xref: /linux/tools/perf/util/evsel.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 } perf_missing_features;
41 
42 static clockid_t clockid;
43 
44 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
45 {
46 	return 0;
47 }
48 
49 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
50 {
51 }
52 
53 static struct {
54 	size_t	size;
55 	int	(*init)(struct perf_evsel *evsel);
56 	void	(*fini)(struct perf_evsel *evsel);
57 } perf_evsel__object = {
58 	.size = sizeof(struct perf_evsel),
59 	.init = perf_evsel__no_extra_init,
60 	.fini = perf_evsel__no_extra_fini,
61 };
62 
63 int perf_evsel__object_config(size_t object_size,
64 			      int (*init)(struct perf_evsel *evsel),
65 			      void (*fini)(struct perf_evsel *evsel))
66 {
67 
68 	if (object_size == 0)
69 		goto set_methods;
70 
71 	if (perf_evsel__object.size > object_size)
72 		return -EINVAL;
73 
74 	perf_evsel__object.size = object_size;
75 
76 set_methods:
77 	if (init != NULL)
78 		perf_evsel__object.init = init;
79 
80 	if (fini != NULL)
81 		perf_evsel__object.fini = fini;
82 
83 	return 0;
84 }
85 
86 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
87 
88 int __perf_evsel__sample_size(u64 sample_type)
89 {
90 	u64 mask = sample_type & PERF_SAMPLE_MASK;
91 	int size = 0;
92 	int i;
93 
94 	for (i = 0; i < 64; i++) {
95 		if (mask & (1ULL << i))
96 			size++;
97 	}
98 
99 	size *= sizeof(u64);
100 
101 	return size;
102 }
103 
104 /**
105  * __perf_evsel__calc_id_pos - calculate id_pos.
106  * @sample_type: sample type
107  *
108  * This function returns the position of the event id (PERF_SAMPLE_ID or
109  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
110  * sample_event.
111  */
112 static int __perf_evsel__calc_id_pos(u64 sample_type)
113 {
114 	int idx = 0;
115 
116 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
117 		return 0;
118 
119 	if (!(sample_type & PERF_SAMPLE_ID))
120 		return -1;
121 
122 	if (sample_type & PERF_SAMPLE_IP)
123 		idx += 1;
124 
125 	if (sample_type & PERF_SAMPLE_TID)
126 		idx += 1;
127 
128 	if (sample_type & PERF_SAMPLE_TIME)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_ADDR)
132 		idx += 1;
133 
134 	return idx;
135 }
136 
137 /**
138  * __perf_evsel__calc_is_pos - calculate is_pos.
139  * @sample_type: sample type
140  *
141  * This function returns the position (counting backwards) of the event id
142  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
143  * sample_id_all is used there is an id sample appended to non-sample events.
144  */
145 static int __perf_evsel__calc_is_pos(u64 sample_type)
146 {
147 	int idx = 1;
148 
149 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
150 		return 1;
151 
152 	if (!(sample_type & PERF_SAMPLE_ID))
153 		return -1;
154 
155 	if (sample_type & PERF_SAMPLE_CPU)
156 		idx += 1;
157 
158 	if (sample_type & PERF_SAMPLE_STREAM_ID)
159 		idx += 1;
160 
161 	return idx;
162 }
163 
164 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
165 {
166 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
167 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
168 }
169 
170 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
171 				  enum perf_event_sample_format bit)
172 {
173 	if (!(evsel->attr.sample_type & bit)) {
174 		evsel->attr.sample_type |= bit;
175 		evsel->sample_size += sizeof(u64);
176 		perf_evsel__calc_id_pos(evsel);
177 	}
178 }
179 
180 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
181 				    enum perf_event_sample_format bit)
182 {
183 	if (evsel->attr.sample_type & bit) {
184 		evsel->attr.sample_type &= ~bit;
185 		evsel->sample_size -= sizeof(u64);
186 		perf_evsel__calc_id_pos(evsel);
187 	}
188 }
189 
190 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
191 			       bool can_sample_identifier)
192 {
193 	if (can_sample_identifier) {
194 		perf_evsel__reset_sample_bit(evsel, ID);
195 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
196 	} else {
197 		perf_evsel__set_sample_bit(evsel, ID);
198 	}
199 	evsel->attr.read_format |= PERF_FORMAT_ID;
200 }
201 
202 void perf_evsel__init(struct perf_evsel *evsel,
203 		      struct perf_event_attr *attr, int idx)
204 {
205 	evsel->idx	   = idx;
206 	evsel->tracking	   = !idx;
207 	evsel->attr	   = *attr;
208 	evsel->leader	   = evsel;
209 	evsel->unit	   = "";
210 	evsel->scale	   = 1.0;
211 	evsel->evlist	   = NULL;
212 	evsel->bpf_fd	   = -1;
213 	INIT_LIST_HEAD(&evsel->node);
214 	INIT_LIST_HEAD(&evsel->config_terms);
215 	perf_evsel__object.init(evsel);
216 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
217 	perf_evsel__calc_id_pos(evsel);
218 	evsel->cmdline_group_boundary = false;
219 }
220 
221 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
222 {
223 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
224 
225 	if (evsel != NULL)
226 		perf_evsel__init(evsel, attr, idx);
227 
228 	return evsel;
229 }
230 
231 /*
232  * Returns pointer with encoded error via <linux/err.h> interface.
233  */
234 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
235 {
236 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
237 	int err = -ENOMEM;
238 
239 	if (evsel == NULL) {
240 		goto out_err;
241 	} else {
242 		struct perf_event_attr attr = {
243 			.type	       = PERF_TYPE_TRACEPOINT,
244 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
245 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
246 		};
247 
248 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
249 			goto out_free;
250 
251 		evsel->tp_format = trace_event__tp_format(sys, name);
252 		if (IS_ERR(evsel->tp_format)) {
253 			err = PTR_ERR(evsel->tp_format);
254 			goto out_free;
255 		}
256 
257 		event_attr_init(&attr);
258 		attr.config = evsel->tp_format->id;
259 		attr.sample_period = 1;
260 		perf_evsel__init(evsel, &attr, idx);
261 	}
262 
263 	return evsel;
264 
265 out_free:
266 	zfree(&evsel->name);
267 	free(evsel);
268 out_err:
269 	return ERR_PTR(err);
270 }
271 
272 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
273 	"cycles",
274 	"instructions",
275 	"cache-references",
276 	"cache-misses",
277 	"branches",
278 	"branch-misses",
279 	"bus-cycles",
280 	"stalled-cycles-frontend",
281 	"stalled-cycles-backend",
282 	"ref-cycles",
283 };
284 
285 static const char *__perf_evsel__hw_name(u64 config)
286 {
287 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
288 		return perf_evsel__hw_names[config];
289 
290 	return "unknown-hardware";
291 }
292 
293 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
294 {
295 	int colon = 0, r = 0;
296 	struct perf_event_attr *attr = &evsel->attr;
297 	bool exclude_guest_default = false;
298 
299 #define MOD_PRINT(context, mod)	do {					\
300 		if (!attr->exclude_##context) {				\
301 			if (!colon) colon = ++r;			\
302 			r += scnprintf(bf + r, size - r, "%c", mod);	\
303 		} } while(0)
304 
305 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
306 		MOD_PRINT(kernel, 'k');
307 		MOD_PRINT(user, 'u');
308 		MOD_PRINT(hv, 'h');
309 		exclude_guest_default = true;
310 	}
311 
312 	if (attr->precise_ip) {
313 		if (!colon)
314 			colon = ++r;
315 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
316 		exclude_guest_default = true;
317 	}
318 
319 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
320 		MOD_PRINT(host, 'H');
321 		MOD_PRINT(guest, 'G');
322 	}
323 #undef MOD_PRINT
324 	if (colon)
325 		bf[colon - 1] = ':';
326 	return r;
327 }
328 
329 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
330 {
331 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
332 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
333 }
334 
335 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
336 	"cpu-clock",
337 	"task-clock",
338 	"page-faults",
339 	"context-switches",
340 	"cpu-migrations",
341 	"minor-faults",
342 	"major-faults",
343 	"alignment-faults",
344 	"emulation-faults",
345 	"dummy",
346 };
347 
348 static const char *__perf_evsel__sw_name(u64 config)
349 {
350 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
351 		return perf_evsel__sw_names[config];
352 	return "unknown-software";
353 }
354 
355 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
356 {
357 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
358 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
359 }
360 
361 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
362 {
363 	int r;
364 
365 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
366 
367 	if (type & HW_BREAKPOINT_R)
368 		r += scnprintf(bf + r, size - r, "r");
369 
370 	if (type & HW_BREAKPOINT_W)
371 		r += scnprintf(bf + r, size - r, "w");
372 
373 	if (type & HW_BREAKPOINT_X)
374 		r += scnprintf(bf + r, size - r, "x");
375 
376 	return r;
377 }
378 
379 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
380 {
381 	struct perf_event_attr *attr = &evsel->attr;
382 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
383 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
384 }
385 
386 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
387 				[PERF_EVSEL__MAX_ALIASES] = {
388  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
389  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
390  { "LLC",	"L2",							},
391  { "dTLB",	"d-tlb",	"Data-TLB",				},
392  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
393  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
394  { "node",								},
395 };
396 
397 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
398 				   [PERF_EVSEL__MAX_ALIASES] = {
399  { "load",	"loads",	"read",					},
400  { "store",	"stores",	"write",				},
401  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
402 };
403 
