1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 /* 298 * Unnamed union member, not supported as struct member named 299 * initializer in older compilers such as gcc 4.4.7 300 * 301 * Just for probing the precise_ip: 302 */ 303 attr.sample_period = 1; 304 305 perf_event_attr__set_max_precise_ip(&attr); 306 /* 307 * Now let the usual logic to set up the perf_event_attr defaults 308 * to kick in when we return and before perf_evsel__open() is called. 309 */ 310 attr.sample_period = 0; 311 new_event: 312 evsel = perf_evsel__new(&attr); 313 if (evsel == NULL) 314 goto out; 315 316 /* use asprintf() because free(evsel) assumes name is allocated */ 317 if (asprintf(&evsel->name, "cycles%s%s%.*s", 318 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 319 attr.exclude_kernel ? "u" : "", 320 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 321 goto error_free; 322 out: 323 return evsel; 324 error_free: 325 perf_evsel__delete(evsel); 326 evsel = NULL; 327 goto out; 328 } 329 330 /* 331 * Returns pointer with encoded error via <linux/err.h> interface. 332 */ 333 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 334 { 335 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 336 int err = -ENOMEM; 337 338 if (evsel == NULL) { 339 goto out_err; 340 } else { 341 struct perf_event_attr attr = { 342 .type = PERF_TYPE_TRACEPOINT, 343 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 344 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 345 }; 346 347 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 348 goto out_free; 349 350 evsel->tp_format = trace_event__tp_format(sys, name); 351 if (IS_ERR(evsel->tp_format)) { 352 err = PTR_ERR(evsel->tp_format); 353 goto out_free; 354 } 355 356 event_attr_init(&attr); 357 attr.config = evsel->tp_format->id; 358 attr.sample_period = 1; 359 perf_evsel__init(evsel, &attr, idx); 360 } 361 362 return evsel; 363 364 out_free: 365 zfree(&evsel->name); 366 free(evsel); 367 out_err: 368 return ERR_PTR(err); 369 } 370 371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 372 "cycles", 373 "instructions", 374 "cache-references", 375 "cache-misses", 376 "branches", 377 "branch-misses", 378 "bus-cycles", 379 "stalled-cycles-frontend", 380 "stalled-cycles-backend", 381 "ref-cycles", 382 }; 383 384 static const char *__perf_evsel__hw_name(u64 config) 385 { 386 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 387 return perf_evsel__hw_names[config]; 388 389 return "unknown-hardware"; 390 } 391 392 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 393 { 394 int colon = 0, r = 0; 395 struct perf_event_attr *attr = &evsel->attr; 396 bool exclude_guest_default = false; 397 398 #define MOD_PRINT(context, mod) do { \ 399 if (!attr->exclude_##context) { \ 400 if (!colon) colon = ++r; \ 401 r += scnprintf(bf + r, size - r, "%c", mod); \ 402 } } while(0) 403 404 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 405 MOD_PRINT(kernel, 'k'); 406 MOD_PRINT(user, 'u'); 407 MOD_PRINT(hv, 'h'); 408 exclude_guest_default = true; 409 } 410 411 if (attr->precise_ip) { 412 if (!colon) 413 colon = ++r; 414 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 415 exclude_guest_default = true; 416 } 417 418 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 419 MOD_PRINT(host, 'H'); 420 MOD_PRINT(guest, 'G'); 421 } 422 #undef MOD_PRINT 423 if (colon) 424 bf[colon - 1] = ':'; 425 return r; 426 } 427 428 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 429 { 430 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 431 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 432 } 433 434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 435 "cpu-clock", 436 "task-clock", 437 "page-faults", 438 "context-switches", 439 "cpu-migrations", 440 "minor-faults", 441 "major-faults", 442 "alignment-faults", 443 "emulation-faults", 444 "dummy", 445 }; 446 447 static const char *__perf_evsel__sw_name(u64 config) 448 { 449 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 450 return perf_evsel__sw_names[config]; 451 return "unknown-software"; 452 } 453 454 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 455 { 456 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 457 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 458 } 459 460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 461 { 462 int r; 463 464 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 465 466 if (type & HW_BREAKPOINT_R) 467 r += scnprintf(bf + r, size - r, "r"); 468 469 if (type & HW_BREAKPOINT_W) 470 r += scnprintf(bf + r, size - r, "w"); 471 472 if (type & HW_BREAKPOINT_X) 473 r += scnprintf(bf + r, size - r, "x"); 474 475 return r; 476 } 477 478 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 479 { 480 struct perf_event_attr *attr = &evsel->attr; 481 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 482 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 483 } 484 485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 486 [PERF_EVSEL__MAX_ALIASES] = { 487 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 488 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 489 { "LLC", "L2", }, 490 { "dTLB", "d-tlb", "Data-TLB", }, 491 { "iTLB", "i-tlb", "Instruction-TLB", }, 492 { "branch", "branches", "bpu", "btb", "bpc", }, 493 { "node", }, 494 }; 495 496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "load", "loads", "read", }, 499 { "store", "stores", "write", }, 500 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 501 }; 502 503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 504 [PERF_EVSEL__MAX_ALIASES] = { 505 { "refs", "Reference", "ops", "access", }, 506 { "misses", "miss", }, 507 }; 508 509 #define C(x) PERF_COUNT_HW_CACHE_##x 510 #define CACHE_READ (1 << C(OP_READ)) 511 #define CACHE_WRITE (1 << C(OP_WRITE)) 512 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 513 #define COP(x) (1 << x) 514 515 /* 516 * cache operartion stat 517 * L1I : Read and prefetch only 518 * ITLB and BPU : Read-only 519 */ 520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 521 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 523 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 525 [C(ITLB)] = (CACHE_READ), 526 [C(BPU)] = (CACHE_READ), 527 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 528 }; 529 530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 531 { 532 if (perf_evsel__hw_cache_stat[type] & COP(op)) 533 return true; /* valid */ 534 else 535 return false; /* invalid */ 536 } 537 538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 539 char *bf, size_t size) 540 { 541 if (result) { 542 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 543 perf_evsel__hw_cache_op[op][0], 544 perf_evsel__hw_cache_result[result][0]); 545 } 546 547 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 548 perf_evsel__hw_cache_op[op][1]); 549 } 550 551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 552 { 553 u8 op, result, type = (config >> 0) & 0xff; 554 const char *err = "unknown-ext-hardware-cache-type"; 555 556 if (type >= PERF_COUNT_HW_CACHE_MAX) 557 goto out_err; 558 559 op = (config >> 8) & 0xff; 560 err = "unknown-ext-hardware-cache-op"; 561 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 562 goto out_err; 563 564 result = (config >> 16) & 0xff; 565 err = "unknown-ext-hardware-cache-result"; 566 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 567 goto out_err; 568 569 err = "invalid-cache"; 570 if (!perf_evsel__is_cache_op_valid(type, op)) 571 goto out_err; 572 573 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 574 out_err: 575 return scnprintf(bf, size, "%s", err); 576 } 577 578 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 579 { 580 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 581 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 582 } 583 584 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 585 { 586 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 587 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 588 } 589 590 const char *perf_evsel__name(struct perf_evsel *evsel) 591 { 592 char bf[128]; 593 594 if (evsel->name) 595 return evsel->name; 596 597 switch (evsel->attr.type) { 598 case PERF_TYPE_RAW: 599 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 600 break; 601 602 case PERF_TYPE_HARDWARE: 603 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 604 break; 605 606 case PERF_TYPE_HW_CACHE: 607 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 608 break; 609 610 case PERF_TYPE_SOFTWARE: 611 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 612 break; 613 614 case PERF_TYPE_TRACEPOINT: 615 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 616 break; 617 618 case PERF_TYPE_BREAKPOINT: 619 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 620 break; 621 622 default: 623 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 624 evsel->attr.type); 625 break; 626 } 627 628 evsel->name = strdup(bf); 629 630 return evsel->name ?: "unknown"; 631 } 632 633 const char *perf_evsel__group_name(struct perf_evsel *evsel) 634 { 635 return evsel->group_name ?: "anon group"; 636 } 637 638 /* 639 * Returns the group details for the specified leader, 640 * with following rules. 