1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include <perf/evsel.h> 26 #include "asm/bug.h" 27 #include "callchain.h" 28 #include "cgroup.h" 29 #include "counts.h" 30 #include "event.h" 31 #include "evsel.h" 32 #include "evlist.h" 33 #include "cpumap.h" 34 #include "thread_map.h" 35 #include "target.h" 36 #include "perf_regs.h" 37 #include "record.h" 38 #include "debug.h" 39 #include "trace-event.h" 40 #include "stat.h" 41 #include "string2.h" 42 #include "memswap.h" 43 #include "util.h" 44 #include "util/parse-branch-options.h" 45 #include <internal/xyarray.h> 46 47 #include <linux/ctype.h> 48 49 struct perf_missing_features perf_missing_features; 50 51 static clockid_t clockid; 52 53 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused) 54 { 55 return 0; 56 } 57 58 void __weak test_attr__ready(void) { } 59 60 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused) 61 { 62 } 63 64 static struct { 65 size_t size; 66 int (*init)(struct evsel *evsel); 67 void (*fini)(struct evsel *evsel); 68 } perf_evsel__object = { 69 .size = sizeof(struct evsel), 70 .init = perf_evsel__no_extra_init, 71 .fini = perf_evsel__no_extra_fini, 72 }; 73 74 int perf_evsel__object_config(size_t object_size, 75 int (*init)(struct evsel *evsel), 76 void (*fini)(struct evsel *evsel)) 77 { 78 79 if (object_size == 0) 80 goto set_methods; 81 82 if (perf_evsel__object.size > object_size) 83 return -EINVAL; 84 85 perf_evsel__object.size = object_size; 86 87 set_methods: 88 if (init != NULL) 89 perf_evsel__object.init = init; 90 91 if (fini != NULL) 92 perf_evsel__object.fini = fini; 93 94 return 0; 95 } 96 97 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 98 99 int __perf_evsel__sample_size(u64 sample_type) 100 { 101 u64 mask = sample_type & PERF_SAMPLE_MASK; 102 int size = 0; 103 int i; 104 105 for (i = 0; i < 64; i++) { 106 if (mask & (1ULL << i)) 107 size++; 108 } 109 110 size *= sizeof(u64); 111 112 return size; 113 } 114 115 /** 116 * __perf_evsel__calc_id_pos - calculate id_pos. 117 * @sample_type: sample type 118 * 119 * This function returns the position of the event id (PERF_SAMPLE_ID or 120 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 121 * perf_record_sample. 122 */ 123 static int __perf_evsel__calc_id_pos(u64 sample_type) 124 { 125 int idx = 0; 126 127 if (sample_type & PERF_SAMPLE_IDENTIFIER) 128 return 0; 129 130 if (!(sample_type & PERF_SAMPLE_ID)) 131 return -1; 132 133 if (sample_type & PERF_SAMPLE_IP) 134 idx += 1; 135 136 if (sample_type & PERF_SAMPLE_TID) 137 idx += 1; 138 139 if (sample_type & PERF_SAMPLE_TIME) 140 idx += 1; 141 142 if (sample_type & PERF_SAMPLE_ADDR) 143 idx += 1; 144 145 return idx; 146 } 147 148 /** 149 * __perf_evsel__calc_is_pos - calculate is_pos. 150 * @sample_type: sample type 151 * 152 * This function returns the position (counting backwards) of the event id 153 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 154 * sample_id_all is used there is an id sample appended to non-sample events. 155 */ 156 static int __perf_evsel__calc_is_pos(u64 sample_type) 157 { 158 int idx = 1; 159 160 if (sample_type & PERF_SAMPLE_IDENTIFIER) 161 return 1; 162 163 if (!(sample_type & PERF_SAMPLE_ID)) 164 return -1; 165 166 if (sample_type & PERF_SAMPLE_CPU) 167 idx += 1; 168 169 if (sample_type & PERF_SAMPLE_STREAM_ID) 170 idx += 1; 171 172 return idx; 173 } 174 175 void perf_evsel__calc_id_pos(struct evsel *evsel) 176 { 177 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); 178 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); 179 } 180 181 void __perf_evsel__set_sample_bit(struct evsel *evsel, 182 enum perf_event_sample_format bit) 183 { 184 if (!