xref: /linux/tools/perf/util/evsel.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 #include "trace-event.h"
27 
28 static struct {
29 	bool sample_id_all;
30 	bool exclude_guest;
31 	bool mmap2;
32 } perf_missing_features;
33 
34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
35 
36 int __perf_evsel__sample_size(u64 sample_type)
37 {
38 	u64 mask = sample_type & PERF_SAMPLE_MASK;
39 	int size = 0;
40 	int i;
41 
42 	for (i = 0; i < 64; i++) {
43 		if (mask & (1ULL << i))
44 			size++;
45 	}
46 
47 	size *= sizeof(u64);
48 
49 	return size;
50 }
51 
52 /**
53  * __perf_evsel__calc_id_pos - calculate id_pos.
54  * @sample_type: sample type
55  *
56  * This function returns the position of the event id (PERF_SAMPLE_ID or
57  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
58  * sample_event.
59  */
60 static int __perf_evsel__calc_id_pos(u64 sample_type)
61 {
62 	int idx = 0;
63 
64 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
65 		return 0;
66 
67 	if (!(sample_type & PERF_SAMPLE_ID))
68 		return -1;
69 
70 	if (sample_type & PERF_SAMPLE_IP)
71 		idx += 1;
72 
73 	if (sample_type & PERF_SAMPLE_TID)
74 		idx += 1;
75 
76 	if (sample_type & PERF_SAMPLE_TIME)
77 		idx += 1;
78 
79 	if (sample_type & PERF_SAMPLE_ADDR)
80 		idx += 1;
81 
82 	return idx;
83 }
84 
85 /**
86  * __perf_evsel__calc_is_pos - calculate is_pos.
87  * @sample_type: sample type
88  *
89  * This function returns the position (counting backwards) of the event id
90  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
91  * sample_id_all is used there is an id sample appended to non-sample events.
92  */
93 static int __perf_evsel__calc_is_pos(u64 sample_type)
94 {
95 	int idx = 1;
96 
97 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
98 		return 1;
99 
100 	if (!(sample_type & PERF_SAMPLE_ID))
101 		return -1;
102 
103 	if (sample_type & PERF_SAMPLE_CPU)
104 		idx += 1;
105 
106 	if (sample_type & PERF_SAMPLE_STREAM_ID)
107 		idx += 1;
108 
109 	return idx;
110 }
111 
112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
113 {
114 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
115 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
116 }
117 
118 void hists__init(struct hists *hists)
119 {
120 	memset(hists, 0, sizeof(*hists));
121 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
122 	hists->entries_in = &hists->entries_in_array[0];
123 	hists->entries_collapsed = RB_ROOT;
124 	hists->entries = RB_ROOT;
125 	pthread_mutex_init(&hists->lock, NULL);
126 }
127 
128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
129 				  enum perf_event_sample_format bit)
130 {
131 	if (!(evsel->attr.sample_type & bit)) {
132 		evsel->attr.sample_type |= bit;
133 		evsel->sample_size += sizeof(u64);
134 		perf_evsel__calc_id_pos(evsel);
135 	}
136 }
137 
138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
139 				    enum perf_event_sample_format bit)
140 {
141 	if (evsel->attr.sample_type & bit) {
142 		evsel->attr.sample_type &= ~bit;
143 		evsel->sample_size -= sizeof(u64);
144 		perf_evsel__calc_id_pos(evsel);
145 	}
146 }
147 
148 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
149 			       bool can_sample_identifier)
150 {
151 	if (can_sample_identifier) {
152 		perf_evsel__reset_sample_bit(evsel, ID);
153 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
154 	} else {
155 		perf_evsel__set_sample_bit(evsel, ID);
156 	}
157 	evsel->attr.read_format |= PERF_FORMAT_ID;
158 }
159 
160 void perf_evsel__init(struct perf_evsel *evsel,
161 		      struct perf_event_attr *attr, int idx)
162 {
163 	evsel->idx	   = idx;
164 	evsel->attr	   = *attr;
165 	evsel->leader	   = evsel;
166 	evsel->unit	   = "";
167 	evsel->scale	   = 1.0;
168 	INIT_LIST_HEAD(&evsel->node);
169 	hists__init(&evsel->hists);
170 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
171 	perf_evsel__calc_id_pos(evsel);
172 }
173 
174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
175 {
176 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
177 
178 	if (evsel != NULL)
179 		perf_evsel__init(evsel, attr, idx);
180 
181 	return evsel;
182 }
183 
184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
185 {
186 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
187 
188 	if (evsel != NULL) {
189 		struct perf_event_attr attr = {
190 			.type	       = PERF_TYPE_TRACEPOINT,
191 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
192 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
193 		};
194 
195 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
196 			goto out_free;
197 
198 		evsel->tp_format = trace_event__tp_format(sys, name);
199 		if (evsel->tp_format == NULL)
200 			goto out_free;
201 
202 		event_attr_init(&attr);
203 		attr.config = evsel->tp_format->id;
204 		attr.sample_period = 1;
205 		perf_evsel__init(evsel, &attr, idx);
206 	}
207 
208 	return evsel;
209 
210 out_free:
211 	zfree(&evsel->name);
212 	free(evsel);
213 	return NULL;
214 }
215 
216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
217 	"cycles",
218 	"instructions",
219 	"cache-references",
220 	"cache-misses",
221 	"branches",
222 	"branch-misses",
223 	"bus-cycles",
224 	"stalled-cycles-frontend",
225 	"stalled-cycles-backend",
226 	"ref-cycles",
227 };
228 
229 static const char *__perf_evsel__hw_name(u64 config)
230 {
231 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
232 		return perf_evsel__hw_names[config];
233 
234 	return "unknown-hardware";
235 }
236 
237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
238 {
239 	int colon = 0, r = 0;
240 	struct perf_event_attr *attr = &evsel->attr;
241 	bool exclude_guest_default = false;
242 
243 #define MOD_PRINT(context, mod)	do {					\
244 		if (!attr->exclude_##context) {				\
245 			if (!colon) colon = ++r;			\
246 			r += scnprintf(bf + r, size - r, "%c", mod);	\
247 		} } while(0)
248 
249 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
250 		MOD_PRINT(kernel, 'k');
251 		MOD_PRINT(user, 'u');
252 		MOD_PRINT(hv, 'h');
253 		exclude_guest_default = true;
254 	}
255 
256 	if (attr->precise_ip) {
257 		if (!colon)
258 			colon = ++r;
259 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
260 		exclude_guest_default = true;
261 	}
262 
263 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
264 		MOD_PRINT(host, 'H');
265 		MOD_PRINT(guest, 'G');
266 	}
267 #undef MOD_PRINT
268 	if (colon)
269 		bf[colon - 1] = ':';
270 	return r;
271 }
272 
273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
276 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
277 }
278 
279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
280 	"cpu-clock",
281 	"task-clock",
282 	"page-faults",
283 	"context-switches",
284 	"cpu-migrations",
285 	"minor-faults",
286 	"major-faults",
287 	"alignment-faults",
288 	"emulation-faults",
289 	"dummy",
290 };
291 
292 static const char *__perf_evsel__sw_name(u64 config)
293 {
294 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
295 		return perf_evsel__sw_names[config];
296 	return "unknown-software";
297 }
298 
299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
302 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
303 }
304 
305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
306 {
307 	int r;
308 
309 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
310 
311 	if (type & HW_BREAKPOINT_R)
312 		r += scnprintf(bf + r, size - r, "r");
313 
314 	if (type & HW_BREAKPOINT_W)
315 		r += scnprintf(bf + r, size - r, "w");
316 
317 	if (type & HW_BREAKPOINT_X)
318 		r += scnprintf(bf + r, size - r, "x");
319 
320 	return r;
321 }
322 
323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
324 {
325 	struct perf_event_attr *attr = &evsel->attr;
326 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
327 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
328 }
329 