641 * 642 * For record -e '{cycles,instructions}' 643 * 'anon group { cycles:u, instructions:u }' 644 * 645 * For record -e 'cycles,instructions' and report --group 646 * 'cycles:u, instructions:u' 647 */ 648 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 649 { 650 int ret = 0; 651 struct perf_evsel *pos; 652 const char *group_name = perf_evsel__group_name(evsel); 653 654 if (!evsel->forced_leader) 655 ret = scnprintf(buf, size, "%s { ", group_name); 656 657 ret += scnprintf(buf + ret, size - ret, "%s", 658 perf_evsel__name(evsel)); 659 660 for_each_group_member(pos, evsel) 661 ret += scnprintf(buf + ret, size - ret, ", %s", 662 perf_evsel__name(pos)); 663 664 if (!evsel->forced_leader) 665 ret += scnprintf(buf + ret, size - ret, " }"); 666 667 return ret; 668 } 669 670 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 671 struct record_opts *opts, 672 struct callchain_param *param) 673 { 674 bool function = perf_evsel__is_function_event(evsel); 675 struct perf_event_attr *attr = &evsel->attr; 676 677 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 678 679 attr->sample_max_stack = param->max_stack; 680 681 if (param->record_mode == CALLCHAIN_LBR) { 682 if (!opts->branch_stack) { 683 if (attr->exclude_user) { 684 pr_warning("LBR callstack option is only available " 685 "to get user callchain information. " 686 "Falling back to framepointers.\n"); 687 } else { 688 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 689 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 690 PERF_SAMPLE_BRANCH_CALL_STACK | 691 PERF_SAMPLE_BRANCH_NO_CYCLES | 692 PERF_SAMPLE_BRANCH_NO_FLAGS; 693 } 694 } else 695 pr_warning("Cannot use LBR callstack with branch stack. " 696 "Falling back to framepointers.\n"); 697 } 698 699 if (param->record_mode == CALLCHAIN_DWARF) { 700 if (!function) { 701 perf_evsel__set_sample_bit(evsel, REGS_USER); 702 perf_evsel__set_sample_bit(evsel, STACK_USER); 703 attr->sample_regs_user |= PERF_REGS_MASK; 704 attr->sample_stack_user = param->dump_size; 705 attr->exclude_callchain_user = 1; 706 } else { 707 pr_info("Cannot use DWARF unwind for function trace event," 708 " falling back to framepointers.\n"); 709 } 710 } 711 712 if (function) { 713 pr_info("Disabling user space callchains for function trace event.\n"); 714 attr->exclude_callchain_user = 1; 715 } 716 } 717 718 void perf_evsel__config_callchain(struct perf_evsel *evsel, 719 struct record_opts *opts, 720 struct callchain_param *param) 721 { 722 if (param->enabled) 723 return __perf_evsel__config_callchain(evsel, opts, param); 724 } 725 726 static void 727 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 728 struct callchain_param *param) 729 { 730 struct perf_event_attr *attr = &evsel->attr; 731 732 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 733 if (param->record_mode == CALLCHAIN_LBR) { 734 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 735 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 736 PERF_SAMPLE_BRANCH_CALL_STACK); 737 } 738 if (param->record_mode == CALLCHAIN_DWARF) { 739 perf_evsel__reset_sample_bit(evsel, REGS_USER); 740 perf_evsel__reset_sample_bit(evsel, STACK_USER); 741 } 742 } 743 744 static void apply_config_terms(struct perf_evsel *evsel, 745 struct record_opts *opts, bool track) 746 { 747 struct perf_evsel_config_term *term; 748 struct list_head *config_terms = &evsel->config_terms; 749 struct perf_event_attr *attr = &evsel->attr; 750 /* callgraph default */ 751 struct callchain_param param = { 752 .record_mode = callchain_param.record_mode, 753 }; 754 u32 dump_size = 0; 755 int max_stack = 0; 756 const char *callgraph_buf = NULL; 757 758 list_for_each_entry(term, config_terms, list) { 759 switch (term->type) { 760 case PERF_EVSEL__CONFIG_TERM_PERIOD: 761 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 762 attr->sample_period = term->val.period; 763 attr->freq = 0; 764 perf_evsel__reset_sample_bit(evsel, PERIOD); 765 } 766 break; 767 case PERF_EVSEL__CONFIG_TERM_FREQ: 768 if (!(term->weak && opts->user_freq != UINT_MAX)) { 769 attr->sample_freq = term->val.freq; 770 attr->freq = 1; 771 perf_evsel__set_sample_bit(evsel, PERIOD); 772 } 773 break; 774 case PERF_EVSEL__CONFIG_TERM_TIME: 775 if (term->val.time) 776 perf_evsel__set_sample_bit(evsel, TIME); 777 else 778 perf_evsel__reset_sample_bit(evsel, TIME); 779 break; 780 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 781 callgraph_buf = term->val.callgraph; 782 break; 783 case PERF_EVSEL__CONFIG_TERM_BRANCH: 784 if (term->val.branch && strcmp(term->val.branch, "no")) { 785 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 786 parse_branch_str(term->val.branch, 787 &attr->branch_sample_type); 788 } else 789 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 790 break; 791 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 792 dump_size = term->val.stack_user; 793 break; 794 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 795 max_stack = term->val.max_stack; 796 break; 797 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 798 evsel->max_events = term->val.max_events; 799 break; 800 case PERF_EVSEL__CONFIG_TERM_INHERIT: 801 /* 802 * attr->inherit should has already been set by 803 * perf_evsel__config. If user explicitly set 804 * inherit using config terms, override global 805 * opt->no_inherit setting. 806 */ 807 attr->inherit = term->val.inherit ? 1 : 0; 808 break; 809 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 810 attr->write_backward = term->val.overwrite ? 1 : 0; 811 break; 812 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 813 break; 814 default: 815 break; 816 } 817 } 818 819 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 820 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 821 bool sample_address = false; 822 823 if (max_stack) { 824 param.max_stack = max_stack; 825 if (callgraph_buf == NULL) 826 callgraph_buf = "fp"; 827 } 828 829 /* parse callgraph parameters */ 830 if (callgraph_buf != NULL) { 831 if (!strcmp(callgraph_buf, "no")) { 832 param.enabled = false; 833 param.record_mode = CALLCHAIN_NONE; 834 } else { 835 param.enabled = true; 836 if (parse_callchain_record(callgraph_buf, ¶m)) { 837 pr_err("per-event callgraph setting for %s failed. " 838 "Apply callgraph global setting for it\n", 839 evsel->name); 840 return; 841 } 842 if (param.record_mode == CALLCHAIN_DWARF) 843 sample_address = true; 844 } 845 } 846 if (dump_size > 0) { 847 dump_size = round_up(dump_size, sizeof(u64)); 848 param.dump_size = dump_size; 849 } 850 851 /* If global callgraph set, clear it */ 852 if (callchain_param.enabled) 853 perf_evsel__reset_callgraph(evsel, &callchain_param); 854 855 /* set perf-event callgraph */ 856 if (param.enabled) { 857 if (sample_address) { 858 perf_evsel__set_sample_bit(evsel, ADDR); 859 perf_evsel__set_sample_bit(evsel, DATA_SRC); 860 evsel->attr.mmap_data = track; 861 } 862 perf_evsel__config_callchain(evsel, opts, ¶m); 863 } 864 } 865 } 866 867 static bool is_dummy_event(struct perf_evsel *evsel) 868 { 869 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 870 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 871 } 872 873 /* 874 * The enable_on_exec/disabled value strategy: 875 * 876 * 1) For any type of traced program: 877 * - all independent events and group leaders are disabled 878 * - all group members are enabled 879 * 880 * Group members are ruled by group leaders. They need to 881 * be enabled, because the group scheduling relies on that. 882 * 883 * 2) For traced programs executed by perf: 884 * - all independent events and group leaders have 885 * enable_on_exec set 886 * - we don't specifically enable or disable any event during 887 * the record command 888 * 889 * Independent events and group leaders are initially disabled 890 * and get enabled by exec. Group members are ruled by group 891 * leaders as stated in 1). 892 * 893 * 3) For traced programs attached by perf (pid/tid): 894 * - we specifically enable or disable all events during 895 * the record command 896 * 897 * When attaching events to already running traced we 898 * enable/disable events specifically, as there's no 899 * initial traced exec call. 900 */ 901 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 902 struct callchain_param *callchain) 903 { 904 struct perf_evsel *leader = evsel->leader; 905 struct perf_event_attr *attr = &evsel->attr; 906 int track = evsel->tracking; 907 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 908 909 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 910 attr->inherit = !opts->no_inherit; 911 attr->write_backward = opts->overwrite ? 1 : 0; 912 913 perf_evsel__set_sample_bit(evsel, IP); 914 perf_evsel__set_sample_bit(evsel, TID); 915 916 if (evsel->sample_read) { 917 perf_evsel__set_sample_bit(evsel, READ); 918 919 /* 920 * We need ID even in case of single event, because 921 * PERF_SAMPLE_READ process ID specific data. 922 */ 923 perf_evsel__set_sample_id(evsel, false); 924 925 /* 926 * Apply group format only if we belong to group 927 * with more than one members. 928 */ 929 if (leader->nr_members > 1) { 930 attr->read_format |= PERF_FORMAT_GROUP; 931 attr->inherit = 0; 932 } 933 } 934 935 /* 936 * We default some events to have a default interval. But keep 937 * it a weak assumption overridable by the user. 938 */ 939 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 940 opts->user_interval != ULLONG_MAX)) { 941 if (opts->freq) { 942 perf_evsel__set_sample_bit(evsel, PERIOD); 943 attr->freq = 1; 944 attr->sample_freq = opts->freq; 945 } else { 946 attr->sample_period = opts->default_interval; 947 } 948 } 949 950 /* 951 * Disable sampling for all group members other 952 * than leader in case leader 'leads' the sampling. 