1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "evsel.h" 19 #include "evlist.h" 20 #include "util.h" 21 #include "cpumap.h" 22 #include "thread_map.h" 23 #include "target.h" 24 #include "perf_regs.h" 25 #include "debug.h" 26 #include "trace-event.h" 27 28 static struct { 29 bool sample_id_all; 30 bool exclude_guest; 31 bool mmap2; 32 } perf_missing_features; 33 34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 35 36 int __perf_evsel__sample_size(u64 sample_type) 37 { 38 u64 mask = sample_type & PERF_SAMPLE_MASK; 39 int size = 0; 40 int i; 41 42 for (i = 0; i < 64; i++) { 43 if (mask & (1ULL << i)) 44 size++; 45 } 46 47 size *= sizeof(u64); 48 49 return size; 50 } 51 52 /** 53 * __perf_evsel__calc_id_pos - calculate id_pos. 54 * @sample_type: sample type 55 * 56 * This function returns the position of the event id (PERF_SAMPLE_ID or 57 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 58 * sample_event. 59 */ 60 static int __perf_evsel__calc_id_pos(u64 sample_type) 61 { 62 int idx = 0; 63 64 if (sample_type & PERF_SAMPLE_IDENTIFIER) 65 return 0; 66 67 if (!(sample_type & PERF_SAMPLE_ID)) 68 return -1; 69 70 if (sample_type & PERF_SAMPLE_IP) 71 idx += 1; 72 73 if (sample_type & PERF_SAMPLE_TID) 74 idx += 1; 75 76 if (sample_type & PERF_SAMPLE_TIME) 77 idx += 1; 78 79 if (sample_type & PERF_SAMPLE_ADDR) 80 idx += 1; 81 82 return idx; 83 } 84 85 /** 86 * __perf_evsel__calc_is_pos - calculate is_pos. 87 * @sample_type: sample type 88 * 89 * This function returns the position (counting backwards) of the event id 90 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 91 * sample_id_all is used there is an id sample appended to non-sample events. 92 */ 93 static int __perf_evsel__calc_is_pos(u64 sample_type) 94 { 95 int idx = 1; 96 97 if (sample_type & PERF_SAMPLE_IDENTIFIER) 98 return 1; 99 100 if (!(sample_type & PERF_SAMPLE_ID)) 101 return -1; 102 103 if (sample_type & PERF_SAMPLE_CPU) 104 idx += 1; 105 106 if (sample_type & PERF_SAMPLE_STREAM_ID) 107 idx += 1; 108 109 return idx; 110 } 111 112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 113 { 114 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 115 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 116 } 117 118 void hists__init(struct hists *hists) 119 { 120 memset(hists, 0, sizeof(*hists)); 121 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 122 hists->entries_in = &hists->entries_in_array[0]; 123 hists->entries_collapsed = RB_ROOT; 124 hists->entries = RB_ROOT; 125 pthread_mutex_init(&hists->lock, NULL); 126 } 127 128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 129 enum perf_event_sample_format bit) 130 { 131 if (!(evsel->attr.sample_type & bit)) { 132 evsel->attr.sample_type |= bit; 133 evsel->sample_size += sizeof(u64); 134 perf_evsel__calc_id_pos(evsel); 135 } 136 } 137 138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 139 enum perf_event_sample_format bit) 140 { 141 if (evsel->attr.sample_type & bit) { 142 evsel->attr.sample_type &= ~bit; 143 evsel->sample_size -= sizeof(u64); 144 perf_evsel__calc_id_pos(evsel); 145 } 146 } 147 148 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 149 bool can_sample_identifier) 150 { 151 if (can_sample_identifier) { 152 perf_evsel__reset_sample_bit(evsel, ID); 153 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 154 } else { 155 perf_evsel__set_sample_bit(evsel, ID); 156 } 157 evsel->attr.read_format |= PERF_FORMAT_ID; 158 } 159 160 void perf_evsel__init(struct perf_evsel *evsel, 161 struct perf_event_attr *attr, int idx) 162 { 163 evsel->idx = idx; 164 evsel->attr = *attr; 165 evsel->leader = evsel; 166 evsel->unit = ""; 167 evsel->scale = 1.0; 168 INIT_LIST_HEAD(&evsel->node); 169 hists__init(&evsel->hists); 170 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 171 perf_evsel__calc_id_pos(evsel); 172 } 173 174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 175 { 176 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 177 178 if (evsel != NULL) 179 perf_evsel__init(evsel, attr, idx); 180 181 return evsel; 182 } 183 184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 185 { 186 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 187 188 if (evsel != NULL) { 189 struct perf_event_attr attr = { 190 .type = PERF_TYPE_TRACEPOINT, 191 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 192 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 193 }; 194 195 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 196 goto out_free; 197 198 evsel->tp_format = trace_event__tp_format(sys, name); 199 if (evsel->tp_format == NULL) 200 goto out_free; 201 202 event_attr_init(&attr); 203 attr.config = evsel->tp_format->id; 204 attr.sample_period = 1; 205 perf_evsel__init(evsel, &attr, idx); 206 } 207 208 return evsel; 209 210 out_free: 211 zfree(&evsel->name); 212 free(evsel); 213 return NULL; 214 } 215 216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 217 "cycles", 218 "instructions", 219 "cache-references", 220 "cache-misses", 221 "branches", 222 "branch-misses", 223 "bus-cycles", 224 "stalled-cycles-frontend", 225 "stalled-cycles-backend", 226 "ref-cycles", 227 }; 228 229 static const char *__perf_evsel__hw_name(u64 config) 230 { 231 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 232 return perf_evsel__hw_names[config]; 233 234 return "unknown-hardware"; 235 } 236 237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 238 { 239 int colon = 0, r = 0; 240 struct perf_event_attr *attr = &evsel->attr; 241 bool exclude_guest_default = false; 242 243 #define MOD_PRINT(context, mod) do { \ 244 if (!attr->exclude_##context) { \ 245 if (!colon) colon = ++r; \ 246 r += scnprintf(bf + r, size - r, "%c", mod); \ 247 } } while(0) 248 249 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 250 MOD_PRINT(kernel, 'k'); 251 MOD_PRINT(user, 'u'); 252 MOD_PRINT(hv, 'h'); 253 exclude_guest_default = true; 254 } 255 256 if (attr->precise_ip) { 257 if (!colon) 258 colon = ++r; 259 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 260 exclude_guest_default = true; 261 } 262 263 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 264 MOD_PRINT(host, 'H'); 265 MOD_PRINT(guest, 'G'); 266 } 267 #undef MOD_PRINT 268 if (colon) 269 bf[colon - 1] = ':'; 270 return r; 271 } 272 273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 274 { 275 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 276 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 277 } 278 279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 280 "cpu-clock", 281 "task-clock", 282 "page-faults", 283 "context-switches", 284 "cpu-migrations", 285 "minor-faults", 286 "major-faults", 287 "alignment-faults", 288 "emulation-faults", 289 "dummy", 290 }; 291 292 static const char *__perf_evsel__sw_name(u64 config) 293 { 294 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 295 return perf_evsel__sw_names[config]; 296 return "unknown-software"; 297 } 298 299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 300 { 301 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 302 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 303 } 304 305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 306 { 307 int r; 308 309 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 310 311 if (type & HW_BREAKPOINT_R) 312 r += scnprintf(bf + r, size - r, "r"); 313 314 if (type & HW_BREAKPOINT_W) 315 r += scnprintf(bf + r, size - r, "w"); 316 317 if (type & HW_BREAKPOINT_X) 318 r += scnprintf(bf + r, size - r, "x"); 319 320 return r; 321 } 322 323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 324 { 325 struct perf_event_attr *attr = &evsel->attr; 326 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 327 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 328 } 329 330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 331 [PERF_EVSEL__MAX_ALIASES] = { 332 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 333 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 334 { "LLC", "L2", }, 335 { "dTLB", "d-tlb", "Data-TLB", }, 336 { "iTLB", "i-tlb", "Instruction-TLB", }, 337 { "branch", "branches", "bpu", "btb", "bpc", }, 338 { "node", }, 339 }; 340 341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 342 [PERF_EVSEL__MAX_ALIASES] = { 343 { "load", "loads", "read", }, 344 { "store", "stores", "write", }, 345 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 346 }; 347 348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 349 [PERF_EVSEL__MAX_ALIASES] = { 350 { "refs", "Reference", "ops", "access", }, 351 { "misses", "miss", }, 352 }; 353 354 #define C(x) PERF_COUNT_HW_CACHE_##x 355 #define CACHE_READ (1 << C(OP_READ)) 356 #define CACHE_WRITE (1 << C(OP_WRITE)) 357 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 358 #define COP(x) (1 << x) 359 360 /* 361 * cache operartion stat 362 * L1I : Read and prefetch only 363 * ITLB and BPU : Read-only 364 */ 365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 366 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 367 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 368 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 369 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 370 [C(ITLB)] = (CACHE_READ), 371 [C(BPU)] = (CACHE_READ), 372 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 373 }; 374 375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 376 { 377 if (perf_evsel__hw_cache_stat[type] & COP(op)) 378 return true; /* valid */ 379 else 380 return false; /* invalid */ 381 } 382 383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 384 char *bf, size_t size) 385 { 386 if (result) { 387 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 388 perf_evsel__hw_cache_op[op][0], 389 perf_evsel__hw_cache_result[result][0]); 390 } 391 392 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 393 perf_evsel__hw_cache_op[op][1]); 394 } 395 396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 397 { 398 u8 op, result, type = (config >> 0) & 0xff; 399 const char *err = "unknown-ext-hardware-cache-type"; 400 401 if (type > PERF_COUNT_HW_CACHE_MAX) 402 goto out_err; 403 404 op = (config >> 8) & 0xff; 405 err = "unknown-ext-hardware-cache-op"; 406 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 407 goto out_err; 408 409 result = (config >> 16) & 0xff; 410 err = "unknown-ext-hardware-cache-result"; 411 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 412 goto out_err; 413 414 err = "invalid-cache"; 415 if (!perf_evsel__is_cache_op_valid(type, op)) 416 goto out_err; 417 418 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 419 out_err: 420 return scnprintf(bf, size, "%s", err); 421 } 422 423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 424 { 425 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 426 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 427 } 428 429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 430 { 431 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 432 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 433 } 434 435 const char *perf_evsel__name(struct perf_evsel *evsel) 436 { 437 char bf[128]; 438 439 if (evsel->name) 440 return evsel->name; 441 442 switch (evsel->attr.type) { 443 case PERF_TYPE_RAW: 444 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 445 break; 446 447 case PERF_TYPE_HARDWARE: 448 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 449 break; 450 451 case PERF_TYPE_HW_CACHE: 452 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 453 break; 454 455 case PERF_TYPE_SOFTWARE: 456 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 457 break; 458 459 case PERF_TYPE_TRACEPOINT: 460 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 461 break; 462 463 case PERF_TYPE_BREAKPOINT: 464 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 465 break; 466 467 default: 468 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 469 evsel->attr.type); 470 break; 471 } 472 473 evsel->name = strdup(bf); 474 475 return evsel->name ?: "unknown"; 476 } 477 478 const char *perf_evsel__group_name(struct perf_evsel *evsel) 479 { 480 return evsel->group_name ?: "anon group"; 481 } 482 483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 484 { 485 int ret; 486 struct perf_evsel *pos; 487 const char *group_name = perf_evsel__group_name(evsel); 488 489 ret = scnprintf(buf, size, "%s", group_name); 490 491 ret += scnprintf(buf + ret, size - ret, " { %s", 492 perf_evsel__name(evsel)); 493 494 for_each_group_member(pos, evsel) 495 ret += scnprintf(buf + ret, size - ret, ", %s", 496 perf_evsel__name(pos)); 497 498 ret += scnprintf(buf + ret, size - ret, " }"); 499 500 return ret; 501 } 502 503 static void 504 perf_evsel__config_callgraph(struct perf_evsel *evsel, 505 struct record_opts *opts) 506 { 507 bool function = perf_evsel__is_function_event(evsel); 508 struct perf_event_attr *attr = &evsel->attr; 509 510 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 511 512 if (opts->call_graph == CALLCHAIN_DWARF) { 513 if (!function) { 514 perf_evsel__set_sample_bit(evsel, REGS_USER); 515 perf_evsel__set_sample_bit(evsel, STACK_USER); 516 attr->sample_regs_user = PERF_REGS_MASK; 517 attr->sample_stack_user = opts->stack_dump_size; 518 attr->exclude_callchain_user = 1; 519 } else { 520 pr_info("Cannot use DWARF unwind for function trace event," 521 " falling back to framepointers.