330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
331 				[PERF_EVSEL__MAX_ALIASES] = {
332  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
333  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
334  { "LLC",	"L2",							},
335  { "dTLB",	"d-tlb",	"Data-TLB",				},
336  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
337  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
338  { "node",								},
339 };
340 
341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
342 				   [PERF_EVSEL__MAX_ALIASES] = {
343  { "load",	"loads",	"read",					},
344  { "store",	"stores",	"write",				},
345  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
346 };
347 
348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
349 				       [PERF_EVSEL__MAX_ALIASES] = {
350  { "refs",	"Reference",	"ops",		"access",		},
351  { "misses",	"miss",							},
352 };
353 
354 #define C(x)		PERF_COUNT_HW_CACHE_##x
355 #define CACHE_READ	(1 << C(OP_READ))
356 #define CACHE_WRITE	(1 << C(OP_WRITE))
357 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
358 #define COP(x)		(1 << x)
359 
360 /*
361  * cache operartion stat
362  * L1I : Read and prefetch only
363  * ITLB and BPU : Read-only
364  */
365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
366  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
367  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
368  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
369  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
370  [C(ITLB)]	= (CACHE_READ),
371  [C(BPU)]	= (CACHE_READ),
372  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
373 };
374 
375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
376 {
377 	if (perf_evsel__hw_cache_stat[type] & COP(op))
378 		return true;	/* valid */
379 	else
380 		return false;	/* invalid */
381 }
382 
383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
384 					    char *bf, size_t size)
385 {
386 	if (result) {
387 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
388 				 perf_evsel__hw_cache_op[op][0],
389 				 perf_evsel__hw_cache_result[result][0]);
390 	}
391 
392 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
393 			 perf_evsel__hw_cache_op[op][1]);
394 }
395 
396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
397 {
398 	u8 op, result, type = (config >>  0) & 0xff;
399 	const char *err = "unknown-ext-hardware-cache-type";
400 
401 	if (type > PERF_COUNT_HW_CACHE_MAX)
402 		goto out_err;
403 
404 	op = (config >>  8) & 0xff;
405 	err = "unknown-ext-hardware-cache-op";
406 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
407 		goto out_err;
408 
409 	result = (config >> 16) & 0xff;
410 	err = "unknown-ext-hardware-cache-result";
411 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
412 		goto out_err;
413 
414 	err = "invalid-cache";
415 	if (!perf_evsel__is_cache_op_valid(type, op))
416 		goto out_err;
417 
418 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
419 out_err:
420 	return scnprintf(bf, size, "%s", err);
421 }
422 
423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
424 {
425 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
426 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
427 }
428 
429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
430 {
431 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
432 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
433 }
434 
435 const char *perf_evsel__name(struct perf_evsel *evsel)
436 {
437 	char bf[128];
438 
439 	if (evsel->name)
440 		return evsel->name;
441 
442 	switch (evsel->attr.type) {
443 	case PERF_TYPE_RAW:
444 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
445 		break;
446 
447 	case PERF_TYPE_HARDWARE:
448 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
449 		break;
450 
451 	case PERF_TYPE_HW_CACHE:
452 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
453 		break;
454 
455 	case PERF_TYPE_SOFTWARE:
456 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
457 		break;
458 
459 	case PERF_TYPE_TRACEPOINT:
460 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
461 		break;
462 
463 	case PERF_TYPE_BREAKPOINT:
464 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
465 		break;
466 
467 	default:
468 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
469 			  evsel->attr.type);
470 		break;
471 	}
472 
473 	evsel->name = strdup(bf);
474 
475 	return evsel->name ?: "unknown";
476 }
477 
478 const char *perf_evsel__group_name(struct perf_evsel *evsel)
479 {
480 	return evsel->group_name ?: "anon group";
481 }
482 
483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
484 {
485 	int ret;
486 	struct perf_evsel *pos;
487 	const char *group_name = perf_evsel__group_name(evsel);
488 
489 	ret = scnprintf(buf, size, "%s", group_name);
490 
491 	ret += scnprintf(buf + ret, size - ret, " { %s",
492 			 perf_evsel__name(evsel));
493 
494 	for_each_group_member(pos, evsel)
495 		ret += scnprintf(buf + ret, size - ret, ", %s",
496 				 perf_evsel__name(pos));
497 
498 	ret += scnprintf(buf + ret, size - ret, " }");
499 
500 	return ret;
501 }
502 
503 static void
504 perf_evsel__config_callgraph(struct perf_evsel *evsel,
505 			     struct record_opts *opts)
506 {
507 	bool function = perf_evsel__is_function_event(evsel);
508 	struct perf_event_attr *attr = &evsel->attr;
509 
510 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
511 
512 	if (opts->call_graph == CALLCHAIN_DWARF) {
513 		if (!function) {
514 			perf_evsel__set_sample_bit(evsel, REGS_USER);
515 			perf_evsel__set_sample_bit(evsel, STACK_USER);
516 			attr->sample_regs_user = PERF_REGS_MASK;
517 			attr->sample_stack_user = opts->stack_dump_size;
518 			attr->exclude_callchain_user = 1;
519 		} else {
520 			pr_info("Cannot use DWARF unwind for function trace event,"
521 				" falling back to framepointers.\n");
522 		}
523 	}
524 
525 	if (function) {
526 		pr_info("Disabling user space callchains for function trace event.\n");
527 		attr->exclude_callchain_user = 1;
528 	}
529 }
530 
531 /*
532  * The enable_on_exec/disabled value strategy:
533  *
534  *  1) For any type of traced program:
535  *    - all independent events and group leaders are disabled
536  *    - all group members are enabled
537  *
538  *     Group members are ruled by group leaders. They need to
539  *     be enabled, because the group scheduling relies on that.
540  *
541  *  2) For traced programs executed by perf:
542  *     - all independent events and group leaders have
543  *       enable_on_exec set
544  *     - we don't specifically enable or disable any event during
545  *       the record command
546  *
547  *     Independent events and group leaders are initially disabled
548  *     and get enabled by exec. Group members are ruled by group
549  *     leaders as stated in 1).
550  *
551  *  3) For traced programs attached by perf (pid/tid):
552  *     - we specifically enable or disable all events during
553  *       the record command
554  *
555  *     When attaching events to already running traced we
556  *     enable/disable events specifically, as there's no
557  *     initial traced exec call.
558  */
559 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
560 {
561 	struct perf_evsel *leader = evsel->leader;
562 	struct perf_event_attr *attr = &evsel->attr;
563 	int track = !evsel->idx; /* only the first counter needs these */
564 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
565 
566 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
567 	attr->inherit	    = !opts->no_inherit;
568 
569 	perf_evsel__set_sample_bit(evsel, IP);
570 	perf_evsel__set_sample_bit(evsel, TID);
571 
572 	if (evsel->sample_read) {
573 		perf_evsel__set_sample_bit(evsel, READ);
574 
575 		/*
576 		 * We need ID even in case of single event, because
577 		 * PERF_SAMPLE_READ process ID specific data.