404 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
405 				       [PERF_EVSEL__MAX_ALIASES] = {
406  { "refs",	"Reference",	"ops",		"access",		},
407  { "misses",	"miss",							},
408 };
409 
410 #define C(x)		PERF_COUNT_HW_CACHE_##x
411 #define CACHE_READ	(1 << C(OP_READ))
412 #define CACHE_WRITE	(1 << C(OP_WRITE))
413 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
414 #define COP(x)		(1 << x)
415 
416 /*
417  * cache operartion stat
418  * L1I : Read and prefetch only
419  * ITLB and BPU : Read-only
420  */
421 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
422  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
423  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
424  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
425  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
426  [C(ITLB)]	= (CACHE_READ),
427  [C(BPU)]	= (CACHE_READ),
428  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
429 };
430 
431 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
432 {
433 	if (perf_evsel__hw_cache_stat[type] & COP(op))
434 		return true;	/* valid */
435 	else
436 		return false;	/* invalid */
437 }
438 
439 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
440 					    char *bf, size_t size)
441 {
442 	if (result) {
443 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
444 				 perf_evsel__hw_cache_op[op][0],
445 				 perf_evsel__hw_cache_result[result][0]);
446 	}
447 
448 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
449 			 perf_evsel__hw_cache_op[op][1]);
450 }
451 
452 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
453 {
454 	u8 op, result, type = (config >>  0) & 0xff;
455 	const char *err = "unknown-ext-hardware-cache-type";
456 
457 	if (type > PERF_COUNT_HW_CACHE_MAX)
458 		goto out_err;
459 
460 	op = (config >>  8) & 0xff;
461 	err = "unknown-ext-hardware-cache-op";
462 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
463 		goto out_err;
464 
465 	result = (config >> 16) & 0xff;
466 	err = "unknown-ext-hardware-cache-result";
467 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
468 		goto out_err;
469 
470 	err = "invalid-cache";
471 	if (!perf_evsel__is_cache_op_valid(type, op))
472 		goto out_err;
473 
474 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
475 out_err:
476 	return scnprintf(bf, size, "%s", err);
477 }
478 
479 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
480 {
481 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
482 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
483 }
484 
485 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
486 {
487 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
488 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
489 }
490 
491 const char *perf_evsel__name(struct perf_evsel *evsel)
492 {
493 	char bf[128];
494 
495 	if (evsel->name)
496 		return evsel->name;
497 
498 	switch (evsel->attr.type) {
499 	case PERF_TYPE_RAW:
500 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
501 		break;
502 
503 	case PERF_TYPE_HARDWARE:
504 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
505 		break;
506 
507 	case PERF_TYPE_HW_CACHE:
508 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
509 		break;
510 
511 	case PERF_TYPE_SOFTWARE:
512 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
513 		break;
514 
515 	case PERF_TYPE_TRACEPOINT:
516 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
517 		break;
518 
519 	case PERF_TYPE_BREAKPOINT:
520 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
521 		break;
522 
523 	default:
524 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
525 			  evsel->attr.type);
526 		break;
527 	}
528 
529 	evsel->name = strdup(bf);
530 
531 	return evsel->name ?: "unknown";
532 }
533 
534 const char *perf_evsel__group_name(struct perf_evsel *evsel)
535 {
536 	return evsel->group_name ?: "anon group";
537 }
538 
539 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
540 {
541 	int ret;
542 	struct perf_evsel *pos;
543 	const char *group_name = perf_evsel__group_name(evsel);
544 
545 	ret = scnprintf(buf, size, "%s", group_name);
546 
547 	ret += scnprintf(buf + ret, size - ret, " { %s",
548 			 perf_evsel__name(evsel));
549 
550 	for_each_group_member(pos, evsel)
551 		ret += scnprintf(buf + ret, size - ret, ", %s",
552 				 perf_evsel__name(pos));
553 
554 	ret += scnprintf(buf + ret, size - ret, " }");
555 
556 	return ret;
557 }
558 
559 static void
560 perf_evsel__config_callgraph(struct perf_evsel *evsel,
561 			     struct record_opts *opts,
562 			     struct callchain_param *param)
563 {
564 	bool function = perf_evsel__is_function_event(evsel);
565 	struct perf_event_attr *attr = &evsel->attr;
566 
567 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
568 
569 	if (param->record_mode == CALLCHAIN_LBR) {
570 		if (!opts->branch_stack) {
571 			if (attr->exclude_user) {
572 				pr_warning("LBR callstack option is only available "
573 					   "to get user callchain information. "
574 					   "Falling back to framepointers.\n");
575 			} else {
576 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
577 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
578 							PERF_SAMPLE_BRANCH_CALL_STACK |
579 							PERF_SAMPLE_BRANCH_NO_CYCLES |
580 							PERF_SAMPLE_BRANCH_NO_FLAGS;
581 			}
582 		} else
583 			 pr_warning("Cannot use LBR callstack with branch stack. "
584 				    "Falling back to framepointers.\n");
585 	}
586 
587 	if (param->record_mode == CALLCHAIN_DWARF) {
588 		if (!function) {
589 			perf_evsel__set_sample_bit(evsel, REGS_USER);
590 			perf_evsel__set_sample_bit(evsel, STACK_USER);
591 			attr->sample_regs_user = PERF_REGS_MASK;
592 			attr->sample_stack_user = param->dump_size;
593 			attr->exclude_callchain_user = 1;
594 		} else {
595 			pr_info("Cannot use DWARF unwind for function trace event,"
596 				" falling back to framepointers.\n");
597 		}
598 	}
599 
600 	if (function) {
601 		pr_info("Disabling user space callchains for function trace event.\n");
602 		attr->exclude_callchain_user = 1;
603 	}
604 }
605 
606 static void
607 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
608 			    struct callchain_param *param)
609 {
610 	struct perf_event_attr *attr = &evsel->attr;
611 
612 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
613 	if (param->record_mode == CALLCHAIN_LBR) {
614 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
615 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
616 					      PERF_SAMPLE_BRANCH_CALL_STACK);
617 	}
618 	if (param->record_mode == CALLCHAIN_DWARF) {
619 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
620 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
621 	}
622 }
623 
624 static void apply_config_terms(struct perf_evsel *evsel,
625 			       struct record_opts *opts)
626 {
627 	struct perf_evsel_config_term *term;
628 	struct list_head *config_terms = &evsel->config_terms;
629 	struct perf_event_attr *attr = &evsel->attr;
630 	struct callchain_param param;
631 	u32 dump_size = 0;
632 	char *callgraph_buf = NULL;
633 
634 	/* callgraph default */
635 	param.record_mode = callchain_param.record_mode;
636 
637 	list_for_each_entry(term, config_terms, list) {
638 		switch (term->type) {
639 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
640 			attr->sample_period = term->val.period;
641 			attr->freq = 0;
642 			break;
643 		case PERF_EVSEL__CONFIG_TERM_FREQ:
644 			attr->sample_freq = term->val.freq;
645 			attr->freq = 1;
646 			break;
647 		case PERF_EVSEL__CONFIG_TERM_TIME:
648 			if (term->val.time)
649 				perf_evsel__set_sample_bit(evsel, TIME);
650 			else
651 				perf_evsel__reset_sample_bit(evsel, TIME);
652 			break;
653 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
654 			callgraph_buf = term->val.callgraph;
655 			break;
656 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
657 			dump_size = term->val.stack_user;
658 			break;
659 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
660 			/*
661 			 * attr->inherit should has already been set by
662 			 * perf_evsel__config. If user explicitly set
663 			 * inherit using config terms, override global
664 			 * opt->no_inherit setting.
665 			 */
666 			attr->inherit = term->val.inherit ? 1 : 0;
667 			break;
668 		default:
669 			break;
670 		}
671 	}
672 
673 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
674 	if ((callgraph_buf != NULL) || (dump_size > 0)) {
675 
676 		/* parse callgraph parameters */
677 		if (callgraph_buf != NULL) {
678 			if (!strcmp(callgraph_buf, "no")) {
679 				param.enabled = false;
680 				param.record_mode = CALLCHAIN_NONE;
681 			} else {
682 				param.enabled = true;
683 				if (parse_callchain_record(callgraph_buf, &param)) {
684 					pr_err("per-event callgraph setting for %s failed. "
685 					       "Apply callgraph global setting for it\n",
686 					       evsel->name);
687 					return;
688 				}
689 			}
690 		}
691 		if (dump_size > 0) {
692 			dump_size = round_up(dump_size, sizeof(u64));
693 			param.dump_size = dump_size;
694 		}
695 
696 		/* If global callgraph set, clear it */
697 		if (callchain_param.enabled)
698 			perf_evsel__reset_callgraph(evsel, &callchain_param);
699 
700 		/* set perf-event callgraph */
701 		if (param.enabled)
702 			perf_evsel__config_callgraph(evsel, opts, &param);
703 	}
704 }
705 
706 /*
707  * The enable_on_exec/disabled value strategy:
708  *
709  *  1) For any type of traced program:
710  *    - all independent events and group leaders are disabled
711  *    - all group members are enabled
712  *
713  *     Group members are ruled by group leaders. They need to
714  *     be enabled, because the group scheduling relies on that.