953 */ 954 if ((leader != evsel) && leader->sample_read) { 955 attr->freq = 0; 956 attr->sample_freq = 0; 957 attr->sample_period = 0; 958 attr->write_backward = 0; 959 960 /* 961 * We don't get sample for slave events, we make them 962 * when delivering group leader sample. Set the slave 963 * event to follow the master sample_type to ease up 964 * report. 965 */ 966 attr->sample_type = leader->attr.sample_type; 967 } 968 969 if (opts->no_samples) 970 attr->sample_freq = 0; 971 972 if (opts->inherit_stat) { 973 evsel->attr.read_format |= 974 PERF_FORMAT_TOTAL_TIME_ENABLED | 975 PERF_FORMAT_TOTAL_TIME_RUNNING | 976 PERF_FORMAT_ID; 977 attr->inherit_stat = 1; 978 } 979 980 if (opts->sample_address) { 981 perf_evsel__set_sample_bit(evsel, ADDR); 982 attr->mmap_data = track; 983 } 984 985 /* 986 * We don't allow user space callchains for function trace 987 * event, due to issues with page faults while tracing page 988 * fault handler and its overall trickiness nature. 989 */ 990 if (perf_evsel__is_function_event(evsel)) 991 evsel->attr.exclude_callchain_user = 1; 992 993 if (callchain && callchain->enabled && !evsel->no_aux_samples) 994 perf_evsel__config_callchain(evsel, opts, callchain); 995 996 if (opts->sample_intr_regs) { 997 attr->sample_regs_intr = opts->sample_intr_regs; 998 perf_evsel__set_sample_bit(evsel, REGS_INTR); 999 } 1000 1001 if (opts->sample_user_regs) { 1002 attr->sample_regs_user |= opts->sample_user_regs; 1003 perf_evsel__set_sample_bit(evsel, REGS_USER); 1004 } 1005 1006 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1007 perf_evsel__set_sample_bit(evsel, CPU); 1008 1009 /* 1010 * When the user explicitly disabled time don't force it here. 1011 */ 1012 if (opts->sample_time && 1013 (!perf_missing_features.sample_id_all && 1014 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1015 opts->sample_time_set))) 1016 perf_evsel__set_sample_bit(evsel, TIME); 1017 1018 if (opts->raw_samples && !evsel->no_aux_samples) { 1019 perf_evsel__set_sample_bit(evsel, TIME); 1020 perf_evsel__set_sample_bit(evsel, RAW); 1021 perf_evsel__set_sample_bit(evsel, CPU); 1022 } 1023 1024 if (opts->sample_address) 1025 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1026 1027 if (opts->sample_phys_addr) 1028 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1029 1030 if (opts->no_buffering) { 1031 attr->watermark = 0; 1032 attr->wakeup_events = 1; 1033 } 1034 if (opts->branch_stack && !evsel->no_aux_samples) { 1035 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1036 attr->branch_sample_type = opts->branch_stack; 1037 } 1038 1039 if (opts->sample_weight) 1040 perf_evsel__set_sample_bit(evsel, WEIGHT); 1041 1042 attr->task = track; 1043 attr->mmap = track; 1044 attr->mmap2 = track && !perf_missing_features.mmap2; 1045 attr->comm = track; 1046 attr->ksymbol = track && !perf_missing_features.ksymbol; 1047 attr->bpf_event = track && opts->bpf_event && 1048 !perf_missing_features.bpf_event; 1049 1050 if (opts->record_namespaces) 1051 attr->namespaces = track; 1052 1053 if (opts->record_switch_events) 1054 attr->context_switch = track; 1055 1056 if (opts->sample_transaction) 1057 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1058 1059 if (opts->running_time) { 1060 evsel->attr.read_format |= 1061 PERF_FORMAT_TOTAL_TIME_ENABLED | 1062 PERF_FORMAT_TOTAL_TIME_RUNNING; 1063 } 1064 1065 /* 1066 * XXX see the function comment above 1067 * 1068 * Disabling only independent events or group leaders, 1069 * keeping group members enabled. 1070 */ 1071 if (perf_evsel__is_group_leader(evsel)) 1072 attr->disabled = 1; 1073 1074 /* 1075 * Setting enable_on_exec for independent events and 1076 * group leaders for traced executed by perf. 1077 */ 1078 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1079 !opts->initial_delay) 1080 attr->enable_on_exec = 1; 1081 1082 if (evsel->immediate) { 1083 attr->disabled = 0; 1084 attr->enable_on_exec = 0; 1085 } 1086 1087 clockid = opts->clockid; 1088 if (opts->use_clockid) { 1089 attr->use_clockid = 1; 1090 attr->clockid = opts->clockid; 1091 } 1092 1093 if (evsel->precise_max) 1094 perf_event_attr__set_max_precise_ip(attr); 1095 1096 if (opts->all_user) { 1097 attr->exclude_kernel = 1; 1098 attr->exclude_user = 0; 1099 } 1100 1101 if (opts->all_kernel) { 1102 attr->exclude_kernel = 0; 1103 attr->exclude_user = 1; 1104 } 1105 1106 if (evsel->own_cpus || evsel->unit) 1107 evsel->attr.read_format |= PERF_FORMAT_ID; 1108 1109 /* 1110 * Apply event specific term settings, 1111 * it overloads any global configuration. 1112 */ 1113 apply_config_terms(evsel, opts, track); 1114 1115 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1116 1117 /* The --period option takes the precedence. */ 1118 if (opts->period_set) { 1119 if (opts->period) 1120 perf_evsel__set_sample_bit(evsel, PERIOD); 1121 else 1122 perf_evsel__reset_sample_bit(evsel, PERIOD); 1123 } 1124 1125 /* 1126 * For initial_delay, a dummy event is added implicitly. 1127 * The software event will trigger -EOPNOTSUPP error out, 1128 * if BRANCH_STACK bit is set. 1129 */ 1130 if (opts->initial_delay && is_dummy_event(evsel)) 1131 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1132 } 1133 1134 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1135 { 1136 if (evsel->system_wide) 1137 nthreads = 1; 1138 1139 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1140 1141 if (evsel->fd) { 1142 int cpu, thread; 1143 for (cpu = 0; cpu < ncpus; cpu++) { 1144 for (thread = 0; thread < nthreads; thread++) { 1145 FD(evsel, cpu, thread) = -1; 1146 } 1147 } 1148 } 1149 1150 return evsel->fd != NULL ? 0 : -ENOMEM; 1151 } 1152 1153 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1154 int ioc, void *arg) 1155 { 1156 int cpu, thread; 1157 1158 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1159 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1160 int fd = FD(evsel, cpu, thread), 1161 err = ioctl(fd, ioc, arg); 1162 1163 if (err) 1164 return err; 1165 } 1166 } 1167 1168 return 0; 1169 } 1170 1171 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1172 { 1173 return perf_evsel__run_ioctl(evsel, 1174 PERF_EVENT_IOC_SET_FILTER, 1175 (void *)filter); 1176 } 1177 1178 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1179 { 1180 char *new_filter = strdup(filter); 1181 1182 if (new_filter != NULL) { 1183 free(evsel->filter); 1184 evsel->filter = new_filter; 1185 return 0; 1186 } 1187 1188 return -1; 1189 } 1190 1191 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1192 const char *fmt, const char *filter) 1193 { 1194 char *new_filter; 1195 1196 if (evsel->filter == NULL) 1197 return perf_evsel__set_filter(evsel, filter); 1198 1199 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1200 free(evsel->filter); 1201 evsel->filter = new_filter; 1202 return 0; 1203 } 1204 1205 return -1; 1206 } 1207 1208 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1209 { 1210 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1211 } 1212 1213 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1214 { 1215 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1216 } 1217 1218 int perf_evsel__enable(struct perf_evsel *evsel) 1219 { 1220 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1221 1222 if (!err) 1223 evsel->disabled = false; 1224 1225 return err; 1226 } 1227 1228 int perf_evsel__disable(struct perf_evsel *evsel) 1229 { 1230 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1231 /* 1232 * We mark it disabled here so that tools that disable a event can 1233 * ignore events after they disable it. I.e. the ring buffer may have 1234 * already a few more events queued up before the kernel got the stop 1235 * request. 