578 		 */
579 		perf_evsel__set_sample_id(evsel, false);
580 
581 		/*
582 		 * Apply group format only if we belong to group
583 		 * with more than one members.
584 		 */
585 		if (leader->nr_members > 1) {
586 			attr->read_format |= PERF_FORMAT_GROUP;
587 			attr->inherit = 0;
588 		}
589 	}
590 
591 	/*
592 	 * We default some events to have a default interval. But keep
593 	 * it a weak assumption overridable by the user.
594 	 */
595 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
596 				     opts->user_interval != ULLONG_MAX)) {
597 		if (opts->freq) {
598 			perf_evsel__set_sample_bit(evsel, PERIOD);
599 			attr->freq		= 1;
600 			attr->sample_freq	= opts->freq;
601 		} else {
602 			attr->sample_period = opts->default_interval;
603 		}
604 	}
605 
606 	/*
607 	 * Disable sampling for all group members other
608 	 * than leader in case leader 'leads' the sampling.
609 	 */
610 	if ((leader != evsel) && leader->sample_read) {
611 		attr->sample_freq   = 0;
612 		attr->sample_period = 0;
613 	}
614 
615 	if (opts->no_samples)
616 		attr->sample_freq = 0;
617 
618 	if (opts->inherit_stat)
619 		attr->inherit_stat = 1;
620 
621 	if (opts->sample_address) {
622 		perf_evsel__set_sample_bit(evsel, ADDR);
623 		attr->mmap_data = track;
624 	}
625 
626 	if (opts->call_graph_enabled)
627 		perf_evsel__config_callgraph(evsel, opts);
628 
629 	if (target__has_cpu(&opts->target))
630 		perf_evsel__set_sample_bit(evsel, CPU);
631 
632 	if (opts->period)
633 		perf_evsel__set_sample_bit(evsel, PERIOD);
634 
635 	if (!perf_missing_features.sample_id_all &&
636 	    (opts->sample_time || !opts->no_inherit ||
637 	     target__has_cpu(&opts->target) || per_cpu))
638 		perf_evsel__set_sample_bit(evsel, TIME);
639 
640 	if (opts->raw_samples) {
641 		perf_evsel__set_sample_bit(evsel, TIME);
642 		perf_evsel__set_sample_bit(evsel, RAW);
643 		perf_evsel__set_sample_bit(evsel, CPU);
644 	}
645 
646 	if (opts->sample_address)
647 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
648 
649 	if (opts->no_buffering) {
650 		attr->watermark = 0;
651 		attr->wakeup_events = 1;
652 	}
653 	if (opts->branch_stack) {
654 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
655 		attr->branch_sample_type = opts->branch_stack;
656 	}
657 
658 	if (opts->sample_weight)
659 		perf_evsel__set_sample_bit(evsel, WEIGHT);
660 
661 	attr->mmap  = track;
662 	attr->mmap2 = track && !perf_missing_features.mmap2;
663 	attr->comm  = track;
664 
665 	if (opts->sample_transaction)
666 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
667 
668 	/*
669 	 * XXX see the function comment above
670 	 *
671 	 * Disabling only independent events or group leaders,
672 	 * keeping group members enabled.
673 	 */
674 	if (perf_evsel__is_group_leader(evsel))
675 		attr->disabled = 1;
676 
677 	/*
678 	 * Setting enable_on_exec for independent events and
679 	 * group leaders for traced executed by perf.
680 	 */
681 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
682 		!opts->initial_delay)
683 		attr->enable_on_exec = 1;
684 }
685 
686 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
687 {
688 	int cpu, thread;
689 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
690 
691 	if (evsel->fd) {
692 		for (cpu = 0; cpu < ncpus; cpu++) {
693 			for (thread = 0; thread < nthreads; thread++) {
694 				FD(evsel, cpu, thread) = -1;
695 			}
696 		}
697 	}
698 
699 	return evsel->fd != NULL ? 0 : -ENOMEM;
700 }
701 
702 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
703 			  int ioc,  void *arg)
704 {
705 	int cpu, thread;
706 
707 	for (cpu = 0; cpu < ncpus; cpu++) {
708 		for (thread = 0; thread < nthreads; thread++) {
709 			int fd = FD(evsel, cpu, thread),
710 			    err = ioctl(fd, ioc, arg);
711 
712 			if (err)
713 				return err;
714 		}
715 	}
716 
717 	return 0;
718 }
719 
720 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
721 			   const char *filter)
722 {
723 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
724 				     PERF_EVENT_IOC_SET_FILTER,
725 				     (void *)filter);
726 }
727 
728 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
729 {
730 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
731 				     PERF_EVENT_IOC_ENABLE,
732 				     0);
733 }
734 
735 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
736 {
737 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
738 	if (evsel->sample_id == NULL)
739 		return -ENOMEM;
740 
741 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
742 	if (evsel->id == NULL) {
743 		xyarray__delete(evsel->sample_id);
744 		evsel->sample_id = NULL;
745 		return -ENOMEM;
746 	}
747 
748 	return 0;
749 }
750 
751 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
752 {
753 	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
754 				 (ncpus * sizeof(struct perf_counts_values))));
755 }
756 
757 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
758 {
759 	evsel->counts = zalloc((sizeof(*evsel->counts) +
760 				(ncpus * sizeof(struct perf_counts_values))));
761 	return evsel->counts != NULL ? 0 : -ENOMEM;
762 }
763 
764 void perf_evsel__free_fd(struct perf_evsel *evsel)
765 {
766 	xyarray__delete(evsel->fd);
767 	evsel->fd = NULL;
768 }
769 
770 void perf_evsel__free_id(struct perf_evsel *evsel)
771 {
772 	xyarray__delete(evsel->sample_id);
773 	evsel->sample_id = NULL;
774 	zfree(&evsel->id);
775 }
776 
777 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
778 {
779 	int cpu, thread;
780 
781 	for (cpu = 0; cpu < ncpus; cpu++)
782 		for (thread = 0; thread < nthreads; ++thread) {
783 			close(FD(evsel, cpu, thread));
784 			FD(evsel, cpu, thread) = -1;
785 		}
786 }
787 
788 void perf_evsel__free_counts(struct perf_evsel *evsel)
789 {
790 	zfree(&evsel->counts);
791 }
792 
793 void perf_evsel__exit(struct perf_evsel *evsel)
794 {
795 	assert(list_empty(&evsel->node));
796 	perf_evsel__free_fd(evsel);
797 	perf_evsel__free_id(evsel);
798 }
799 
800 void perf_evsel__delete(struct perf_evsel *evsel)
801 {
802 	perf_evsel__exit(evsel);
803 	close_cgroup(evsel->cgrp);
804 	zfree(&evsel->group_name);
805 	if (evsel->tp_format)
806 		pevent_free_format(evsel->tp_format);
807 	zfree(&evsel->name);
808 	free(evsel);
809 }
810 
811 static inline void compute_deltas(struct perf_evsel *evsel,
812 				  int cpu,
813 				  struct perf_counts_values *count)
814 {
815 	struct perf_counts_values tmp;
816 
817 	if (!evsel->prev_raw_counts)
818 		return;
819 
820 	if (cpu == -1) {
821 		tmp = evsel->prev_raw_counts->aggr;
822 		evsel->prev_raw_counts->aggr = *count;
823 	} else {