715  *
716  *  2) For traced programs executed by perf:
717  *     - all independent events and group leaders have
718  *       enable_on_exec set
719  *     - we don't specifically enable or disable any event during
720  *       the record command
721  *
722  *     Independent events and group leaders are initially disabled
723  *     and get enabled by exec. Group members are ruled by group
724  *     leaders as stated in 1).
725  *
726  *  3) For traced programs attached by perf (pid/tid):
727  *     - we specifically enable or disable all events during
728  *       the record command
729  *
730  *     When attaching events to already running traced we
731  *     enable/disable events specifically, as there's no
732  *     initial traced exec call.
733  */
734 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
735 {
736 	struct perf_evsel *leader = evsel->leader;
737 	struct perf_event_attr *attr = &evsel->attr;
738 	int track = evsel->tracking;
739 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
740 
741 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
742 	attr->inherit	    = !opts->no_inherit;
743 
744 	perf_evsel__set_sample_bit(evsel, IP);
745 	perf_evsel__set_sample_bit(evsel, TID);
746 
747 	if (evsel->sample_read) {
748 		perf_evsel__set_sample_bit(evsel, READ);
749 
750 		/*
751 		 * We need ID even in case of single event, because
752 		 * PERF_SAMPLE_READ process ID specific data.
753 		 */
754 		perf_evsel__set_sample_id(evsel, false);
755 
756 		/*
757 		 * Apply group format only if we belong to group
758 		 * with more than one members.
759 		 */
760 		if (leader->nr_members > 1) {
761 			attr->read_format |= PERF_FORMAT_GROUP;
762 			attr->inherit = 0;
763 		}
764 	}
765 
766 	/*
767 	 * We default some events to have a default interval. But keep
768 	 * it a weak assumption overridable by the user.
769 	 */
770 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
771 				     opts->user_interval != ULLONG_MAX)) {
772 		if (opts->freq) {
773 			perf_evsel__set_sample_bit(evsel, PERIOD);
774 			attr->freq		= 1;
775 			attr->sample_freq	= opts->freq;
776 		} else {
777 			attr->sample_period = opts->default_interval;
778 		}
779 	}
780 
781 	/*
782 	 * Disable sampling for all group members other
783 	 * than leader in case leader 'leads' the sampling.
784 	 */
785 	if ((leader != evsel) && leader->sample_read) {
786 		attr->sample_freq   = 0;
787 		attr->sample_period = 0;
788 	}
789 
790 	if (opts->no_samples)
791 		attr->sample_freq = 0;
792 
793 	if (opts->inherit_stat)
794 		attr->inherit_stat = 1;
795 
796 	if (opts->sample_address) {
797 		perf_evsel__set_sample_bit(evsel, ADDR);
798 		attr->mmap_data = track;
799 	}
800 
801 	/*
802 	 * We don't allow user space callchains for  function trace
803 	 * event, due to issues with page faults while tracing page
804 	 * fault handler and its overall trickiness nature.
805 	 */
806 	if (perf_evsel__is_function_event(evsel))
807 		evsel->attr.exclude_callchain_user = 1;
808 
809 	if (callchain_param.enabled && !evsel->no_aux_samples)
810 		perf_evsel__config_callgraph(evsel, opts, &callchain_param);
811 
812 	if (opts->sample_intr_regs) {
813 		attr->sample_regs_intr = opts->sample_intr_regs;
814 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
815 	}
816 
817 	if (target__has_cpu(&opts->target))
818 		perf_evsel__set_sample_bit(evsel, CPU);
819 
820 	if (opts->period)
821 		perf_evsel__set_sample_bit(evsel, PERIOD);
822 
823 	/*
824 	 * When the user explicitely disabled time don't force it here.
825 	 */
826 	if (opts->sample_time &&
827 	    (!perf_missing_features.sample_id_all &&
828 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
829 	     opts->sample_time_set)))
830 		perf_evsel__set_sample_bit(evsel, TIME);
831 
832 	if (opts->raw_samples && !evsel->no_aux_samples) {
833 		perf_evsel__set_sample_bit(evsel, TIME);
834 		perf_evsel__set_sample_bit(evsel, RAW);
835 		perf_evsel__set_sample_bit(evsel, CPU);
836 	}
837 
838 	if (opts->sample_address)
839 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
840 
841 	if (opts->no_buffering) {
842 		attr->watermark = 0;
843 		attr->wakeup_events = 1;
844 	}
845 	if (opts->branch_stack && !evsel->no_aux_samples) {
846 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
847 		attr->branch_sample_type = opts->branch_stack;
848 	}
849 
850 	if (opts->sample_weight)
851 		perf_evsel__set_sample_bit(evsel, WEIGHT);
852 
853 	attr->task  = track;
854 	attr->mmap  = track;
855 	attr->mmap2 = track && !perf_missing_features.mmap2;
856 	attr->comm  = track;
857 
858 	if (opts->record_switch_events)
859 		attr->context_switch = track;
860 
861 	if (opts->sample_transaction)
862 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
863 
864 	if (opts->running_time) {
865 		evsel->attr.read_format |=
866 			PERF_FORMAT_TOTAL_TIME_ENABLED |
867 			PERF_FORMAT_TOTAL_TIME_RUNNING;
868 	}
869 
870 	/*
871 	 * XXX see the function comment above
872 	 *
873 	 * Disabling only independent events or group leaders,
874 	 * keeping group members enabled.
875 	 */
876 	if (perf_evsel__is_group_leader(evsel))
877 		attr->disabled = 1;
878 
879 	/*
880 	 * Setting enable_on_exec for independent events and
881 	 * group leaders for traced executed by perf.
882 	 */
883 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
884 		!opts->initial_delay)
885 		attr->enable_on_exec = 1;
886 
887 	if (evsel->immediate) {
888 		attr->disabled = 0;
889 		attr->enable_on_exec = 0;
890 	}
891 
892 	clockid = opts->clockid;
893 	if (opts->use_clockid) {
894 		attr->use_clockid = 1;
895 		attr->clockid = opts->clockid;
896 	}
897 
898 	if (evsel->precise_max)
899 		perf_event_attr__set_max_precise_ip(attr);
900 
901 	/*
902 	 * Apply event specific term settings,
903 	 * it overloads any global configuration.