(evsel->core.attr.sample_type & bit)) { 185 evsel->core.attr.sample_type |= bit; 186 evsel->sample_size += sizeof(u64); 187 perf_evsel__calc_id_pos(evsel); 188 } 189 } 190 191 void __perf_evsel__reset_sample_bit(struct evsel *evsel, 192 enum perf_event_sample_format bit) 193 { 194 if (evsel->core.attr.sample_type & bit) { 195 evsel->core.attr.sample_type &= ~bit; 196 evsel->sample_size -= sizeof(u64); 197 perf_evsel__calc_id_pos(evsel); 198 } 199 } 200 201 void perf_evsel__set_sample_id(struct evsel *evsel, 202 bool can_sample_identifier) 203 { 204 if (can_sample_identifier) { 205 perf_evsel__reset_sample_bit(evsel, ID); 206 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 207 } else { 208 perf_evsel__set_sample_bit(evsel, ID); 209 } 210 evsel->core.attr.read_format |= PERF_FORMAT_ID; 211 } 212 213 /** 214 * perf_evsel__is_function_event - Return whether given evsel is a function 215 * trace event 216 * 217 * @evsel - evsel selector to be tested 218 * 219 * Return %true if event is function trace event 220 */ 221 bool perf_evsel__is_function_event(struct evsel *evsel) 222 { 223 #define FUNCTION_EVENT "ftrace:function" 224 225 return evsel->name && 226 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 227 228 #undef FUNCTION_EVENT 229 } 230 231 void evsel__init(struct evsel *evsel, 232 struct perf_event_attr *attr, int idx) 233 { 234 perf_evsel__init(&evsel->core, attr); 235 evsel->idx = idx; 236 evsel->tracking = !idx; 237 evsel->leader = evsel; 238 evsel->unit = ""; 239 evsel->scale = 1.0; 240 evsel->max_events = ULONG_MAX; 241 evsel->evlist = NULL; 242 evsel->bpf_obj = NULL; 243 evsel->bpf_fd = -1; 244 INIT_LIST_HEAD(&evsel->config_terms); 245 perf_evsel__object.init(evsel); 246 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 247 perf_evsel__calc_id_pos(evsel); 248 evsel->cmdline_group_boundary = false; 249 evsel->metric_expr = NULL; 250 evsel->metric_name = NULL; 251 evsel->metric_events = NULL; 252 evsel->collect_stat = false; 253 evsel->pmu_name = NULL; 254 } 255 256 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 257 { 258 struct evsel *evsel = zalloc(perf_evsel__object.size); 259 260 if (!evsel) 261 return NULL; 262 evsel__init(evsel, attr, idx); 263 264 if (perf_evsel__is_bpf_output(evsel)) { 265 evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 266 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 267 evsel->core.attr.sample_period = 1; 268 } 269 270 if (perf_evsel__is_clock(evsel)) { 271 /* 272 * The evsel->unit points to static alias->unit 273 * so it's ok to use static string in here. 274 */ 275 static const char *unit = "msec"; 276 277 evsel->unit = unit; 278 evsel->scale = 1e-6; 279 } 280 281 return evsel; 282 } 283 284 static bool perf_event_can_profile_kernel(void) 285 { 286 return perf_event_paranoid_check(1); 287 } 288 289 struct evsel *perf_evsel__new_cycles(bool precise) 290 { 291 struct perf_event_attr attr = { 292 .type = PERF_TYPE_HARDWARE, 293 .config = PERF_COUNT_HW_CPU_CYCLES, 294 .exclude_kernel = !perf_event_can_profile_kernel(), 295 }; 296 struct evsel *evsel; 297 298 event_attr_init(&attr); 299 300 if (!precise) 301 goto new_event; 302 303 /* 304 * Now let the usual logic to set up the perf_event_attr defaults 305 * to kick in when we return and before perf_evsel__open() is called. 306 */ 307 new_event: 308 evsel = evsel__new(&attr); 309 if (evsel == NULL) 310 goto out; 311 312 evsel->precise_max = true; 313 314 /* use asprintf() because free(evsel) assumes name is allocated */ 315 if (asprintf(&evsel->name, "cycles%s%s%.*s", 316 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 317 attr.exclude_kernel ? "u" : "", 318 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 319 goto error_free; 320 out: 321 return evsel; 322 error_free: 323 evsel__delete(evsel); 324 evsel = NULL; 325 goto out; 326 } 327 328 /* 329 * Returns pointer with encoded error via <linux/err.h> interface. 