824 		tmp = evsel->prev_raw_counts->cpu[cpu];
825 		evsel->prev_raw_counts->cpu[cpu] = *count;
826 	}
827 
828 	count->val = count->val - tmp.val;
829 	count->ena = count->ena - tmp.ena;
830 	count->run = count->run - tmp.run;
831 }
832 
833 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
834 			      int cpu, int thread, bool scale)
835 {
836 	struct perf_counts_values count;
837 	size_t nv = scale ? 3 : 1;
838 
839 	if (FD(evsel, cpu, thread) < 0)
840 		return -EINVAL;
841 
842 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
843 		return -ENOMEM;
844 
845 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
846 		return -errno;
847 
848 	compute_deltas(evsel, cpu, &count);
849 
850 	if (scale) {
851 		if (count.run == 0)
852 			count.val = 0;
853 		else if (count.run < count.ena)
854 			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
855 	} else
856 		count.ena = count.run = 0;
857 
858 	evsel->counts->cpu[cpu] = count;
859 	return 0;
860 }
861 
862 int __perf_evsel__read(struct perf_evsel *evsel,
863 		       int ncpus, int nthreads, bool scale)
864 {
865 	size_t nv = scale ? 3 : 1;
866 	int cpu, thread;
867 	struct perf_counts_values *aggr = &evsel->counts->aggr, count;
868 
869 	aggr->val = aggr->ena = aggr->run = 0;
870 
871 	for (cpu = 0; cpu < ncpus; cpu++) {
872 		for (thread = 0; thread < nthreads; thread++) {
873 			if (FD(evsel, cpu, thread) < 0)
874 				continue;
875 
876 			if (readn(FD(evsel, cpu, thread),
877 				  &count, nv * sizeof(u64)) < 0)
878 				return -errno;
879 
880 			aggr->val += count.val;
881 			if (scale) {
882 				aggr->ena += count.ena;
883 				aggr->run += count.run;
884 			}
885 		}
886 	}
887 
888 	compute_deltas(evsel, -1, aggr);
889 
890 	evsel->counts->scaled = 0;
891 	if (scale) {
892 		if (aggr->run == 0) {
893 			evsel->counts->scaled = -1;
894 			aggr->val = 0;
895 			return 0;
896 		}
897 
898 		if (aggr->run < aggr->ena) {
899 			evsel->counts->scaled = 1;
900 			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
901 		}
902 	} else
903 		aggr->ena = aggr->run = 0;
904 
905 	return 0;
906 }
907 
908 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
909 {
910 	struct perf_evsel *leader = evsel->leader;
911 	int fd;
912 
913 	if (perf_evsel__is_group_leader(evsel))
914 		return -1;
915 
916 	/*
917 	 * Leader must be already processed/open,
918 	 * if not it's a bug.
919 	 */
920 	BUG_ON(!leader->fd);
921 
922 	fd = FD(leader, cpu, thread);
923 	BUG_ON(fd == -1);
924 
925 	return fd;
926 }
927 
928 #define __PRINT_ATTR(fmt, cast, field)  \
929 	fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
930 
931 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
932 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
933 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
934 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
935 
936 #define PRINT_ATTR2N(name1, field1, name2, field2)	\
937 	fprintf(fp, "  %-19s %u    %-19s %u\n",		\
938 	name1, attr->field1, name2, attr->field2)
939 
940 #define PRINT_ATTR2(field1, field2) \
941 	PRINT_ATTR2N(#field1, field1, #field2, field2)
942 
943 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
944 {
945 	size_t ret = 0;
946 
947 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
948 	ret += fprintf(fp, "perf_event_attr:\n");
949 
950 	ret += PRINT_ATTR_U32(type);
951 	ret += PRINT_ATTR_U32(size);
952 	ret += PRINT_ATTR_X64(config);
953 	ret += PRINT_ATTR_U64(sample_period);
954 	ret += PRINT_ATTR_U64(sample_freq);
955 	ret += PRINT_ATTR_X64(sample_type);
956 	ret += PRINT_ATTR_X64(read_format);
957 
958 	ret += PRINT_ATTR2(disabled, inherit);
959 	ret += PRINT_ATTR2(pinned, exclusive);
960 	ret += PRINT_ATTR2(exclude_user, exclude_kernel);
961 	ret += PRINT_ATTR2(exclude_hv, exclude_idle);
962 	ret += PRINT_ATTR2(mmap, comm);
963 	ret += PRINT_ATTR2(freq, inherit_stat);
964 	ret += PRINT_ATTR2(enable_on_exec, task);
965 	ret += PRINT_ATTR2(watermark, precise_ip);
966 	ret += PRINT_ATTR2(mmap_data, sample_id_all);
967 	ret += PRINT_ATTR2(exclude_host, exclude_guest);
968 	ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
969 			    "excl.callchain_user", exclude_callchain_user);
970 	ret += PRINT_ATTR_U32(mmap2);
971 
972 	ret += PRINT_ATTR_U32(wakeup_events);
973 	ret += PRINT_ATTR_U32(wakeup_watermark);
974 	ret += PRINT_ATTR_X32(bp_type);
975 	ret += PRINT_ATTR_X64(bp_addr);
976 	ret += PRINT_ATTR_X64(config1);
977 	ret += PRINT_ATTR_U64(bp_len);
978 	ret += PRINT_ATTR_X64(config2);
979 	ret += PRINT_ATTR_X64(branch_sample_type);
980 	ret += PRINT_ATTR_X64(sample_regs_user);
981 	ret += PRINT_ATTR_U32(sample_stack_user);
982 
983 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
984 
985 	return ret;
986 }
987 
988 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
989 			      struct thread_map *threads)
990 {
991 	int cpu, thread;
992 	unsigned long flags = 0;
993 	int pid = -1, err;
994 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
995 
996 	if (evsel->fd == NULL &&
997 	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
998 		return -ENOMEM;
999 
1000 	if (evsel->cgrp) {
1001 		flags = PERF_FLAG_PID_CGROUP;
1002 		pid = evsel->cgrp->fd;
1003 	}
1004 
1005 fallback_missing_features:
1006 	if (perf_missing_features.mmap2)
1007 		evsel->attr.mmap2 = 0;
1008 	if (perf_missing_features.exclude_guest)
1009 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1010 retry_sample_id:
1011 	if (perf_missing_features.sample_id_all)
1012 		evsel->attr.sample_id_all = 0;
1013 
1014 	if (verbose >= 2)
1015 		perf_event_attr__fprintf(&evsel->attr, stderr);
1016 
1017 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1018 
1019 		for (thread = 0; thread < threads->nr; thread++) {
1020 			int group_fd;
1021 
1022 			if (!evsel->cgrp)
1023 				pid = threads->map[thread];
1024 
1025 			group_fd = get_group_fd(evsel, cpu, thread);
1026 retry_open:
1027 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1028 				  pid, cpus->map[cpu], group_fd, flags);
1029 
1030 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1031 								     pid,
1032 								     cpus->map[cpu],
1033 								     group_fd, flags);
1034 			if (FD(evsel, cpu, thread) < 0) {
1035 				err = -errno;
1036 				pr_debug2("sys_perf_event_open failed, error %d\n",
1037 					  err);
1038 				goto try_fallback;
1039 			}
1040 			set_rlimit = NO_CHANGE;
1041 		}
1042 	}
1043 
1044 	return 0;
1045 
1046 try_fallback:
1047 	/*
1048 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1049 	 * of them try to increase the limits.
