75 	.init = perf_evsel__no_extra_init,
76 	.fini = perf_evsel__no_extra_fini,
77 };
78 
79 int perf_evsel__object_config(size_t object_size,
80 			      int (*init)(struct perf_evsel *evsel),
81 			      void (*fini)(struct perf_evsel *evsel))
82 {
83 
84 	if (object_size == 0)
85 		goto set_methods;
86 
87 	if (perf_evsel__object.size > object_size)
88 		return -EINVAL;
89 
90 	perf_evsel__object.size = object_size;
91 
92 set_methods:
93 	if (init != NULL)
94 		perf_evsel__object.init = init;
95 
96 	if (fini != NULL)
97 		perf_evsel__object.fini = fini;
98 
99 	return 0;
100 }
101 
102 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
103 
104 int __perf_evsel__sample_size(u64 sample_type)
105 {
106 	u64 mask = sample_type & PERF_SAMPLE_MASK;
107 	int size = 0;
108 	int i;
109 
110 	for (i = 0; i < 64; i++) {
111 		if (mask & (1ULL << i))
112 			size++;
113 	}
114 
115 	size *= sizeof(u64);
116 
117 	return size;
118 }
119 
120 /**
121  * __perf_evsel__calc_id_pos - calculate id_pos.
122  * @sample_type: sample type
123  *
124  * This function returns the position of the event id (PERF_SAMPLE_ID or
125  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
126  * sample_event.
127  */
128 static int __perf_evsel__calc_id_pos(u64 sample_type)
129 {
130 	int idx = 0;
131 
132 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
133 		return 0;
134 
135 	if (!(sample_type & PERF_SAMPLE_ID))
136 		return -1;
137 
138 	if (sample_type & PERF_SAMPLE_IP)
139 		idx += 1;
140 
141 	if (sample_type & PERF_SAMPLE_TID)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TIME)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_ADDR)
148 		idx += 1;
149 
150 	return idx;
151 }
152 
153 /**
154  * __perf_evsel__calc_is_pos - calculate is_pos.
155  * @sample_type: sample type
156  *
157  * This function returns the position (counting backwards) of the event id
158  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
159  * sample_id_all is used there is an id sample appended to non-sample events.
160  */
161 static int __perf_evsel__calc_is_pos(u64 sample_type)
162 {
163 	int idx = 1;
164 
165 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
166 		return 1;
167 
168 	if (!(sample_type & PERF_SAMPLE_ID))
169 		return -1;
170 
171 	if (sample_type & PERF_SAMPLE_CPU)
172 		idx += 1;
173 
174 	if (sample_type & PERF_SAMPLE_STREAM_ID)
175 		idx += 1;
176 
177 	return idx;
178 }
179 
180 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
181 {
182 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
183 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
184 }
185 
186 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
187 				  enum perf_event_sample_format bit)
188 {
189 	if (!(evsel->attr.sample_type & bit)) {
190 		evsel->attr.sample_type |= bit;
191 		evsel->sample_size += sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
197 				    enum perf_event_sample_format bit)
198 {
199 	if (evsel->attr.sample_type & bit) {
200 		evsel->attr.sample_type &= ~bit;
201 		evsel->sample_size -= sizeof(u64);
202 		perf_evsel__calc_id_pos(evsel);
203 	}
204 }
205 
206 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
207 			       bool can_sample_identifier)
208 {
209 	if (can_sample_identifier) {
210 		perf_evsel__reset_sample_bit(evsel, ID);
211 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
212 	} else {
213 		perf_evsel__set_sample_bit(evsel, ID);
214 	}
215 	evsel->attr.read_format |= PERF_FORMAT_ID;
216 }
217 
218 /**
219  * perf_evsel__is_function_event - Return whether given evsel is a function
220  * trace event
221  *
222  * @evsel - evsel selector to be tested
223  *
224  * Return %true if event is function trace event
225  */
226 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
227 {
228 #define FUNCTION_EVENT "ftrace:function"
229 
230 	return evsel->name &&
231 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
232 
233 #undef FUNCTION_EVENT
234 }
235 
236 void perf_evsel__init(struct perf_evsel *evsel,
237 		      struct perf_event_attr *attr, int idx)
238 {
239 	evsel->idx	   = idx;
240 	evsel->tracking	   = !idx;
241 	evsel->attr	   = *attr;
242 	evsel->leader	   = evsel;
243 	evsel->unit	   = "";
244 	evsel->scale	   = 1.0;
245 	evsel->evlist	   = NULL;
246 	evsel->bpf_fd	   = -1;
247 	INIT_LIST_HEAD(&evsel->node);
248 	INIT_LIST_HEAD(&evsel->config_terms);
249 	perf_evsel__object.init(evsel);
250 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
251 	perf_evsel__calc_id_pos(evsel);
252 	evsel->cmdline_group_boundary = false;
253 	evsel->metric_expr   = NULL;
254 	evsel->metric_name   = NULL;
255 	evsel->metric_events = NULL;
256 	evsel->collect_stat  = false;
257 }
258 
259 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
260 {
261 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
262 
263 	if (evsel != NULL)
264 		perf_evsel__init(evsel, attr, idx);
265 
266 	if (perf_evsel__is_bpf_output(evsel)) {
267 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 		evsel->attr.sample_period = 1;
270 	}
271 
272 	return evsel;
273 }
274 
275 static bool perf_event_can_profile_kernel(void)
276 {
277 	return geteuid() == 0 || perf_event_paranoid() == -1;
278 }
279 
280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
281 {
282 	struct perf_event_attr attr = {
283 		.type	= PERF_TYPE_HARDWARE,
284 		.config	= PERF_COUNT_HW_CPU_CYCLES,
285 		.exclude_kernel	= !perf_event_can_profile_kernel(),
286 	};
287 	struct perf_evsel *evsel;
288 
289 	event_attr_init(&attr);
290 
291 	if (!precise)
292 		goto new_event;
293 	/*
294 	 * Unnamed union member, not supported as struct member named
295 	 * initializer in older compilers such as gcc 4.4.7
296 	 *
297 	 * Just for probing the precise_ip:
298 	 */
299 	attr.sample_period = 1;
300 
301 	perf_event_attr__set_max_precise_ip(&attr);
302 	/*
303 	 * Now let the usual logic to set up the perf_event_attr defaults
304 	 * to kick in when we return and before perf_evsel__open() is called.
305 	 */
306 	attr.sample_period = 0;
307 new_event:
308 	evsel = perf_evsel__new(&attr);
309 	if (evsel == NULL)
310 		goto out;
311 
312 	/* use asprintf() because free(evsel) assumes name is allocated */
313 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 		     attr.exclude_kernel ? "u" : "",
316 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 		goto error_free;
318 out:
319 	return evsel;
320 error_free:
321 	perf_evsel__delete(evsel);
322 	evsel = NULL;
323 	goto out;
324 }
325 
326 /*
327  * Returns pointer with encoded error via <linux/err.h> interface.
328  */
329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
330 {
331 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 	int err = -ENOMEM;
333 
334 	if (evsel == NULL) {
335 		goto out_err;
336 	} else {
337 		struct perf_event_attr attr = {
338 			.type	       = PERF_TYPE_TRACEPOINT,
339 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
341 		};
342 
343 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 			goto out_free;
345 
346 		evsel->tp_format = trace_event__tp_format(sys, name);
347 		if (IS_ERR(evsel->tp_format)) {
348 			err = PTR_ERR(evsel->tp_format);
349 			goto out_free;
350 		}
351 
352 		event_attr_init(&attr);
353 		attr.config = evsel->tp_format->id;
354 		attr.sample_period = 1;
355 		perf_evsel__init(evsel, &attr, idx);
356 	}
357 
358 	return evsel;
359 
360 out_free:
361 	zfree(&evsel->name);
362 	free(evsel);
363 out_err:
364 	return ERR_PTR(err);
365 }
366 
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 	"cycles",
369 	"instructions",
370 	"cache-references",
371 	"cache-misses",
372 	"branches",
373 	"branch-misses",
374 	"bus-cycles",
375 	"stalled-cycles-frontend",
376 	"stalled-cycles-backend",
377 	"ref-cycles",
378 };
379 
380 static const char *__perf_evsel__hw_name(u64 config)
381 {
382 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 		return perf_evsel__hw_names[config];
384 
385 	return "unknown-hardware";
386 }
387 
388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 	int colon = 0, r = 0;
391 	struct perf_event_attr *attr = &evsel->attr;
392 	bool exclude_guest_default = false;
393 
394 #define MOD_PRINT(context, mod)	do {					\
395 		if (!attr->exclude_##context) {				\
396 			if (!colon) colon = ++r;			\
397 			r += scnprintf(bf + r, size - r, "%c", mod);	\
398 		} } while(0)
399 
400 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 		MOD_PRINT(kernel, 'k');
402 		MOD_PRINT(user, 'u');
403 		MOD_PRINT(hv, 'h');
404 		exclude_guest_default = true;
405 	}
406 
407 	if (attr->precise_ip) {
408 		if (!colon)
409 			colon = ++r;
410 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 		exclude_guest_default = true;
412 	}
413 
414 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 		MOD_PRINT(host, 'H');
416 		MOD_PRINT(guest, 'G');
417 	}
418 #undef MOD_PRINT
419 	if (colon)
420 		bf[colon - 1] = ':';
421 	return r;
422 }
423 
424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
428 }
429 
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 	"cpu-clock",
432 	"task-clock",
433 	"page-faults",
434 	"context-switches",
435 	"cpu-migrations",
436 	"minor-faults",
437 	"major-faults",
438 	"alignment-faults",
439 	"emulation-faults",
440 	"dummy",
441 };
442 
443 static const char *__perf_evsel__sw_name(u64 config)
444 {
445 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 		return perf_evsel__sw_names[config];
447 	return "unknown-software";
448 }
449 
450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
451 {
452 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
454 }
455 
456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
457 {
458 	int r;
459 
460 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
461 
462 	if (type & HW_BREAKPOINT_R)
463 		r += scnprintf(bf + r, size - r, "r");
464 
465 	if (type & HW_BREAKPOINT_W)
466 		r += scnprintf(bf + r, size - r, "w");
467 
468 	if (type & HW_BREAKPOINT_X)
469 		r += scnprintf(bf + r, size - r, "x");
470 
471 	return r;
472 }
473 
474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
475 {
476 	struct perf_event_attr *attr = &evsel->attr;
477 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
479 }
480 
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 				[PERF_EVSEL__MAX_ALIASES] = {
483  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
484  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
485  { "LLC",	"L2",							},
486  { "dTLB",	"d-tlb",	"Data-TLB",				},
487  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
488  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
489  { "node",								},
490 };
491 
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 				   [PERF_EVSEL__MAX_ALIASES] = {