1236 */ 1237 if (!err) 1238 evsel->disabled = true; 1239 1240 return err; 1241 } 1242 1243 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1244 { 1245 if (ncpus == 0 || nthreads == 0) 1246 return 0; 1247 1248 if (evsel->system_wide) 1249 nthreads = 1; 1250 1251 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1252 if (evsel->sample_id == NULL) 1253 return -ENOMEM; 1254 1255 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1256 if (evsel->id == NULL) { 1257 xyarray__delete(evsel->sample_id); 1258 evsel->sample_id = NULL; 1259 return -ENOMEM; 1260 } 1261 1262 return 0; 1263 } 1264 1265 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1266 { 1267 xyarray__delete(evsel->fd); 1268 evsel->fd = NULL; 1269 } 1270 1271 static void perf_evsel__free_id(struct perf_evsel *evsel) 1272 { 1273 xyarray__delete(evsel->sample_id); 1274 evsel->sample_id = NULL; 1275 zfree(&evsel->id); 1276 } 1277 1278 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1279 { 1280 struct perf_evsel_config_term *term, *h; 1281 1282 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1283 list_del(&term->list); 1284 free(term); 1285 } 1286 } 1287 1288 void perf_evsel__close_fd(struct perf_evsel *evsel) 1289 { 1290 int cpu, thread; 1291 1292 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1293 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1294 close(FD(evsel, cpu, thread)); 1295 FD(evsel, cpu, thread) = -1; 1296 } 1297 } 1298 1299 void perf_evsel__exit(struct perf_evsel *evsel) 1300 { 1301 assert(list_empty(&evsel->node)); 1302 assert(evsel->evlist == NULL); 1303 perf_evsel__free_fd(evsel); 1304 perf_evsel__free_id(evsel); 1305 perf_evsel__free_config_terms(evsel); 1306 cgroup__put(evsel->cgrp); 1307 cpu_map__put(evsel->cpus); 1308 cpu_map__put(evsel->own_cpus); 1309 thread_map__put(evsel->threads); 1310 zfree(&evsel->group_name); 1311 zfree(&evsel->name); 1312 perf_evsel__object.fini(evsel); 1313 } 1314 1315 void perf_evsel__delete(struct perf_evsel *evsel) 1316 { 1317 perf_evsel__exit(evsel); 1318 free(evsel); 1319 } 1320 1321 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1322 struct perf_counts_values *count) 1323 { 1324 struct perf_counts_values tmp; 1325 1326 if (!evsel->prev_raw_counts) 1327 return; 1328 1329 if (cpu == -1) { 1330 tmp = evsel->prev_raw_counts->aggr; 1331 evsel->prev_raw_counts->aggr = *count; 1332 } else { 1333 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1334 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1335 } 1336 1337 count->val = count->val - tmp.val; 1338 count->ena = count->ena - tmp.ena; 1339 count->run = count->run - tmp.run; 1340 } 1341 1342 void perf_counts_values__scale(struct perf_counts_values *count, 1343 bool scale, s8 *pscaled) 1344 { 1345 s8 scaled = 0; 1346 1347 if (scale) { 1348 if (count->run == 0) { 1349 scaled = -1; 1350 count->val = 0; 1351 } else if (count->run < count->ena) { 1352 scaled = 1; 1353 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1354 } 1355 } else 1356 count->ena = count->run = 0; 1357 1358 if (pscaled) 1359 *pscaled = scaled; 1360 } 1361 1362 static int perf_evsel__read_size(struct perf_evsel *evsel) 1363 { 1364 u64 read_format = evsel->attr.read_format; 1365 int entry = sizeof(u64); /* value */ 1366 int size = 0; 1367 int nr = 1; 1368 1369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1370 size += sizeof(u64); 1371 1372 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1373 size += sizeof(u64); 1374 1375 if (read_format & PERF_FORMAT_ID) 1376 entry += sizeof(u64); 1377 1378 if (read_format & PERF_FORMAT_GROUP) { 1379 nr = evsel->nr_members; 1380 size += sizeof(u64); 1381 } 1382 1383 size += entry * nr; 1384 return size; 1385 } 1386 1387 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1388 struct perf_counts_values *count) 1389 { 1390 size_t size = perf_evsel__read_size(evsel); 1391 1392 memset(count, 0, sizeof(*count)); 1393 1394 if (FD(evsel, cpu, thread) < 0) 1395 return -EINVAL; 1396 1397 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1398 return -errno; 1399 1400 return 0; 1401 } 1402 1403 static int 1404 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1405 { 1406 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1407 1408 return perf_evsel__read(evsel, cpu, thread, count); 1409 } 1410 1411 static void 1412 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1413 u64 val, u64 ena, u64 run) 1414 { 1415 struct perf_counts_values *count; 1416 1417 count = perf_counts(counter->counts, cpu, thread); 1418 1419 count->val = val; 1420 count->ena = ena; 1421 count->run = run; 1422 count->loaded = true; 1423 } 1424 1425 static int 1426 perf_evsel__process_group_data(struct perf_evsel *leader, 1427 int cpu, int thread, u64 *data) 1428 { 1429 u64 read_format = leader->attr.read_format; 1430 struct sample_read_value *v; 1431 u64 nr, ena = 0, run = 0, i; 1432 1433 nr = *data++; 1434 1435 if (nr != (u64) leader->nr_members) 1436 return -EINVAL; 1437 1438 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1439 ena = *data++; 1440 1441 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1442 run = *data++; 1443 1444 v = (struct sample_read_value *) data; 1445 1446 perf_evsel__set_count(leader, cpu, thread, 1447 v[0].value, ena, run); 1448 1449 for (i = 1; i < nr; i++) { 1450 struct perf_evsel *counter; 1451 1452 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1453 if (!counter) 1454 return -EINVAL; 1455 1456 perf_evsel__set_count(counter, cpu, thread, 1457 v[i].value, ena, run); 1458 } 1459 1460 return 0; 1461 } 1462 1463 static int 1464 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1465 { 1466 struct perf_stat_evsel *ps = leader->stats; 1467 u64 read_format = leader->attr.read_format; 1468 int size = perf_evsel__read_size(leader); 1469 u64 *data = ps->group_data; 1470 1471 if (!(read_format & PERF_FORMAT_ID)) 1472 return -EINVAL; 1473 1474 if (!perf_evsel__is_group_leader(leader)) 1475 return -EINVAL; 1476 1477 if (!data) { 1478 data = zalloc(size); 1479 if (!data) 1480 return -ENOMEM; 1481 1482 ps->group_data = data; 1483 } 1484 1485 if (FD(leader, cpu, thread) < 0) 1486 return -EINVAL; 1487 1488 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1489 return -errno; 1490 1491 return perf_evsel__process_group_data(leader, cpu, thread, data); 1492 } 1493 1494 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1495 { 1496 u64 read_format = evsel->attr.read_format; 1497 1498 if (read_format & PERF_FORMAT_GROUP) 1499 return perf_evsel__read_group(evsel, cpu, thread); 1500 else 1501 return perf_evsel__read_one(evsel, cpu, thread); 1502 } 1503 1504 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1505 int cpu, int thread, bool scale) 1506 { 1507 struct perf_counts_values count; 1508 size_t nv = scale ? 3 : 1; 1509 1510 if (FD(evsel, cpu, thread) < 0) 1511 return -EINVAL; 1512 1513 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1514 return -ENOMEM; 1515 1516 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1517 return -errno; 1518 1519 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1520 perf_counts_values__scale(&count, scale, NULL); 1521 *perf_counts(evsel->counts, cpu, thread) = count; 1522 return 0; 1523 } 1524 1525 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1526 { 1527 struct perf_evsel *leader = evsel->leader; 1528 int fd; 1529 1530 if (perf_evsel__is_group_leader(evsel)) 1531 return -1; 1532 1533 /* 1534 * Leader must be already processed/open, 1535 * if not it's a bug. 1536 */ 1537 BUG_ON(!leader->fd); 1538 1539 fd = FD(leader, cpu, thread); 1540 BUG_ON(fd == -1); 1541 1542 return fd; 1543 } 1544 1545 struct bit_names { 1546 int bit; 1547 const char *name; 1548 }; 1549 1550 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1551 { 1552 bool first_bit = true; 1553 int i = 0; 1554 1555 do { 1556 if (value & bits[i].bit) { 1557 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1558 first_bit = false; 1559 } 1560 } while (bits[++i].name != NULL); 1561 } 1562 1563 static void __p_sample_type(char *buf, size_t size, u64 value) 1564 { 1565 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1566 struct bit_names bits[] = { 1567 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1568 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1569 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1570 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1571 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1572 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1573 { .name = NULL, } 1574 }; 1575 #undef bit_name 1576 __p_bits(buf, size, value, bits); 1577 } 1578 1579 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1580 { 1581 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1582 struct bit_names bits[] = { 1583 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1584 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1585 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1586 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1587 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1588 { .name = NULL, } 1589 }; 1590 #undef bit_name 1591 __p_bits(buf, size, value, bits); 1592 } 1593 1594 static void __p_read_format(char *buf, size_t size, u64 value) 1595 { 1596 #define bit_name(n) { PERF_FORMAT_##n, #n } 1597 struct bit_names bits[] = { 1598 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1599 bit_name(ID), bit_name(GROUP), 1600 { .name = NULL, } 1601 }; 1602 #undef bit_name 1603 __p_bits(buf, size, value, bits); 1604 } 1605 1606 #define BUF_SIZE 1024 1607 1608 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1609 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1610 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1611 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1612 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1613 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1614 1615 #define PRINT_ATTRn(_n, _f, _p) \ 1616 do { \ 1617 if (attr->_f) { \ 1618 _p(attr->_f); \ 1619 ret += attr__fprintf(fp, _n, buf, priv);\ 1620 } \ 1621 } while (0) 1622 1623 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1624 1625 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1626 attr__fprintf_f attr__fprintf, void *priv) 1627 { 1628 char buf[BUF_SIZE]; 1629 int ret = 0; 1630 1631 PRINT_ATTRf(type, p_unsigned); 1632 PRINT_ATTRf(size, p_unsigned); 1633 PRINT_ATTRf(config, p_hex); 1634 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1635 PRINT_ATTRf(sample_type, p_sample_type); 1636 PRINT_ATTRf(read_format, p_read_format); 1637 1638 PRINT_ATTRf(disabled, p_unsigned); 1639 PRINT_ATTRf(inherit, p_unsigned); 1640 PRINT_ATTRf(pinned, p_unsigned); 1641 