904 	 */
905 	apply_config_terms(evsel, opts);
906 }
907 
908 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
909 {
910 	int cpu, thread;
911 
912 	if (evsel->system_wide)
913 		nthreads = 1;
914 
915 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
916 
917 	if (evsel->fd) {
918 		for (cpu = 0; cpu < ncpus; cpu++) {
919 			for (thread = 0; thread < nthreads; thread++) {
920 				FD(evsel, cpu, thread) = -1;
921 			}
922 		}
923 	}
924 
925 	return evsel->fd != NULL ? 0 : -ENOMEM;
926 }
927 
928 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
929 			  int ioc,  void *arg)
930 {
931 	int cpu, thread;
932 
933 	if (evsel->system_wide)
934 		nthreads = 1;
935 
936 	for (cpu = 0; cpu < ncpus; cpu++) {
937 		for (thread = 0; thread < nthreads; thread++) {
938 			int fd = FD(evsel, cpu, thread),
939 			    err = ioctl(fd, ioc, arg);
940 
941 			if (err)
942 				return err;
943 		}
944 	}
945 
946 	return 0;
947 }
948 
949 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
950 			     const char *filter)
951 {
952 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
953 				     PERF_EVENT_IOC_SET_FILTER,
954 				     (void *)filter);
955 }
956 
957 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
958 {
959 	char *new_filter = strdup(filter);
960 
961 	if (new_filter != NULL) {
962 		free(evsel->filter);
963 		evsel->filter = new_filter;
964 		return 0;
965 	}
966 
967 	return -1;
968 }
969 
970 int perf_evsel__append_filter(struct perf_evsel *evsel,
971 			      const char *op, const char *filter)
972 {
973 	char *new_filter;
974 
975 	if (evsel->filter == NULL)
976 		return perf_evsel__set_filter(evsel, filter);
977 
978 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
979 		free(evsel->filter);
980 		evsel->filter = new_filter;
981 		return 0;
982 	}
983 
984 	return -1;
985 }
986 
987 int perf_evsel__enable(struct perf_evsel *evsel)
988 {
989 	int nthreads = thread_map__nr(evsel->threads);
990 	int ncpus = cpu_map__nr(evsel->cpus);
991 
992 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
993 				     PERF_EVENT_IOC_ENABLE,
994 				     0);
995 }
996 
997 int perf_evsel__disable(struct perf_evsel *evsel)
998 {
999 	int nthreads = thread_map__nr(evsel->threads);
1000 	int ncpus = cpu_map__nr(evsel->cpus);
1001 
1002 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1003 				     PERF_EVENT_IOC_DISABLE,
1004 				     0);
1005 }
1006 
1007 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1008 {
1009 	if (ncpus == 0 || nthreads == 0)
1010 		return 0;
1011 
1012 	if (evsel->system_wide)
1013 		nthreads = 1;
1014 
1015 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1016 	if (evsel->sample_id == NULL)
1017 		return -ENOMEM;
1018 
1019 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1020 	if (evsel->id == NULL) {
1021 		xyarray__delete(evsel->sample_id);
1022 		evsel->sample_id = NULL;
1023 		return -ENOMEM;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1030 {
1031 	xyarray__delete(evsel->fd);
1032 	evsel->fd = NULL;
1033 }
1034 
1035 static void perf_evsel__free_id(struct perf_evsel *evsel)
1036 {
1037 	xyarray__delete(evsel->sample_id);
1038 	evsel->sample_id = NULL;
1039 	zfree(&evsel->id);
1040 }
1041 
1042 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1043 {
1044 	struct perf_evsel_config_term *term, *h;
1045 
1046 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1047 		list_del(&term->list);
1048 		free(term);
1049 	}
1050 }
1051 
1052 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1053 {
1054 	int cpu, thread;
1055 
1056 	if (evsel->system_wide)
1057 		nthreads = 1;
1058 
1059 	for (cpu = 0; cpu < ncpus; cpu++)
1060 		for (thread = 0; thread < nthreads; ++thread) {
1061 			close(FD(evsel, cpu, thread));
1062 			FD(evsel, cpu, thread) = -1;
1063 		}
1064 }
1065 
1066 void perf_evsel__exit(struct perf_evsel *evsel)
1067 {
1068 	assert(list_empty(&evsel->node));
1069 	assert(evsel->evlist == NULL);
1070 	perf_evsel__free_fd(evsel);
1071 	perf_evsel__free_id(evsel);
1072 	perf_evsel__free_config_terms(evsel);
1073 	close_cgroup(evsel->cgrp);
1074 	cpu_map__put(evsel->cpus);
1075 	cpu_map__put(evsel->own_cpus);
1076 	thread_map__put(evsel->threads);
1077 	zfree(&evsel->group_name);
1078 	zfree(&evsel->name);
1079 	perf_evsel__object.fini(evsel);
1080 }
1081 
1082 void perf_evsel__delete(struct perf_evsel *evsel)
1083 {
1084 	perf_evsel__exit(evsel);
1085 	free(evsel);
1086 }
1087 
1088 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1089 				struct perf_counts_values *count)
1090 {
1091 	struct perf_counts_values tmp;
1092 
1093 	if (!evsel->prev_raw_counts)
1094 		return;
1095 
1096 	if (cpu == -1) {
1097 		tmp = evsel->prev_raw_counts->aggr;
1098 		evsel->prev_raw_counts->aggr = *count;
1099 	} else {
1100 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1101 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1102 	}
1103 
1104 	count->val = count->val - tmp.val;
1105 	count->ena = count->ena - tmp.ena;
1106 	count->run = count->run - tmp.run;
1107 }
1108 
1109 void perf_counts_values__scale(struct perf_counts_values *count,
1110 			       bool scale, s8 *pscaled)
1111 {
1112 	s8 scaled = 0;
1113 
1114 	if (scale) {
1115 		if (count->run == 0) {
1116 			scaled = -1;
1117 			count->val = 0;
1118 		} else if (count->run < count->ena) {
1119 			scaled = 1;
1120 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1121 		}
1122 	} else
1123 		count->ena = count->run = 0;
1124 
1125 	if (pscaled)
1126 		*pscaled = scaled;
1127 }
1128 
1129 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1130 		     struct perf_counts_values *count)
1131 {
1132 	memset(count, 0, sizeof(*count));
1133 
1134 	if (FD(evsel, cpu, thread) < 0)
1135 		return -EINVAL;
1136 
1137 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1138 		return -errno;
1139 
1140 	return 0;
1141 }
1142 
1143 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1144 			      int cpu, int thread, bool scale)
1145 {
1146 	struct perf_counts_values count;
1147 	size_t nv = scale ? 3 : 1;
1148 
1149 	if (FD(evsel, cpu, thread) < 0)
1150 		return -EINVAL;
1151 
1152 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1153 		return -ENOMEM;
1154 
1155 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1156 		return -errno;
1157 
1158 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1159 	perf_counts_values__scale(&count, scale, NULL);
1160 	*perf_counts(evsel->counts, cpu, thread) = count;
1161 	return 0;
1162 }
1163 
1164 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1165 {
1166 	struct perf_evsel *leader = evsel->leader;
1167 	int fd;
1168 
1169 	if (perf_evsel__is_group_leader(evsel))
1170 		return -1;
1171 
1172 	/*
1173 	 * Leader must be already processed/open,
1174 	 * if not it's a bug.
1175 	 */
1176 	BUG_ON(!leader->fd);
1177 
1178 	fd = FD(leader, cpu, thread);
1179 	BUG_ON(fd == -1);
1180 
1181 	return fd;
1182 }
1183 
1184 struct bit_names {
1185 	int bit;
1186 	const char *name;
1187 };
1188 
1189 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1190 {
1191 	bool first_bit = true;
1192 	int i = 0;
1193 
1194 	do {
1195 		if (value & bits[i].bit) {
1196 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1197 			first_bit = false;
1198 		}
1199 	} while (bits[++i].name != NULL);
1200 }
1201 
1202 static void __p_sample_type(char *buf, size_t size, u64 value)
1203 {
1204 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1205 	struct bit_names bits[] = {
1206 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1207 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1208 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1209 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1210 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1211 		bit_name(WEIGHT),
1212 		{ .name = NULL, }
1213 	};
1214 #undef bit_name
1215 	__p_bits(buf, size, value, bits);
1216 }
1217 
1218 static void __p_read_format(char *buf, size_t size, u64 value)
1219 {
1220 #define bit_name(n) { PERF_FORMAT_##n, #n }
1221 	struct bit_names bits[] = {
1222 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1223 		bit_name(ID), bit_name(GROUP),
1224 		{ .name = NULL, }
1225 	};
1226 #undef bit_name
1227 	__p_bits(buf, size, value, bits);
1228 }
1229 
1230 #define BUF_SIZE		1024
1231 
1232 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1233 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1234 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1235 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1236 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1237 
1238 #define PRINT_ATTRn(_n, _f, _p)				\
1239 do {							\
1240 	if (attr->_f) {					\
1241 		_p(attr->_f);				\
1242 		ret += attr__fprintf(fp, _n, buf, priv);\
1243 	}						\
1244 } while (0)
1245 
1246 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1247 
1248 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1249 			     attr__fprintf_f attr__fprintf, void *priv)
1250 {
1251 	char buf[BUF_SIZE];
1252 	int ret = 0;
1253 
1254 	PRINT_ATTRf(type, p_unsigned);
1255 	PRINT_ATTRf(size, p_unsigned);
1256 	PRINT_ATTRf(config, p_hex);
1257 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1258 	PRINT_ATTRf(sample_type, p_sample_type);
1259 	PRINT_ATTRf(read_format, p_read_format);
1260 
1261 	PRINT_ATTRf(disabled, p_unsigned);
1262 	PRINT_ATTRf(inherit, p_unsigned);
1263 	PRINT_ATTRf(pinned, p_unsigned);
1264 	PRINT_ATTRf(exclusive, p_unsigned);
1265 	PRINT_ATTRf(exclude_user, p_unsigned);
1266 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1267 	PRINT_ATTRf(exclude_hv, p_unsigned);
1268 	PRINT_ATTRf(exclude_idle, p_unsigned);
1269 	PRINT_ATTRf(mmap, p_unsigned);
1270 	PRINT_ATTRf(comm, p_unsigned);
1271 	PRINT_ATTRf(freq, p_unsigned);
1272 	PRINT_ATTRf(inherit_stat, p_unsigned);
1273 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1274 	PRINT_ATTRf(task, p_unsigned);
1275 	PRINT_ATTRf(watermark, p_unsigned);
1276 	PRINT_ATTRf(precise_ip, p_unsigned);
1277 	PRINT_ATTRf(mmap_data, p_unsigned);
1278 	PRINT_ATTRf(sample_id_all, p_unsigned);
1279 	PRINT_ATTRf(exclude_host, p_unsigned);
1280 	PRINT_ATTRf(exclude_guest, p_unsigned);