1050 	 */
1051 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1052 		struct rlimit l;
1053 		int old_errno = errno;
1054 
1055 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1056 			if (set_rlimit == NO_CHANGE)
1057 				l.rlim_cur = l.rlim_max;
1058 			else {
1059 				l.rlim_cur = l.rlim_max + 1000;
1060 				l.rlim_max = l.rlim_cur;
1061 			}
1062 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1063 				set_rlimit++;
1064 				errno = old_errno;
1065 				goto retry_open;
1066 			}
1067 		}
1068 		errno = old_errno;
1069 	}
1070 
1071 	if (err != -EINVAL || cpu > 0 || thread > 0)
1072 		goto out_close;
1073 
1074 	if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1075 		perf_missing_features.mmap2 = true;
1076 		goto fallback_missing_features;
1077 	} else if (!perf_missing_features.exclude_guest &&
1078 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1079 		perf_missing_features.exclude_guest = true;
1080 		goto fallback_missing_features;
1081 	} else if (!perf_missing_features.sample_id_all) {
1082 		perf_missing_features.sample_id_all = true;
1083 		goto retry_sample_id;
1084 	}
1085 
1086 out_close:
1087 	do {
1088 		while (--thread >= 0) {
1089 			close(FD(evsel, cpu, thread));
1090 			FD(evsel, cpu, thread) = -1;
1091 		}
1092 		thread = threads->nr;
1093 	} while (--cpu >= 0);
1094 	return err;
1095 }
1096 
1097 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1098 {
1099 	if (evsel->fd == NULL)
1100 		return;
1101 
1102 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1103 	perf_evsel__free_fd(evsel);
1104 }
1105 
1106 static struct {
1107 	struct cpu_map map;
1108 	int cpus[1];
1109 } empty_cpu_map = {
1110 	.map.nr	= 1,
1111 	.cpus	= { -1, },
1112 };
1113 
1114 static struct {
1115 	struct thread_map map;
1116 	int threads[1];
1117 } empty_thread_map = {
1118 	.map.nr	 = 1,
1119 	.threads = { -1, },
1120 };
1121 
1122 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1123 		     struct thread_map *threads)
1124 {
1125 	if (cpus == NULL) {
1126 		/* Work around old compiler warnings about strict aliasing */
1127 		cpus = &empty_cpu_map.map;
1128 	}
1129 
1130 	if (threads == NULL)
1131 		threads = &empty_thread_map.map;
1132 
1133 	return __perf_evsel__open(evsel, cpus, threads);
1134 }
1135 
1136 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1137 			     struct cpu_map *cpus)
1138 {
1139 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1140 }
1141 
1142 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1143 				struct thread_map *threads)
1144 {
1145 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1146 }
1147 
1148 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1149 				       const union perf_event *event,
1150 				       struct perf_sample *sample)
1151 {
1152 	u64 type = evsel->attr.sample_type;
1153 	const u64 *array = event->sample.array;
1154 	bool swapped = evsel->needs_swap;
1155 	union u64_swap u;
1156 
1157 	array += ((event->header.size -
1158 		   sizeof(event->header)) / sizeof(u64)) - 1;
1159 
1160 	if (type & PERF_SAMPLE_IDENTIFIER) {
1161 		sample->id = *array;
1162 		array--;
1163 	}
1164 
1165 	if (type & PERF_SAMPLE_CPU) {
1166 		u.val64 = *array;
1167 		if (swapped) {
1168 			/* undo swap of u64, then swap on individual u32s */
1169 			u.val64 = bswap_64(u.val64);
1170 			u.val32[0] = bswap_32(u.val32[0]);
1171 		}
1172 
1173 		sample->cpu = u.val32[0];
1174 		array--;
1175 	}
1176 
1177 	if (type & PERF_SAMPLE_STREAM_ID) {
1178 		sample->stream_id = *array;
1179 		array--;
1180 	}
1181 
1182 	if (type & PERF_SAMPLE_ID) {
1183 		sample->id = *array;
1184 		array--;
1185 	}
1186 
1187 	if (type & PERF_SAMPLE_TIME) {
1188 		sample->time = *array;
1189 		array--;
1190 	}
1191 
1192 	if (type & PERF_SAMPLE_TID) {
1193 		u.val64 = *array;
1194 		if (swapped) {
1195 			/* undo swap of u64, then swap on individual u32s */
1196 			u.val64 = bswap_64(u.val64);
1197 			u.val32[0] = bswap_32(u.val32[0]);
1198 			u.val32[1] = bswap_32(u.val32[1]);
1199 		}
1200 
1201 		sample->pid = u.val32[0];
1202 		sample->tid = u.val32[1];
1203 		array--;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1210 			    u64 size)
1211 {
1212 	return size > max_size || offset + size > endp;
1213 }
1214 
1215 #define OVERFLOW_CHECK(offset, size, max_size)				\
1216 	do {								\
1217 		if (overflow(endp, (max_size), (offset), (size)))	\
1218 			return -EFAULT;					\
1219 	} while (0)
1220 
1221 #define OVERFLOW_CHECK_u64(offset) \
1222 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1223 
1224 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1225 			     struct perf_sample *data)
1226 {
1227 	u64 type = evsel->attr.sample_type;
1228 	bool swapped = evsel->needs_swap;
1229 	const u64 *array;
1230 	u16 max_size = event->header.size;
1231 	const void *endp = (void *)event + max_size;
1232 	u64 sz;
1233 
1234 	/*
1235 	 * used for cross-endian analysis. See git commit 65014ab3
1236 	 * for why this goofiness is needed.
1237 	 */
1238 	union u64_swap u;
1239 
1240 	memset(data, 0, sizeof(*data));
1241 	data->cpu = data->pid = data->tid = -1;
1242 	data->stream_id = data->id = data->time = -1ULL;
1243 	data->period = evsel->attr.sample_period;
1244 	data->weight = 0;
1245 
1246 	if (event->header.type != PERF_RECORD_SAMPLE) {
1247 		if (!evsel->attr.sample_id_all)
1248 			return 0;
1249 		return perf_evsel__parse_id_sample(evsel, event, data);
1250 	}
1251 
1252 	array = event->sample.array;
1253 
1254 	/*
1255 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1256 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1257 	 * check the format does not go past the end of the event.