494  { "load",	"loads",	"read",					},
495  { "store",	"stores",	"write",				},
496  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
497 };
498 
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 				       [PERF_EVSEL__MAX_ALIASES] = {
501  { "refs",	"Reference",	"ops",		"access",		},
502  { "misses",	"miss",							},
503 };
504 
505 #define C(x)		PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ	(1 << C(OP_READ))
507 #define CACHE_WRITE	(1 << C(OP_WRITE))
508 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
509 #define COP(x)		(1 << x)
510 
511 /*
512  * cache operartion stat
513  * L1I : Read and prefetch only
514  * ITLB and BPU : Read-only
515  */
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
519  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(ITLB)]	= (CACHE_READ),
522  [C(BPU)]	= (CACHE_READ),
523  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 };
525 
526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
527 {
528 	if (perf_evsel__hw_cache_stat[type] & COP(op))
529 		return true;	/* valid */
530 	else
531 		return false;	/* invalid */
532 }
533 
534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 					    char *bf, size_t size)
536 {
537 	if (result) {
538 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 				 perf_evsel__hw_cache_op[op][0],
540 				 perf_evsel__hw_cache_result[result][0]);
541 	}
542 
543 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 			 perf_evsel__hw_cache_op[op][1]);
545 }
546 
547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
548 {
549 	u8 op, result, type = (config >>  0) & 0xff;
550 	const char *err = "unknown-ext-hardware-cache-type";
551 
552 	if (type >= PERF_COUNT_HW_CACHE_MAX)
553 		goto out_err;
554 
555 	op = (config >>  8) & 0xff;
556 	err = "unknown-ext-hardware-cache-op";
557 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 		goto out_err;
559 
560 	result = (config >> 16) & 0xff;
561 	err = "unknown-ext-hardware-cache-result";
562 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 		goto out_err;
564 
565 	err = "invalid-cache";
566 	if (!perf_evsel__is_cache_op_valid(type, op))
567 		goto out_err;
568 
569 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 	return scnprintf(bf, size, "%s", err);
572 }
573 
574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579 
580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
581 {
582 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
584 }
585 
586 const char *perf_evsel__name(struct perf_evsel *evsel)
587 {
588 	char bf[128];
589 
590 	if (evsel->name)
591 		return evsel->name;
592 
593 	switch (evsel->attr.type) {
594 	case PERF_TYPE_RAW:
595 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
596 		break;
597 
598 	case PERF_TYPE_HARDWARE:
599 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_HW_CACHE:
603 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_SOFTWARE:
607 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_TRACEPOINT:
611 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
612 		break;
613 
614 	case PERF_TYPE_BREAKPOINT:
615 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
616 		break;
617 
618 	default:
619 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
620 			  evsel->attr.type);
621 		break;
622 	}
623 
624 	evsel->name = strdup(bf);
625 
626 	return evsel->name ?: "unknown";
627 }
628 
629 const char *perf_evsel__group_name(struct perf_evsel *evsel)
630 {
631 	return evsel->group_name ?: "anon group";
632 }
633 
634 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
635 {
636 	int ret;
637 	struct perf_evsel *pos;
638 	const char *group_name = perf_evsel__group_name(evsel);
639 
640 	ret = scnprintf(buf, size, "%s", group_name);
641 
642 	ret += scnprintf(buf + ret, size - ret, " { %s",
643 			 perf_evsel__name(evsel));
644 
645 	for_each_group_member(pos, evsel)
646 		ret += scnprintf(buf + ret, size - ret, ", %s",
647 				 perf_evsel__name(pos));
648 
649 	ret += scnprintf(buf + ret, size - ret, " }");
650 
651 	return ret;
652 }
653 
654 void perf_evsel__config_callchain(struct perf_evsel *evsel,
655 				  struct record_opts *opts,
656 				  struct callchain_param *param)
657 {
658 	bool function = perf_evsel__is_function_event(evsel);
659 	struct perf_event_attr *attr = &evsel->attr;
660 
661 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
662 
663 	attr->sample_max_stack = param->max_stack;
664 
665 	if (param->record_mode == CALLCHAIN_LBR) {
666 		if (!opts->branch_stack) {
667 			if (attr->exclude_user) {
668 				pr_warning("LBR callstack option is only available "
669 					   "to get user callchain information. "
670 					   "Falling back to framepointers.\n");
671 			} else {
672 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
674 							PERF_SAMPLE_BRANCH_CALL_STACK |
675 							PERF_SAMPLE_BRANCH_NO_CYCLES |
676 							PERF_SAMPLE_BRANCH_NO_FLAGS;
677 			}
678 		} else
679 			 pr_warning("Cannot use LBR callstack with branch stack. "
680 				    "Falling back to framepointers.\n");
681 	}
682 
683 	if (param->record_mode == CALLCHAIN_DWARF) {
684 		if (!function) {
685 			perf_evsel__set_sample_bit(evsel, REGS_USER);
686 			perf_evsel__set_sample_bit(evsel, STACK_USER);
687 			attr->sample_regs_user |= PERF_REGS_MASK;
688 			attr->sample_stack_user = param->dump_size;
689 			attr->exclude_callchain_user = 1;
690 		} else {
691 			pr_info("Cannot use DWARF unwind for function trace event,"
692 				" falling back to framepointers.\n");
693 		}
694 	}
695 
696 	if (function) {
697 		pr_info("Disabling user space callchains for function trace event.\n");
698 		attr->exclude_callchain_user = 1;
699 	}
700 }
701 
702 static void
703 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
704 			    struct callchain_param *param)
705 {
706 	struct perf_event_attr *attr = &evsel->attr;
707 
708 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
709 	if (param->record_mode == CALLCHAIN_LBR) {
710 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
711 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
712 					      PERF_SAMPLE_BRANCH_CALL_STACK);
713 	}
714 	if (param->record_mode == CALLCHAIN_DWARF) {
715 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
716 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
717 	}
718 }
719 
720 static void apply_config_terms(struct perf_evsel *evsel,
721 			       struct record_opts *opts)
722 {
723 	struct perf_evsel_config_term *term;
724 	struct list_head *config_terms = &evsel->config_terms;
725 	struct perf_event_attr *attr = &evsel->attr;
726 	struct callchain_param param;
727 	u32 dump_size = 0;
728 	int max_stack = 0;
729 	const char *callgraph_buf = NULL;
730 
731 	/* callgraph default */
732 	param.record_mode = callchain_param.record_mode;
733 
734 	list_for_each_entry(term, config_terms, list) {
735 		switch (term->type) {
736 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
737 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
738 				attr->sample_period = term->val.period;
739 				attr->freq = 0;
740 			}
741 			break;
742 		case PERF_EVSEL__CONFIG_TERM_FREQ:
743 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
744 				attr->sample_freq = term->val.freq;
745 				attr->freq = 1;
746 			}
747 			break;
748 		case PERF_EVSEL__CONFIG_TERM_TIME:
749 			if (term->val.time)
750 				perf_evsel__set_sample_bit(evsel, TIME);
751 			else
752 				perf_evsel__reset_sample_bit(evsel, TIME);
753 			break;
754 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
755 			callgraph_buf = term->val.callgraph;
756 			break;
757 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
758 			if (term->val.branch && strcmp(term->val.branch, "no")) {
759 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
760 				parse_branch_str(term->val.branch,
761 						 &attr->branch_sample_type);
762 			} else
763 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
764 			break;
765 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
766 			dump_size = term->val.stack_user;
767 			break;
768 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
769 			max_stack = term->val.max_stack;
770 			break;
771 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
772 			/*
773 			 * attr->inherit should has already been set by
774 			 * perf_evsel__config. If user explicitly set
775 			 * inherit using config terms, override global
776 			 * opt->no_inherit setting.
777 			 */
778 			attr->inherit = term->val.inherit ? 1 : 0;
779 			break;
780 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
781 			attr->write_backward = term->val.overwrite ? 1 : 0;
782 			break;
783 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
784 			BUG_ON(1);
785 		default:
786 			break;
787 		}
788 	}
789 
790 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
791 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
792 		if (max_stack) {
793 			param.max_stack = max_stack;
794 			if (callgraph_buf == NULL)
795 				callgraph_buf = "fp";
796 		}
797 
798 		/* parse callgraph parameters */
799 		if (callgraph_buf != NULL) {
800 			if (!strcmp(callgraph_buf, "no")) {
801 				param.enabled = false;
802 				param.record_mode = CALLCHAIN_NONE;
803 			} else {
804 				param.enabled = true;
805 				if (parse_callchain_record(callgraph_buf, &param)) {
806 					pr_err("per-event callgraph setting for %s failed. "
807 					       "Apply callgraph global setting for it\n",
808 					       evsel->name);
809 					return;
810 				}
811 			}
812 		}
813 		if (dump_size > 0) {
814 			dump_size = round_up(dump_size, sizeof(u64));
815 			param.dump_size = dump_size;
816 		}
817 
818 		/* If global callgraph set, clear it */
819 		if (callchain_param.enabled)
820 			perf_evsel__reset_callgraph(evsel, &callchain_param);
821 
822 		/* set perf-event callgraph */
823 		if (param.enabled)
824 			perf_evsel__config_callchain(evsel, opts, &param);
825 	}
826 }
827 
828 /*
829  * The enable_on_exec/disabled value strategy:
830  *
831  *  1) For any type of traced program:
832  *    - all independent events and group leaders are disabled
833  *    - all group members are enabled
834  *
835  *     Group members are ruled by group leaders. They need to
836  *     be enabled, because the group scheduling relies on that.
837  *
838  *  2) For traced programs executed by perf:
839  *     - all independent events and group leaders have
840  *       enable_on_exec set
841  *     - we don't specifically enable or disable any event during
842  *       the record command
843  *
844  *     Independent events and group leaders are initially disabled
845  *     and get enabled by exec. Group members are ruled by group
846  *     leaders as stated in 1).