1281 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1282 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1283 	PRINT_ATTRf(mmap2, p_unsigned);
1284 	PRINT_ATTRf(comm_exec, p_unsigned);
1285 	PRINT_ATTRf(use_clockid, p_unsigned);
1286 	PRINT_ATTRf(context_switch, p_unsigned);
1287 
1288 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1289 	PRINT_ATTRf(bp_type, p_unsigned);
1290 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1291 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1292 	PRINT_ATTRf(branch_sample_type, p_unsigned);
1293 	PRINT_ATTRf(sample_regs_user, p_hex);
1294 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1295 	PRINT_ATTRf(clockid, p_signed);
1296 	PRINT_ATTRf(sample_regs_intr, p_hex);
1297 	PRINT_ATTRf(aux_watermark, p_unsigned);
1298 
1299 	return ret;
1300 }
1301 
1302 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1303 				void *priv __attribute__((unused)))
1304 {
1305 	return fprintf(fp, "  %-32s %s\n", name, val);
1306 }
1307 
1308 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1309 			      struct thread_map *threads)
1310 {
1311 	int cpu, thread, nthreads;
1312 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1313 	int pid = -1, err;
1314 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1315 
1316 	if (evsel->system_wide)
1317 		nthreads = 1;
1318 	else
1319 		nthreads = threads->nr;
1320 
1321 	if (evsel->fd == NULL &&
1322 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1323 		return -ENOMEM;
1324 
1325 	if (evsel->cgrp) {
1326 		flags |= PERF_FLAG_PID_CGROUP;
1327 		pid = evsel->cgrp->fd;
1328 	}
1329 
1330 fallback_missing_features:
1331 	if (perf_missing_features.clockid_wrong)
1332 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1333 	if (perf_missing_features.clockid) {
1334 		evsel->attr.use_clockid = 0;
1335 		evsel->attr.clockid = 0;
1336 	}
1337 	if (perf_missing_features.cloexec)
1338 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1339 	if (perf_missing_features.mmap2)
1340 		evsel->attr.mmap2 = 0;
1341 	if (perf_missing_features.exclude_guest)
1342 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1343 	if (perf_missing_features.lbr_flags)
1344 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1345 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1346 retry_sample_id:
1347 	if (perf_missing_features.sample_id_all)
1348 		evsel->attr.sample_id_all = 0;
1349 
1350 	if (verbose >= 2) {
1351 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1352 		fprintf(stderr, "perf_event_attr:\n");
1353 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1354 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1355 	}
1356 
1357 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1358 
1359 		for (thread = 0; thread < nthreads; thread++) {
1360 			int group_fd;
1361 
1362 			if (!evsel->cgrp && !evsel->system_wide)
1363 				pid = thread_map__pid(threads, thread);
1364 
1365 			group_fd = get_group_fd(evsel, cpu, thread);
1366 retry_open:
1367 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1368 				  pid, cpus->map[cpu], group_fd, flags);
1369 
1370 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1371 								     pid,
1372 								     cpus->map[cpu],
1373 								     group_fd, flags);
1374 			if (FD(evsel, cpu, thread) < 0) {
1375 				err = -errno;
1376 				pr_debug2("sys_perf_event_open failed, error %d\n",
1377 					  err);
1378 				goto try_fallback;
1379 			}
1380 
1381 			if (evsel->bpf_fd >= 0) {
1382 				int evt_fd = FD(evsel, cpu, thread);
1383 				int bpf_fd = evsel->bpf_fd;
1384 
1385 				err = ioctl(evt_fd,
1386 					    PERF_EVENT_IOC_SET_BPF,
1387 					    bpf_fd);
1388 				if (err && errno != EEXIST) {
1389 					pr_err("failed to attach bpf fd %d: %s\n",
1390 					       bpf_fd, strerror(errno));
1391 					err = -EINVAL;
1392 					goto out_close;
1393 				}
1394 			}
1395 
1396 			set_rlimit = NO_CHANGE;
1397 
1398 			/*
1399 			 * If we succeeded but had to kill clockid, fail and
1400 			 * have perf_evsel__open_strerror() print us a nice
1401 			 * error.
1402 			 */
1403 			if (perf_missing_features.clockid ||
1404 			    perf_missing_features.clockid_wrong) {
1405 				err = -EINVAL;
1406 				goto out_close;
1407 			}
1408 		}
1409 	}
1410 
1411 	return 0;
1412 
1413 try_fallback:
1414 	/*
1415 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1416 	 * of them try to increase the limits.
1417 	 */
1418 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1419 		struct rlimit l;
1420 		int old_errno = errno;
1421 
1422 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1423 			if (set_rlimit == NO_CHANGE)
1424 				l.rlim_cur = l.rlim_max;
1425 			else {
1426 				l.rlim_cur = l.rlim_max + 1000;
1427 				l.rlim_max = l.rlim_cur;
1428 			}
1429 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1430 				set_rlimit++;
1431 				errno = old_errno;
1432 				goto retry_open;
1433 			}
1434 		}
1435 		errno = old_errno;
1436 	}
1437 
1438 	if (err != -EINVAL || cpu > 0 || thread > 0)
1439 		goto out_close;
1440 
1441 	/*
1442 	 * Must probe features in the order they were added to the
1443 	 * perf_event_attr interface.
1444 	 */
1445 	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1446 		perf_missing_features.clockid_wrong = true;
1447 		goto fallback_missing_features;
1448 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1449 		perf_missing_features.clockid = true;
1450 		goto fallback_missing_features;
1451 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1452 		perf_missing_features.cloexec = true;
1453 		goto fallback_missing_features;
1454 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1455 		perf_missing_features.mmap2 = true;
1456 		goto fallback_missing_features;
1457 	} else if (!perf_missing_features.exclude_guest &&
1458 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1459 		perf_missing_features.exclude_guest = true;
1460 		goto fallback_missing_features;
1461 	} else if (!perf_missing_features.sample_id_all) {
1462 		perf_missing_features.sample_id_all = true;
1463 		goto retry_sample_id;
1464 	} else if (!perf_missing_features.lbr_flags &&
1465 			(evsel->attr.branch_sample_type &
1466 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1467 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1468 		perf_missing_features.lbr_flags = true;
1469 		goto fallback_missing_features;
1470 	}
1471 
1472 out_close:
1473 	do {
1474 		while (--thread >= 0) {
1475 			close(FD(evsel, cpu, thread));
1476 			FD(evsel, cpu, thread) = -1;
1477 		}
1478 		thread = nthreads;
1479 	} while (--cpu >= 0);
1480 	return err;
1481 }
1482 
1483 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1484 {
1485 	if (evsel->fd == NULL)
1486 		return;
1487 
1488 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1489 	perf_evsel__free_fd(evsel);
1490 }
1491 
1492 static struct {
1493 	struct cpu_map map;
1494 	int cpus[1];
1495 } empty_cpu_map = {
1496 	.map.nr	= 1,
1497 	.cpus	= { -1, },
1498 };
1499 
1500 static struct {
1501 	struct thread_map map;
1502 	int threads[1];
1503 } empty_thread_map = {
1504 	.map.nr	 = 1,
1505 	.threads = { -1, },
1506 };
1507 
1508 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1509 		     struct thread_map *threads)
1510 {
1511 	if (cpus == NULL) {
1512 		/* Work around old compiler warnings about strict aliasing */
1513 		cpus = &empty_cpu_map.map;
1514 	}
1515 
1516 	if (threads == NULL)
1517 		threads = &empty_thread_map.map;
1518 
1519 	return __perf_evsel__open(evsel, cpus, threads);
1520 }
1521 
1522 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1523 			     struct cpu_map *cpus)
1524 {
1525 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1526 }
1527 
1528 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1529 				struct thread_map *threads)
1530 {
1531 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1532 }
1533 
1534 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1535 				       const union perf_event *event,
1536 				       struct perf_sample *sample)
1537 {
1538 	u64 type = evsel->attr.sample_type;
1539 	const u64 *array = event->sample.array;
1540 	bool swapped = evsel->needs_swap;
1541 	union u64_swap u;
1542 
1543 	array += ((event->header.size -
1544 		   sizeof(event->header)) / sizeof(u64)) - 1;
1545 
1546 	if (type & PERF_SAMPLE_IDENTIFIER) {
1547 		sample->id = *array;
1548 		array--;
1549 	}
1550 
1551 	if (type & PERF_SAMPLE_CPU) {
1552 		u.val64 = *array;
1553 		if (swapped) {
1554 			/* undo swap of u64, then swap on individual u32s */
1555 			u.val64 = bswap_64(u.val64);
1556 			u.val32[0] = bswap_32(u.val32[0]);
1557 		}
1558 
1559 		sample->cpu = u.val32[0];
1560 		array--;
1561 	}
1562 
1563 	if (type & PERF_SAMPLE_STREAM_ID) {
1564 		sample->stream_id = *array;
1565 		array--;
1566 	}
1567 
1568 	if (type & PERF_SAMPLE_ID) {
1569 		sample->id = *array;
1570 		array--;
1571 	}
1572 
1573 	if (type & PERF_SAMPLE_TIME) {
1574 		sample->time = *array;
1575 		array--;
1576 	}
1577 
1578 	if (type & PERF_SAMPLE_TID) {
1579 		u.val64 = *array;
1580 		if (swapped) {
1581 			/* undo swap of u64, then swap on individual u32s */
1582 			u.val64 = bswap_64(u.val64);
1583 			u.val32[0] = bswap_32(u.val32[0]);
1584 			u.val32[1] = bswap_32(u.val32[1]);
1585 		}
1586 
1587 		sample->pid = u.val32[0];
1588 		sample->tid = u.val32[1];
1589 		array--;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1596 			    u64 size)
1597 {
1598 	return size > max_size || offset + size > endp;
1599 }
1600 
1601 #define OVERFLOW_CHECK(offset, size, max_size)				\
1602 	do {								\
1603 		if (overflow(endp, (max_size), (offset), (size)))	\
1604 			return -EFAULT;					\
1605 	} while (0)
1606 
1607 #define OVERFLOW_CHECK_u64(offset) \
1608 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1609 
1610 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1611 			     struct perf_sample *data)
1612 {
1613 	u64 type = evsel->attr.sample_type;
1614 	bool swapped = evsel->needs_swap;
1615 	const u64 *array;
1616 	u16 max_size = event->header.size;
1617 	const void *endp = (void *)event + max_size;
1618 	u64 sz;
1619 
1620 	/*
1621 	 * used for cross-endian analysis. See git commit 65014ab3
1622 	 * for why this goofiness is needed.