\n"); 522 } 523 } 524 525 if (function) { 526 pr_info("Disabling user space callchains for function trace event.\n"); 527 attr->exclude_callchain_user = 1; 528 } 529 } 530 531 /* 532 * The enable_on_exec/disabled value strategy: 533 * 534 * 1) For any type of traced program: 535 * - all independent events and group leaders are disabled 536 * - all group members are enabled 537 * 538 * Group members are ruled by group leaders. They need to 539 * be enabled, because the group scheduling relies on that. 540 * 541 * 2) For traced programs executed by perf: 542 * - all independent events and group leaders have 543 * enable_on_exec set 544 * - we don't specifically enable or disable any event during 545 * the record command 546 * 547 * Independent events and group leaders are initially disabled 548 * and get enabled by exec. Group members are ruled by group 549 * leaders as stated in 1). 550 * 551 * 3) For traced programs attached by perf (pid/tid): 552 * - we specifically enable or disable all events during 553 * the record command 554 * 555 * When attaching events to already running traced we 556 * enable/disable events specifically, as there's no 557 * initial traced exec call. 558 */ 559 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 560 { 561 struct perf_evsel *leader = evsel->leader; 562 struct perf_event_attr *attr = &evsel->attr; 563 int track = !evsel->idx; /* only the first counter needs these */ 564 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 565 566 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 567 attr->inherit = !opts->no_inherit; 568 569 perf_evsel__set_sample_bit(evsel, IP); 570 perf_evsel__set_sample_bit(evsel, TID); 571 572 if (evsel->sample_read) { 573 perf_evsel__set_sample_bit(evsel, READ); 574 575 /* 576 * We need ID even in case of single event, because 577 * PERF_SAMPLE_READ process ID specific data. 578 */ 579 perf_evsel__set_sample_id(evsel, false); 580 581 /* 582 * Apply group format only if we belong to group 583 * with more than one members. 584 */ 585 if (leader->nr_members > 1) { 586 attr->read_format |= PERF_FORMAT_GROUP; 587 attr->inherit = 0; 588 } 589 } 590 591 /* 592 * We default some events to have a default interval. But keep 593 * it a weak assumption overridable by the user. 594 */ 595 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 596 opts->user_interval != ULLONG_MAX)) { 597 if (opts->freq) { 598 perf_evsel__set_sample_bit(evsel, PERIOD); 599 attr->freq = 1; 600 attr->sample_freq = opts->freq; 601 } else { 602 attr->sample_period = opts->default_interval; 603 } 604 } 605 606 /* 607 * Disable sampling for all group members other 608 * than leader in case leader 'leads' the sampling. 609 */ 610 if ((leader != evsel) && leader->sample_read) { 611 attr->sample_freq = 0; 612 attr->sample_period = 0; 613 } 614 615 if (opts->no_samples) 616 attr->sample_freq = 0; 617 618 if (opts->inherit_stat) 619 attr->inherit_stat = 1; 620 621 if (opts->sample_address) { 622 perf_evsel__set_sample_bit(evsel, ADDR); 623 attr->mmap_data = track; 624 } 625 626 if (opts->call_graph_enabled) 627 perf_evsel__config_callgraph(evsel, opts); 628 629 if (target__has_cpu(&opts->target)) 630 perf_evsel__set_sample_bit(evsel, CPU); 631 632 if (opts->period) 633 perf_evsel__set_sample_bit(evsel, PERIOD); 634 635 if (!perf_missing_features.sample_id_all && 636 (opts->sample_time || !opts->no_inherit || 637 target__has_cpu(&opts->target) || per_cpu)) 638 perf_evsel__set_sample_bit(evsel, TIME); 639 640 if (opts->raw_samples) { 641 perf_evsel__set_sample_bit(evsel, TIME); 642 perf_evsel__set_sample_bit(evsel, RAW); 643 perf_evsel__set_sample_bit(evsel, CPU); 644 } 645 646 if (opts->sample_address) 647 perf_evsel__set_sample_bit(evsel, DATA_SRC); 648 649 if (opts->no_buffering) { 650 attr->watermark = 0; 651 attr->wakeup_events = 1; 652 } 653 if (opts->branch_stack) { 654 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 655 attr->branch_sample_type = opts->branch_stack; 656 } 657 658 if (opts->sample_weight) 659 perf_evsel__set_sample_bit(evsel, WEIGHT); 660 661 attr->mmap = track; 662 attr->mmap2 = track && !perf_missing_features.mmap2; 663 attr->comm = track; 664 665 if (opts->sample_transaction) 666 perf_evsel__set_sample_bit(evsel, TRANSACTION); 667 668 /* 669 * XXX see the function comment above 670 * 671 * Disabling only independent events or group leaders, 672 * keeping group members enabled. 673 */ 674 if (perf_evsel__is_group_leader(evsel)) 675 attr->disabled = 1; 676 677 /* 678 * Setting enable_on_exec for independent events and 679 * group leaders for traced executed by perf. 680 */ 681 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 682 !opts->initial_delay) 683 attr->enable_on_exec = 1; 684 } 685 686 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 687 { 688 int cpu, thread; 689 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 690 691 if (evsel->fd) { 692 for (cpu = 0; cpu < ncpus; cpu++) { 693 for (thread = 0; thread < nthreads; thread++) { 694 FD(evsel, cpu, thread) = -1; 695 } 696 } 697 } 698 699 return evsel->fd != NULL ? 0 : -ENOMEM; 700 } 701 702 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 703 int ioc, void *arg) 704 { 705 int cpu, thread; 706 707 for (cpu = 0; cpu < ncpus; cpu++) { 708 for (thread = 0; thread < nthreads; thread++) { 709 int fd = FD(evsel, cpu, thread), 710 err = ioctl(fd, ioc, arg); 711 712 if (err) 713 return err; 714 } 715 } 716 717 return 0; 718 } 719 720 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 721 const char *filter) 722 { 723 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 724 PERF_EVENT_IOC_SET_FILTER, 725 (void *)filter); 726 } 727 728 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 729 { 730 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 731 PERF_EVENT_IOC_ENABLE, 732 0); 733 } 734 735 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 736 { 737 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 738 if (evsel->sample_id == NULL) 739 return -ENOMEM; 740 741 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 742 if (evsel->id == NULL) { 743 xyarray__delete(evsel->sample_id); 744 evsel->sample_id = NULL; 745 return -ENOMEM; 746 } 747 748 return 0; 749 } 750 751 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 752 { 753 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 754 (ncpus * sizeof(struct perf_counts_values)))); 755 } 756 757 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 758 { 759 evsel->counts = zalloc((sizeof(*evsel->counts) + 760 (ncpus * sizeof(struct perf_counts_values)))); 761 return evsel->counts != NULL ? 