847  *
848  *  3) For traced programs attached by perf (pid/tid):
849  *     - we specifically enable or disable all events during
850  *       the record command
851  *
852  *     When attaching events to already running traced we
853  *     enable/disable events specifically, as there's no
854  *     initial traced exec call.
855  */
856 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
857 			struct callchain_param *callchain)
858 {
859 	struct perf_evsel *leader = evsel->leader;
860 	struct perf_event_attr *attr = &evsel->attr;
861 	int track = evsel->tracking;
862 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
863 
864 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
865 	attr->inherit	    = !opts->no_inherit;
866 	attr->write_backward = opts->overwrite ? 1 : 0;
867 
868 	perf_evsel__set_sample_bit(evsel, IP);
869 	perf_evsel__set_sample_bit(evsel, TID);
870 
871 	if (evsel->sample_read) {
872 		perf_evsel__set_sample_bit(evsel, READ);
873 
874 		/*
875 		 * We need ID even in case of single event, because
876 		 * PERF_SAMPLE_READ process ID specific data.
877 		 */
878 		perf_evsel__set_sample_id(evsel, false);
879 
880 		/*
881 		 * Apply group format only if we belong to group
882 		 * with more than one members.
883 		 */
884 		if (leader->nr_members > 1) {
885 			attr->read_format |= PERF_FORMAT_GROUP;
886 			attr->inherit = 0;
887 		}
888 	}
889 
890 	/*
891 	 * We default some events to have a default interval. But keep
892 	 * it a weak assumption overridable by the user.
893 	 */
894 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
895 				     opts->user_interval != ULLONG_MAX)) {
896 		if (opts->freq) {
897 			perf_evsel__set_sample_bit(evsel, PERIOD);
898 			attr->freq		= 1;
899 			attr->sample_freq	= opts->freq;
900 		} else {
901 			attr->sample_period = opts->default_interval;
902 		}
903 	}
904 
905 	/*
906 	 * Disable sampling for all group members other
907 	 * than leader in case leader 'leads' the sampling.
908 	 */
909 	if ((leader != evsel) && leader->sample_read) {
910 		attr->sample_freq   = 0;
911 		attr->sample_period = 0;
912 	}
913 
914 	if (opts->no_samples)
915 		attr->sample_freq = 0;
916 
917 	if (opts->inherit_stat) {
918 		evsel->attr.read_format |=
919 			PERF_FORMAT_TOTAL_TIME_ENABLED |
920 			PERF_FORMAT_TOTAL_TIME_RUNNING |
921 			PERF_FORMAT_ID;
922 		attr->inherit_stat = 1;
923 	}
924 
925 	if (opts->sample_address) {
926 		perf_evsel__set_sample_bit(evsel, ADDR);
927 		attr->mmap_data = track;
928 	}
929 
930 	/*
931 	 * We don't allow user space callchains for  function trace
932 	 * event, due to issues with page faults while tracing page
933 	 * fault handler and its overall trickiness nature.
934 	 */
935 	if (perf_evsel__is_function_event(evsel))
936 		evsel->attr.exclude_callchain_user = 1;
937 
938 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
939 		perf_evsel__config_callchain(evsel, opts, callchain);
940 
941 	if (opts->sample_intr_regs) {
942 		attr->sample_regs_intr = opts->sample_intr_regs;
943 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
944 	}
945 
946 	if (opts->sample_user_regs) {
947 		attr->sample_regs_user |= opts->sample_user_regs;
948 		perf_evsel__set_sample_bit(evsel, REGS_USER);
949 	}
950 
951 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
952 		perf_evsel__set_sample_bit(evsel, CPU);
953 
954 	if (opts->period)
955 		perf_evsel__set_sample_bit(evsel, PERIOD);
956 
957 	/*
958 	 * When the user explicitly disabled time don't force it here.
959 	 */
960 	if (opts->sample_time &&
961 	    (!perf_missing_features.sample_id_all &&
962 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
963 	     opts->sample_time_set)))
964 		perf_evsel__set_sample_bit(evsel, TIME);
965 
966 	if (opts->raw_samples && !evsel->no_aux_samples) {
967 		perf_evsel__set_sample_bit(evsel, TIME);
968 		perf_evsel__set_sample_bit(evsel, RAW);
969 		perf_evsel__set_sample_bit(evsel, CPU);
970 	}
971 
972 	if (opts->sample_address)
973 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
974 
975 	if (opts->sample_phys_addr)
976 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
977 
978 	if (opts->no_buffering) {
979 		attr->watermark = 0;
980 		attr->wakeup_events = 1;
981 	}
982 	if (opts->branch_stack && !evsel->no_aux_samples) {
983 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
984 		attr->branch_sample_type = opts->branch_stack;
985 	}
986 
987 	if (opts->sample_weight)
988 		perf_evsel__set_sample_bit(evsel, WEIGHT);
989 
990 	attr->task  = track;
991 	attr->mmap  = track;
992 	attr->mmap2 = track && !perf_missing_features.mmap2;
993 	attr->comm  = track;
994 
995 	if (opts->record_namespaces)
996 		attr->namespaces  = track;
997 
998 	if (opts->record_switch_events)
999 		attr->context_switch = track;
1000 
1001 	if (opts->sample_transaction)
1002 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1003 
1004 	if (opts->running_time) {
1005 		evsel->attr.read_format |=
1006 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1007 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1008 	}
1009 
1010 	/*
1011 	 * XXX see the function comment above
1012 	 *
1013 	 * Disabling only independent events or group leaders,
1014 	 * keeping group members enabled.
1015 	 */
1016 	if (perf_evsel__is_group_leader(evsel))
1017 		attr->disabled = 1;
1018 
1019 	/*
1020 	 * Setting enable_on_exec for independent events and
1021 	 * group leaders for traced executed by perf.
1022 	 */
1023 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1024 		!opts->initial_delay)
1025 		attr->enable_on_exec = 1;
1026 
1027 	if (evsel->immediate) {
1028 		attr->disabled = 0;
1029 		attr->enable_on_exec = 0;
1030 	}
1031 
1032 	clockid = opts->clockid;
1033 	if (opts->use_clockid) {
1034 		attr->use_clockid = 1;
1035 		attr->clockid = opts->clockid;
1036 	}
1037 
1038 	if (evsel->precise_max)
1039 		perf_event_attr__set_max_precise_ip(attr);
1040 
1041 	if (opts->all_user) {
1042 		attr->exclude_kernel = 1;
1043 		attr->exclude_user   = 0;
1044 	}
1045 
1046 	if (opts->all_kernel) {
1047 		attr->exclude_kernel = 0;
1048 		attr->exclude_user   = 1;
1049 	}
1050 
1051 	/*
1052 	 * Apply event specific term settings,
1053 	 * it overloads any global configuration.
1054 	 */
1055 	apply_config_terms(evsel, opts);
1056 
1057 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1058 }
1059 
1060 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1061 {
1062 	if (evsel->system_wide)
1063 		nthreads = 1;
1064 
1065 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1066 
1067 	if (evsel->fd) {
1068 		int cpu, thread;
1069 		for (cpu = 0; cpu < ncpus; cpu++) {
1070 			for (thread = 0; thread < nthreads; thread++) {
1071 				FD(evsel, cpu, thread) = -1;
1072 			}
1073 		}
1074 	}
1075 
1076 	return evsel->fd != NULL ? 0 : -ENOMEM;
1077 }
1078 
1079 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1080 			  int ioc,  void *arg)
1081 {
1082 	int cpu, thread;
1083 
1084 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1085 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1086 			int fd = FD(evsel, cpu, thread),
1087 			    err = ioctl(fd, ioc, arg);
1088 
1089 			if (err)
1090 				return err;
1091 		}
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1098 {
1099 	return perf_evsel__run_ioctl(evsel,
1100 				     PERF_EVENT_IOC_SET_FILTER,
1101 				     (void *)filter);
1102 }
1103 
1104 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1105 {
1106 	char *new_filter = strdup(filter);
1107 
1108 	if (new_filter != NULL) {
1109 		free(evsel->filter);
1110 		evsel->filter = new_filter;
1111 		return 0;
1112 	}
1113 
1114 	return -1;
1115 }
1116 
1117 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1118 				     const char *fmt, const char *filter)
1119 {
1120 	char *new_filter;
1121 
1122 	if (evsel->filter == NULL)
1123 		return perf_evsel__set_filter(evsel, filter);
1124 
1125 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1126 		free(evsel->filter);
1127 		evsel->filter = new_filter;
1128 		return 0;
1129 	}
1130 
1131 	return -1;
1132 }
1133 
1134 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1135 {
1136 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1137 }
1138 
1139 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1140 {
1141 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1142 }
1143 
1144 int perf_evsel__enable(struct perf_evsel *evsel)
1145 {
1146 	return perf_evsel__run_ioctl(evsel,
1147 				     PERF_EVENT_IOC_ENABLE,
1148 				     0);
1149 }
1150 
1151 int perf_evsel__disable(struct perf_evsel *evsel)
1152 {
1153 	return perf_evsel__run_ioctl(evsel,
1154 				     PERF_EVENT_IOC_DISABLE,
1155 				     0);
1156 }
1157 
1158 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1159 {
1160 	if (ncpus == 0 || nthreads == 0)
1161 		return 0;
1162 
1163 	if (evsel->system_wide)
1164 		nthreads = 1;
1165 
1166 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1167 	if (evsel->sample_id == NULL)
1168 		return -ENOMEM;
1169 
1170 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1171 	if (evsel->id == NULL) {
1172 		xyarray__delete(evsel->sample_id);
1173 		evsel->sample_id = NULL;
1174 		return -ENOMEM;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1181 {
1182 	xyarray__delete(evsel->fd);
1183 	evsel->fd = NULL;
1184 }
1185 
1186 static void perf_evsel__free_id(struct perf_evsel *evsel)
1187 {
1188 	xyarray__delete(evsel->sample_id);
1189 	evsel->sample_id = NULL;
1190 	zfree(&evsel->id);
1191 }
1192 
1193 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1194 {
1195 	struct perf_evsel_config_term *term, *h;
1196 
1197 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1198 		list_del(&term->list);
1199 		free(term);
1200 	}
1201 }
1202 
1203 void perf_evsel__close_fd(struct perf_evsel *evsel)
1204 {
1205 	int cpu, thread;
1206 
1207 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1208 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1209 			close(FD(evsel, cpu, thread));
1210 			FD(evsel, cpu, thread) = -1;
1211 		}
1212 }
1213 
1214 void perf_evsel__exit(struct perf_evsel *evsel)
1215 {
1216 	assert(list_empty(&evsel->node));
1217 	assert(evsel->evlist == NULL);
1218 	perf_evsel__free_fd(evsel);
1219 	perf_evsel__free_id(evsel);
1220 	perf_evsel__free_config_terms(evsel);
1221 	close_cgroup(evsel->cgrp);
1222 	cpu_map__put(evsel->cpus);
1223 	cpu_map__put(evsel->own_cpus);
1224 	thread_map__put(evsel->threads);
1225 	zfree(&evsel->group_name);
1226 	zfree(&evsel->name);
1227 	perf_evsel__object.fini(evsel);
1228 }
1229 
1230 void perf_evsel__delete(struct perf_evsel *evsel)
1231 {
1232 	perf_evsel__exit(evsel);
1233 	free(evsel);
1234 }
1235 
1236 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1237 				struct perf_counts_values *count)
1238 {
1239 	struct perf_counts_values tmp;
1240 
1241 	if (!evsel->prev_raw_counts)
1242 		return;
1243 
1244 	if (cpu == -1) {
1245 		tmp = evsel->prev_raw_counts->aggr;
1246 		evsel->prev_raw_counts->aggr = *count;
1247 	} else {
1248 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1249 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1250 	}
1251 
1252 	count->val = count->val - tmp.val;