1258 	 */
1259 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1260 		return -EFAULT;
1261 
1262 	data->id = -1ULL;
1263 	if (type & PERF_SAMPLE_IDENTIFIER) {
1264 		data->id = *array;
1265 		array++;
1266 	}
1267 
1268 	if (type & PERF_SAMPLE_IP) {
1269 		data->ip = *array;
1270 		array++;
1271 	}
1272 
1273 	if (type & PERF_SAMPLE_TID) {
1274 		u.val64 = *array;
1275 		if (swapped) {
1276 			/* undo swap of u64, then swap on individual u32s */
1277 			u.val64 = bswap_64(u.val64);
1278 			u.val32[0] = bswap_32(u.val32[0]);
1279 			u.val32[1] = bswap_32(u.val32[1]);
1280 		}
1281 
1282 		data->pid = u.val32[0];
1283 		data->tid = u.val32[1];
1284 		array++;
1285 	}
1286 
1287 	if (type & PERF_SAMPLE_TIME) {
1288 		data->time = *array;
1289 		array++;
1290 	}
1291 
1292 	data->addr = 0;
1293 	if (type & PERF_SAMPLE_ADDR) {
1294 		data->addr = *array;
1295 		array++;
1296 	}
1297 
1298 	if (type & PERF_SAMPLE_ID) {
1299 		data->id = *array;
1300 		array++;
1301 	}
1302 
1303 	if (type & PERF_SAMPLE_STREAM_ID) {
1304 		data->stream_id = *array;
1305 		array++;
1306 	}
1307 
1308 	if (type & PERF_SAMPLE_CPU) {
1309 
1310 		u.val64 = *array;
1311 		if (swapped) {
1312 			/* undo swap of u64, then swap on individual u32s */
1313 			u.val64 = bswap_64(u.val64);
1314 			u.val32[0] = bswap_32(u.val32[0]);
1315 		}
1316 
1317 		data->cpu = u.val32[0];
1318 		array++;
1319 	}
1320 
1321 	if (type & PERF_SAMPLE_PERIOD) {
1322 		data->period = *array;
1323 		array++;
1324 	}
1325 
1326 	if (type & PERF_SAMPLE_READ) {
1327 		u64 read_format = evsel->attr.read_format;
1328 
1329 		OVERFLOW_CHECK_u64(array);
1330 		if (read_format & PERF_FORMAT_GROUP)
1331 			data->read.group.nr = *array;
1332 		else
1333 			data->read.one.value = *array;
1334 
1335 		array++;
1336 
1337 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1338 			OVERFLOW_CHECK_u64(array);
1339 			data->read.time_enabled = *array;
1340 			array++;
1341 		}
1342 
1343 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1344 			OVERFLOW_CHECK_u64(array);
1345 			data->read.time_running = *array;
1346 			array++;
1347 		}
1348 
1349 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1350 		if (read_format & PERF_FORMAT_GROUP) {
1351 			const u64 max_group_nr = UINT64_MAX /
1352 					sizeof(struct sample_read_value);
1353 
1354 			if (data->read.group.nr > max_group_nr)
1355 				return -EFAULT;
1356 			sz = data->read.group.nr *
1357 			     sizeof(struct sample_read_value);
1358 			OVERFLOW_CHECK(array, sz, max_size);
1359 			data->read.group.values =
1360 					(struct sample_read_value *)array;
1361 			array = (void *)array + sz;
1362 		} else {
1363 			OVERFLOW_CHECK_u64(array);
1364 			data->read.one.id = *array;
1365 			array++;
1366 		}
1367 	}
1368 
1369 	if (type & PERF_SAMPLE_CALLCHAIN) {
1370 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1371 
1372 		OVERFLOW_CHECK_u64(array);
1373 		data->callchain = (struct ip_callchain *)array++;
1374 		if (data->callchain->nr > max_callchain_nr)
1375 			return -EFAULT;
1376 		sz = data->callchain->nr * sizeof(u64);
1377 		OVERFLOW_CHECK(array, sz, max_size);
1378 		array = (void *)array + sz;
1379 	}
1380 
1381 	if (type & PERF_SAMPLE_RAW) {
1382 		OVERFLOW_CHECK_u64(array);
1383 		u.val64 = *array;
1384 		if (WARN_ONCE(swapped,
1385 			      "Endianness of raw data not corrected!\n")) {
1386 			/* undo swap of u64, then swap on individual u32s */
1387 			u.val64 = bswap_64(u.val64);
1388 			u.val32[0] = bswap_32(u.val32[0]);
1389 			u.val32[1] = bswap_32(u.val32[1]);
1390 		}
1391 		data->raw_size = u.val32[0];
1392 		array = (void *)array + sizeof(u32);
1393 
1394 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1395 		data->raw_data = (void *)array;
1396 		array = (void *)array + data->raw_size;
1397 	}
1398 
1399 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1400 		const u64 max_branch_nr = UINT64_MAX /
1401 					  sizeof(struct branch_entry);
1402 
1403 		OVERFLOW_CHECK_u64(array);
1404 		data->branch_stack = (struct branch_stack *)array++;
1405 
1406 		if (data->branch_stack->nr > max_branch_nr)
1407 			return -EFAULT;
1408 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1409 		OVERFLOW_CHECK(array, sz, max_size);
1410 		array = (void *)array + sz;
1411 	}
1412 
1413 	if (type & PERF_SAMPLE_REGS_USER) {
1414 		OVERFLOW_CHECK_u64(array);
1415 		data->user_regs.abi = *array;
1416 		array++;
1417 
1418 		if (data->user_regs.abi) {
1419 			u64 mask = evsel->attr.sample_regs_user;
1420 
1421 			sz = hweight_long(mask) * sizeof(u64);
1422 			OVERFLOW_CHECK(array, sz, max_size);
1423 			data->user_regs.mask = mask;
1424 			data->user_regs.regs = (u64 *)array;
1425 			array = (void *)array + sz;
1426 		}
1427 	}
1428 
1429 	if (type & PERF_SAMPLE_STACK_USER) {
1430 		OVERFLOW_CHECK_u64(array);
1431 		sz = *array++;
1432 
1433 		data->user_stack.offset = ((char *)(array - 1)
1434 					  - (char *) event);
1435 
1436 		if (!sz) {
1437 			data->user_stack.size = 0;
1438 		} else {
1439 			OVERFLOW_CHECK(array, sz, max_size);
1440 			data->user_stack.data = (char *)array;
1441 			array = (void *)array + sz;
1442 			OVERFLOW_CHECK_u64(array);
1443 			data->user_stack.size = *array++;
1444 			if (WARN_ONCE(data->user_stack.size > sz,
1445 				      "user stack dump failure\n"))
1446 				return -EFAULT;
1447 		}
1448 	}
1449 
1450 	data->weight = 0;
1451 	if (type & PERF_SAMPLE_WEIGHT) {
1452 		OVERFLOW_CHECK_u64(array);
1453 		data->weight = *array;
1454 		array++;
1455 	}
1456 
1457 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1458 	if (type & PERF_SAMPLE_DATA_SRC) {
1459 		OVERFLOW_CHECK_u64(array);
1460 		data->data_src = *array;
1461 		array++;
1462 	}
1463 
1464 	data->transaction = 0;
1465 	if (type & PERF_SAMPLE_TRANSACTION) {
1466 		OVERFLOW_CHECK_u64(array);
1467 		data->transaction = *array;
1468 		array++;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1475 				     u64 read_format)
1476 {
1477 	size_t sz, result = sizeof(struct sample_event);
1478 
1479 	if (type & PERF_SAMPLE_IDENTIFIER)
1480 		result += sizeof(u64);
1481 
1482 	if (type & PERF_SAMPLE_IP)
1483 		result += sizeof(u64);
1484 
1485 	if (type & PERF_SAMPLE_TID)
1486 		result += sizeof(u64);
1487 
1488 	if (type & PERF_SAMPLE_TIME)
1489 		result += sizeof(u64);
1490 
1491 	if (type & PERF_SAMPLE_ADDR)
1492 		result += sizeof(u64);
1493 
1494 	if (type & PERF_SAMPLE_ID)
1495 		result += sizeof(u64);
1496 
1497 	if (type & PERF_SAMPLE_STREAM_ID)
1498 		result += sizeof(u64);
1499 
1500 	if (type & PERF_SAMPLE_CPU)
1501 		result += sizeof(u64);
1502 
1503 	if (type & PERF_SAMPLE_PERIOD)
1504 		result += sizeof(u64);
1505 
1506 	if (type & PERF_SAMPLE_READ) {
1507 		result += sizeof(u64);
1508 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1509 			result += sizeof(u64);
1510 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511 			result += sizeof(u64);
1512 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1513 		if (read_format & PERF_FORMAT_GROUP) {
1514 			sz = sample->read.group.nr *
1515 			     sizeof(struct sample_read_value);
1516 			result += sz;
1517 		} else {
1518 			result += sizeof(u64);
1519 		}
1520 	}
1521 
1522 	if (type & PERF_SAMPLE_CALLCHAIN) {
1523 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1524 		result += sz;
1525 	}
1526 
1527 	if (type & PERF_SAMPLE_RAW) {
1528 		result += sizeof(u32);
1529 		result += sample->raw_size;
1530 	}
1531 
1532 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1533 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1534 		sz += sizeof(u64);
1535 		result += sz;
1536 	}
1537 
1538 	if (type & PERF_SAMPLE_REGS_USER) {
1539 		if (sample->user_regs.abi) {
1540 			result += sizeof(u64);
1541 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1542 			result += sz;
1543 		} else {
1544 			result += sizeof(u64);
1545 		}
1546 	}
1547 
1548 	if (type & PERF_SAMPLE_STACK_USER) {
1549 		sz = sample->user_stack.size;
1550 		result += sizeof(u64);
1551 		if (sz) {
1552 			result += sz;
1553 			result += sizeof(u64);
1554 		}
1555 	}
1556 
1557 	if (type & PERF_SAMPLE_WEIGHT)
1558 		result += sizeof(u64);
1559 
1560 	if (type & PERF_SAMPLE_DATA_SRC)
1561 		result += sizeof(u64);
1562 
1563 	if (type & PERF_SAMPLE_TRANSACTION)
1564 		result += sizeof(u64);
1565 
1566 	return result;
1567 }
1568 
1569 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1570 				  u64 read_format,
1571 				  const struct perf_sample *sample,
1572 				  bool swapped)
1573 {
1574 	u64 *array;
1575 	size_t sz;
1576 	/*
1577 	 * used for cross-endian analysis. See git commit 65014ab3
1578 	 * for why this goofiness is needed.