330 */ 331 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 332 { 333 struct evsel *evsel = zalloc(perf_evsel__object.size); 334 int err = -ENOMEM; 335 336 if (evsel == NULL) { 337 goto out_err; 338 } else { 339 struct perf_event_attr attr = { 340 .type = PERF_TYPE_TRACEPOINT, 341 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 342 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 343 }; 344 345 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 346 goto out_free; 347 348 evsel->tp_format = trace_event__tp_format(sys, name); 349 if (IS_ERR(evsel->tp_format)) { 350 err = PTR_ERR(evsel->tp_format); 351 goto out_free; 352 } 353 354 event_attr_init(&attr); 355 attr.config = evsel->tp_format->id; 356 attr.sample_period = 1; 357 evsel__init(evsel, &attr, idx); 358 } 359 360 return evsel; 361 362 out_free: 363 zfree(&evsel->name); 364 free(evsel); 365 out_err: 366 return ERR_PTR(err); 367 } 368 369 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 370 "cycles", 371 "instructions", 372 "cache-references", 373 "cache-misses", 374 "branches", 375 "branch-misses", 376 "bus-cycles", 377 "stalled-cycles-frontend", 378 "stalled-cycles-backend", 379 "ref-cycles", 380 }; 381 382 static const char *__perf_evsel__hw_name(u64 config) 383 { 384 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 385 return perf_evsel__hw_names[config]; 386 387 return "unknown-hardware"; 388 } 389 390 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) 391 { 392 int colon = 0, r = 0; 393 struct perf_event_attr *attr = &evsel->core.attr; 394 bool exclude_guest_default = false; 395 396 #define MOD_PRINT(context, mod) do { \ 397 if (!attr->exclude_##context) { \ 398 if (!colon) colon = ++r; \ 399 r += scnprintf(bf + r, size - r, "%c", mod); \ 400 } } while(0) 401 402 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 403 MOD_PRINT(kernel, 'k'); 404 MOD_PRINT(user, 'u'); 405 MOD_PRINT(hv, 'h'); 406 exclude_guest_default = true; 407 } 408 409 if (attr->precise_ip) { 410 if (!colon) 411 colon = ++r; 412 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 413 exclude_guest_default = true; 414 } 415 416 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 417 MOD_PRINT(host, 'H'); 418 MOD_PRINT(guest, 'G'); 419 } 420 #undef MOD_PRINT 421 if (colon) 422 bf[colon - 1] = ':'; 423 return r; 424 } 425 426 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 427 { 428 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config)); 429 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 430 } 431 432 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 433 "cpu-clock", 434 "task-clock", 435 "page-faults", 436 "context-switches", 437 "cpu-migrations", 438 "minor-faults", 439 "major-faults", 440 "alignment-faults", 441 "emulation-faults", 442 "dummy", 443 }; 444 445 static const char *__perf_evsel__sw_name(u64 config) 446 { 447 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 448 return perf_evsel__sw_names[config]; 449 return "unknown-software"; 450 } 451 452 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size) 453 { 454 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config)); 455 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 456 } 457 458 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 459 { 460 int r; 461 462 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 463 464 if (type & HW_BREAKPOINT_R) 465 r += scnprintf(bf + r, size - r, "r"); 466 467 if (type & HW_BREAKPOINT_W) 468 r += scnprintf(bf + r, size - r, "w"); 469 470 if (type & HW_BREAKPOINT_X) 471 r += scnprintf(bf + r, size - r, "x"); 472 473 return r; 474 } 475 476 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size) 477 { 478 struct perf_event_attr *attr = &evsel->core.attr; 479 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 