1253 	count->ena = count->ena - tmp.ena;
1254 	count->run = count->run - tmp.run;
1255 }
1256 
1257 void perf_counts_values__scale(struct perf_counts_values *count,
1258 			       bool scale, s8 *pscaled)
1259 {
1260 	s8 scaled = 0;
1261 
1262 	if (scale) {
1263 		if (count->run == 0) {
1264 			scaled = -1;
1265 			count->val = 0;
1266 		} else if (count->run < count->ena) {
1267 			scaled = 1;
1268 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1269 		}
1270 	} else
1271 		count->ena = count->run = 0;
1272 
1273 	if (pscaled)
1274 		*pscaled = scaled;
1275 }
1276 
1277 static int perf_evsel__read_size(struct perf_evsel *evsel)
1278 {
1279 	u64 read_format = evsel->attr.read_format;
1280 	int entry = sizeof(u64); /* value */
1281 	int size = 0;
1282 	int nr = 1;
1283 
1284 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1285 		size += sizeof(u64);
1286 
1287 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1288 		size += sizeof(u64);
1289 
1290 	if (read_format & PERF_FORMAT_ID)
1291 		entry += sizeof(u64);
1292 
1293 	if (read_format & PERF_FORMAT_GROUP) {
1294 		nr = evsel->nr_members;
1295 		size += sizeof(u64);
1296 	}
1297 
1298 	size += entry * nr;
1299 	return size;
1300 }
1301 
1302 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1303 		     struct perf_counts_values *count)
1304 {
1305 	size_t size = perf_evsel__read_size(evsel);
1306 
1307 	memset(count, 0, sizeof(*count));
1308 
1309 	if (FD(evsel, cpu, thread) < 0)
1310 		return -EINVAL;
1311 
1312 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1313 		return -errno;
1314 
1315 	return 0;
1316 }
1317 
1318 static int
1319 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1320 {
1321 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1322 
1323 	return perf_evsel__read(evsel, cpu, thread, count);
1324 }
1325 
1326 static void
1327 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1328 		      u64 val, u64 ena, u64 run)
1329 {
1330 	struct perf_counts_values *count;
1331 
1332 	count = perf_counts(counter->counts, cpu, thread);
1333 
1334 	count->val    = val;
1335 	count->ena    = ena;
1336 	count->run    = run;
1337 	count->loaded = true;
1338 }
1339 
1340 static int
1341 perf_evsel__process_group_data(struct perf_evsel *leader,
1342 			       int cpu, int thread, u64 *data)
1343 {
1344 	u64 read_format = leader->attr.read_format;
1345 	struct sample_read_value *v;
1346 	u64 nr, ena = 0, run = 0, i;
1347 
1348 	nr = *data++;
1349 
1350 	if (nr != (u64) leader->nr_members)
1351 		return -EINVAL;
1352 
1353 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1354 		ena = *data++;
1355 
1356 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1357 		run = *data++;
1358 
1359 	v = (struct sample_read_value *) data;
1360 
1361 	perf_evsel__set_count(leader, cpu, thread,
1362 			      v[0].value, ena, run);
1363 
1364 	for (i = 1; i < nr; i++) {
1365 		struct perf_evsel *counter;
1366 
1367 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1368 		if (!counter)
1369 			return -EINVAL;
1370 
1371 		perf_evsel__set_count(counter, cpu, thread,
1372 				      v[i].value, ena, run);
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int
1379 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1380 {
1381 	struct perf_stat_evsel *ps = leader->stats;
1382 	u64 read_format = leader->attr.read_format;
1383 	int size = perf_evsel__read_size(leader);
1384 	u64 *data = ps->group_data;
1385 
1386 	if (!(read_format & PERF_FORMAT_ID))
1387 		return -EINVAL;
1388 
1389 	if (!perf_evsel__is_group_leader(leader))
1390 		return -EINVAL;
1391 
1392 	if (!data) {
1393 		data = zalloc(size);
1394 		if (!data)
1395 			return -ENOMEM;
1396 
1397 		ps->group_data = data;
1398 	}
1399 
1400 	if (FD(leader, cpu, thread) < 0)
1401 		return -EINVAL;
1402 
1403 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1404 		return -errno;
1405 
1406 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1407 }
1408 
1409 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1410 {
1411 	u64 read_format = evsel->attr.read_format;
1412 
1413 	if (read_format & PERF_FORMAT_GROUP)
1414 		return perf_evsel__read_group(evsel, cpu, thread);
1415 	else
1416 		return perf_evsel__read_one(evsel, cpu, thread);
1417 }
1418 
1419 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1420 			      int cpu, int thread, bool scale)
1421 {
1422 	struct perf_counts_values count;
1423 	size_t nv = scale ? 3 : 1;
1424 
1425 	if (FD(evsel, cpu, thread) < 0)
1426 		return -EINVAL;
1427 
1428 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1429 		return -ENOMEM;
1430 
1431 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1432 		return -errno;
1433 
1434 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1435 	perf_counts_values__scale(&count, scale, NULL);
1436 	*perf_counts(evsel->counts, cpu, thread) = count;
1437 	return 0;
1438 }
1439 
1440 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1441 {
1442 	struct perf_evsel *leader = evsel->leader;
1443 	int fd;
1444 
1445 	if (perf_evsel__is_group_leader(evsel))
1446 		return -1;
1447 
1448 	/*
1449 	 * Leader must be already processed/open,
1450 	 * if not it's a bug.
1451 	 */
1452 	BUG_ON(!leader->fd);
1453 
1454 	fd = FD(leader, cpu, thread);
1455 	BUG_ON(fd == -1);
1456 
1457 	return fd;
1458 }
1459 
1460 struct bit_names {
1461 	int bit;
1462 	const char *name;
1463 };
1464 
1465 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1466 {
1467 	bool first_bit = true;
1468 	int i = 0;
1469 
1470 	do {
1471 		if (value & bits[i].bit) {
1472 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1473 			first_bit = false;
1474 		}
1475 	} while (bits[++i].name != NULL);
1476 }
1477 
1478 static void __p_sample_type(char *buf, size_t size, u64 value)
1479 {
1480 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1481 	struct bit_names bits[] = {
1482 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1483 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1484 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1485 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1486 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1487 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1488 		{ .name = NULL, }
1489 	};
1490 #undef bit_name
1491 	__p_bits(buf, size, value, bits);
1492 }
1493 
1494 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1495 {
1496 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1497 	struct bit_names bits[] = {
1498 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1499 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1500 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1501 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1502 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1503 		{ .name = NULL, }
1504 	};
1505 #undef bit_name
1506 	__p_bits(buf, size, value, bits);
1507 }
1508 
1509 static void __p_read_format(char *buf, size_t size, u64 value)
1510 {
1511 #define bit_name(n) { PERF_FORMAT_##n, #n }
1512 	struct bit_names bits[] = {
1513 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1514 		bit_name(ID), bit_name(GROUP),
1515 		{ .name = NULL, }
1516 	};
1517 #undef bit_name
1518 	__p_bits(buf, size, value, bits);
1519 }
1520 
1521 #define BUF_SIZE		1024
1522 
1523 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1524 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1525 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1526 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1527 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1528 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1529 
1530 #define PRINT_ATTRn(_n, _f, _p)				\
1531 do {							\
1532 	if (attr->_f) {					\
1533 		_p(attr->_f);				\
1534 		ret += attr__fprintf(fp, _n, buf, priv);\
1535 	}						\
1536 } while (0)
1537 
1538 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1539 
1540 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1541 			     attr__fprintf_f attr__fprintf, void *priv)
1542 {
1543 	char buf[BUF_SIZE];
1544 	int ret = 0;
1545 
1546 	PRINT_ATTRf(type, p_unsigned);
1547 	PRINT_ATTRf(size, p_unsigned);
1548 	PRINT_ATTRf(config, p_hex);
1549 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1550 	PRINT_ATTRf(sample_type, p_sample_type);
1551 	PRINT_ATTRf(read_format, p_read_format);
1552 
1553 	PRINT_ATTRf(disabled, p_unsigned);
1554 	PRINT_ATTRf(inherit, p_unsigned);
1555 	PRINT_ATTRf(pinned, p_unsigned);
1556 	PRINT_ATTRf(exclusive, p_unsigned);
1557 	PRINT_ATTRf(exclude_user, p_unsigned);
1558 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1559 	PRINT_ATTRf(exclude_hv, p_unsigned);
1560 	PRINT_ATTRf(exclude_idle, p_unsigned);
1561 	PRINT_ATTRf(mmap, p_unsigned);
1562 	PRINT_ATTRf(comm, p_unsigned);
1563 	PRINT_ATTRf(freq, p_unsigned);
1564 	PRINT_ATTRf(inherit_stat, p_unsigned);
1565 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1566 	PRINT_ATTRf(task, p_unsigned);
1567 	PRINT_ATTRf(watermark, p_unsigned);
1568 	PRINT_ATTRf(precise_ip, p_unsigned);
1569 	PRINT_ATTRf(mmap_data, p_unsigned);
1570 	PRINT_ATTRf(sample_id_all, p_unsigned);
1571 	PRINT_ATTRf(exclude_host, p_unsigned);
1572 	PRINT_ATTRf(exclude_guest, p_unsigned);
1573 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1574 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1575 	PRINT_ATTRf(mmap2, p_unsigned);
1576 	PRINT_ATTRf(comm_exec, p_unsigned);
1577 	PRINT_ATTRf(use_clockid, p_unsigned);
1578 	PRINT_ATTRf(context_switch, p_unsigned);
1579 	PRINT_ATTRf(write_backward, p_unsigned);
1580 
1581 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1582 	PRINT_ATTRf(bp_type, p_unsigned);
1583 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1584 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1585 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1586 	PRINT_ATTRf(sample_regs_user, p_hex);
1587 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1588 	PRINT_ATTRf(clockid, p_signed);
1589 	PRINT_ATTRf(sample_regs_intr, p_hex);
1590 	PRINT_ATTRf(aux_watermark, p_unsigned);
1591 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1592 
1593 	return ret;
1594 }
1595 
1596 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1597 				void *priv __maybe_unused)
1598 {
1599 	return fprintf(fp, "  %-32s %s\n", name, val);
1600 }
1601 
1602 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1603 				  int nr_cpus, int nr_threads,
1604 				  int thread_idx)
1605 {
1606 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1607 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1608 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1609 }
1610 
1611 static int update_fds(struct perf_evsel *evsel,
1612 		      int nr_cpus, int cpu_idx,
1613 		      int nr_threads, int thread_idx)
1614 {
1615 	struct perf_evsel *pos;
1616 
1617 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1618 		return -EINVAL;
1619 
1620 	evlist__for_each_entry(evsel->evlist, pos) {
1621 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1622 
1623 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1624 
1625 		/*
1626 		 * Since fds for next evsel has not been created,
1627 		 * there is no need to iterate whole event list.