0 : -ENOMEM; 762 } 763 764 void perf_evsel__free_fd(struct perf_evsel *evsel) 765 { 766 xyarray__delete(evsel->fd); 767 evsel->fd = NULL; 768 } 769 770 void perf_evsel__free_id(struct perf_evsel *evsel) 771 { 772 xyarray__delete(evsel->sample_id); 773 evsel->sample_id = NULL; 774 zfree(&evsel->id); 775 } 776 777 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 778 { 779 int cpu, thread; 780 781 for (cpu = 0; cpu < ncpus; cpu++) 782 for (thread = 0; thread < nthreads; ++thread) { 783 close(FD(evsel, cpu, thread)); 784 FD(evsel, cpu, thread) = -1; 785 } 786 } 787 788 void perf_evsel__free_counts(struct perf_evsel *evsel) 789 { 790 zfree(&evsel->counts); 791 } 792 793 void perf_evsel__exit(struct perf_evsel *evsel) 794 { 795 assert(list_empty(&evsel->node)); 796 perf_evsel__free_fd(evsel); 797 perf_evsel__free_id(evsel); 798 } 799 800 void perf_evsel__delete(struct perf_evsel *evsel) 801 { 802 perf_evsel__exit(evsel); 803 close_cgroup(evsel->cgrp); 804 zfree(&evsel->group_name); 805 if (evsel->tp_format) 806 pevent_free_format(evsel->tp_format); 807 zfree(&evsel->name); 808 free(evsel); 809 } 810 811 static inline void compute_deltas(struct perf_evsel *evsel, 812 int cpu, 813 struct perf_counts_values *count) 814 { 815 struct perf_counts_values tmp; 816 817 if (!evsel->prev_raw_counts) 818 return; 819 820 if (cpu == -1) { 821 tmp = evsel->prev_raw_counts->aggr; 822 evsel->prev_raw_counts->aggr = *count; 823 } else { 824 tmp = evsel->prev_raw_counts->cpu[cpu]; 825 evsel->prev_raw_counts->cpu[cpu] = *count; 826 } 827 828 count->val = count->val - tmp.val; 829 count->ena = count->ena - tmp.ena; 830 count->run = count->run - tmp.run; 831 } 832 833 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 834 int cpu, int thread, bool scale) 835 { 836 struct perf_counts_values count; 837 size_t nv = scale ? 3 : 1; 838 839 if (FD(evsel, cpu, thread) < 0) 840 return -EINVAL; 841 842 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 843 return -ENOMEM; 844 845 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 846 return -errno; 847 848 compute_deltas(evsel, cpu, &count); 849 850 if (scale) { 851 if (count.run == 0) 852 count.val = 0; 853 else if (count.run < count.ena) 854 count.val = (u64)((double)count.val * count.ena / count.run + 0.5); 855 } else 856 count.ena = count.run = 0; 857 858 evsel->counts->cpu[cpu] = count; 859 return 0; 860 } 861 862 int __perf_evsel__read(struct perf_evsel *evsel, 863 int ncpus, int nthreads, bool scale) 864 { 865 size_t nv = scale ? 3 : 1; 866 int cpu, thread; 867 struct perf_counts_values *aggr = &evsel->counts->aggr, count; 868 869 aggr->val = aggr->ena = aggr->run = 0; 870 871 for (cpu = 0; cpu < ncpus; cpu++) { 872 for (thread = 0; thread < nthreads; thread++) { 873 if (FD(evsel, cpu, thread) < 0) 874 continue; 875 876 if (readn(FD(evsel, cpu, thread), 877 &count, nv * sizeof(u64)) < 0) 878 return -errno; 879 880 aggr->val += count.val; 881 if (scale) { 882 aggr->ena += count.ena; 883 aggr->run += count.run; 884 } 885 } 886 } 887 888 compute_deltas(evsel, -1, aggr); 889 890 evsel->counts->scaled = 0; 891 if (scale) { 892 if (aggr->run == 0) { 893 evsel->counts->scaled = -1; 894 aggr->val = 0; 895 return 0; 896 } 897 898 if (aggr->run < aggr->ena) { 899 evsel->counts->scaled = 1; 900 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5); 901 } 902 } else 903 aggr->ena = aggr->run = 0; 904 905 return 0; 906 } 907 908 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 909 { 910 struct perf_evsel *leader = evsel->leader; 911 int fd; 912 913 if (perf_evsel__is_group_leader(evsel)) 914 return -1; 915 916 /* 917 * Leader must be already processed/open, 918 * if not it's a bug. 919 */ 920 BUG_ON(!leader->fd); 921 922 fd = FD(leader, cpu, thread); 923 BUG_ON(fd == -1); 924 925 return fd; 926 } 927 928 #define __PRINT_ATTR(fmt, cast, field) \ 929 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 930 931 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 932 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 933 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 934 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 935 936 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 937 fprintf(fp, " %-19s %u %-19s %u\n", \ 938 name1, attr->field1, name2, attr->field2) 939 940 #define PRINT_ATTR2(field1, field2) \ 941 PRINT_ATTR2N(#field1, field1, #field2, field2) 942 943 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 944 { 945 size_t ret = 0; 946 947 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 948 ret += fprintf(fp, "perf_event_attr:\n"); 949 950 ret += PRINT_ATTR_U32(type); 951 ret += PRINT_ATTR_U32(size); 952 ret += PRINT_ATTR_X64(config); 953 ret += PRINT_ATTR_U64(sample_period); 954 ret += PRINT_ATTR_U64(sample_freq); 955 ret += PRINT_ATTR_X64(sample_type); 956 ret += PRINT_ATTR_X64(read_format); 957 958 ret += PRINT_ATTR2(disabled, inherit); 959 ret += PRINT_ATTR2(pinned, exclusive); 960 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 961 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 962 ret += PRINT_ATTR2(mmap, comm); 963 ret += PRINT_ATTR2(freq, inherit_stat); 964 ret += PRINT_ATTR2(enable_on_exec, task); 965 ret += PRINT_ATTR2(watermark, precise_ip); 966 ret += PRINT_ATTR2(mmap_data, sample_id_all); 967 ret += PRINT_ATTR2(exclude_host, exclude_guest); 968 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 969 "excl.callchain_user", exclude_callchain_user); 970 ret += PRINT_ATTR_U32(mmap2); 971 972 ret += PRINT_ATTR_U32(wakeup_events); 973 ret += PRINT_ATTR_U32(wakeup_watermark); 974 ret += PRINT_ATTR_X32(bp_type); 975 ret += PRINT_ATTR_X64(bp_addr); 976 ret += PRINT_ATTR_X64(config1); 977 ret += PRINT_ATTR_U64(bp_len); 978 ret += PRINT_ATTR_X64(config2); 979 ret += PRINT_ATTR_X64(branch_sample_type); 980 ret += PRINT_ATTR_X64(sample_regs_user); 981 ret += PRINT_ATTR_U32(sample_stack_user); 982 983 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 984 985 return ret; 986 } 987 988 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 989 struct thread_map *threads) 990 { 991 int cpu, thread; 992 unsigned long flags = 0; 993 int pid = -1, err; 994 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 995 996 if (evsel->fd == NULL && 997 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0) 998 return -ENOMEM; 999 1000 if (evsel->cgrp) { 1001 flags = PERF_FLAG_PID_CGROUP; 1002 pid = evsel->cgrp->fd; 1003 } 