480 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 481 } 482 483 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 484 [PERF_EVSEL__MAX_ALIASES] = { 485 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 486 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 487 { "LLC", "L2", }, 488 { "dTLB", "d-tlb", "Data-TLB", }, 489 { "iTLB", "i-tlb", "Instruction-TLB", }, 490 { "branch", "branches", "bpu", "btb", "bpc", }, 491 { "node", }, 492 }; 493 494 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 495 [PERF_EVSEL__MAX_ALIASES] = { 496 { "load", "loads", "read", }, 497 { "store", "stores", "write", }, 498 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 499 }; 500 501 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 502 [PERF_EVSEL__MAX_ALIASES] = { 503 { "refs", "Reference", "ops", "access", }, 504 { "misses", "miss", }, 505 }; 506 507 #define C(x) PERF_COUNT_HW_CACHE_##x 508 #define CACHE_READ (1 << C(OP_READ)) 509 #define CACHE_WRITE (1 << C(OP_WRITE)) 510 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 511 #define COP(x) (1 << x) 512 513 /* 514 * cache operartion stat 515 * L1I : Read and prefetch only 516 * ITLB and BPU : Read-only 517 */ 518 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 519 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 521 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 [C(ITLB)] = (CACHE_READ), 524 [C(BPU)] = (CACHE_READ), 525 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 526 }; 527 528 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 529 { 530 if (perf_evsel__hw_cache_stat[type] & COP(op)) 531 return true; /* valid */ 532 else 533 return false; /* invalid */ 534 } 535 536 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 537 char *bf, size_t size) 538 { 539 if (result) { 540 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][0], 542 perf_evsel__hw_cache_result[result][0]); 543 } 544 545 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 546 perf_evsel__hw_cache_op[op][1]); 547 } 548 549 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 550 { 551 u8 op, result, type = (config >> 0) & 0xff; 552 const char *err = "unknown-ext-hardware-cache-type"; 553 554 if (type >= PERF_COUNT_HW_CACHE_MAX) 555 goto out_err; 556 557 op = (config >> 8) & 0xff; 558 err = "unknown-ext-hardware-cache-op"; 559 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 560 goto out_err; 561 562 result = (config >> 16) & 0xff; 563 err = "unknown-ext-hardware-cache-result"; 564 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 565 goto out_err; 566 567 err = "invalid-cache"; 568 if (!perf_evsel__is_cache_op_valid(type, op)) 569 goto out_err; 570 571 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 572 out_err: 573 return scnprintf(bf, size, "%s", err); 574 } 575 576 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) 577 { 578 int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size); 579 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 580 } 581 582 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size) 583 { 584 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); 585 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 586 } 587 588 static int perf_evsel__tool_name(char *bf, size_t size) 589 { 590 int ret = scnprintf(bf, size, "duration_time"); 591 return ret; 592 } 593 594 const char *perf_evsel__name(struct evsel *evsel) 595 { 596 char bf[128]; 597 598 if (!evsel) 599 goto out_unknown; 600 601 if (evsel->name) 602 return evsel->name; 603 604 switch (evsel->core.attr.type) { 605 case PERF_TYPE_RAW: 606 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_HARDWARE: 610 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 611 break; 612 613 case PERF_TYPE_HW_CACHE: 614 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 