1579 	 */
1580 	union u64_swap u;
1581 
1582 	array = event->sample.array;
1583 
1584 	if (type & PERF_SAMPLE_IDENTIFIER) {
1585 		*array = sample->id;
1586 		array++;
1587 	}
1588 
1589 	if (type & PERF_SAMPLE_IP) {
1590 		*array = sample->ip;
1591 		array++;
1592 	}
1593 
1594 	if (type & PERF_SAMPLE_TID) {
1595 		u.val32[0] = sample->pid;
1596 		u.val32[1] = sample->tid;
1597 		if (swapped) {
1598 			/*
1599 			 * Inverse of what is done in perf_evsel__parse_sample
1600 			 */
1601 			u.val32[0] = bswap_32(u.val32[0]);
1602 			u.val32[1] = bswap_32(u.val32[1]);
1603 			u.val64 = bswap_64(u.val64);
1604 		}
1605 
1606 		*array = u.val64;
1607 		array++;
1608 	}
1609 
1610 	if (type & PERF_SAMPLE_TIME) {
1611 		*array = sample->time;
1612 		array++;
1613 	}
1614 
1615 	if (type & PERF_SAMPLE_ADDR) {
1616 		*array = sample->addr;
1617 		array++;
1618 	}
1619 
1620 	if (type & PERF_SAMPLE_ID) {
1621 		*array = sample->id;
1622 		array++;
1623 	}
1624 
1625 	if (type & PERF_SAMPLE_STREAM_ID) {
1626 		*array = sample->stream_id;
1627 		array++;
1628 	}
1629 
1630 	if (type & PERF_SAMPLE_CPU) {
1631 		u.val32[0] = sample->cpu;
1632 		if (swapped) {
1633 			/*
1634 			 * Inverse of what is done in perf_evsel__parse_sample
1635 			 */
1636 			u.val32[0] = bswap_32(u.val32[0]);
1637 			u.val64 = bswap_64(u.val64);
1638 		}
1639 		*array = u.val64;
1640 		array++;
1641 	}
1642 
1643 	if (type & PERF_SAMPLE_PERIOD) {
1644 		*array = sample->period;
1645 		array++;
1646 	}
1647 
1648 	if (type & PERF_SAMPLE_READ) {
1649 		if (read_format & PERF_FORMAT_GROUP)
1650 			*array = sample->read.group.nr;
1651 		else
1652 			*array = sample->read.one.value;
1653 		array++;
1654 
1655 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1656 			*array = sample->read.time_enabled;
1657 			array++;
1658 		}
1659 
1660 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1661 			*array = sample->read.time_running;
1662 			array++;
1663 		}
1664 
1665 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1666 		if (read_format & PERF_FORMAT_GROUP) {
1667 			sz = sample->read.group.nr *
1668 			     sizeof(struct sample_read_value);
1669 			memcpy(array, sample->read.group.values, sz);
1670 			array = (void *)array + sz;
1671 		} else {
1672 			*array = sample->read.one.id;
1673 			array++;
1674 		}
1675 	}
1676 
1677 	if (type & PERF_SAMPLE_CALLCHAIN) {
1678 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1679 		memcpy(array, sample->callchain, sz);
1680 		array = (void *)array + sz;
1681 	}
1682 
1683 	if (type & PERF_SAMPLE_RAW) {
1684 		u.val32[0] = sample->raw_size;
1685 		if (WARN_ONCE(swapped,
1686 			      "Endianness of raw data not corrected!\n")) {
1687 			/*
1688 			 * Inverse of what is done in perf_evsel__parse_sample
1689 			 */
1690 			u.val32[0] = bswap_32(u.val32[0]);
1691 			u.val32[1] = bswap_32(u.val32[1]);
1692 			u.val64 = bswap_64(u.val64);
1693 		}
1694 		*array = u.val64;
1695 		array = (void *)array + sizeof(u32);
1696 
1697 		memcpy(array, sample->raw_data, sample->raw_size);
1698 		array = (void *)array + sample->raw_size;
1699 	}
1700 
1701 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1702 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1703 		sz += sizeof(u64);
1704 		memcpy(array, sample->branch_stack, sz);
1705 		array = (void *)array + sz;
1706 	}
1707 
1708 	if (type & PERF_SAMPLE_REGS_USER) {
1709 		if (sample->user_regs.abi) {
1710 			*array++ = sample->user_regs.abi;
1711 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1712 			memcpy(array, sample->user_regs.regs, sz);
1713 			array = (void *)array + sz;
1714 		} else {
1715 			*array++ = 0;
1716 		}
1717 	}
1718 
1719 	if (type & PERF_SAMPLE_STACK_USER) {
1720 		sz = sample->user_stack.size;
1721 		*array++ = sz;
1722 		if (sz) {
1723 			memcpy(array, sample->user_stack.data, sz);
1724 			array = (void *)array + sz;
1725 			*array++ = sz;
1726 		}
1727 	}
1728 
1729 	if (type & PERF_SAMPLE_WEIGHT) {
1730 		*array = sample->weight;
1731 		array++;
1732 	}
1733 
1734 	if (type & PERF_SAMPLE_DATA_SRC) {
1735 		*array = sample->data_src;
1736 		array++;
1737 	}
1738 
1739 	if (type & PERF_SAMPLE_TRANSACTION) {
1740 		*array = sample->transaction;
1741 		array++;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1748 {
1749 	return pevent_find_field(evsel->tp_format, name);
1750 }
1751 
1752 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1753 			 const char *name)
1754 {
1755 	struct format_field *field = perf_evsel__field(evsel, name);
1756 	int offset;
1757 
1758 	if (!field)
1759 		return NULL;
1760 
1761 	offset = field->offset;
1762 
1763 	if (field->flags & FIELD_IS_DYNAMIC) {
1764 		offset = *(int *)(sample->raw_data + field->offset);
1765 		offset &= 0xffff;
1766 	}
1767 
1768 	return sample->raw_data + offset;
1769 }
1770 
1771 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1772 		       const char *name)
1773 {
1774 	struct format_field *field = perf_evsel__field(evsel, name);
1775 	void *ptr;
1776 	u64 value;
1777 
1778 	if (!field)
1779 		return 0;
1780 
1781 	ptr = sample->raw_data + field->offset;
1782 
1783 	switch (field->size) {
1784 	case 1:
1785 		return *(u8 *)ptr;
1786 	case 2:
1787 		value = *(u16 *)ptr;
1788 		break;
1789 	case 4:
1790 		value = *(u32 *)ptr;
1791 		break;
1792 	case 8:
1793 		value = *(u64 *)ptr;
1794 		break;
1795 	default:
1796 		return 0;
1797 	}
1798 
1799 	if (!evsel->needs_swap)
1800 		return value;
1801 
1802 	switch (field->size) {
1803 	case 2:
1804 		return bswap_16(value);
1805 	case 4:
1806 		return bswap_32(value);
1807 	case 8:
1808 		return bswap_64(value);
1809 	default:
1810 		return 0;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1817 {
1818 	va_list args;
1819 	int ret = 0;
1820 
1821 	if (!*first) {
1822 		ret += fprintf(fp, ",");
1823 	} else {
1824 		ret += fprintf(fp, ":");
1825 		*first = false;
1826 	}
1827 
1828 	va_start(args, fmt);
1829 	ret += vfprintf(fp, fmt, args);
1830 	va_end(args);
1831 	return ret;
1832 }
1833 
1834 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1835 {
1836 	if (value == 0)
1837 		return 0;
1838 
1839 	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1840 }