1004 1005 fallback_missing_features: 1006 if (perf_missing_features.mmap2) 1007 evsel->attr.mmap2 = 0; 1008 if (perf_missing_features.exclude_guest) 1009 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1010 retry_sample_id: 1011 if (perf_missing_features.sample_id_all) 1012 evsel->attr.sample_id_all = 0; 1013 1014 if (verbose >= 2) 1015 perf_event_attr__fprintf(&evsel->attr, stderr); 1016 1017 for (cpu = 0; cpu < cpus->nr; cpu++) { 1018 1019 for (thread = 0; thread < threads->nr; thread++) { 1020 int group_fd; 1021 1022 if (!evsel->cgrp) 1023 pid = threads->map[thread]; 1024 1025 group_fd = get_group_fd(evsel, cpu, thread); 1026 retry_open: 1027 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1028 pid, cpus->map[cpu], group_fd, flags); 1029 1030 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1031 pid, 1032 cpus->map[cpu], 1033 group_fd, flags); 1034 if (FD(evsel, cpu, thread) < 0) { 1035 err = -errno; 1036 pr_debug2("sys_perf_event_open failed, error %d\n", 1037 err); 1038 goto try_fallback; 1039 } 1040 set_rlimit = NO_CHANGE; 1041 } 1042 } 1043 1044 return 0; 1045 1046 try_fallback: 1047 /* 1048 * perf stat needs between 5 and 22 fds per CPU. When we run out 1049 * of them try to increase the limits. 1050 */ 1051 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1052 struct rlimit l; 1053 int old_errno = errno; 1054 1055 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1056 if (set_rlimit == NO_CHANGE) 1057 l.rlim_cur = l.rlim_max; 1058 else { 1059 l.rlim_cur = l.rlim_max + 1000; 1060 l.rlim_max = l.rlim_cur; 1061 } 1062 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1063 set_rlimit++; 1064 errno = old_errno; 1065 goto retry_open; 1066 } 1067 } 1068 errno = old_errno; 1069 } 1070 1071 if (err != -EINVAL || cpu > 0 || thread > 0) 1072 goto out_close; 1073 1074 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1075 perf_missing_features.mmap2 = true; 1076 goto fallback_missing_features; 1077 } else if (!perf_missing_features.exclude_guest && 1078 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1079 perf_missing_features.exclude_guest = true; 1080 goto fallback_missing_features; 1081 } else if (!perf_missing_features.sample_id_all) { 1082 perf_missing_features.sample_id_all = true; 1083 goto retry_sample_id; 1084 } 1085 1086 out_close: 1087 do { 1088 while (--thread >= 0) { 1089 close(FD(evsel, cpu, thread)); 1090 FD(evsel, cpu, thread) = -1; 1091 } 1092 thread = threads->nr; 1093 } while (--cpu >= 0); 1094 return err; 1095 } 1096 1097 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1098 { 1099 if (evsel->fd == NULL) 1100 return; 1101 1102 perf_evsel__close_fd(evsel, ncpus, nthreads); 1103 perf_evsel__free_fd(evsel); 1104 } 1105 1106 static struct { 1107 struct cpu_map map; 1108 int cpus[1]; 1109 } empty_cpu_map = { 1110 .map.nr = 1, 1111 .cpus = { -1, }, 1112 }; 1113 1114 static struct { 1115 struct thread_map map; 1116 int threads[1]; 1117 } empty_thread_map = { 1118 .map.nr = 1, 1119 .threads = { -1, }, 1120 }; 1121 1122 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1123 struct thread_map *threads) 1124 { 1125 if (cpus == NULL) { 1126 /* Work around old compiler warnings about strict aliasing */ 1127 cpus = &empty_cpu_map.map; 1128 } 1129 1130 if (threads == NULL) 1131 threads = &empty_thread_map.map; 1132 1133 return __perf_evsel__open(evsel, cpus, threads); 1134 } 1135 1136 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1137 struct cpu_map *cpus) 1138 { 1139 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1140 } 1141 1142 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1143 struct thread_map *threads) 1144 { 1145 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1146 } 1147 1148 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1149 const union perf_event *event, 1150 struct perf_sample *sample) 1151 { 1152 u64 type = evsel->attr.sample_type; 1153 const u64 *array = event->sample.array; 1154 bool swapped = evsel->needs_swap; 1155 union u64_swap u; 1156 1157 array += ((event->header.size - 1158 sizeof(event->header)) / sizeof(u64)) - 1; 1159 1160 if (type & PERF_SAMPLE_IDENTIFIER) { 1161 sample->id = *array; 1162 array--; 1163 } 1164 1165 if (type & PERF_SAMPLE_CPU) { 1166 u.val64 = *array; 1167 if (swapped) { 1168 /* undo swap of u64, then swap on individual u32s */ 1169 u.val64 = bswap_64(u.val64); 1170 u.val32[0] = bswap_32(u.val32[0]); 1171 } 1172 1173 sample->cpu = u.val32[0]; 1174 array--; 1175 } 1176 1177 if (type & PERF_SAMPLE_STREAM_ID) { 1178 sample->stream_id = *array; 1179 array--; 1180 } 1181 1182 if (type & PERF_SAMPLE_ID) { 1183 sample->id = *array; 1184 array--; 1185 } 1186 1187 if (type & PERF_SAMPLE_TIME) { 1188 sample->time = *array; 1189 array--; 1190 } 1191 1192 if (type & PERF_SAMPLE_TID) { 1193 u.val64 = *array; 1194 if (swapped) { 1195 /* undo swap of u64, then swap on individual u32s */ 1196 u.val64 = bswap_64(u.val64); 1197 u.val32[0] = bswap_32(u.val32[0]); 1198 u.val32[1] = bswap_32(u.val32[1]); 1199 } 1200 1201 sample->pid = u.val32[0]; 1202 sample->tid = u.val32[1]; 1203 array--; 1204 } 1205 1206 return 0; 1207 } 1208 1209 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1210 u64 size) 1211 { 1212 return size > max_size || offset + size > endp; 1213 } 1214 1215 #define OVERFLOW_CHECK(offset, size, max_size) \ 1216 do { \ 1217 if (overflow(endp, (max_size), (offset), (size))) \ 1218 return -EFAULT; \ 1219 } while (0) 1220 1221 #define OVERFLOW_CHECK_u64(offset) \ 1222 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1223 1224 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1225 struct perf_sample *data) 1226 { 1227 u64 type = evsel->attr.sample_type; 1228 bool swapped = evsel->needs_swap; 1229 const u64 *array; 1230 u16 max_size = event->header.size; 1231 const void *endp = (void *)event + max_size; 1232 u64 sz; 1233 1234 /* 1235 * used for cross-endian analysis. See git commit 65014ab3 1236 * for why this goofiness is needed. 1237 */ 1238 union u64_swap u; 1239 1240 memset(data, 0, sizeof(*data)); 1241 data->cpu = data->pid = data->tid = -1; 1242 data->stream_id = data->id = data->time = -1ULL; 1243 data->period = evsel->attr.sample_period; 1244 data->weight = 0; 1245 1246 if (event->header.type != PERF_RECORD_SAMPLE) { 1247 if (!evsel->attr.sample_id_all) 1248 return 0; 1249 return perf_evsel__parse_id_sample(evsel, event, data); 1250 } 1251 1252 array = event->sample.array; 1253 1254 /* 1255 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1256 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1257 * check the format does not go past the end of the event. 