615 break; 616 617 case PERF_TYPE_SOFTWARE: 618 if (evsel->tool_event) 619 perf_evsel__tool_name(bf, sizeof(bf)); 620 else 621 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 622 break; 623 624 case PERF_TYPE_TRACEPOINT: 625 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 626 break; 627 628 case PERF_TYPE_BREAKPOINT: 629 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 630 break; 631 632 default: 633 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 634 evsel->core.attr.type); 635 break; 636 } 637 638 evsel->name = strdup(bf); 639 640 if (evsel->name) 641 return evsel->name; 642 out_unknown: 643 return "unknown"; 644 } 645 646 const char *perf_evsel__group_name(struct evsel *evsel) 647 { 648 return evsel->group_name ?: "anon group"; 649 } 650 651 /* 652 * Returns the group details for the specified leader, 653 * with following rules. 654 * 655 * For record -e '{cycles,instructions}' 656 * 'anon group { cycles:u, instructions:u }' 657 * 658 * For record -e 'cycles,instructions' and report --group 659 * 'cycles:u, instructions:u' 660 */ 661 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size) 662 { 663 int ret = 0; 664 struct evsel *pos; 665 const char *group_name = perf_evsel__group_name(evsel); 666 667 if (!evsel->forced_leader) 668 ret = scnprintf(buf, size, "%s { ", group_name); 669 670 ret += scnprintf(buf + ret, size - ret, "%s", 671 perf_evsel__name(evsel)); 672 673 for_each_group_member(pos, evsel) 674 ret += scnprintf(buf + ret, size - ret, ", %s", 675 perf_evsel__name(pos)); 676 677 if (!evsel->forced_leader) 678 ret += scnprintf(buf + ret, size - ret, " }"); 679 680 return ret; 681 } 682 683 static void __perf_evsel__config_callchain(struct evsel *evsel, 684 struct record_opts *opts, 685 struct callchain_param *param) 686 { 687 bool function = perf_evsel__is_function_event(evsel); 688 struct perf_event_attr *attr = &evsel->core.attr; 689 690 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 691 692 attr->sample_max_stack = param->max_stack; 693 694 if (opts->kernel_callchains) 695 attr->exclude_callchain_user = 1; 696 if (opts->user_callchains) 697 attr->exclude_callchain_kernel = 1; 698 if (param->record_mode == CALLCHAIN_LBR) { 699 if (!opts->branch_stack) { 700 if (attr->exclude_user) { 701 pr_warning("LBR callstack option is only available " 702 "to get user callchain information. " 703 "Falling back to framepointers.\n"); 704 } else { 705 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 706 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 707 PERF_SAMPLE_BRANCH_CALL_STACK | 708 PERF_SAMPLE_BRANCH_NO_CYCLES | 709 PERF_SAMPLE_BRANCH_NO_FLAGS; 710 } 711 } else 712 pr_warning("Cannot use LBR callstack with branch stack. " 713 "Falling back to framepointers.\n"); 714 } 715 716 if (param->record_mode == CALLCHAIN_DWARF) { 717 if (!function) { 718 perf_evsel__set_sample_bit(evsel, REGS_USER); 719 perf_evsel__set_sample_bit(evsel, STACK_USER); 720 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 721 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 722 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 723 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 724 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 725 } else { 726 attr->sample_regs_user |= PERF_REGS_MASK; 727 } 728 attr->sample_stack_user = param->dump_size; 729 attr->exclude_callchain_user = 1; 730 } else { 731 pr_info("Cannot use DWARF unwind for function trace event," 732 " falling back to framepointers.\n"); 733 } 734 } 735 736 if (function) { 737 pr_info("Disabling user space callchains for function trace event.