1623 	 */
1624 	union u64_swap u;
1625 
1626 	memset(data, 0, sizeof(*data));
1627 	data->cpu = data->pid = data->tid = -1;
1628 	data->stream_id = data->id = data->time = -1ULL;
1629 	data->period = evsel->attr.sample_period;
1630 	data->weight = 0;
1631 
1632 	if (event->header.type != PERF_RECORD_SAMPLE) {
1633 		if (!evsel->attr.sample_id_all)
1634 			return 0;
1635 		return perf_evsel__parse_id_sample(evsel, event, data);
1636 	}
1637 
1638 	array = event->sample.array;
1639 
1640 	/*
1641 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1642 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1643 	 * check the format does not go past the end of the event.
1644 	 */
1645 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1646 		return -EFAULT;
1647 
1648 	data->id = -1ULL;
1649 	if (type & PERF_SAMPLE_IDENTIFIER) {
1650 		data->id = *array;
1651 		array++;
1652 	}
1653 
1654 	if (type & PERF_SAMPLE_IP) {
1655 		data->ip = *array;
1656 		array++;
1657 	}
1658 
1659 	if (type & PERF_SAMPLE_TID) {
1660 		u.val64 = *array;
1661 		if (swapped) {
1662 			/* undo swap of u64, then swap on individual u32s */
1663 			u.val64 = bswap_64(u.val64);
1664 			u.val32[0] = bswap_32(u.val32[0]);
1665 			u.val32[1] = bswap_32(u.val32[1]);
1666 		}
1667 
1668 		data->pid = u.val32[0];
1669 		data->tid = u.val32[1];
1670 		array++;
1671 	}
1672 
1673 	if (type & PERF_SAMPLE_TIME) {
1674 		data->time = *array;
1675 		array++;
1676 	}
1677 
1678 	data->addr = 0;
1679 	if (type & PERF_SAMPLE_ADDR) {
1680 		data->addr = *array;
1681 		array++;
1682 	}
1683 
1684 	if (type & PERF_SAMPLE_ID) {
1685 		data->id = *array;
1686 		array++;
1687 	}
1688 
1689 	if (type & PERF_SAMPLE_STREAM_ID) {
1690 		data->stream_id = *array;
1691 		array++;
1692 	}
1693 
1694 	if (type & PERF_SAMPLE_CPU) {
1695 
1696 		u.val64 = *array;
1697 		if (swapped) {
1698 			/* undo swap of u64, then swap on individual u32s */
1699 			u.val64 = bswap_64(u.val64);
1700 			u.val32[0] = bswap_32(u.val32[0]);
1701 		}
1702 
1703 		data->cpu = u.val32[0];
1704 		array++;
1705 	}
1706 
1707 	if (type & PERF_SAMPLE_PERIOD) {
1708 		data->period = *array;
1709 		array++;
1710 	}
1711 
1712 	if (type & PERF_SAMPLE_READ) {
1713 		u64 read_format = evsel->attr.read_format;
1714 
1715 		OVERFLOW_CHECK_u64(array);
1716 		if (read_format & PERF_FORMAT_GROUP)
1717 			data->read.group.nr = *array;
1718 		else
1719 			data->read.one.value = *array;
1720 
1721 		array++;
1722 
1723 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1724 			OVERFLOW_CHECK_u64(array);
1725 			data->read.time_enabled = *array;
1726 			array++;
1727 		}
1728 
1729 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1730 			OVERFLOW_CHECK_u64(array);
1731 			data->read.time_running = *array;
1732 			array++;
1733 		}
1734 
1735 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1736 		if (read_format & PERF_FORMAT_GROUP) {
1737 			const u64 max_group_nr = UINT64_MAX /
1738 					sizeof(struct sample_read_value);
1739 
1740 			if (data->read.group.nr > max_group_nr)
1741 				return -EFAULT;
1742 			sz = data->read.group.nr *
1743 			     sizeof(struct sample_read_value);
1744 			OVERFLOW_CHECK(array, sz, max_size);
1745 			data->read.group.values =
1746 					(struct sample_read_value *)array;
1747 			array = (void *)array + sz;
1748 		} else {
1749 			OVERFLOW_CHECK_u64(array);
1750 			data->read.one.id = *array;
1751 			array++;
1752 		}
1753 	}
1754 
1755 	if (type & PERF_SAMPLE_CALLCHAIN) {
1756 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1757 
1758 		OVERFLOW_CHECK_u64(array);
1759 		data->callchain = (struct ip_callchain *)array++;
1760 		if (data->callchain->nr > max_callchain_nr)
1761 			return -EFAULT;
1762 		sz = data->callchain->nr * sizeof(u64);
1763 		OVERFLOW_CHECK(array, sz, max_size);
1764 		array = (void *)array + sz;
1765 	}
1766 
1767 	if (type & PERF_SAMPLE_RAW) {
1768 		OVERFLOW_CHECK_u64(array);
1769 		u.val64 = *array;
1770 		if (WARN_ONCE(swapped,
1771 			      "Endianness of raw data not corrected!\n")) {
1772 			/* undo swap of u64, then swap on individual u32s */
1773 			u.val64 = bswap_64(u.val64);
1774 			u.val32[0] = bswap_32(u.val32[0]);
1775 			u.val32[1] = bswap_32(u.val32[1]);
1776 		}
1777 		data->raw_size = u.val32[0];
1778 		array = (void *)array + sizeof(u32);
1779 
1780 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1781 		data->raw_data = (void *)array;
1782 		array = (void *)array + data->raw_size;
1783 	}
1784 
1785 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1786 		const u64 max_branch_nr = UINT64_MAX /
1787 					  sizeof(struct branch_entry);
1788 
1789 		OVERFLOW_CHECK_u64(array);
1790 		data->branch_stack = (struct branch_stack *)array++;
1791 
1792 		if (data->branch_stack->nr > max_branch_nr)
1793 			return -EFAULT;
1794 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1795 		OVERFLOW_CHECK(array, sz, max_size);
1796 		array = (void *)array + sz;
1797 	}
1798 
1799 	if (type & PERF_SAMPLE_REGS_USER) {
1800 		OVERFLOW_CHECK_u64(array);
1801 		data->user_regs.abi = *array;
1802 		array++;
1803 
1804 		if (data->user_regs.abi) {
1805 			u64 mask = evsel->attr.sample_regs_user;
1806 
1807 			sz = hweight_long(mask) * sizeof(u64);
1808 			OVERFLOW_CHECK(array, sz, max_size);
1809 			data->user_regs.mask = mask;
1810 			data->user_regs.regs = (u64 *)array;
1811 			array = (void *)array + sz;
1812 		}
1813 	}
1814 
1815 	if (type & PERF_SAMPLE_STACK_USER) {
1816 		OVERFLOW_CHECK_u64(array);
1817 		sz = *array++;
1818 
1819 		data->user_stack.offset = ((char *)(array - 1)
1820 					  - (char *) event);
1821 
1822 		if (!sz) {
1823 			data->user_stack.size = 0;
1824 		} else {
1825 			OVERFLOW_CHECK(array, sz, max_size);
1826 			data->user_stack.data = (char *)array;
1827 			array = (void *)array + sz;
1828 			OVERFLOW_CHECK_u64(array);
1829 			data->user_stack.size = *array++;
1830 			if (WARN_ONCE(data->user_stack.size > sz,
1831 				      "user stack dump failure\n"))
1832 				return -EFAULT;
1833 		}
1834 	}
1835 
1836 	data->weight = 0;
1837 	if (type & PERF_SAMPLE_WEIGHT) {
1838 		OVERFLOW_CHECK_u64(array);
1839 		data->weight = *array;
1840 		array++;
1841 	}
1842 
1843 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1844 	if (type & PERF_SAMPLE_DATA_SRC) {
1845 		OVERFLOW_CHECK_u64(array);
1846 		data->data_src = *array;
1847 		array++;
1848 	}
1849 
1850 	data->transaction = 0;
1851 	if (type & PERF_SAMPLE_TRANSACTION) {
1852 		OVERFLOW_CHECK_u64(array);
1853 		data->transaction = *array;
1854 		array++;
1855 	}
1856 
1857 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1858 	if (type & PERF_SAMPLE_REGS_INTR) {
1859 		OVERFLOW_CHECK_u64(array);
1860 		data->intr_regs.abi = *array;
1861 		array++;
1862 
1863 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1864 			u64 mask = evsel->attr.sample_regs_intr;
1865 
1866 			sz = hweight_long(mask) * sizeof(u64);
1867 			OVERFLOW_CHECK(array, sz, max_size);
1868 			data->intr_regs.mask = mask;
1869 			data->intr_regs.regs = (u64 *)array;
1870 			array = (void *)array + sz;
1871 		}
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1878 				     u64 read_format)
1879 {
1880 	size_t sz, result = sizeof(struct sample_event);
1881 
1882 	if (type & PERF_SAMPLE_IDENTIFIER)
1883 		result += sizeof(u64);