1628 		 */
1629 		if (pos == evsel)
1630 			break;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static bool ignore_missing_thread(struct perf_evsel *evsel,
1636 				  int nr_cpus, int cpu,
1637 				  struct thread_map *threads,
1638 				  int thread, int err)
1639 {
1640 	pid_t ignore_pid = thread_map__pid(threads, thread);
1641 
1642 	if (!evsel->ignore_missing_thread)
1643 		return false;
1644 
1645 	/* The system wide setup does not work with threads. */
1646 	if (evsel->system_wide)
1647 		return false;
1648 
1649 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1650 	if (err != -ESRCH)
1651 		return false;
1652 
1653 	/* If there's only one thread, let it fail. */
1654 	if (threads->nr == 1)
1655 		return false;
1656 
1657 	/*
1658 	 * We should remove fd for missing_thread first
1659 	 * because thread_map__remove() will decrease threads->nr.
1660 	 */
1661 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1662 		return false;
1663 
1664 	if (thread_map__remove(threads, thread))
1665 		return false;
1666 
1667 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1668 		   ignore_pid);
1669 	return true;
1670 }
1671 
1672 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1673 		     struct thread_map *threads)
1674 {
1675 	int cpu, thread, nthreads;
1676 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1677 	int pid = -1, err;
1678 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1679 
1680 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1681 		return -EINVAL;
1682 
1683 	if (cpus == NULL) {
1684 		static struct cpu_map *empty_cpu_map;
1685 
1686 		if (empty_cpu_map == NULL) {
1687 			empty_cpu_map = cpu_map__dummy_new();
1688 			if (empty_cpu_map == NULL)
1689 				return -ENOMEM;
1690 		}
1691 
1692 		cpus = empty_cpu_map;
1693 	}
1694 
1695 	if (threads == NULL) {
1696 		static struct thread_map *empty_thread_map;
1697 
1698 		if (empty_thread_map == NULL) {
1699 			empty_thread_map = thread_map__new_by_tid(-1);
1700 			if (empty_thread_map == NULL)
1701 				return -ENOMEM;
1702 		}
1703 
1704 		threads = empty_thread_map;
1705 	}
1706 
1707 	if (evsel->system_wide)
1708 		nthreads = 1;
1709 	else
1710 		nthreads = threads->nr;
1711 
1712 	if (evsel->fd == NULL &&
1713 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1714 		return -ENOMEM;
1715 
1716 	if (evsel->cgrp) {
1717 		flags |= PERF_FLAG_PID_CGROUP;
1718 		pid = evsel->cgrp->fd;
1719 	}
1720 
1721 fallback_missing_features:
1722 	if (perf_missing_features.clockid_wrong)
1723 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1724 	if (perf_missing_features.clockid) {
1725 		evsel->attr.use_clockid = 0;
1726 		evsel->attr.clockid = 0;
1727 	}
1728 	if (perf_missing_features.cloexec)
1729 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1730 	if (perf_missing_features.mmap2)
1731 		evsel->attr.mmap2 = 0;
1732 	if (perf_missing_features.exclude_guest)
1733 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1734 	if (perf_missing_features.lbr_flags)
1735 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1736 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1737 	if (perf_missing_features.group_read && evsel->attr.inherit)
1738 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1739 retry_sample_id:
1740 	if (perf_missing_features.sample_id_all)
1741 		evsel->attr.sample_id_all = 0;
1742 
1743 	if (verbose >= 2) {
1744 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1745 		fprintf(stderr, "perf_event_attr:\n");
1746 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1747 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1748 	}
1749 
1750 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1751 
1752 		for (thread = 0; thread < nthreads; thread++) {
1753 			int fd, group_fd;
1754 
1755 			if (!evsel->cgrp && !evsel->system_wide)
1756 				pid = thread_map__pid(threads, thread);
1757 
1758 			group_fd = get_group_fd(evsel, cpu, thread);
1759 retry_open:
1760 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1761 				  pid, cpus->map[cpu], group_fd, flags);
1762 
1763 			test_attr__ready();
1764 
1765 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1766 						 group_fd, flags);
1767 
1768 			FD(evsel, cpu, thread) = fd;
1769 
1770 			if (fd < 0) {
1771 				err = -errno;
1772 
1773 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1774 					/*
1775 					 * We just removed 1 thread, so take a step
1776 					 * back on thread index and lower the upper
1777 					 * nthreads limit.
1778 					 */
1779 					nthreads--;
1780 					thread--;
1781 
1782 					/* ... and pretend like nothing have happened. */
1783 					err = 0;
1784 					continue;
1785 				}
1786 
1787 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1788 					  err);
1789 				goto try_fallback;
1790 			}
1791 
1792 			pr_debug2(" = %d\n", fd);
1793 
1794 			if (evsel->bpf_fd >= 0) {
1795 				int evt_fd = fd;
1796 				int bpf_fd = evsel->bpf_fd;
1797 
1798 				err = ioctl(evt_fd,
1799 					    PERF_EVENT_IOC_SET_BPF,
1800 					    bpf_fd);
1801 				if (err && errno != EEXIST) {
1802 					pr_err("failed to attach bpf fd %d: %s\n",
1803 					       bpf_fd, strerror(errno));
1804 					err = -EINVAL;
1805 					goto out_close;
1806 				}
1807 			}
1808 
1809 			set_rlimit = NO_CHANGE;
1810 
1811 			/*
1812 			 * If we succeeded but had to kill clockid, fail and
1813 			 * have perf_evsel__open_strerror() print us a nice
1814 			 * error.
1815 			 */
1816 			if (perf_missing_features.clockid ||
1817 			    perf_missing_features.clockid_wrong) {
1818 				err = -EINVAL;
1819 				goto out_close;
1820 			}
1821 		}
1822 	}
1823 
1824 	return 0;
1825 
1826 try_fallback:
1827 	/*
1828 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1829 	 * of them try to increase the limits.
1830 	 */
1831 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1832 		struct rlimit l;
1833 		int old_errno = errno;
1834 
1835 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1836 			if (set_rlimit == NO_CHANGE)
1837 				l.rlim_cur = l.rlim_max;
1838 			else {
1839 				l.rlim_cur = l.rlim_max + 1000;
1840 				l.rlim_max = l.rlim_cur;
1841 			}
1842 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1843 				set_rlimit++;
1844 				errno = old_errno;
1845 				goto retry_open;
1846 			}
1847 		}
1848 		errno = old_errno;
1849 	}
1850 
1851 	if (err != -EINVAL || cpu > 0 || thread > 0)
1852 		goto out_close;
1853 
1854 	/*
1855 	 * Must probe features in the order they were added to the
1856 	 * perf_event_attr interface.