\n"); 738 attr->exclude_callchain_user = 1; 739 } 740 } 741 742 void perf_evsel__config_callchain(struct evsel *evsel, 743 struct record_opts *opts, 744 struct callchain_param *param) 745 { 746 if (param->enabled) 747 return __perf_evsel__config_callchain(evsel, opts, param); 748 } 749 750 static void 751 perf_evsel__reset_callgraph(struct evsel *evsel, 752 struct callchain_param *param) 753 { 754 struct perf_event_attr *attr = &evsel->core.attr; 755 756 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 757 if (param->record_mode == CALLCHAIN_LBR) { 758 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 759 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 760 PERF_SAMPLE_BRANCH_CALL_STACK); 761 } 762 if (param->record_mode == CALLCHAIN_DWARF) { 763 perf_evsel__reset_sample_bit(evsel, REGS_USER); 764 perf_evsel__reset_sample_bit(evsel, STACK_USER); 765 } 766 } 767 768 static void apply_config_terms(struct evsel *evsel, 769 struct record_opts *opts, bool track) 770 { 771 struct perf_evsel_config_term *term; 772 struct list_head *config_terms = &evsel->config_terms; 773 struct perf_event_attr *attr = &evsel->core.attr; 774 /* callgraph default */ 775 struct callchain_param param = { 776 .record_mode = callchain_param.record_mode, 777 }; 778 u32 dump_size = 0; 779 int max_stack = 0; 780 const char *callgraph_buf = NULL; 781 782 list_for_each_entry(term, config_terms, list) { 783 switch (term->type) { 784 case PERF_EVSEL__CONFIG_TERM_PERIOD: 785 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 786 attr->sample_period = term->val.period; 787 attr->freq = 0; 788 perf_evsel__reset_sample_bit(evsel, PERIOD); 789 } 790 break; 791 case PERF_EVSEL__CONFIG_TERM_FREQ: 792 if (!(term->weak && opts->user_freq != UINT_MAX)) { 793 attr->sample_freq = term->val.freq; 794 attr->freq = 1; 795 perf_evsel__set_sample_bit(evsel, PERIOD); 796 } 797 break; 798 case PERF_EVSEL__CONFIG_TERM_TIME: 799 if (term->val.time) 800 perf_evsel__set_sample_bit(evsel, TIME); 801 else 802 perf_evsel__reset_sample_bit(evsel, TIME); 803 break; 804 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 805 callgraph_buf = term->val.callgraph; 806 break; 807 case PERF_EVSEL__CONFIG_TERM_BRANCH: 808 if (term->val.branch && strcmp(term->val.branch, "no")) { 809 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 810 parse_branch_str(term->val.branch, 811 &attr->branch_sample_type); 812 } else 813 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 814 break; 815 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 816 dump_size = term->val.stack_user; 817 break; 818 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 819 max_stack = term->val.max_stack; 820 break; 821 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 822 evsel->max_events = term->val.max_events; 823 break; 824 case PERF_EVSEL__CONFIG_TERM_INHERIT: 825 /* 826 * attr->inherit should has already been set by 827 * perf_evsel__config. If user explicitly set 828 * inherit using config terms, override global 829 * opt->no_inherit setting. 830 */ 831 attr->inherit = term->val.inherit ? 1 : 0; 832 break; 833 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 834 attr->write_backward = term->val.overwrite ? 1 : 0; 835 break; 836 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 837 break; 838 case PERF_EVSEL__CONFIG_TERM_PERCORE: 839 break; 840 case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT: 841 attr->aux_output = term->val.aux_output ? 