PRINT_ATTRf(exclusive, p_unsigned); 1642 PRINT_ATTRf(exclude_user, p_unsigned); 1643 PRINT_ATTRf(exclude_kernel, p_unsigned); 1644 PRINT_ATTRf(exclude_hv, p_unsigned); 1645 PRINT_ATTRf(exclude_idle, p_unsigned); 1646 PRINT_ATTRf(mmap, p_unsigned); 1647 PRINT_ATTRf(comm, p_unsigned); 1648 PRINT_ATTRf(freq, p_unsigned); 1649 PRINT_ATTRf(inherit_stat, p_unsigned); 1650 PRINT_ATTRf(enable_on_exec, p_unsigned); 1651 PRINT_ATTRf(task, p_unsigned); 1652 PRINT_ATTRf(watermark, p_unsigned); 1653 PRINT_ATTRf(precise_ip, p_unsigned); 1654 PRINT_ATTRf(mmap_data, p_unsigned); 1655 PRINT_ATTRf(sample_id_all, p_unsigned); 1656 PRINT_ATTRf(exclude_host, p_unsigned); 1657 PRINT_ATTRf(exclude_guest, p_unsigned); 1658 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1659 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1660 PRINT_ATTRf(mmap2, p_unsigned); 1661 PRINT_ATTRf(comm_exec, p_unsigned); 1662 PRINT_ATTRf(use_clockid, p_unsigned); 1663 PRINT_ATTRf(context_switch, p_unsigned); 1664 PRINT_ATTRf(write_backward, p_unsigned); 1665 PRINT_ATTRf(namespaces, p_unsigned); 1666 PRINT_ATTRf(ksymbol, p_unsigned); 1667 PRINT_ATTRf(bpf_event, p_unsigned); 1668 1669 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1670 PRINT_ATTRf(bp_type, p_unsigned); 1671 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1672 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1673 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1674 PRINT_ATTRf(sample_regs_user, p_hex); 1675 PRINT_ATTRf(sample_stack_user, p_unsigned); 1676 PRINT_ATTRf(clockid, p_signed); 1677 PRINT_ATTRf(sample_regs_intr, p_hex); 1678 PRINT_ATTRf(aux_watermark, p_unsigned); 1679 PRINT_ATTRf(sample_max_stack, p_unsigned); 1680 1681 return ret; 1682 } 1683 1684 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1685 void *priv __maybe_unused) 1686 { 1687 return fprintf(fp, " %-32s %s\n", name, val); 1688 } 1689 1690 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1691 int nr_cpus, int nr_threads, 1692 int thread_idx) 1693 { 1694 for (int cpu = 0; cpu < nr_cpus; cpu++) 1695 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1696 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1697 } 1698 1699 static int update_fds(struct perf_evsel *evsel, 1700 int nr_cpus, int cpu_idx, 1701 int nr_threads, int thread_idx) 1702 { 1703 struct perf_evsel *pos; 1704 1705 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1706 return -EINVAL; 1707 1708 evlist__for_each_entry(evsel->evlist, pos) { 1709 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1710 1711 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1712 1713 /* 1714 * Since fds for next evsel has not been created, 1715 * there is no need to iterate whole event list. 1716 */ 1717 if (pos == evsel) 1718 break; 1719 } 1720 return 0; 1721 } 1722 1723 static bool ignore_missing_thread(struct perf_evsel *evsel, 1724 int nr_cpus, int cpu, 1725 struct thread_map *threads, 1726 int thread, int err) 1727 { 1728 pid_t ignore_pid = thread_map__pid(threads, thread); 1729 1730 if (!evsel->ignore_missing_thread) 1731 return false; 1732 1733 /* The system wide setup does not work with threads. */ 1734 if (evsel->system_wide) 1735 return false; 1736 1737 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1738 if (err != -ESRCH) 1739 return false; 1740 1741 /* If there's only one thread, let it fail. */ 1742 if (threads->nr == 1) 1743 return false; 1744 1745 /* 1746 * We should remove fd for missing_thread first 1747 * because thread_map__remove() will decrease threads->nr. 1748 */ 1749 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1750 return false; 1751 1752 if (thread_map__remove(threads, thread)) 1753 return false; 1754 1755 pr_warning("WARNING: Ignored open failure for pid %d\n", 1756 ignore_pid); 1757 return true; 1758 } 1759 1760 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1761 struct thread_map *threads) 1762 { 1763 int cpu, thread, nthreads; 1764 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1765 int pid = -1, err; 1766 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1767 1768 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1769 return -EINVAL; 1770 1771 if (cpus == NULL) { 1772 static struct cpu_map *empty_cpu_map; 1773 1774 if (empty_cpu_map == NULL) { 1775 empty_cpu_map = cpu_map__dummy_new(); 1776 if (empty_cpu_map == NULL) 1777 return -ENOMEM; 1778 } 1779 1780 cpus = empty_cpu_map; 1781 } 1782 1783 if (threads == NULL) { 1784 static struct thread_map *empty_thread_map; 1785 1786 if (empty_thread_map == NULL) { 1787 empty_thread_map = thread_map__new_by_tid(-1); 1788 if (empty_thread_map == NULL) 1789 return -ENOMEM; 1790 } 1791 1792 threads = empty_thread_map; 1793 } 1794 1795 if (evsel->system_wide) 1796 nthreads = 1; 1797 else 1798 nthreads = threads->nr; 1799 1800 if (evsel->fd == NULL && 1801 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1802 return -ENOMEM; 1803 1804 if (evsel->cgrp) { 1805 flags |= PERF_FLAG_PID_CGROUP; 1806 pid = evsel->cgrp->fd; 1807 } 1808 1809 fallback_missing_features: 1810 if (perf_missing_features.clockid_wrong) 1811 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1812 if (perf_missing_features.clockid) { 1813 evsel->attr.use_clockid = 0; 1814 evsel->attr.clockid = 0; 1815 } 1816 if (perf_missing_features.cloexec) 1817 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1818 if (perf_missing_features.mmap2) 1819 evsel->attr.mmap2 = 0; 1820 if (perf_missing_features.exclude_guest) 1821 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1822 if (perf_missing_features.lbr_flags) 1823 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1824 PERF_SAMPLE_BRANCH_NO_CYCLES); 1825 if (perf_missing_features.group_read && evsel->attr.inherit) 1826 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1827 if (perf_missing_features.ksymbol) 1828 evsel->attr.ksymbol = 0; 1829 if (perf_missing_features.bpf_event) 1830 evsel->attr.bpf_event = 0; 1831 retry_sample_id: 1832 if (perf_missing_features.sample_id_all) 1833 evsel->attr.sample_id_all = 0; 1834 1835 if (verbose >= 2) { 1836 fprintf(stderr, "%.60s\n", graph_dotted_line); 1837 fprintf(stderr, "perf_event_attr:\n"); 1838 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1839 fprintf(stderr, "%.60s\n", graph_dotted_line); 1840 } 1841 1842 for (cpu = 0; cpu < cpus->nr; cpu++) { 1843 1844 for (thread = 0; thread < nthreads; thread++) { 1845 int fd, group_fd; 1846 1847 if (!evsel->cgrp && !evsel->system_wide) 1848 pid = thread_map__pid(threads, thread); 1849 1850 group_fd = get_group_fd(evsel, cpu, thread); 1851 retry_open: 1852 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1853 pid, cpus->map[cpu], group_fd, flags); 1854 1855 test_attr__ready(); 1856 1857 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1858 group_fd, flags); 1859 1860 FD(evsel, cpu, thread) = fd; 1861 1862 if (fd < 0) { 1863 err = -errno; 1864 1865 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1866 /* 1867 * We just removed 1 thread, so take a step 1868 * back on thread index and lower the upper 1869 * nthreads limit. 1870 */ 1871 nthreads--; 1872 thread--; 1873 1874 /* ... and pretend like nothing have happened. */ 1875 err = 0; 1876 continue; 1877 } 1878 1879 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1880 err); 1881 goto try_fallback; 1882 } 1883 1884 pr_debug2(" = %d\n", fd); 1885 1886 if (evsel->bpf_fd >= 0) { 1887 int evt_fd = fd; 1888 int bpf_fd = evsel->bpf_fd; 1889 1890 err = ioctl(evt_fd, 1891 PERF_EVENT_IOC_SET_BPF, 1892 bpf_fd); 1893 if (err && errno != EEXIST) { 1894 pr_err("failed to attach bpf fd %d: %s\n", 1895 bpf_fd, strerror(errno)); 1896 err = -EINVAL; 1897 goto out_close; 1898 } 1899 } 1900 1901 set_rlimit = NO_CHANGE; 1902 1903 /* 1904 * If we succeeded but had to kill clockid, fail and 1905 * have perf_evsel__open_strerror() print us a nice 1906 * error. 1907 */ 1908 if (perf_missing_features.clockid || 1909 perf_missing_features.clockid_wrong) { 1910 err = -EINVAL; 1911 goto out_close; 1912 } 1913 } 1914 } 1915 1916 return 0; 1917 1918 try_fallback: 1919 /* 1920 * perf stat needs between 5 and 22 fds per CPU. When we run out 1921 * of them try to increase the limits. 1922 */ 1923 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1924 struct rlimit l; 1925 int old_errno = errno; 1926 1927 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1928 if (set_rlimit == NO_CHANGE) 1929 l.rlim_cur = l.rlim_max; 1930 else { 1931 l.rlim_cur = l.rlim_max + 1000; 1932 l.rlim_max = l.rlim_cur; 1933 } 1934 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1935 set_rlimit++; 1936 errno = old_errno; 1937 goto retry_open; 1938 } 1939 } 1940 errno = old_errno; 1941 } 1942 1943 if (err != -EINVAL || cpu > 0 || thread > 0) 1944 goto out_close; 1945 1946 /* 1947 * Must probe features in the order they were added to the 1948 * perf_event_attr interface. 