1884 
1885 	if (type & PERF_SAMPLE_IP)
1886 		result += sizeof(u64);
1887 
1888 	if (type & PERF_SAMPLE_TID)
1889 		result += sizeof(u64);
1890 
1891 	if (type & PERF_SAMPLE_TIME)
1892 		result += sizeof(u64);
1893 
1894 	if (type & PERF_SAMPLE_ADDR)
1895 		result += sizeof(u64);
1896 
1897 	if (type & PERF_SAMPLE_ID)
1898 		result += sizeof(u64);
1899 
1900 	if (type & PERF_SAMPLE_STREAM_ID)
1901 		result += sizeof(u64);
1902 
1903 	if (type & PERF_SAMPLE_CPU)
1904 		result += sizeof(u64);
1905 
1906 	if (type & PERF_SAMPLE_PERIOD)
1907 		result += sizeof(u64);
1908 
1909 	if (type & PERF_SAMPLE_READ) {
1910 		result += sizeof(u64);
1911 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1912 			result += sizeof(u64);
1913 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1914 			result += sizeof(u64);
1915 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1916 		if (read_format & PERF_FORMAT_GROUP) {
1917 			sz = sample->read.group.nr *
1918 			     sizeof(struct sample_read_value);
1919 			result += sz;
1920 		} else {
1921 			result += sizeof(u64);
1922 		}
1923 	}
1924 
1925 	if (type & PERF_SAMPLE_CALLCHAIN) {
1926 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1927 		result += sz;
1928 	}
1929 
1930 	if (type & PERF_SAMPLE_RAW) {
1931 		result += sizeof(u32);
1932 		result += sample->raw_size;
1933 	}
1934 
1935 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1936 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1937 		sz += sizeof(u64);
1938 		result += sz;
1939 	}
1940 
1941 	if (type & PERF_SAMPLE_REGS_USER) {
1942 		if (sample->user_regs.abi) {
1943 			result += sizeof(u64);
1944 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1945 			result += sz;
1946 		} else {
1947 			result += sizeof(u64);
1948 		}
1949 	}
1950 
1951 	if (type & PERF_SAMPLE_STACK_USER) {
1952 		sz = sample->user_stack.size;
1953 		result += sizeof(u64);
1954 		if (sz) {
1955 			result += sz;
1956 			result += sizeof(u64);
1957 		}
1958 	}
1959 
1960 	if (type & PERF_SAMPLE_WEIGHT)
1961 		result += sizeof(u64);
1962 
1963 	if (type & PERF_SAMPLE_DATA_SRC)
1964 		result += sizeof(u64);
1965 
1966 	if (type & PERF_SAMPLE_TRANSACTION)
1967 		result += sizeof(u64);
1968 
1969 	if (type & PERF_SAMPLE_REGS_INTR) {
1970 		if (sample->intr_regs.abi) {
1971 			result += sizeof(u64);
1972 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1973 			result += sz;
1974 		} else {
1975 			result += sizeof(u64);
1976 		}
1977 	}
1978 
1979 	return result;
1980 }
1981 
1982 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1983 				  u64 read_format,
1984 				  const struct perf_sample *sample,
1985 				  bool swapped)
1986 {
1987 	u64 *array;
1988 	size_t sz;
1989 	/*
1990 	 * used for cross-endian analysis. See git commit 65014ab3
1991 	 * for why this goofiness is needed.
1992 	 */
1993 	union u64_swap u;
1994 
1995 	array = event->sample.array;
1996 
1997 	if (type & PERF_SAMPLE_IDENTIFIER) {
1998 		*array = sample->id;
1999 		array++;
2000 	}
2001 
2002 	if (type & PERF_SAMPLE_IP) {
2003 		*array = sample->ip;
2004 		array++;
2005 	}
2006 
2007 	if (type & PERF_SAMPLE_TID) {
2008 		u.val32[0] = sample->pid;
2009 		u.val32[1] = sample->tid;
2010 		if (swapped) {
2011 			/*
2012 			 * Inverse of what is done in perf_evsel__parse_sample
2013 			 */
2014 			u.val32[0] = bswap_32(u.val32[0]);
2015 			u.val32[1] = bswap_32(u.val32[1]);
2016 			u.val64 = bswap_64(u.val64);
2017 		}
2018 
2019 		*array = u.val64;
2020 		array++;
2021 	}
2022 
2023 	if (type & PERF_SAMPLE_TIME) {
2024 		*array = sample->time;
2025 		array++;
2026 	}
2027 
2028 	if (type & PERF_SAMPLE_ADDR) {
2029 		*array = sample->addr;
2030 		array++;
2031 	}
2032 
2033 	if (type & PERF_SAMPLE_ID) {
2034 		*array = sample->id;
2035 		array++;
2036 	}
2037 
2038 	if (type & PERF_SAMPLE_STREAM_ID) {
2039 		*array = sample->stream_id;
2040 		array++;
2041 	}
2042 
2043 	if (type & PERF_SAMPLE_CPU) {
2044 		u.val32[0] = sample->cpu;
2045 		if (swapped) {
2046 			/*
2047 			 * Inverse of what is done in perf_evsel__parse_sample
2048 			 */
2049 			u.val32[0] = bswap_32(u.val32[0]);
2050 			u.val64 = bswap_64(u.val64);
2051 		}
2052 		*array = u.val64;
2053 		array++;
2054 	}
2055 
2056 	if (type & PERF_SAMPLE_PERIOD) {
2057 		*array = sample->period;
2058 		array++;
2059 	}
2060 
2061 	if (type & PERF_SAMPLE_READ) {
2062 		if (read_format & PERF_FORMAT_GROUP)
2063 			*array = sample->read.group.nr;
2064 		else
2065 			*array = sample->read.one.value;
2066 		array++;
2067 
2068 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2069 			*array = sample->read.time_enabled;
2070 			array++;
2071 		}
2072 
2073 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2074 			*array = sample->read.time_running;
2075 			array++;
2076 		}
2077 
2078 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2079 		if (read_format & PERF_FORMAT_GROUP) {
2080 			sz = sample->read.group.nr *
2081 			     sizeof(struct sample_read_value);
2082 			memcpy(array, sample->read.group.values, sz);
2083 			array = (void *)array + sz;
2084 		} else {
2085 			*array = sample->read.one.id;
2086 			array++;
2087 		}
2088 	}
2089 
2090 	if (type & PERF_SAMPLE_CALLCHAIN) {
2091 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2092 		memcpy(array, sample->callchain, sz);
2093 		array = (void *)array + sz;
2094 	}
2095 
2096 	if (type & PERF_SAMPLE_RAW) {
2097 		u.val32[0] = sample->raw_size;
2098 		if (WARN_ONCE(swapped,
2099 			      "Endianness of raw data not corrected!\n")) {
2100 			/*
2101 			 * Inverse of what is done in perf_evsel__parse_sample
2102 			 */
2103 			u.val32[0] = bswap_32(u.val32[0]);
2104 			u.val32[1] = bswap_32(u.val32[1]);
2105 			u.val64 = bswap_64(u.val64);
2106 		}
2107 		*array = u.val64;
2108 		array = (void *)array + sizeof(u32);
2109 
2110 		memcpy(array, sample->raw_data, sample->raw_size);
2111 		array = (void *)array + sample->raw_size;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2115 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2116 		sz += sizeof(u64);
2117 		memcpy(array, sample->branch_stack, sz);
2118 		array = (void *)array + sz;
2119 	}
2120 
2121 	if (type & PERF_SAMPLE_REGS_USER) {
2122 		if (sample->user_regs.abi) {
2123 			*array++ = sample->user_regs.abi;
2124 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2125 			memcpy(array, sample->user_regs.regs, sz);
2126 			array = (void *)array + sz;
2127 		} else {
2128 			*array++ = 0;
2129 		}
2130 	}
2131 
2132 	if (type & PERF_SAMPLE_STACK_USER) {
2133 		sz = sample->user_stack.size;
2134 		*array++ = sz;
2135 		if (sz) {
2136 			memcpy(array, sample->user_stack.data, sz);
2137 			array = (void *)array + sz;
2138 			*array++ = sz;
2139 		}
2140 	}
2141 
2142 	if (type & PERF_SAMPLE_WEIGHT) {
2143 		*array = sample->weight;
2144 		array++;
2145 	}
2146 
2147 	if (type & PERF_SAMPLE_DATA_SRC) {
2148 		*array = sample->data_src;
2149 		array++;
2150 	}
2151 
2152 	if (type & PERF_SAMPLE_TRANSACTION) {
2153 		*array = sample->transaction;
2154 		array++;
2155 	}
2156 
2157 	if (type & PERF_SAMPLE_REGS_INTR) {
2158 		if (sample->intr_regs.abi) {
2159 			*array++ = sample->intr_regs.abi;
2160 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2161 			memcpy(array, sample->intr_regs.regs, sz);