1 : 0; 842 break; 843 default: 844 break; 845 } 846 } 847 848 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 849 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 850 bool sample_address = false; 851 852 if (max_stack) { 853 param.max_stack = max_stack; 854 if (callgraph_buf == NULL) 855 callgraph_buf = "fp"; 856 } 857 858 /* parse callgraph parameters */ 859 if (callgraph_buf != NULL) { 860 if (!strcmp(callgraph_buf, "no")) { 861 param.enabled = false; 862 param.record_mode = CALLCHAIN_NONE; 863 } else { 864 param.enabled = true; 865 if (parse_callchain_record(callgraph_buf, ¶m)) { 866 pr_err("per-event callgraph setting for %s failed. " 867 "Apply callgraph global setting for it\n", 868 evsel->name); 869 return; 870 } 871 if (param.record_mode == CALLCHAIN_DWARF) 872 sample_address = true; 873 } 874 } 875 if (dump_size > 0) { 876 dump_size = round_up(dump_size, sizeof(u64)); 877 param.dump_size = dump_size; 878 } 879 880 /* If global callgraph set, clear it */ 881 if (callchain_param.enabled) 882 perf_evsel__reset_callgraph(evsel, &callchain_param); 883 884 /* set perf-event callgraph */ 885 if (param.enabled) { 886 if (sample_address) { 887 perf_evsel__set_sample_bit(evsel, ADDR); 888 perf_evsel__set_sample_bit(evsel, DATA_SRC); 889 evsel->core.attr.mmap_data = track; 890 } 891 perf_evsel__config_callchain(evsel, opts, ¶m); 892 } 893 } 894 } 895 896 static bool is_dummy_event(struct evsel *evsel) 897 { 898 return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) && 899 (evsel->core.attr.config == PERF_COUNT_SW_DUMMY); 900 } 901 902 /* 903 * The enable_on_exec/disabled value strategy: 904 * 905 * 1) For any type of traced program: 906 * - all independent events and group leaders are disabled 907 * - all group members are enabled 908 * 909 * Group members are ruled by group leaders. They need to 910 * be enabled, because the group scheduling relies on that. 911 * 912 * 2) For traced programs executed by perf: 913 * - all independent events and group leaders have 914 * enable_on_exec set 915 * - we don't specifically enable or disable any event during 916 * the record command 917 * 918 * Independent events and group leaders are initially disabled 919 * and get enabled by exec. Group members are ruled by group 920 * leaders as stated in 1). 921 * 922 * 3) For traced programs attached by perf (pid/tid): 923 * - we specifically enable or disable all events during 924 * the record command 925 * 926 * When attaching events to already running traced we 927 * enable/disable events specifically, as there's no 928 * initial traced exec call. 929 */ 930 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts, 931 struct callchain_param *callchain) 932 { 933 struct evsel *leader = evsel->leader; 934 struct perf_event_attr *attr = &evsel->core.attr; 935 int track = evsel->tracking; 936 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 937 938 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 939 attr->inherit = !opts->no_inherit; 940 attr->write_backward = opts->overwrite ? 1 : 0; 941 942 perf_evsel__set_sample_bit(evsel, IP); 943 perf_evsel__set_sample_bit(evsel, TID); 944 945 if (evsel->sample_read) { 946 perf_evsel__set_sample_bit(evsel, READ); 947 948 /* 949 * We need ID even in case of single event, because 950 * PERF_SAMPLE_READ process ID specific data. 951 */ 952 perf_evsel__set_sample_id(evsel, false); 953 954 /* 955 * Apply group format only if we belong to group 956 * with more than one members. 957 */ 958 if (leader->core.nr_members > 1) { 959 attr->read_format |= PERF_FORMAT_GROUP; 960 attr->inherit = 0; 961 } 962 } 963 964 /* 965 * We default some events to have a default interval. But keep 966 * it a weak assumption overridable by the user. 967 */ 968 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 969 opts->user_interval != ULLONG_MAX)) { 970 if (opts->freq) { 971 perf_evsel__set_sample_bit(evsel, PERIOD); 972 attr->freq = 1; 973 attr->sample_freq = opts->freq; 974 } else { 975 attr->sample_period = opts->default_interval; 976 } 977 } 978 979 /* 980 * Disable sampling for all group members other 981 * than leader in case leader 'leads' the sampling. 