1949 */ 1950 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 1951 perf_missing_features.bpf_event = true; 1952 pr_debug2("switching off bpf_event\n"); 1953 goto fallback_missing_features; 1954 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 1955 perf_missing_features.ksymbol = true; 1956 pr_debug2("switching off ksymbol\n"); 1957 goto fallback_missing_features; 1958 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1959 perf_missing_features.write_backward = true; 1960 pr_debug2("switching off write_backward\n"); 1961 goto out_close; 1962 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1963 perf_missing_features.clockid_wrong = true; 1964 pr_debug2("switching off clockid\n"); 1965 goto fallback_missing_features; 1966 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1967 perf_missing_features.clockid = true; 1968 pr_debug2("switching off use_clockid\n"); 1969 goto fallback_missing_features; 1970 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1971 perf_missing_features.cloexec = true; 1972 pr_debug2("switching off cloexec flag\n"); 1973 goto fallback_missing_features; 1974 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1975 perf_missing_features.mmap2 = true; 1976 pr_debug2("switching off mmap2\n"); 1977 goto fallback_missing_features; 1978 } else if (!perf_missing_features.exclude_guest && 1979 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1980 perf_missing_features.exclude_guest = true; 1981 pr_debug2("switching off exclude_guest, exclude_host\n"); 1982 goto fallback_missing_features; 1983 } else if (!perf_missing_features.sample_id_all) { 1984 perf_missing_features.sample_id_all = true; 1985 pr_debug2("switching off sample_id_all\n"); 1986 goto retry_sample_id; 1987 } else if (!perf_missing_features.lbr_flags && 1988 (evsel->attr.branch_sample_type & 1989 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1990 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1991 perf_missing_features.lbr_flags = true; 1992 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1993 goto fallback_missing_features; 1994 } else if (!perf_missing_features.group_read && 1995 evsel->attr.inherit && 1996 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1997 perf_evsel__is_group_leader(evsel)) { 1998 perf_missing_features.group_read = true; 1999 pr_debug2("switching off group read\n"); 2000 goto fallback_missing_features; 2001 } 2002 out_close: 2003 if (err) 2004 threads->err_thread = thread; 2005 2006 do { 2007 while (--thread >= 0) { 2008 close(FD(evsel, cpu, thread)); 2009 FD(evsel, cpu, thread) = -1; 2010 } 2011 thread = nthreads; 2012 } while (--cpu >= 0); 2013 return err; 2014 } 2015 2016 void perf_evsel__close(struct perf_evsel *evsel) 2017 { 2018 if (evsel->fd == NULL) 2019 return; 2020 2021 perf_evsel__close_fd(evsel); 2022 perf_evsel__free_fd(evsel); 2023 } 2024 2025 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2026 struct cpu_map *cpus) 2027 { 2028 return perf_evsel__open(evsel, cpus, NULL); 2029 } 2030 2031 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2032 struct thread_map *threads) 2033 { 2034 return perf_evsel__open(evsel, NULL, threads); 2035 } 2036 2037 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2038 const union perf_event *event, 2039 struct perf_sample *sample) 2040 { 2041 u64 type = evsel->attr.sample_type; 2042 const u64 *array = event->sample.array; 2043 bool swapped = evsel->needs_swap; 2044 union u64_swap u; 2045 2046 array += ((event->header.size - 2047 sizeof(event->header)) / sizeof(u64)) - 1; 2048 2049 if (type & PERF_SAMPLE_IDENTIFIER) { 2050 sample->id = *array; 2051 array--; 2052 } 2053 2054 if (type & PERF_SAMPLE_CPU) { 2055 u.val64 = *array; 2056 if (swapped) { 2057 /* undo swap of u64, then swap on individual u32s */ 2058 u.val64 = bswap_64(u.val64); 2059 u.val32[0] = bswap_32(u.val32[0]); 2060 } 2061 2062 sample->cpu = u.val32[0]; 2063 array--; 2064 } 2065 2066 if (type & PERF_SAMPLE_STREAM_ID) { 2067 sample->stream_id = *array; 2068 array--; 2069 } 2070 2071 if (type & PERF_SAMPLE_ID) { 2072 sample->id = *array; 2073 array--; 2074 } 2075 2076 if (type & PERF_SAMPLE_TIME) { 2077 sample->time = *array; 2078 array--; 2079 } 2080 2081 if (type & PERF_SAMPLE_TID) { 2082 u.val64 = *array; 2083 if (swapped) { 2084 /* undo swap of u64, then swap on individual u32s */ 2085 u.val64 = bswap_64(u.val64); 2086 u.val32[0] = bswap_32(u.val32[0]); 2087 u.val32[1] = bswap_32(u.val32[1]); 2088 } 2089 2090 sample->pid = u.val32[0]; 2091 sample->tid = u.val32[1]; 2092 array--; 2093 } 2094 2095 return 0; 2096 } 2097 2098 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2099 u64 size) 2100 { 2101 return size > max_size || offset + size > endp; 2102 } 2103 2104 #define OVERFLOW_CHECK(offset, size, max_size) \ 2105 do { \ 2106 if (overflow(endp, (max_size), (offset), (size))) \ 2107 return -EFAULT; \ 2108 } while (0) 2109 2110 #define OVERFLOW_CHECK_u64(offset) \ 2111 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2112 2113 static int 2114 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2115 { 2116 /* 2117 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2118 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2119 * check the format does not go past the end of the event. 2120 */ 2121 if (sample_size + sizeof(event->header) > event->header.size) 2122 return -EFAULT; 2123 2124 return 0; 2125 } 2126 2127 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2128 struct perf_sample *data) 2129 { 2130 u64 type = evsel->attr.sample_type; 2131 bool swapped = evsel->needs_swap; 2132 const u64 *array; 2133 u16 max_size = event->header.size; 2134 const void *endp = (void *)event + max_size; 2135 u64 sz; 2136 2137 /* 2138 * used for cross-endian analysis. See git commit 65014ab3 2139 * for why this goofiness is needed. 2140 */ 2141 union u64_swap u; 2142 2143 memset(data, 0, sizeof(*data)); 2144 data->cpu = data->pid = data->tid = -1; 2145 data->stream_id = data->id = data->time = -1ULL; 2146 data->period = evsel->attr.sample_period; 2147 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2148 data->misc = event->header.misc; 2149 data->id = -1ULL; 2150 data->data_src = PERF_MEM_DATA_SRC_NONE; 2151 2152 if (event->header.type != PERF_RECORD_SAMPLE) { 2153 if (!evsel->attr.sample_id_all) 2154 return 0; 2155 return perf_evsel__parse_id_sample(evsel, event, data); 2156 } 2157 2158 array = event->sample.array; 2159 2160 if (perf_event__check_size(event, evsel->sample_size)) 2161 return -EFAULT; 2162 2163 if (type & PERF_SAMPLE_IDENTIFIER) { 2164 data->id = *array; 2165 array++; 2166 } 2167 2168 if (type & PERF_SAMPLE_IP) { 2169 data->ip = *array; 2170 array++; 2171 } 2172 2173 if (type & PERF_SAMPLE_TID) { 2174 u.val64 = *array; 2175 if (swapped) { 2176 /* undo swap of u64, then swap on individual u32s */ 2177 u.val64 = bswap_64(u.val64); 2178 u.val32[0] = bswap_32(u.val32[0]); 2179 u.val32[1] = bswap_32(u.val32[1]); 2180 } 2181 2182 data->pid = u.val32[0]; 2183 data->tid = u.val32[1]; 2184 array++; 2185 } 2186 2187 if (type & PERF_SAMPLE_TIME) { 2188 data->time = *array; 2189 array++; 2190 } 2191 2192 if (type & PERF_SAMPLE_ADDR) { 2193 data->addr = *array; 2194 array++; 2195 } 2196 2197 if (type & PERF_SAMPLE_ID) { 2198 data->id = *array; 2199 array++; 2200 } 2201 2202 if (type & PERF_SAMPLE_STREAM_ID) { 2203 data->stream_id = *array; 2204 array++; 2205 } 2206 2207 if (type & PERF_SAMPLE_CPU) { 2208 2209 u.val64 = *array; 2210 if (swapped) { 2211 /* undo swap of u64, then swap on individual u32s */ 2212 u.val64 = bswap_64(u.val64); 2213 u.val32[0] = bswap_32(u.val32[0]); 2214 } 2215 2216 data->cpu = u.val32[0]; 2217 array++; 2218 } 2219 2220 if (type & PERF_SAMPLE_PERIOD) { 2221 data->period = *array; 2222 array++; 2223 } 2224 2225 if (type & PERF_SAMPLE_READ) { 2226 u64 read_format = evsel->attr.read_format; 2227 2228 OVERFLOW_CHECK_u64(array); 2229 if (read_format & PERF_FORMAT_GROUP) 2230 data->read.group.nr = *array; 2231 else 2232 data->read.one.value = *array; 2233 2234 array++; 2235 2236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2237 OVERFLOW_CHECK_u64(array); 2238 data->read.time_enabled = *array; 2239 array++; 2240 } 2241 2242 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2243 OVERFLOW_CHECK_u64(array); 2244 data->read.time_running = *array; 2245 array++; 2246 } 2247 2248 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2249 if (read_format & PERF_FORMAT_GROUP) { 2250 const u64 max_group_nr = UINT64_MAX / 2251 sizeof(struct sample_read_value); 2252 2253 if (data->read.group.nr > max_group_nr) 2254 return -EFAULT; 2255 sz = data->read.group.nr * 2256 sizeof(struct sample_read_value); 2257 OVERFLOW_CHECK(array, sz, max_size); 2258 data->read.group.values = 2259 (struct sample_read_value *)array; 2260 array = (void *)array + sz; 2261 } else { 2262 OVERFLOW_CHECK_u64(array); 2263 data->read.one.id = *array; 2264 array++; 2265 } 2266 } 2267 2268 if (evsel__has_callchain(evsel)) { 2269 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2270 2271 OVERFLOW_CHECK_u64(array); 2272 data->callchain = (struct ip_callchain *)array++; 2273 if (data->callchain->nr > max_callchain_nr) 2274 return -EFAULT; 2275 sz = data->callchain->nr * sizeof(u64); 2276 OVERFLOW_CHECK(array, sz, max_size); 2277 array = (void *)array + sz; 2278 } 2279 2280 if (type & PERF_SAMPLE_RAW) { 2281 OVERFLOW_CHECK_u64(array); 2282 u.val64 = *array; 2283 2284 /* 2285 * Undo swap of u64, then swap on individual u32s, 2286 * get the size of the raw area and undo all of the 2287 * swap. The pevent interface handles endianity by 2288 * itself. 2289 */ 2290 if (swapped) { 2291 u.val64 = bswap_64(u.val64); 2292 u.val32[0] = bswap_32(u.val32[0]); 2293 u.val32[1] = bswap_32(u.val32[1]); 2294 } 2295 data->raw_size = u.val32[0]; 2296 2297 /* 2298 * The raw data is aligned on 64bits including the 2299 * u32 size, so it's safe to use mem_bswap_64. 