1258 */ 1259 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1260 return -EFAULT; 1261 1262 data->id = -1ULL; 1263 if (type & PERF_SAMPLE_IDENTIFIER) { 1264 data->id = *array; 1265 array++; 1266 } 1267 1268 if (type & PERF_SAMPLE_IP) { 1269 data->ip = *array; 1270 array++; 1271 } 1272 1273 if (type & PERF_SAMPLE_TID) { 1274 u.val64 = *array; 1275 if (swapped) { 1276 /* undo swap of u64, then swap on individual u32s */ 1277 u.val64 = bswap_64(u.val64); 1278 u.val32[0] = bswap_32(u.val32[0]); 1279 u.val32[1] = bswap_32(u.val32[1]); 1280 } 1281 1282 data->pid = u.val32[0]; 1283 data->tid = u.val32[1]; 1284 array++; 1285 } 1286 1287 if (type & PERF_SAMPLE_TIME) { 1288 data->time = *array; 1289 array++; 1290 } 1291 1292 data->addr = 0; 1293 if (type & PERF_SAMPLE_ADDR) { 1294 data->addr = *array; 1295 array++; 1296 } 1297 1298 if (type & PERF_SAMPLE_ID) { 1299 data->id = *array; 1300 array++; 1301 } 1302 1303 if (type & PERF_SAMPLE_STREAM_ID) { 1304 data->stream_id = *array; 1305 array++; 1306 } 1307 1308 if (type & PERF_SAMPLE_CPU) { 1309 1310 u.val64 = *array; 1311 if (swapped) { 1312 /* undo swap of u64, then swap on individual u32s */ 1313 u.val64 = bswap_64(u.val64); 1314 u.val32[0] = bswap_32(u.val32[0]); 1315 } 1316 1317 data->cpu = u.val32[0]; 1318 array++; 1319 } 1320 1321 if (type & PERF_SAMPLE_PERIOD) { 1322 data->period = *array; 1323 array++; 1324 } 1325 1326 if (type & PERF_SAMPLE_READ) { 1327 u64 read_format = evsel->attr.read_format; 1328 1329 OVERFLOW_CHECK_u64(array); 1330 if (read_format & PERF_FORMAT_GROUP) 1331 data->read.group.nr = *array; 1332 else 1333 data->read.one.value = *array; 1334 1335 array++; 1336 1337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1338 OVERFLOW_CHECK_u64(array); 1339 data->read.time_enabled = *array; 1340 array++; 1341 } 1342 1343 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1344 OVERFLOW_CHECK_u64(array); 1345 data->read.time_running = *array; 1346 array++; 1347 } 1348 1349 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1350 if (read_format & PERF_FORMAT_GROUP) { 1351 const u64 max_group_nr = UINT64_MAX / 1352 sizeof(struct sample_read_value); 1353 1354 if (data->read.group.nr > max_group_nr) 1355 return -EFAULT; 1356 sz = data->read.group.nr * 1357 sizeof(struct sample_read_value); 1358 OVERFLOW_CHECK(array, sz, max_size); 1359 data->read.group.values = 1360 (struct sample_read_value *)array; 1361 array = (void *)array + sz; 1362 } else { 1363 OVERFLOW_CHECK_u64(array); 1364 data->read.one.id = *array; 1365 array++; 1366 } 1367 } 1368 1369 if (type & PERF_SAMPLE_CALLCHAIN) { 1370 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1371 1372 OVERFLOW_CHECK_u64(array); 1373 data->callchain = (struct ip_callchain *)array++; 1374 if (data->callchain->nr > max_callchain_nr) 1375 return -EFAULT; 1376 sz = data->callchain->nr * sizeof(u64); 1377 OVERFLOW_CHECK(array, sz, max_size); 1378 array = (void *)array + sz; 1379 } 1380 1381 if (type & PERF_SAMPLE_RAW) { 1382 OVERFLOW_CHECK_u64(array); 1383 u.val64 = *array; 1384 if (WARN_ONCE(swapped, 1385 "Endianness of raw data not corrected!\n")) { 1386 /* undo swap of u64, then swap on individual u32s */ 1387 u.val64 = bswap_64(u.val64); 1388 u.val32[0] = bswap_32(u.val32[0]); 1389 u.val32[1] = bswap_32(u.val32[1]); 1390 } 1391 data->raw_size = u.val32[0]; 1392 array = (void *)array + sizeof(u32); 1393 1394 OVERFLOW_CHECK(array, data->raw_size, max_size); 1395 data->raw_data = (void *)array; 1396 array = (void *)array + data->raw_size; 1397 } 1398 1399 if (type & PERF_SAMPLE_BRANCH_STACK) { 1400 const u64 max_branch_nr = UINT64_MAX / 1401 sizeof(struct branch_entry); 1402 1403 OVERFLOW_CHECK_u64(array); 1404 data->branch_stack = (struct branch_stack *)array++; 1405 1406 if (data->branch_stack->nr > max_branch_nr) 1407 return -EFAULT; 1408 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1409 OVERFLOW_CHECK(array, sz, max_size); 1410 array = (void *)array + sz; 1411 } 1412 1413 if (type & PERF_SAMPLE_REGS_USER) { 1414 OVERFLOW_CHECK_u64(array); 1415 data->user_regs.abi = *array; 1416 array++; 1417 1418 if (data->user_regs.abi) { 1419 u64 mask = evsel->attr.sample_regs_user; 1420 1421 sz = hweight_long(mask) * sizeof(u64); 1422 OVERFLOW_CHECK(array, sz, max_size); 1423 data->user_regs.mask = mask; 1424 data->user_regs.regs = (u64 *)array; 1425 array = (void *)array + sz; 1426 } 1427 } 1428 1429 if (type & PERF_SAMPLE_STACK_USER) { 1430 OVERFLOW_CHECK_u64(array); 1431 sz = *array++; 1432 1433 data->user_stack.offset = ((char *)(array - 1) 1434 - (char *) event); 1435 1436 if (!sz) { 1437 data->user_stack.size = 0; 1438 } else { 1439 OVERFLOW_CHECK(array, sz, max_size); 1440 data->user_stack.data = (char *)array; 1441 array = (void *)array + sz; 1442 OVERFLOW_CHECK_u64(array); 1443 data->user_stack.size = *array++; 1444 if (WARN_ONCE(data->user_stack.size > sz, 1445 "user stack dump failure\n")) 1446 return -EFAULT; 1447 } 1448 } 1449 1450 data->weight = 0; 1451 if (type & PERF_SAMPLE_WEIGHT) { 1452 OVERFLOW_CHECK_u64(array); 1453 data->weight = *array; 1454 array++; 1455 } 1456 1457 data->data_src = PERF_MEM_DATA_SRC_NONE; 1458 if (type & PERF_SAMPLE_DATA_SRC) { 1459 OVERFLOW_CHECK_u64(array); 1460 data->data_src = *array; 1461 array++; 1462 } 1463 1464 data->transaction = 0; 1465 if (type & PERF_SAMPLE_TRANSACTION) { 1466 OVERFLOW_CHECK_u64(array); 1467 data->transaction = *array; 1468 array++; 1469 } 1470 1471 return 0; 1472 } 1473 1474 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1475 u64 read_format) 1476 { 1477 size_t sz, result = sizeof(struct sample_event); 1478 1479 if (type & PERF_SAMPLE_IDENTIFIER) 1480 result += sizeof(u64); 1481 1482 if (type & PERF_SAMPLE_IP) 1483 result += sizeof(u64); 1484 1485 if (type & PERF_SAMPLE_TID) 1486 result += sizeof(u64); 1487 1488 if (type & PERF_SAMPLE_TIME) 1489 result += sizeof(u64); 1490 1491 if (type & PERF_SAMPLE_ADDR) 1492 result += sizeof(u64); 1493 1494 if (type & PERF_SAMPLE_ID) 1495 result += sizeof(u64); 1496 1497 if (type & PERF_SAMPLE_STREAM_ID) 1498 result += sizeof(u64); 1499 1500 if (type & PERF_SAMPLE_CPU) 1501 result += sizeof(u64); 1502 1503 if (type & PERF_SAMPLE_PERIOD) 1504 result += sizeof(u64); 1505 1506 if (type & PERF_SAMPLE_READ) { 1507 result += sizeof(u64); 1508 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1509 result += sizeof(u64); 1510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1511 result += sizeof(u64); 1512 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1513 if (read_format & PERF_FORMAT_GROUP) { 1514 sz = sample->read.group.nr * 1515 sizeof(struct sample_read_value); 1516 result += sz; 1517 } else { 1518 result += sizeof(u64); 1519 } 1520 } 1521 1522 if (type & PERF_SAMPLE_CALLCHAIN) { 1523 sz = (sample->callchain->nr + 1) * sizeof(u64); 1524 result += sz; 1525 } 1526 1527 if (type & PERF_SAMPLE_RAW) { 1528 result += sizeof(u32); 1529 result += sample->raw_size; 1530 } 1531 1532 if (type & PERF_SAMPLE_BRANCH_STACK) { 1533 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1534 sz += sizeof(u64); 1535 result += sz; 1536 } 1537 1538 if (type & PERF_SAMPLE_REGS_USER) { 1539 if (sample->user_regs.abi) { 1540 result += sizeof(u64); 1541 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1542 result += sz; 1543 } else { 1544 result += sizeof(u64); 1545 } 1546 } 1547 1548 if (type & PERF_SAMPLE_STACK_USER) { 1549 sz = sample->user_stack.size; 1550 result += sizeof(u64); 1551 if (sz) { 1552 result += sz; 1553 result += sizeof(u64); 1554 } 1555 } 1556 1557 if (type & PERF_SAMPLE_WEIGHT) 1558 result += sizeof(u64); 1559 1560 if (type & PERF_SAMPLE_DATA_SRC) 1561 result += sizeof(u64); 1562 1563 if (type & PERF_SAMPLE_TRANSACTION) 1564 result += sizeof(u64); 1565 1566 return result; 1567 } 1568 1569 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1570 u64 read_format, 1571 const struct perf_sample *sample, 1572 bool swapped) 1573 { 1574 u64 *array; 1575 size_t sz; 1576 /* 1577 * used for cross-endian analysis. See git commit 65014ab3 1578 * for why this goofiness is needed. 1579 */ 1580 union u64_swap u; 1581 1582 array = event->sample.array; 1583 1584 if (type & PERF_SAMPLE_IDENTIFIER) { 1585 *array = sample->id; 1586 array++; 1587 } 1588 1589 if (type & PERF_SAMPLE_IP) { 1590 *array = sample->ip; 1591 array++; 1592 } 1593 1594 if (type & PERF_SAMPLE_TID) { 1595 u.val32[0] = sample->pid; 1596 u.val32[1] = sample->tid; 1597 if (swapped) { 1598 /* 1599 * Inverse of what is done in perf_evsel__parse_sample 1600 */ 1601 u.val32[0] = bswap_32(u.val32[0]); 1602 u.val32[1] = bswap_32(u.val32[1]); 1603 u.val64 = bswap_64(u.val64); 1604 } 1605 1606 *array = u.val64; 1607 array++; 1608 } 1609 1610 if (type & PERF_SAMPLE_TIME) { 1611 *array = sample->time; 1612 array++; 1613 } 1614 1615 if (type & PERF_SAMPLE_ADDR) { 1616 *array = sample->addr; 1617 array++; 1618 } 1619 1620 if (type & PERF_SAMPLE_ID) { 1621 *array = sample->id; 1622 array++; 1623 } 1624 1625 if (type & PERF_SAMPLE_STREAM_ID) { 1626 *array = sample->stream_id; 1627 array++; 1628 } 1629 1630 if (type & PERF_SAMPLE_CPU) { 1631 u.val32[0] = sample->cpu; 1632 if (swapped) { 1633 /* 1634 * Inverse of what is done in perf_evsel__parse_sample 1635 */ 1636 u.val32[0] = bswap_32(u.val32[0]); 1637 u.val64 = bswap_64(u.val64); 1638 } 1639 *array = u.val64; 1640 array++; 1641 } 1642 1643 if (type & PERF_SAMPLE_PERIOD) { 1644 *array = sample->period; 1645 array++; 1646 } 1647 1648 if (type & PERF_SAMPLE_READ) { 1649 if (read_format & PERF_FORMAT_GROUP) 1650 *array = sample->read.group.nr; 1651 else 1652 *array = sample->read.one.value; 1653 array++; 1654 1655 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1656 *array = sample->read.time_enabled; 1657 array++; 1658 } 1659 1660 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1661 *array = sample->read.time_running; 1662 array++; 1663 } 1664 1665 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1666 if (read_format & PERF_FORMAT_GROUP) { 1667 sz = sample->read.group.nr * 1668 sizeof(struct sample_read_value); 1669 memcpy(array, sample->read.group.values, sz); 1670 array = (void *)array + sz; 1671 } else { 1672 *array = sample->read.one.id; 1673 array++; 1674 } 1675 } 1676 1677 if (type & PERF_SAMPLE_CALLCHAIN) { 1678 sz = (sample->callchain->nr + 1) * sizeof(u64); 1679 memcpy(array, sample->callchain, sz); 1680 array = (void *)array + sz; 1681 } 1682 1683 if (type & PERF_SAMPLE_RAW) { 1684 u.val32[0] = sample->raw_size; 1685 if (WARN_ONCE(swapped, 1686 "Endianness of raw data not corrected!\n")) { 1687 /* 1688 * Inverse of what is done in perf_evsel__parse_sample 1689 */ 1690 u.val32[0] = bswap_32(u.val32[0]); 1691 u.val32[1] = bswap_32(u.val32[1]); 1692 u.val64 = bswap_64(u.val64); 1693 } 1694 *array = u.val64; 1695 array = (void *)array + sizeof(u32); 1696 1697 memcpy(array, sample->raw_data, sample->raw_size); 1698 array = (void *)array + sample->raw_size; 1699 } 1700 1701 if (type & PERF_SAMPLE_BRANCH_STACK) { 1702 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1703 sz += sizeof(u64); 1704 memcpy(array, sample->branch_stack, sz); 1705 array = (void *)array + sz; 1706 } 1707 1708 if (type & PERF_SAMPLE_REGS_USER) { 1709 if (sample->user_regs.abi) { 1710 *array++ = sample->user_regs.abi; 1711 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1712 memcpy(array, sample->user_regs.regs, sz); 1713 array = (void *)array + sz; 1714 } else { 1715 *array++ = 0; 1716 } 1717 } 1718 1719 if (type & PERF_SAMPLE_STACK_USER) { 1720 sz = sample->user_stack.size; 1721 *array++ = sz; 1722 if (sz) { 1723 memcpy(array, sample->user_stack.data, sz); 1724 array = (void *)array + sz; 1725 *array++ = sz; 1726 } 1727 } 1728 1729 if (type & PERF_SAMPLE_WEIGHT) { 1730 *array = sample->weight; 1731 array++; 1732 } 1733 1734 if (type & PERF_SAMPLE_DATA_SRC) { 1735 *array = sample->data_src; 1736 array++; 1737 } 1738 1739 if (type & PERF_SAMPLE_TRANSACTION) { 1740 *array = sample->transaction; 1741 array++; 1742 } 1743 1744 return 0; 1745 } 1746 1747 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1748 { 1749 return pevent_find_field(evsel->tp_format, name); 1750 } 1751 1752 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1753 const char *name) 1754 { 1755 struct format_field *field = perf_evsel__field(evsel, name); 1756 int offset; 1757 1758 if (!field) 1759 return NULL; 1760 1761 offset = field->offset; 1762 1763 if (field->flags & FIELD_IS_DYNAMIC) { 1764 offset = *(int *)(sample->raw_data + field->offset); 1765 offset &= 0xffff; 1766 } 1767 1768 return sample->raw_data + offset; 1769 } 1770 1771 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1772 const char *name) 1773 { 1774 struct format_field *field = perf_evsel__field(evsel, name); 1775 void *ptr; 1776 u64 value; 1777 1778 if (!field) 1779 return 0; 1780 1781 ptr = sample->raw_data + field->offset; 1782 1783 switch (field->size) { 1784 case 1: 1785 return *(u8 *)ptr; 1786 case 2: 1787 value = *(u16 *)ptr; 1788 break; 1789 case 4: 1790 value = *(u32 *)ptr; 1791 break; 1792 case 8: 1793 value = *(u64 *)ptr; 1794 break; 1795 default: 1796 return 0; 1797 } 1798 1799 if (!evsel->needs_swap) 1800 return value; 1801 1802 switch (field->size) { 1803 case 2: 1804 return bswap_16(value); 1805 case 4: 1806 return bswap_32(value); 1807 case 8: 1808 return bswap_64(value); 1809 default: 1810 return 0; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1817 { 1818 va_list args; 1819 int ret = 0; 1820 1821 if (!