1857 	 */
1858 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1859 		perf_missing_features.write_backward = true;
1860 		pr_debug2("switching off write_backward\n");
1861 		goto out_close;
1862 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1863 		perf_missing_features.clockid_wrong = true;
1864 		pr_debug2("switching off clockid\n");
1865 		goto fallback_missing_features;
1866 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1867 		perf_missing_features.clockid = true;
1868 		pr_debug2("switching off use_clockid\n");
1869 		goto fallback_missing_features;
1870 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1871 		perf_missing_features.cloexec = true;
1872 		pr_debug2("switching off cloexec flag\n");
1873 		goto fallback_missing_features;
1874 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1875 		perf_missing_features.mmap2 = true;
1876 		pr_debug2("switching off mmap2\n");
1877 		goto fallback_missing_features;
1878 	} else if (!perf_missing_features.exclude_guest &&
1879 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1880 		perf_missing_features.exclude_guest = true;
1881 		pr_debug2("switching off exclude_guest, exclude_host\n");
1882 		goto fallback_missing_features;
1883 	} else if (!perf_missing_features.sample_id_all) {
1884 		perf_missing_features.sample_id_all = true;
1885 		pr_debug2("switching off sample_id_all\n");
1886 		goto retry_sample_id;
1887 	} else if (!perf_missing_features.lbr_flags &&
1888 			(evsel->attr.branch_sample_type &
1889 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1890 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1891 		perf_missing_features.lbr_flags = true;
1892 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1893 		goto fallback_missing_features;
1894 	} else if (!perf_missing_features.group_read &&
1895 		    evsel->attr.inherit &&
1896 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1897 		perf_missing_features.group_read = true;
1898 		pr_debug2("switching off group read\n");
1899 		goto fallback_missing_features;
1900 	}
1901 out_close:
1902 	do {
1903 		while (--thread >= 0) {
1904 			close(FD(evsel, cpu, thread));
1905 			FD(evsel, cpu, thread) = -1;
1906 		}
1907 		thread = nthreads;
1908 	} while (--cpu >= 0);
1909 	return err;
1910 }
1911 
1912 void perf_evsel__close(struct perf_evsel *evsel)
1913 {
1914 	if (evsel->fd == NULL)
1915 		return;
1916 
1917 	perf_evsel__close_fd(evsel);
1918 	perf_evsel__free_fd(evsel);
1919 }
1920 
1921 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1922 			     struct cpu_map *cpus)
1923 {
1924 	return perf_evsel__open(evsel, cpus, NULL);
1925 }
1926 
1927 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1928 				struct thread_map *threads)
1929 {
1930 	return perf_evsel__open(evsel, NULL, threads);
1931 }
1932 
1933 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1934 				       const union perf_event *event,
1935 				       struct perf_sample *sample)
1936 {
1937 	u64 type = evsel->attr.sample_type;
1938 	const u64 *array = event->sample.array;
1939 	bool swapped = evsel->needs_swap;
1940 	union u64_swap u;
1941 
1942 	array += ((event->header.size -
1943 		   sizeof(event->header)) / sizeof(u64)) - 1;
1944 
1945 	if (type & PERF_SAMPLE_IDENTIFIER) {
1946 		sample->id = *array;
1947 		array--;
1948 	}
1949 
1950 	if (type & PERF_SAMPLE_CPU) {
1951 		u.val64 = *array;
1952 		if (swapped) {
1953 			/* undo swap of u64, then swap on individual u32s */
1954 			u.val64 = bswap_64(u.val64);
1955 			u.val32[0] = bswap_32(u.val32[0]);
1956 		}
1957 
1958 		sample->cpu = u.val32[0];
1959 		array--;
1960 	}
1961 
1962 	if (type & PERF_SAMPLE_STREAM_ID) {
1963 		sample->stream_id = *array;
1964 		array--;
1965 	}
1966 
1967 	if (type & PERF_SAMPLE_ID) {
1968 		sample->id = *array;
1969 		array--;
1970 	}
1971 
1972 	if (type & PERF_SAMPLE_TIME) {
1973 		sample->time = *array;
1974 		array--;
1975 	}
1976 
1977 	if (type & PERF_SAMPLE_TID) {
1978 		u.val64 = *array;
1979 		if (swapped) {
1980 			/* undo swap of u64, then swap on individual u32s */
1981 			u.val64 = bswap_64(u.val64);
1982 			u.val32[0] = bswap_32(u.val32[0]);
1983 			u.val32[1] = bswap_32(u.val32[1]);
1984 		}
1985 
1986 		sample->pid = u.val32[0];
1987 		sample->tid = u.val32[1];
1988 		array--;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1995 			    u64 size)
1996 {
1997 	return size > max_size || offset + size > endp;
1998 }
1999 
2000 #define OVERFLOW_CHECK(offset, size, max_size)				\
2001 	do {								\
2002 		if (overflow(endp, (max_size), (offset), (size)))	\
2003 			return -EFAULT;					\
2004 	} while (0)
2005 
2006 #define OVERFLOW_CHECK_u64(offset) \
2007 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2008 
2009 static int
2010 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2011 {
2012 	/*
2013 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2014 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2015 	 * check the format does not go past the end of the event.
2016 	 */
2017 	if (sample_size + sizeof(event->header) > event->header.size)
2018 		return -EFAULT;
2019 
2020 	return 0;
2021 }
2022 
2023 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2024 			     struct perf_sample *data)
2025 {
2026 	u64 type = evsel->attr.sample_type;
2027 	bool swapped = evsel->needs_swap;
2028 	const u64 *array;
2029 	u16 max_size = event->header.size;
2030 	const void *endp = (void *)event + max_size;
2031 	u64 sz;
2032 
2033 	/*
2034 	 * used for cross-endian analysis. See git commit 65014ab3
2035 	 * for why this goofiness is needed.
2036 	 */
2037 	union u64_swap u;
2038 
2039 	memset(data, 0, sizeof(*data));
2040 	data->cpu = data->pid = data->tid = -1;
2041 	data->stream_id = data->id = data->time = -1ULL;
2042 	data->period = evsel->attr.sample_period;
2043 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2044 	data->id = -1ULL;
2045 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2046 
2047 	if (event->header.type != PERF_RECORD_SAMPLE) {
2048 		if (!evsel->attr.sample_id_all)
2049 			return 0;
2050 		return perf_evsel__parse_id_sample(evsel, event, data);
2051 	}
2052 
2053 	array = event->sample.array;
2054 
2055 	if (perf_event__check_size(event, evsel->sample_size))
2056 		return -EFAULT;
2057 
2058 	if (type & PERF_SAMPLE_IDENTIFIER) {
2059 		data->id = *array;
2060 		array++;
2061 	}
2062 
2063 	if (type & PERF_SAMPLE_IP) {
2064 		data->ip = *array;
2065 		array++;
2066 	}
2067 
2068 	if (type & PERF_SAMPLE_TID) {
2069 		u.val64 = *array;
2070 		if (swapped) {
2071 			/* undo swap of u64, then swap on individual u32s */
2072 			u.val64 = bswap_64(u.val64);
2073 			u.val32[0] = bswap_32(u.val32[0]);
2074 			u.val32[1] = bswap_32(u.val32[1]);
2075 		}
2076 
2077 		data->pid = u.val32[0];
2078 		data->tid = u.val32[1];
2079 		array++;
2080 	}
2081 
2082 	if (type & PERF_SAMPLE_TIME) {
2083 		data->time = *array;
2084 		array++;
2085 	}
2086 
2087 	if (type & PERF_SAMPLE_ADDR) {
2088 		data->addr = *array;
2089 		array++;
2090 	}
2091 
2092 	if (type & PERF_SAMPLE_ID) {
2093 		data->id = *array;
2094 		array++;
2095 	}
2096 
2097 	if (type & PERF_SAMPLE_STREAM_ID) {
2098 		data->stream_id = *array;
2099 		array++;
2100 	}
2101 
2102 	if (type & PERF_SAMPLE_CPU) {
2103 
2104 		u.val64 = *array;
2105 		if (swapped) {
2106 			/* undo swap of u64, then swap on individual u32s */
2107 			u.val64 = bswap_64(u.val64);
2108 			u.val32[0] = bswap_32(u.val32[0]);
2109 		}
2110 
2111 		data->cpu = u.val32[0];
2112 		array++;
2113 	}
2114 
2115 	if (type & PERF_SAMPLE_PERIOD) {
2116 		data->period = *array;
2117 		array++;
2118 	}
2119 
2120 	if (type & PERF_SAMPLE_READ) {
2121 		u64 read_format = evsel->attr.read_format;
2122 
2123 		OVERFLOW_CHECK_u64(array);
2124 		if (read_format & PERF_FORMAT_GROUP)
2125 			data->read.group.nr = *array;
2126 		else
2127 			data->read.one.value = *array;
2128 
2129 		array++;
2130 
2131 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2132 			OVERFLOW_CHECK_u64(array);
2133 			data->read.time_enabled = *array;
2134 			array++;
2135 		}
2136 
2137 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2138 			OVERFLOW_CHECK_u64(array);
2139 			data->read.time_running = *array;
2140 			array++;
2141 		}
2142 
2143 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2144 		if (read_format & PERF_FORMAT_GROUP) {
2145 			const u64 max_group_nr = UINT64_MAX /
2146 					sizeof(struct sample_read_value);
2147 
2148 			if (data->read.group.nr > max_group_nr)
2149 				return -EFAULT;
2150 			sz = data->read.group.nr *
2151 			     sizeof(struct sample_read_value);
2152 			OVERFLOW_CHECK(array, sz, max_size);
2153 			data->read.group.values =
2154 					(struct sample_read_value *)array;
2155 			array = (void *)array + sz;
2156 		} else {
2157 			OVERFLOW_CHECK_u64(array);
2158 			data->read.one.id = *array;
2159 			array++;
2160 		}
2161 	}
2162 
2163 	if (type & PERF_SAMPLE_CALLCHAIN) {
2164 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2165 
2166 		OVERFLOW_CHECK_u64(array);
2167 		data->callchain = (struct ip_callchain *)array++;
2168 		if (data->callchain->nr > max_callchain_nr)
2169 			return -EFAULT;
2170 		sz = data->callchain->nr * sizeof(u64);
2171 		OVERFLOW_CHECK(array, sz, max_size);
2172 		array = (void *)array + sz;
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_RAW) {
2176 		OVERFLOW_CHECK_u64(array);
2177 		u.val64 = *array;
2178 
2179 		/*
2180 		 * Undo swap of u64, then swap on individual u32s,
2181 		 * get the size of the raw area and undo all of the
2182 		 * swap. The pevent interface handles endianity by
2183 		 * itself.
2184 		 */
2185 		if (swapped) {
2186 			u.val64 = bswap_64(u.val64);
2187 			u.val32[0] = bswap_32(u.val32[0]);
2188 			u.val32[1] = bswap_32(u.val32[1]);
2189 		}
2190 		data->raw_size = u.val32[0];
2191 
2192 		/*
2193 		 * The raw data is aligned on 64bits including the
2194 		 * u32 size, so it's safe to use mem_bswap_64.