2300 */ 2301 if (swapped) 2302 mem_bswap_64((void *) array, data->raw_size); 2303 2304 array = (void *)array + sizeof(u32); 2305 2306 OVERFLOW_CHECK(array, data->raw_size, max_size); 2307 data->raw_data = (void *)array; 2308 array = (void *)array + data->raw_size; 2309 } 2310 2311 if (type & PERF_SAMPLE_BRANCH_STACK) { 2312 const u64 max_branch_nr = UINT64_MAX / 2313 sizeof(struct branch_entry); 2314 2315 OVERFLOW_CHECK_u64(array); 2316 data->branch_stack = (struct branch_stack *)array++; 2317 2318 if (data->branch_stack->nr > max_branch_nr) 2319 return -EFAULT; 2320 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2321 OVERFLOW_CHECK(array, sz, max_size); 2322 array = (void *)array + sz; 2323 } 2324 2325 if (type & PERF_SAMPLE_REGS_USER) { 2326 OVERFLOW_CHECK_u64(array); 2327 data->user_regs.abi = *array; 2328 array++; 2329 2330 if (data->user_regs.abi) { 2331 u64 mask = evsel->attr.sample_regs_user; 2332 2333 sz = hweight_long(mask) * sizeof(u64); 2334 OVERFLOW_CHECK(array, sz, max_size); 2335 data->user_regs.mask = mask; 2336 data->user_regs.regs = (u64 *)array; 2337 array = (void *)array + sz; 2338 } 2339 } 2340 2341 if (type & PERF_SAMPLE_STACK_USER) { 2342 OVERFLOW_CHECK_u64(array); 2343 sz = *array++; 2344 2345 data->user_stack.offset = ((char *)(array - 1) 2346 - (char *) event); 2347 2348 if (!sz) { 2349 data->user_stack.size = 0; 2350 } else { 2351 OVERFLOW_CHECK(array, sz, max_size); 2352 data->user_stack.data = (char *)array; 2353 array = (void *)array + sz; 2354 OVERFLOW_CHECK_u64(array); 2355 data->user_stack.size = *array++; 2356 if (WARN_ONCE(data->user_stack.size > sz, 2357 "user stack dump failure\n")) 2358 return -EFAULT; 2359 } 2360 } 2361 2362 if (type & PERF_SAMPLE_WEIGHT) { 2363 OVERFLOW_CHECK_u64(array); 2364 data->weight = *array; 2365 array++; 2366 } 2367 2368 if (type & PERF_SAMPLE_DATA_SRC) { 2369 OVERFLOW_CHECK_u64(array); 2370 data->data_src = *array; 2371 array++; 2372 } 2373 2374 if (type & PERF_SAMPLE_TRANSACTION) { 2375 OVERFLOW_CHECK_u64(array); 2376 data->transaction = *array; 2377 array++; 2378 } 2379 2380 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2381 if (type & PERF_SAMPLE_REGS_INTR) { 2382 OVERFLOW_CHECK_u64(array); 2383 data->intr_regs.abi = *array; 2384 array++; 2385 2386 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2387 u64 mask = evsel->attr.sample_regs_intr; 2388 2389 sz = hweight_long(mask) * sizeof(u64); 2390 OVERFLOW_CHECK(array, sz, max_size); 2391 data->intr_regs.mask = mask; 2392 data->intr_regs.regs = (u64 *)array; 2393 array = (void *)array + sz; 2394 } 2395 } 2396 2397 data->phys_addr = 0; 2398 if (type & PERF_SAMPLE_PHYS_ADDR) { 2399 data->phys_addr = *array; 2400 array++; 2401 } 2402 2403 return 0; 2404 } 2405 2406 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2407 union perf_event *event, 2408 u64 *timestamp) 2409 { 2410 u64 type = evsel->attr.sample_type; 2411 const u64 *array; 2412 2413 if (!(type & PERF_SAMPLE_TIME)) 2414 return -1; 2415 2416 if (event->header.type != PERF_RECORD_SAMPLE) { 2417 struct perf_sample data = { 2418 .time = -1ULL, 2419 }; 2420 2421 if (!evsel->attr.sample_id_all) 2422 return -1; 2423 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2424 return -1; 2425 2426 *timestamp = data.time; 2427 return 0; 2428 } 2429 2430 array = event->sample.array; 2431 2432 if (perf_event__check_size(event, evsel->sample_size)) 2433 return -EFAULT; 2434 2435 if (type & PERF_SAMPLE_IDENTIFIER) 2436 array++; 2437 2438 if (type & PERF_SAMPLE_IP) 2439 array++; 2440 2441 if (type & PERF_SAMPLE_TID) 2442 array++; 2443 2444 if (type & PERF_SAMPLE_TIME) 2445 *timestamp = *array; 2446 2447 return 0; 2448 } 2449 2450 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2451 u64 read_format) 2452 { 2453 size_t sz, result = sizeof(struct sample_event); 2454 2455 if (type & PERF_SAMPLE_IDENTIFIER) 2456 result += sizeof(u64); 2457 2458 if (type & PERF_SAMPLE_IP) 2459 result += sizeof(u64); 2460 2461 if (type & PERF_SAMPLE_TID) 2462 result += sizeof(u64); 2463 2464 if (type & PERF_SAMPLE_TIME) 2465 result += sizeof(u64); 2466 2467 if (type & PERF_SAMPLE_ADDR) 2468 result += sizeof(u64); 2469 2470 if (type & PERF_SAMPLE_ID) 2471 result += sizeof(u64); 2472 2473 if (type & PERF_SAMPLE_STREAM_ID) 2474 result += sizeof(u64); 2475 2476 if (type & PERF_SAMPLE_CPU) 2477 result += sizeof(u64); 2478 2479 if (type & PERF_SAMPLE_PERIOD) 2480 result += sizeof(u64); 2481 2482 if (type & PERF_SAMPLE_READ) { 2483 result += sizeof(u64); 2484 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2485 result += sizeof(u64); 2486 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2487 result += sizeof(u64); 2488 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2489 if (read_format & PERF_FORMAT_GROUP) { 2490 sz = sample->read.group.nr * 2491 sizeof(struct sample_read_value); 2492 result += sz; 2493 } else { 2494 result += sizeof(u64); 2495 } 2496 } 2497 2498 if (type & PERF_SAMPLE_CALLCHAIN) { 2499 sz = (sample->callchain->nr + 1) * sizeof(u64); 2500 result += sz; 2501 } 2502 2503 if (type & PERF_SAMPLE_RAW) { 2504 result += sizeof(u32); 2505 result += sample->raw_size; 2506 } 2507 2508 if (type & PERF_SAMPLE_BRANCH_STACK) { 2509 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2510 sz += sizeof(u64); 2511 result += sz; 2512 } 2513 2514 if (type & PERF_SAMPLE_REGS_USER) { 2515 if (sample->user_regs.abi) { 2516 result += sizeof(u64); 2517 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2518 result += sz; 2519 } else { 2520 result += sizeof(u64); 2521 } 2522 } 2523 2524 if (type & PERF_SAMPLE_STACK_USER) { 2525 sz = sample->user_stack.size; 2526 result += sizeof(u64); 2527 if (sz) { 2528 result += sz; 2529 result += sizeof(u64); 2530 } 2531 } 2532 2533 if (type & PERF_SAMPLE_WEIGHT) 2534 result += sizeof(u64); 2535 2536 if (type & PERF_SAMPLE_DATA_SRC) 2537 result += sizeof(u64); 2538 2539 if (type & PERF_SAMPLE_TRANSACTION) 2540 result += sizeof(u64); 2541 2542 if (type & PERF_SAMPLE_REGS_INTR) { 2543 if (sample->intr_regs.abi) { 2544 result += sizeof(u64); 2545 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2546 result += sz; 2547 } else { 2548 result += sizeof(u64); 2549 } 2550 } 2551 2552 if (type & PERF_SAMPLE_PHYS_ADDR) 2553 result += sizeof(u64); 2554 2555 return result; 2556 } 2557 2558 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2559 u64 read_format, 2560 const struct perf_sample *sample) 2561 { 2562 u64 *array; 2563 size_t sz; 2564 /* 2565 * used for cross-endian analysis. See git commit 65014ab3 2566 * for why this goofiness is needed. 2567 */ 2568 union u64_swap u; 2569 2570 array = event->sample.array; 2571 2572 if (type & PERF_SAMPLE_IDENTIFIER) { 2573 *array = sample->id; 2574 array++; 2575 } 2576 2577 if (type & PERF_SAMPLE_IP) { 2578 *array = sample->ip; 2579 array++; 2580 } 2581 2582 if (type & PERF_SAMPLE_TID) { 2583 u.val32[0] = sample->pid; 2584 u.val32[1] = sample->tid; 2585 *array = u.val64; 2586 array++; 2587 } 2588 2589 if (type & PERF_SAMPLE_TIME) { 2590 *array = sample->time; 2591 array++; 2592 } 2593 2594 if (type & PERF_SAMPLE_ADDR) { 2595 *array = sample->addr; 2596 array++; 2597 } 2598 2599 if (type & PERF_SAMPLE_ID) { 2600 *array = sample->id; 2601 array++; 2602 } 2603 2604 if (type & PERF_SAMPLE_STREAM_ID) { 2605 *array = sample->stream_id; 2606 array++; 2607 } 2608 2609 if (type & PERF_SAMPLE_CPU) { 2610 u.val32[0] = sample->cpu; 2611 u.val32[1] = 0; 2612 *array = u.val64; 2613 array++; 2614 } 2615 2616 if (type & PERF_SAMPLE_PERIOD) { 2617 *array = sample->period; 2618 array++; 2619 } 2620 2621 if (type & PERF_SAMPLE_READ) { 2622 if (read_format & PERF_FORMAT_GROUP) 2623 *array = sample->read.group.nr; 2624 else 2625 *array = sample->read.one.value; 2626 array++; 2627 2628 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2629 *array = sample->read.time_enabled; 2630 array++; 2631 } 2632 2633 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2634 *array = sample->read.time_running; 2635 array++; 2636 } 2637 2638 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2639 if (read_format & PERF_FORMAT_GROUP) { 2640 sz = sample->read.group.nr * 2641 sizeof(struct sample_read_value); 2642 memcpy(array, sample->read.group.values, sz); 2643 array = (void *)array + sz; 2644 } else { 2645 *array = sample->read.one.id; 2646 array++; 2647 } 2648 } 2649 2650 if (type & PERF_SAMPLE_CALLCHAIN) { 2651 sz = (sample->callchain->nr + 1) * sizeof(u64); 2652 memcpy(array, sample->callchain, sz); 2653 array = (void *)array + sz; 2654 } 2655 2656 if (type & PERF_SAMPLE_RAW) { 2657 u.val32[0] = sample->raw_size; 2658 *array = u.val64; 2659 array = (void *)array + sizeof(u32); 2660 2661 memcpy(array, sample->raw_data, sample->raw_size); 2662 array = (void *)array + sample->raw_size; 2663 } 2664 2665 if (type & PERF_SAMPLE_BRANCH_STACK) { 2666 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2667 sz += sizeof(u64); 2668 memcpy(array, sample->branch_stack, sz); 2669 array = (void *)array + sz; 2670 } 2671 2672 if (type & PERF_SAMPLE_REGS_USER) { 2673 if (sample->user_regs.abi) { 2674 *array++ = sample->user_regs.abi; 2675 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2676 