2162 			array = (void *)array + sz;
2163 		} else {
2164 			*array++ = 0;
2165 		}
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2172 {
2173 	return pevent_find_field(evsel->tp_format, name);
2174 }
2175 
2176 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2177 			 const char *name)
2178 {
2179 	struct format_field *field = perf_evsel__field(evsel, name);
2180 	int offset;
2181 
2182 	if (!field)
2183 		return NULL;
2184 
2185 	offset = field->offset;
2186 
2187 	if (field->flags & FIELD_IS_DYNAMIC) {
2188 		offset = *(int *)(sample->raw_data + field->offset);
2189 		offset &= 0xffff;
2190 	}
2191 
2192 	return sample->raw_data + offset;
2193 }
2194 
2195 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2196 		       const char *name)
2197 {
2198 	struct format_field *field = perf_evsel__field(evsel, name);
2199 	void *ptr;
2200 	u64 value;
2201 
2202 	if (!field)
2203 		return 0;
2204 
2205 	ptr = sample->raw_data + field->offset;
2206 
2207 	switch (field->size) {
2208 	case 1:
2209 		return *(u8 *)ptr;
2210 	case 2:
2211 		value = *(u16 *)ptr;
2212 		break;
2213 	case 4:
2214 		value = *(u32 *)ptr;
2215 		break;
2216 	case 8:
2217 		memcpy(&value, ptr, sizeof(u64));
2218 		break;
2219 	default:
2220 		return 0;
2221 	}
2222 
2223 	if (!evsel->needs_swap)
2224 		return value;
2225 
2226 	switch (field->size) {
2227 	case 2:
2228 		return bswap_16(value);
2229 	case 4:
2230 		return bswap_32(value);
2231 	case 8:
2232 		return bswap_64(value);
2233 	default:
2234 		return 0;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2241 {
2242 	va_list args;
2243 	int ret = 0;
2244 
2245 	if (!*first) {
2246 		ret += fprintf(fp, ",");
2247 	} else {
2248 		ret += fprintf(fp, ":");
2249 		*first = false;
2250 	}
2251 
2252 	va_start(args, fmt);
2253 	ret += vfprintf(fp, fmt, args);
2254 	va_end(args);
2255 	return ret;
2256 }
2257 
2258 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2259 {
2260 	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2261 }
2262 
2263 int perf_evsel__fprintf(struct perf_evsel *evsel,
2264 			struct perf_attr_details *details, FILE *fp)
2265 {
2266 	bool first = true;
2267 	int printed = 0;
2268 
2269 	if (details->event_group) {
2270 		struct perf_evsel *pos;
2271 
2272 		if (!perf_evsel__is_group_leader(evsel))
2273 			return 0;
2274 
2275 		if (evsel->nr_members > 1)
2276 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2277 
2278 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2279 		for_each_group_member(pos, evsel)
2280 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2281 
2282 		if (evsel->nr_members > 1)
2283 			printed += fprintf(fp, "}");
2284 		goto out;
2285 	}
2286 
2287 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2288 
2289 	if (details->verbose) {
2290 		printed += perf_event_attr__fprintf(fp, &evsel->attr,
2291 						    __print_attr__fprintf, &first);
2292 	} else if (details->freq) {
2293 		const char *term = "sample_freq";
2294 
2295 		if (!evsel->attr.freq)
2296 			term = "sample_period";
2297 
2298 		printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2299 					 term, (u64)evsel->attr.sample_freq);
2300 	}
2301 
2302 	if (details->trace_fields) {
2303 		struct format_field *field;
2304 
2305 		if (evsel->attr.type != PERF_TYPE_TRACEPOINT) {
2306 			printed += comma_fprintf(fp, &first, " (not a tracepoint)");
2307 			goto out;
2308 		}
2309 
2310 		field = evsel->tp_format->format.fields;
2311 		if (field == NULL) {
2312 			printed += comma_fprintf(fp, &first, " (no trace field)");
2313 			goto out;
2314 		}
2315 
2316 		printed += comma_fprintf(fp, &first, " trace_fields: %s", field->name);
2317 
2318 		field = field->next;
2319 		while (field) {
2320 			printed += comma_fprintf(fp, &first, "%s", field->name);
2321 			field = field->next;
2322 		}
2323 	}
2324 out:
2325 	fputc('\n', fp);
2326 	return ++printed;
2327 }
2328 
2329 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2330 			  char *msg, size_t msgsize)
2331 {
2332 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2333 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2334 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2335 		/*
2336 		 * If it's cycles then fall back to hrtimer based
2337 		 * cpu-clock-tick sw counter, which is always available even if
2338 		 * no PMU support.
2339 		 *
2340 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2341 		 * b0a873e).
2342 		 */
2343 		scnprintf(msg, msgsize, "%s",
2344 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2345 
2346 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2347 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2348 
2349 		zfree(&evsel->name);
2350 		return true;
2351 	}
2352 
2353 	return false;
2354 }
2355 
2356 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2357 			      int err, char *msg, size_t size)
2358 {
2359 	char sbuf[STRERR_BUFSIZE];
2360 
2361 	switch (err) {
2362 	case EPERM:
2363 	case EACCES:
2364 		return scnprintf(msg, size,
2365 		 "You may not have permission to collect %sstats.\n"
2366 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2367 		 " -1 - Not paranoid at all\n"
2368 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2369 		 "  1 - Disallow cpu events for unpriv\n"
2370 		 "  2 - Disallow kernel profiling for unpriv",
2371 				 target->system_wide ? "system-wide " : "");
2372 	case ENOENT:
2373 		return scnprintf(msg, size, "The %s event is not supported.",
2374 				 perf_evsel__name(evsel));
2375 	case EMFILE:
2376 		return scnprintf(msg, size, "%s",
2377 			 "Too many events are opened.\n"
2378 			 "Probably the maximum number of open file descriptors has been reached.\n"
2379 			 "Hint: Try again after reducing the number of events.\n"
2380 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2381 	case ENODEV:
2382 		if (target->cpu_list)
2383 			return scnprintf(msg, size, "%s",
2384 	 "No such device - did you specify an out-of-range profile CPU?\n");
2385 		break;
2386 	case EOPNOTSUPP:
2387 		if (evsel->attr.precise_ip)
2388 			return scnprintf(msg, size, "%s",
2389 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2390 #if defined(__i386__) || defined(__x86_64__)
2391 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2392 			return scnprintf(msg, size, "%s",
2393 	"No hardware sampling interrupt available.\n"
2394 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2395 #endif
2396 		break;
2397 	case EBUSY:
2398 		if (find_process("oprofiled"))
2399 			return scnprintf(msg, size,
2400 	"The PMU counters are busy/taken by another profiler.\n"
2401 	"We found oprofile daemon running, please stop it and try again.");
2402 		break;
2403 	case EINVAL:
2404 		if (perf_missing_features.clockid)
2405 			return scnprintf(msg, size, "clockid feature not supported.");
2406 		if (perf_missing_features.clockid_wrong)
2407 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2408 		break;
2409 	default:
2410 		break;
2411 	}
2412 
2413 	return scnprintf(msg, size,
2414 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2415 	"/bin/dmesg may provide additional information.\n"
2416 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2417 			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2418 			 perf_evsel__name(evsel));
2419 }
2420