*first) { 1822 ret += fprintf(fp, ","); 1823 } else { 1824 ret += fprintf(fp, ":"); 1825 *first = false; 1826 } 1827 1828 va_start(args, fmt); 1829 ret += vfprintf(fp, fmt, args); 1830 va_end(args); 1831 return ret; 1832 } 1833 1834 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1835 { 1836 if (value == 0) 1837 return 0; 1838 1839 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1840 } 1841 1842 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1843 1844 struct bit_names { 1845 int bit; 1846 const char *name; 1847 }; 1848 1849 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1850 struct bit_names *bits, bool *first) 1851 { 1852 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1853 bool first_bit = true; 1854 1855 do { 1856 if (value & bits[i].bit) { 1857 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1858 first_bit = false; 1859 } 1860 } while (bits[++i].name != NULL); 1861 1862 return printed; 1863 } 1864 1865 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1866 { 1867 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1868 struct bit_names bits[] = { 1869 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1870 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1871 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1872 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1873 bit_name(IDENTIFIER), 1874 { .name = NULL, } 1875 }; 1876 #undef bit_name 1877 return bits__fprintf(fp, "sample_type", value, bits, first); 1878 } 1879 1880 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1881 { 1882 #define bit_name(n) { PERF_FORMAT_##n, #n } 1883 struct bit_names bits[] = { 1884 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1885 bit_name(ID), bit_name(GROUP), 1886 { .name = NULL, } 1887 }; 1888 #undef bit_name 1889 return bits__fprintf(fp, "read_format", value, bits, first); 1890 } 1891 1892 int perf_evsel__fprintf(struct perf_evsel *evsel, 1893 struct perf_attr_details *details, FILE *fp) 1894 { 1895 bool first = true; 1896 int printed = 0; 1897 1898 if (details->event_group) { 1899 struct perf_evsel *pos; 1900 1901 if (!perf_evsel__is_group_leader(evsel)) 1902 return 0; 1903 1904 if (evsel->nr_members > 1) 1905 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 1906 1907 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1908 for_each_group_member(pos, evsel) 1909 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 1910 1911 if (evsel->nr_members > 1) 1912 printed += fprintf(fp, "}"); 1913 goto out; 1914 } 1915 1916 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1917 1918 if (details->verbose || details->freq) { 1919 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 1920 (u64)evsel->attr.sample_freq); 1921 } 1922 1923 if (details->verbose) { 1924 if_print(type); 1925 if_print(config); 1926 if_print(config1); 1927 if_print(config2); 1928 if_print(size); 1929 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 1930 if (evsel->attr.read_format) 1931 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 1932 if_print(disabled); 1933 if_print(inherit); 1934 if_print(pinned); 1935 if_print(exclusive); 1936 if_print(exclude_user); 1937 if_print(exclude_kernel); 1938 if_print(exclude_hv); 1939 if_print(exclude_idle); 1940 if_print(mmap); 1941 if_print(mmap2); 1942 if_print(comm); 1943 if_print(freq); 1944 if_print(inherit_stat); 1945 if_print(enable_on_exec); 1946 if_print(task); 1947 if_print(watermark); 1948 if_print(precise_ip); 1949 if_print(mmap_data); 1950 if_print(sample_id_all); 1951 if_print(exclude_host); 1952 if_print(exclude_guest); 1953 if_print(__reserved_1); 1954 if_print(wakeup_events); 1955 if_print(bp_type); 1956 if_print(branch_sample_type); 1957 } 1958 out: 1959 fputc('\n', fp); 1960 return ++printed; 1961 } 1962 1963 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 1964 char *msg, size_t msgsize) 1965 { 1966 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 1967 evsel->attr.type == PERF_TYPE_HARDWARE && 1968 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 1969 /* 1970 * If it's cycles then fall back to hrtimer based 1971 * cpu-clock-tick sw counter, which is always available even if 1972 * no PMU support. 1973 * 1974 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 1975 * b0a873e). 1976 */ 1977 scnprintf(msg, msgsize, "%s", 1978 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 1979 1980 evsel->attr.type = PERF_TYPE_SOFTWARE; 1981 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 1982 1983 zfree(&evsel->name); 1984 return true; 1985 } 1986 1987 return false; 1988 } 1989 1990 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 1991 int err, char *msg, size_t size) 1992 { 1993 switch (err) { 1994 case EPERM: 1995 case EACCES: 1996 return scnprintf(msg, size, 1997 "You may not have permission to collect %sstats.\n" 1998 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 1999 " -1 - Not paranoid at all\n" 2000 " 0 - Disallow raw tracepoint access for unpriv\n" 2001 " 1 - Disallow cpu events for unpriv\n" 2002 " 2 - Disallow kernel profiling for unpriv", 2003 target->system_wide ? "system-wide " : ""); 2004 case ENOENT: 2005 return scnprintf(msg, size, "The %s event is not supported.", 2006 perf_evsel__name(evsel)); 2007 case EMFILE: 2008 return scnprintf(msg, size, "%s", 2009 "Too many events are opened.\n" 2010 "Try again after reducing the number of events."); 2011 case ENODEV: 2012 if (target->cpu_list) 2013 return scnprintf(msg, size, "%s", 2014 "No such device - did you specify an out-of-range profile CPU?\n"); 2015 break; 2016 case EOPNOTSUPP: 2017 if (evsel->attr.precise_ip) 2018 return scnprintf(msg, size, "%s", 2019 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2020 #if defined(__i386__) || defined(__x86_64__) 2021 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2022 return scnprintf(msg, size, "%s", 2023 "No hardware sampling interrupt available.\n" 2024 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2025 #endif 2026 break; 2027 default: 2028 break; 2029 } 2030 2031 return scnprintf(msg, size, 2032 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n" 2033 "/bin/dmesg may provide additional information.\n" 2034 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2035 err, strerror(err), perf_evsel__name(evsel)); 2036 } 2037