memcpy(array, sample->user_regs.regs, sz); 2677 array = (void *)array + sz; 2678 } else { 2679 *array++ = 0; 2680 } 2681 } 2682 2683 if (type & PERF_SAMPLE_STACK_USER) { 2684 sz = sample->user_stack.size; 2685 *array++ = sz; 2686 if (sz) { 2687 memcpy(array, sample->user_stack.data, sz); 2688 array = (void *)array + sz; 2689 *array++ = sz; 2690 } 2691 } 2692 2693 if (type & PERF_SAMPLE_WEIGHT) { 2694 *array = sample->weight; 2695 array++; 2696 } 2697 2698 if (type & PERF_SAMPLE_DATA_SRC) { 2699 *array = sample->data_src; 2700 array++; 2701 } 2702 2703 if (type & PERF_SAMPLE_TRANSACTION) { 2704 *array = sample->transaction; 2705 array++; 2706 } 2707 2708 if (type & PERF_SAMPLE_REGS_INTR) { 2709 if (sample->intr_regs.abi) { 2710 *array++ = sample->intr_regs.abi; 2711 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2712 memcpy(array, sample->intr_regs.regs, sz); 2713 array = (void *)array + sz; 2714 } else { 2715 *array++ = 0; 2716 } 2717 } 2718 2719 if (type & PERF_SAMPLE_PHYS_ADDR) { 2720 *array = sample->phys_addr; 2721 array++; 2722 } 2723 2724 return 0; 2725 } 2726 2727 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2728 { 2729 return tep_find_field(evsel->tp_format, name); 2730 } 2731 2732 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2733 const char *name) 2734 { 2735 struct tep_format_field *field = perf_evsel__field(evsel, name); 2736 int offset; 2737 2738 if (!field) 2739 return NULL; 2740 2741 offset = field->offset; 2742 2743 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2744 offset = *(int *)(sample->raw_data + field->offset); 2745 offset &= 0xffff; 2746 } 2747 2748 return sample->raw_data + offset; 2749 } 2750 2751 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2752 bool needs_swap) 2753 { 2754 u64 value; 2755 void *ptr = sample->raw_data + field->offset; 2756 2757 switch (field->size) { 2758 case 1: 2759 return *(u8 *)ptr; 2760 case 2: 2761 value = *(u16 *)ptr; 2762 break; 2763 case 4: 2764 value = *(u32 *)ptr; 2765 break; 2766 case 8: 2767 memcpy(&value, ptr, sizeof(u64)); 2768 break; 2769 default: 2770 return 0; 2771 } 2772 2773 if (!needs_swap) 2774 return value; 2775 2776 switch (field->size) { 2777 case 2: 2778 return bswap_16(value); 2779 case 4: 2780 return bswap_32(value); 2781 case 8: 2782 return bswap_64(value); 2783 default: 2784 return 0; 2785 } 2786 2787 return 0; 2788 } 2789 2790 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2791 const char *name) 2792 { 2793 struct tep_format_field *field = perf_evsel__field(evsel, name); 2794 2795 if (!field) 2796 return 0; 2797 2798 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2799 } 2800 2801 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2802 char *msg, size_t msgsize) 2803 { 2804 int paranoid; 2805 2806 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2807 evsel->attr.type == PERF_TYPE_HARDWARE && 2808 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2809 /* 2810 * If it's cycles then fall back to hrtimer based 2811 * cpu-clock-tick sw counter, which is always available even if 2812 * no PMU support. 2813 * 2814 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2815 * b0a873e). 2816 */ 2817 scnprintf(msg, msgsize, "%s", 2818 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2819 2820 evsel->attr.type = PERF_TYPE_SOFTWARE; 2821 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2822 2823 zfree(&evsel->name); 2824 return true; 2825 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2826 (paranoid = perf_event_paranoid()) > 1) { 2827 const char *name = perf_evsel__name(evsel); 2828 char *new_name; 2829 const char *sep = ":"; 2830 2831 /* Is there already the separator in the name. */ 2832 if (strchr(name, '/') || 2833 strchr(name, ':')) 2834 sep = ""; 2835 2836 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2837 return false; 2838 2839 if (evsel->name) 2840 free(evsel->name); 2841 evsel->name = new_name; 2842 scnprintf(msg, msgsize, 2843 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2844 evsel->attr.exclude_kernel = 1; 2845 2846 return true; 2847 } 2848 2849 return false; 2850 } 2851 2852 static bool find_process(const char *name) 2853 { 2854 size_t len = strlen(name); 2855 DIR *dir; 2856 struct dirent *d; 2857 int ret = -1; 2858 2859 dir = opendir(procfs__mountpoint()); 2860 if (!dir) 2861 return false; 2862 2863 /* Walk through the directory. */ 2864 while (ret && (d = readdir(dir)) != NULL) { 2865 char path[PATH_MAX]; 2866 char *data; 2867 size_t size; 2868 2869 if ((d->d_type != DT_DIR) || 2870 !strcmp(".", d->d_name) || 2871 !strcmp("..", d->d_name)) 2872 continue; 2873 2874 scnprintf(path, sizeof(path), "%s/%s/comm", 2875 procfs__mountpoint(), d->d_name); 2876 2877 if (filename__read_str(path, &data, &size)) 2878 continue; 2879 2880 ret = strncmp(name, data, len); 2881 free(data); 2882 } 2883 2884 closedir(dir); 2885 return ret ? false : true; 2886 } 2887 2888 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2889 int err, char *msg, size_t size) 2890 { 2891 char sbuf[STRERR_BUFSIZE]; 2892 int printed = 0; 2893 2894 switch (err) { 2895 case EPERM: 2896 case EACCES: 2897 if (err == EPERM) 2898 printed = scnprintf(msg, size, 2899 "No permission to enable %s event.\n\n", 2900 perf_evsel__name(evsel)); 2901 2902 return scnprintf(msg + printed, size - printed, 2903 "You may not have permission to collect %sstats.\n\n" 2904 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2905 "which controls use of the performance events system by\n" 2906 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2907 "The current value is %d:\n\n" 2908 " -1: Allow use of (almost) all events by all users\n" 2909 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2910 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2911 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2912 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2913 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2914 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2915 " kernel.perf_event_paranoid = -1\n" , 2916 target->system_wide ? "system-wide " : "", 2917 perf_event_paranoid()); 2918 case ENOENT: 2919 return scnprintf(msg, size, "The %s event is not supported.", 2920 perf_evsel__name(evsel)); 2921 case EMFILE: 2922 return scnprintf(msg, size, "%s", 2923 "Too many events are opened.\n" 2924 "Probably the maximum number of open file descriptors has been reached.\n" 2925 "Hint: Try again after reducing the number of events.\n" 2926 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2927 case ENOMEM: 2928 if (evsel__has_callchain(evsel) && 2929 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2930 return scnprintf(msg, size, 2931 "Not enough memory to setup event with callchain.\n" 2932 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2933 "Hint: Current value: %d", sysctl__max_stack()); 2934 break; 2935 case ENODEV: 2936 if (target->cpu_list) 2937 return scnprintf(msg, size, "%s", 2938 "No such device - did you specify an out-of-range profile CPU?"); 2939 break; 2940 case EOPNOTSUPP: 2941 if (evsel->attr.sample_period != 0) 2942 return scnprintf(msg, size, 2943 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2944 perf_evsel__name(evsel)); 2945 if (evsel->attr.precise_ip) 2946 return scnprintf(msg, size, "%s", 2947 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2948 #if defined(__i386__) || defined(__x86_64__) 2949 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2950 return scnprintf(msg, size, "%s", 2951 "No hardware sampling interrupt available.\n"); 2952 #endif 2953 break; 2954 case EBUSY: 2955 if (find_process("oprofiled")) 2956 return scnprintf(msg, size, 2957 "The PMU counters are busy/taken by another profiler.\n" 2958 "We found oprofile daemon running, please stop it and try again."); 2959 break; 2960 case EINVAL: 2961 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2962 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2963 if (perf_missing_features.clockid) 2964 return scnprintf(msg, size, "clockid feature not supported."); 2965 if (perf_missing_features.clockid_wrong) 2966 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2967 break; 2968 default: 2969 break; 2970 } 2971 2972 return scnprintf(msg, size, 2973 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2974 "/bin/dmesg | grep -i perf may provide additional information.\n", 2975 err, str_error_r(err, sbuf, sizeof(sbuf)), 2976 perf_evsel__name(evsel)); 2977 } 2978 2979 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2980 { 2981 if (evsel && evsel->evlist) 2982 return evsel->evlist->env; 2983 return NULL; 2984 } 2985 2986 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2987 { 2988 int cpu, thread; 2989 2990 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 2991 for (thread = 0; thread < xyarray__max_y(evsel->fd); 2992 thread++) { 2993 int fd = FD(evsel, cpu, thread); 2994 2995 if (perf_evlist__id_add_fd(evlist, evsel, 2996 cpu, thread, fd) < 0) 2997 return -1; 2998 } 2999 } 3000 3001 return 0; 3002 } 3003 3004 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3005 { 3006 struct cpu_map *cpus = evsel->cpus; 3007 struct thread_map *threads = evsel->threads; 3008 3009 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3010 return -ENOMEM; 3011 3012 return store_evsel_ids(evsel, evlist); 3013 } 3014