1841 
1842 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1843 
1844 struct bit_names {
1845 	int bit;
1846 	const char *name;
1847 };
1848 
1849 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1850 			 struct bit_names *bits, bool *first)
1851 {
1852 	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1853 	bool first_bit = true;
1854 
1855 	do {
1856 		if (value & bits[i].bit) {
1857 			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1858 			first_bit = false;
1859 		}
1860 	} while (bits[++i].name != NULL);
1861 
1862 	return printed;
1863 }
1864 
1865 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1866 {
1867 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1868 	struct bit_names bits[] = {
1869 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1870 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1871 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1872 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1873 		bit_name(IDENTIFIER),
1874 		{ .name = NULL, }
1875 	};
1876 #undef bit_name
1877 	return bits__fprintf(fp, "sample_type", value, bits, first);
1878 }
1879 
1880 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1881 {
1882 #define bit_name(n) { PERF_FORMAT_##n, #n }
1883 	struct bit_names bits[] = {
1884 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1885 		bit_name(ID), bit_name(GROUP),
1886 		{ .name = NULL, }
1887 	};
1888 #undef bit_name
1889 	return bits__fprintf(fp, "read_format", value, bits, first);
1890 }
1891 
1892 int perf_evsel__fprintf(struct perf_evsel *evsel,
1893 			struct perf_attr_details *details, FILE *fp)
1894 {
1895 	bool first = true;
1896 	int printed = 0;
1897 
1898 	if (details->event_group) {
1899 		struct perf_evsel *pos;
1900 
1901 		if (!perf_evsel__is_group_leader(evsel))
1902 			return 0;
1903 
1904 		if (evsel->nr_members > 1)
1905 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1906 
1907 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1908 		for_each_group_member(pos, evsel)
1909 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1910 
1911 		if (evsel->nr_members > 1)
1912 			printed += fprintf(fp, "}");
1913 		goto out;
1914 	}
1915 
1916 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1917 
1918 	if (details->verbose || details->freq) {
1919 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1920 					 (u64)evsel->attr.sample_freq);
1921 	}
1922 
1923 	if (details->verbose) {
1924 		if_print(type);
1925 		if_print(config);
1926 		if_print(config1);
1927 		if_print(config2);
1928 		if_print(size);
1929 		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1930 		if (evsel->attr.read_format)
1931 			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1932 		if_print(disabled);
1933 		if_print(inherit);
1934 		if_print(pinned);
1935 		if_print(exclusive);
1936 		if_print(exclude_user);
1937 		if_print(exclude_kernel);
1938 		if_print(exclude_hv);
1939 		if_print(exclude_idle);
1940 		if_print(mmap);
1941 		if_print(mmap2);
1942 		if_print(comm);
1943 		if_print(freq);
1944 		if_print(inherit_stat);
1945 		if_print(enable_on_exec);
1946 		if_print(task);
1947 		if_print(watermark);
1948 		if_print(precise_ip);
1949 		if_print(mmap_data);
1950 		if_print(sample_id_all);
1951 		if_print(exclude_host);
1952 		if_print(exclude_guest);
1953 		if_print(__reserved_1);
1954 		if_print(wakeup_events);
1955 		if_print(bp_type);
1956 		if_print(branch_sample_type);
1957 	}
1958 out:
1959 	fputc('\n', fp);
1960 	return ++printed;
1961 }
1962 
1963 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1964 			  char *msg, size_t msgsize)
1965 {
1966 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1967 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
1968 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1969 		/*
1970 		 * If it's cycles then fall back to hrtimer based
1971 		 * cpu-clock-tick sw counter, which is always available even if
1972 		 * no PMU support.
1973 		 *
1974 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1975 		 * b0a873e).
1976 		 */
1977 		scnprintf(msg, msgsize, "%s",
1978 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1979 
1980 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
1981 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1982 
1983 		zfree(&evsel->name);
1984 		return true;
1985 	}
1986 
1987 	return false;
1988 }
1989 
1990 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
1991 			      int err, char *msg, size_t size)
1992 {
1993 	switch (err) {
1994 	case EPERM:
1995 	case EACCES:
1996 		return scnprintf(msg, size,
1997 		 "You may not have permission to collect %sstats.\n"
1998 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1999 		 " -1 - Not paranoid at all\n"
2000 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2001 		 "  1 - Disallow cpu events for unpriv\n"
2002 		 "  2 - Disallow kernel profiling for unpriv",
2003 				 target->system_wide ? "system-wide " : "");
2004 	case ENOENT:
2005 		return scnprintf(msg, size, "The %s event is not supported.",
2006 				 perf_evsel__name(evsel));
2007 	case EMFILE:
2008 		return scnprintf(msg, size, "%s",
2009 			 "Too many events are opened.\n"
2010 			 "Try again after reducing the number of events.");
2011 	case ENODEV:
2012 		if (target->cpu_list)
2013 			return scnprintf(msg, size, "%s",
2014 	 "No such device - did you specify an out-of-range profile CPU?\n");
2015 		break;
2016 	case EOPNOTSUPP:
2017 		if (evsel->attr.precise_ip)
2018 			return scnprintf(msg, size, "%s",
2019 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2020 #if defined(__i386__) || defined(__x86_64__)
2021 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2022 			return scnprintf(msg, size, "%s",
2023 	"No hardware sampling interrupt available.\n"
2024 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2025 #endif
2026 		break;
2027 	default:
2028 		break;
2029 	}
2030 
2031 	return scnprintf(msg, size,
2032 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2033 	"/bin/dmesg may provide additional information.\n"
2034 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2035 			 err, strerror(err), perf_evsel__name(evsel));
2036 }
2037