2195 		 */
2196 		if (swapped)
2197 			mem_bswap_64((void *) array, data->raw_size);
2198 
2199 		array = (void *)array + sizeof(u32);
2200 
2201 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2202 		data->raw_data = (void *)array;
2203 		array = (void *)array + data->raw_size;
2204 	}
2205 
2206 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2207 		const u64 max_branch_nr = UINT64_MAX /
2208 					  sizeof(struct branch_entry);
2209 
2210 		OVERFLOW_CHECK_u64(array);
2211 		data->branch_stack = (struct branch_stack *)array++;
2212 
2213 		if (data->branch_stack->nr > max_branch_nr)
2214 			return -EFAULT;
2215 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2216 		OVERFLOW_CHECK(array, sz, max_size);
2217 		array = (void *)array + sz;
2218 	}
2219 
2220 	if (type & PERF_SAMPLE_REGS_USER) {
2221 		OVERFLOW_CHECK_u64(array);
2222 		data->user_regs.abi = *array;
2223 		array++;
2224 
2225 		if (data->user_regs.abi) {
2226 			u64 mask = evsel->attr.sample_regs_user;
2227 
2228 			sz = hweight_long(mask) * sizeof(u64);
2229 			OVERFLOW_CHECK(array, sz, max_size);
2230 			data->user_regs.mask = mask;
2231 			data->user_regs.regs = (u64 *)array;
2232 			array = (void *)array + sz;
2233 		}
2234 	}
2235 
2236 	if (type & PERF_SAMPLE_STACK_USER) {
2237 		OVERFLOW_CHECK_u64(array);
2238 		sz = *array++;
2239 
2240 		data->user_stack.offset = ((char *)(array - 1)
2241 					  - (char *) event);
2242 
2243 		if (!sz) {
2244 			data->user_stack.size = 0;
2245 		} else {
2246 			OVERFLOW_CHECK(array, sz, max_size);
2247 			data->user_stack.data = (char *)array;
2248 			array = (void *)array + sz;
2249 			OVERFLOW_CHECK_u64(array);
2250 			data->user_stack.size = *array++;
2251 			if (WARN_ONCE(data->user_stack.size > sz,
2252 				      "user stack dump failure\n"))
2253 				return -EFAULT;
2254 		}
2255 	}
2256 
2257 	if (type & PERF_SAMPLE_WEIGHT) {
2258 		OVERFLOW_CHECK_u64(array);
2259 		data->weight = *array;
2260 		array++;
2261 	}
2262 
2263 	if (type & PERF_SAMPLE_DATA_SRC) {
2264 		OVERFLOW_CHECK_u64(array);
2265 		data->data_src = *array;
2266 		array++;
2267 	}
2268 
2269 	if (type & PERF_SAMPLE_TRANSACTION) {
2270 		OVERFLOW_CHECK_u64(array);
2271 		data->transaction = *array;
2272 		array++;
2273 	}
2274 
2275 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2276 	if (type & PERF_SAMPLE_REGS_INTR) {
2277 		OVERFLOW_CHECK_u64(array);
2278 		data->intr_regs.abi = *array;
2279 		array++;
2280 
2281 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2282 			u64 mask = evsel->attr.sample_regs_intr;
2283 
2284 			sz = hweight_long(mask) * sizeof(u64);
2285 			OVERFLOW_CHECK(array, sz, max_size);
2286 			data->intr_regs.mask = mask;
2287 			data->intr_regs.regs = (u64 *)array;
2288 			array = (void *)array + sz;
2289 		}
2290 	}
2291 
2292 	data->phys_addr = 0;
2293 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2294 		data->phys_addr = *array;
2295 		array++;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2302 				       union perf_event *event,
2303 				       u64 *timestamp)
2304 {
2305 	u64 type = evsel->attr.sample_type;
2306 	const u64 *array;
2307 
2308 	if (!(type & PERF_SAMPLE_TIME))
2309 		return -1;
2310 
2311 	if (event->header.type != PERF_RECORD_SAMPLE) {
2312 		struct perf_sample data = {
2313 			.time = -1ULL,
2314 		};
2315 
2316 		if (!evsel->attr.sample_id_all)
2317 			return -1;
2318 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2319 			return -1;
2320 
2321 		*timestamp = data.time;
2322 		return 0;
2323 	}
2324 
2325 	array = event->sample.array;
2326 
2327 	if (perf_event__check_size(event, evsel->sample_size))
2328 		return -EFAULT;
2329 
2330 	if (type & PERF_SAMPLE_IDENTIFIER)
2331 		array++;
2332 
2333 	if (type & PERF_SAMPLE_IP)
2334 		array++;
2335 
2336 	if (type & PERF_SAMPLE_TID)
2337 		array++;
2338 
2339 	if (type & PERF_SAMPLE_TIME)
2340 		*timestamp = *array;
2341 
2342 	return 0;
2343 }
2344 
2345 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2346 				     u64 read_format)
2347 {
2348 	size_t sz, result = sizeof(struct sample_event);
2349 
2350 	if (type & PERF_SAMPLE_IDENTIFIER)
2351 		result += sizeof(u64);
2352 
2353 	if (type & PERF_SAMPLE_IP)
2354 		result += sizeof(u64);
2355 
2356 	if (type & PERF_SAMPLE_TID)
2357 		result += sizeof(u64);
2358 
2359 	if (type & PERF_SAMPLE_TIME)
2360 		result += sizeof(u64);
2361 
2362 	if (type & PERF_SAMPLE_ADDR)
2363 		result += sizeof(u64);
2364 
2365 	if (type & PERF_SAMPLE_ID)
2366 		result += sizeof(u64);
2367 
2368 	if (type & PERF_SAMPLE_STREAM_ID)
2369 		result += sizeof(u64);
2370 
2371 	if (type & PERF_SAMPLE_CPU)
2372 		result += sizeof(u64);
2373 
2374 	if (type & PERF_SAMPLE_PERIOD)
2375 		result += sizeof(u64);
2376 
2377 	if (type & PERF_SAMPLE_READ) {
2378 		result += sizeof(u64);
2379 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2380 			result += sizeof(u64);
2381 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2382 			result += sizeof(u64);
2383 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2384 		if (read_format & PERF_FORMAT_GROUP) {
2385 			sz = sample->read.group.nr *
2386 			     sizeof(struct sample_read_value);
2387 			result += sz;
2388 		} else {
2389 			result += sizeof(u64);
2390 		}
2391 	}
2392 
2393 	if (type & PERF_SAMPLE_CALLCHAIN) {
2394 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2395 		result += sz;
2396 	}
2397 
2398 	if (type & PERF_SAMPLE_RAW) {
2399 		result += sizeof(u32);
2400 		result += sample->raw_size;
2401 	}
2402 
2403 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2404 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2405 		sz += sizeof(u64);
2406 		result += sz;
2407 	}
2408 
2409 	if (type & PERF_SAMPLE_REGS_USER) {
2410 		if (sample->user_regs.abi) {
2411 			result += sizeof(u64);
2412 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2413 			result += sz;
2414 		} else {
2415 			result += sizeof(u64);
2416 		}
2417 	}
2418 
2419 	if (type & PERF_SAMPLE_STACK_USER) {
2420 		sz = sample->user_stack.size;
2421 		result += sizeof(u64);
2422 		if (sz) {
2423 			result += sz;
2424 			result += sizeof(u64);
2425 		}
2426 	}
2427 
2428 	if (type & PERF_SAMPLE_WEIGHT)
2429 		result += sizeof(u64);
2430 
2431 	if (type & PERF_SAMPLE_DATA_SRC)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_TRANSACTION)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_REGS_INTR) {
2438 		if (sample->intr_regs.abi) {
2439 			result += sizeof(u64);
2440 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2441 			result += sz;
2442 		} else {
2443 			result += sizeof(u64);
2444 		}
2445 	}
2446 
2447 	if (type & PERF_SAMPLE_PHYS_ADDR)
2448 		result += sizeof(u64);
2449 
2450 	return result;
2451 }
2452 
2453 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2454 				  u64 read_format,
2455 				  const struct perf_sample *sample,
2456 				  bool swapped)
2457 {
2458 	u64 *array;
2459 	size_t sz;
2460 	/*
2461 	 * used for cross-endian analysis. See git commit 65014ab3
2462 	 * for why this goofiness is needed.
2463 	 */
2464 	union u64_swap u;
2465 
2466 	array = event->sample.array;
2467 
2468 	if (type & PERF_SAMPLE_IDENTIFIER) {
2469 		*array = sample->id;
2470 		array++;
2471 	}
2472 
2473 	if (type & PERF_SAMPLE_IP) {
2474 		*array = sample->ip;
2475 		array++;
2476 	}
2477 
2478 	if (type & PERF_SAMPLE_TID) {
2479 		u.val32[0] = sample->pid;
2480 		u.val32[1] = sample->tid;
2481 		if (swapped) {
2482 			/*
2483 			 * Inverse of what is done in perf_evsel__parse_sample
2484 			 */
2485 			u.val32[0] = bswap_32(u.val32[0]);
2486 			u.val32[1] = bswap_32(u.val32[1]);
2487 			u.val64 = bswap_64(u.val64);
2488 		}
2489 
2490 		*array = u.val64;
2491 		array++;
2492 	}
2493 
2494 	if (type & PERF_SAMPLE_TIME) {
2495 		*array = sample->time;
2496 		array++;
2497 	}
2498 
2499 	if (type & PERF_SAMPLE_ADDR) {
2500 		*array = sample->addr;
2501 		array++;
2502 	}
2503 
2504 	if (type & PERF_SAMPLE_ID) {
2505 		*array = sample->id;
2506 		array++;
2507 	}
2508 
2509 	if (type & PERF_SAMPLE_STREAM_ID) {
2510 		*array = sample->stream_id;
2511 		array++;
2512 	}
2513 
2514 	if (type & PERF_SAMPLE_CPU) {
2515 		u.val32[0] = sample->cpu;
2516 		if (swapped) {
2517 			/*
2518 			 * Inverse of what is done in perf_evsel__parse_sample
2519 			 */
2520 			u.val32[0] = bswap_32(u.val32[0]);
2521 			u.val64 = bswap_64(u.val64);
2522 		}
2523 		*array = u.val64;
2524 		array++;
2525 	}
2526 
2527 	if (type & PERF_SAMPLE_PERIOD) {
2528 		*array = sample->period;
2529 		array++;
2530 	}
2531 
2532 	if (type & PERF_SAMPLE_READ) {
2533 		if (read_format & PERF_FORMAT_GROUP)
2534 			*array = sample->read.group.nr;
2535 		else
2536 			*array = sample->read.one.value;
2537 		array++;
2538 
2539 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2540 			*array = sample->read.time_enabled;
2541 			array++;
2542 		}
2543 
2544 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2545 			*array = sample->read.time_running;
2546 			array++;
2547 		}
2548 
2549 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2550 		if (read_format & PERF_FORMAT_GROUP) {
2551 			sz = sample->read.group.nr *
2552 			     sizeof(struct sample_read_value);
2553 			memcpy(array, sample->read.group.values, sz);
2554 			array = (void *)array + sz;
2555 		} else {
2556 			*array = sample->read.one.id;
2557 			array++;
2558 		}
2559 	}
2560 
2561 	if (type & PERF_SAMPLE_CALLCHAIN) {
2562 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2563 		memcpy(array, sample->callchain, sz);
2564 		array = (void *)array + sz;
2565 	}
2566 
2567 	if (type & PERF_SAMPLE_RAW) {
2568 		u.val32[0] = sample->raw_size;
2569 		if (WARN_ONCE(swapped,
2570 			      "Endianness of raw data not corrected!\n")) {
2571 			/*
2572 			 * Inverse of what is done in perf_evsel__parse_sample
2573 			 */
2574 			u.val32[0] = bswap_32(u.val32[0]);
2575 			u.val32[1] = bswap_32(u.val32[1]);
2576 			u.val64 = bswap_64(u.val64);
2577 		}
2578 		*array = u.val64;
2579 		array = (void *)array + sizeof(u32);
2580 
2581 		memcpy(array, sample->raw_data, sample->raw_size);
2582 		array = (void *)array + sample->raw_size;
2583 	}
2584 
2585 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2586 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2587 		sz += sizeof(u64);
2588 		memcpy(array, sample->branch_stack, sz);
2589 		array = (void *)array + sz;
2590 	}
2591 
2592 	if (type & PERF_SAMPLE_REGS_USER) {
2593 		if (sample->user_regs.abi) {
2594 			*array++ = sample->user_regs.abi;
2595 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2596 			memcpy(array, sample->user_regs.regs, sz);
2597 			array = (void *)array + sz;
2598 		} else {
2599 			*array++ = 0;
2600 		}
2601 	}
2602 
2603 	if (type & PERF_SAMPLE_STACK_USER) {
2604 		sz = sample->user_stack.size;
2605 		*array++ = sz;
2606 		if (sz) {
2607 			memcpy(array, sample->user_stack.data, sz);
2608 			array = (void *)array + sz;
2609 			*array++ = sz;
2610 		}
2611 	}
2612 
2613 	if (type & PERF_SAMPLE_WEIGHT) {
2614 		*array = sample->weight;
2615 		array++;
2616 	}
2617 
2618 	if (type & PERF_SAMPLE_DATA_SRC) {
2619 		*array = sample->data_src;
2620 		array++;
2621 	}
2622 
2623 	if (type & PERF_SAMPLE_TRANSACTION) {
2624 		*array = sample->transaction;
2625 		array++;
2626 	}
2627 
2628 	if (type & PERF_SAMPLE_REGS_INTR) {
2629 		if (sample->intr_regs.abi) {
2630 			*array++ = sample->intr_regs.abi;
2631 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2632 			memcpy(array, sample->intr_regs.regs, sz);
2633 			array = (void *)array + sz;
2634 		} else {
2635 			*array++ = 0;
2636 		}
2637 	}
2638 
2639 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2640 		*array = sample->phys_addr;
2641 		array++;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2648 {
2649 	return pevent_find_field(evsel->tp_format, name);
2650 }
2651 
2652 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2653 			 const char *name)
2654 {
2655 	struct format_field *field = perf_evsel__field(evsel, name);
2656 	int offset;
2657 
2658 	if (!field)
2659 		return NULL;
2660 
2661 	offset = field->offset;
2662 
2663 	if (field->flags & FIELD_IS_DYNAMIC) {
2664 		offset = *(int *)(sample->raw_data + field->offset);
2665 		offset &= 0xffff;
2666 	}
2667 
2668 	return sample->raw_data + offset;
2669 }
2670 
2671 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2672 			 bool needs_swap)
2673 {
2674 	u64 value;
2675 	void *ptr = sample->raw_data + field->offset;
2676 
2677 	switch (field->size) {
2678 	case 1:
2679 		return *(u8 *)ptr;
2680 	case 2:
2681 		value = *(u16 *)ptr;
2682 		break;
2683 	case 4:
2684 		value = *(u32 *)ptr;
2685 		break;
2686 	case 8:
2687 		memcpy(&value, ptr, sizeof(u64));
2688 		break;
2689 	default:
2690 		return 0;
2691 	}
2692 
2693 	if (!needs_swap)
2694 		return value;
2695 
2696 	switch (field->size) {
2697 	case 2:
2698 		return bswap_16(value);
2699 	case 4:
2700 		return bswap_32(value);
2701 	case 8:
2702 		return bswap_64(value);
2703 	default:
2704 		return 0;
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2711 		       const char *name)
2712 {
2713 	struct format_field *field = perf_evsel__field(evsel, name);
2714 
2715 	if (!field)
2716 		return 0;
2717 
2718 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2719 }
2720 
2721 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2722 			  char *msg, size_t msgsize)
2723 {
2724 	int paranoid;
2725 
2726 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2727 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2728 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2729 		/*
2730 		 * If it's cycles then fall back to hrtimer based
2731 		 * cpu-clock-tick sw counter, which is always available even if
2732 		 * no PMU support.
2733 		 *
2734 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2735 		 * b0a873e).
2736 		 */
2737 		scnprintf(msg, msgsize, "%s",
2738 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2739 
2740 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2741 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2742 
2743 		zfree(&evsel->name);
2744 		return true;
2745 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2746 		   (paranoid = perf_event_paranoid()) > 1) {
2747 		const char *name = perf_evsel__name(evsel);
2748 		char *new_name;
2749 
2750 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2751 			return false;
2752 
2753 		if (evsel->name)
2754 			free(evsel->name);
2755 		evsel->name = new_name;
2756 		scnprintf(msg, msgsize,
2757 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2758 		evsel->attr.exclude_kernel = 1;
2759 
2760 		return true;
2761 	}
2762 
2763 	return false;
2764 }
2765 
2766 static bool find_process(const char *name)
2767 {
2768 	size_t len = strlen(name);
2769 	DIR *dir;
2770 	struct dirent *d;
2771 	int ret = -1;
2772 
2773 	dir = opendir(procfs__mountpoint());
2774 	if (!dir)
2775 		return false;
2776 
2777 	/* Walk through the directory. */
2778 	while (ret && (d = readdir(dir)) != NULL) {
2779 		char path[PATH_MAX];
2780 		char *data;
2781 		size_t size;
2782 
2783 		if ((d->d_type != DT_DIR) ||
2784 		     !strcmp(".", d->d_name) ||
2785 		     !strcmp("..", d->d_name))
2786 			continue;
2787 
2788 		scnprintf(path, sizeof(path), "%s/%s/comm",
2789 			  procfs__mountpoint(), d->d_name);
2790 
2791 		if (filename__read_str(path, &data, &size))
2792 			continue;
2793 
2794 		ret = strncmp(name, data, len);
2795 		free(data);
2796 	}
2797 
2798 	closedir(dir);
2799 	return ret ? false : true;
2800 }
2801 
2802 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2803 			      int err, char *msg, size_t size)
2804 {
2805 	char sbuf[STRERR_BUFSIZE];
2806 	int printed = 0;
2807 
2808 	switch (err) {
2809 	case EPERM:
2810 	case EACCES:
2811 		if (err == EPERM)
2812 			printed = scnprintf(msg, size,
2813 				"No permission to enable %s event.\n\n",
2814 				perf_evsel__name(evsel));
2815 
2816 		return scnprintf(msg + printed, size - printed,
2817 		 "You may not have permission to collect %sstats.\n\n"
2818 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2819 		 "which controls use of the performance events system by\n"
2820 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2821 		 "The current value is %d:\n\n"
2822 		 "  -1: Allow use of (almost) all events by all users\n"
2823 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2824 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2825 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2826 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2827 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2828 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2829 		 "	kernel.perf_event_paranoid = -1\n" ,
2830 				 target->system_wide ? "system-wide " : "",
2831 				 perf_event_paranoid());
2832 	case ENOENT:
2833 		return scnprintf(msg, size, "The %s event is not supported.",
2834 				 perf_evsel__name(evsel));
2835 	case EMFILE:
2836 		return scnprintf(msg, size, "%s",
2837 			 "Too many events are opened.\n"
2838 			 "Probably the maximum number of open file descriptors has been reached.\n"
2839 			 "Hint: Try again after reducing the number of events.\n"
2840 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2841 	case ENOMEM:
2842 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2843 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2844 			return scnprintf(msg, size,
2845 					 "Not enough memory to setup event with callchain.\n"
2846 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2847 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2848 		break;
2849 	case ENODEV:
2850 		if (target->cpu_list)
2851 			return scnprintf(msg, size, "%s",
2852 	 "No such device - did you specify an out-of-range profile CPU?");
2853 		break;
2854 	case EOPNOTSUPP:
2855 		if (evsel->attr.sample_period != 0)
2856 			return scnprintf(msg, size,
2857 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2858 					 perf_evsel__name(evsel));
2859 		if (evsel->attr.precise_ip)
2860 			return scnprintf(msg, size, "%s",
2861 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2862 #if defined(__i386__) || defined(__x86_64__)
2863 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2864 			return scnprintf(msg, size, "%s",
2865 	"No hardware sampling interrupt available.\n"
2866 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2867 #endif
2868 		break;
2869 	case EBUSY:
2870 		if (find_process("oprofiled"))
2871 			return scnprintf(msg, size,
2872 	"The PMU counters are busy/taken by another profiler.\n"
2873 	"We found oprofile daemon running, please stop it and try again.");
2874 		break;
2875 	case EINVAL:
2876 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2877 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2878 		if (perf_missing_features.clockid)
2879 			return scnprintf(msg, size, "clockid feature not supported.");
2880 		if (perf_missing_features.clockid_wrong)
2881 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2882 		break;
2883 	default:
2884 		break;
2885 	}
2886 
2887 	return scnprintf(msg, size,
2888 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2889 	"/bin/dmesg may provide additional information.\n"
2890 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2891 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2892 			 perf_evsel__name(evsel));
2893 }
2894 
2895 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2896 {
2897 	if (evsel && evsel->evlist)
2898 		return evsel->evlist->env;
2899 	return NULL;
2900 }
2901