982 */ 983 if ((leader != evsel) && leader->sample_read) { 984 attr->freq = 0; 985 attr->sample_freq = 0; 986 attr->sample_period = 0; 987 attr->write_backward = 0; 988 989 /* 990 * We don't get sample for slave events, we make them 991 * when delivering group leader sample. Set the slave 992 * event to follow the master sample_type to ease up 993 * report. 994 */ 995 attr->sample_type = leader->core.attr.sample_type; 996 } 997 998 if (opts->no_samples) 999 attr->sample_freq = 0; 1000 1001 if (opts->inherit_stat) { 1002 evsel->core.attr.read_format |= 1003 PERF_FORMAT_TOTAL_TIME_ENABLED | 1004 PERF_FORMAT_TOTAL_TIME_RUNNING | 1005 PERF_FORMAT_ID; 1006 attr->inherit_stat = 1; 1007 } 1008 1009 if (opts->sample_address) { 1010 perf_evsel__set_sample_bit(evsel, ADDR); 1011 attr->mmap_data = track; 1012 } 1013 1014 /* 1015 * We don't allow user space callchains for function trace 1016 * event, due to issues with page faults while tracing page 1017 * fault handler and its overall trickiness nature. 1018 */ 1019 if (perf_evsel__is_function_event(evsel)) 1020 evsel->core.attr.exclude_callchain_user = 1; 1021 1022 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1023 perf_evsel__config_callchain(evsel, opts, callchain); 1024 1025 if (opts->sample_intr_regs) { 1026 attr->sample_regs_intr = opts->sample_intr_regs; 1027 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1028 } 1029 1030 if (opts->sample_user_regs) { 1031 attr->sample_regs_user |= opts->sample_user_regs; 1032 perf_evsel__set_sample_bit(evsel, REGS_USER); 1033 } 1034 1035 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1036 perf_evsel__set_sample_bit(evsel, CPU); 1037 1038 /* 1039 * When the user explicitly disabled time don't force it here. 1040 */ 1041 if (opts->sample_time && 1042 (!perf_missing_features.sample_id_all && 1043 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1044 opts->sample_time_set))) 1045 perf_evsel__set_sample_bit(evsel, TIME); 1046 1047 if (opts->raw_samples && !evsel->no_aux_samples) { 1048 perf_evsel__set_sample_bit(evsel, TIME); 1049 perf_evsel__set_sample_bit(evsel, RAW); 1050 perf_evsel__set_sample_bit(evsel, CPU); 1051 } 1052 1053 if (opts->sample_address) 1054 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1055 1056 if (opts->sample_phys_addr) 1057 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1058 1059 if (opts->no_buffering) { 1060 attr->watermark = 0; 1061 attr->wakeup_events = 1; 1062 } 1063 if (opts->branch_stack && !evsel->no_aux_samples) { 1064 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1065 attr->branch_sample_type = opts->branch_stack; 1066 } 1067 1068 if (opts->sample_weight) 1069 perf_evsel__set_sample_bit(evsel, WEIGHT); 1070 1071 attr->task = track; 1072 attr->mmap = track; 1073 attr->mmap2 = track && !perf_missing_features.mmap2; 1074 attr->comm = track; 1075 attr->ksymbol = track && !perf_missing_features.ksymbol; 1076 attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf; 1077 1078 if (opts->record_namespaces) 1079 attr->namespaces = track; 1080 1081 if (opts->record_switch_events) 1082 attr->context_switch = track; 1083 1084 if (opts->sample_transaction) 1085 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1086 1087 if (opts->running_time) { 1088 evsel->core.attr.read_format |= 1089 PERF_FORMAT_TOTAL_TIME_ENABLED | 1090 PERF_FORMAT_TOTAL_TIME_RUNNING; 1091 } 1092 1093 /* 1094 * XXX see the function comment above 1095 * 1096 * Disabling only independent events or group leaders, 1097 * keeping group members enabled. 1098 */ 1099 if (perf_evsel__is_group_leader(evsel)) 1100 attr->disabled = 1; 1101 1102 /* 1103 * Setting enable_on_exec for independent events and 1104 * group leaders for traced executed by perf. 1105 */ 1106 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1107 !opts->initial_delay) 1108 attr->enable_on_exec = 1; 1109 1110 if (evsel->immediate) { 1111 attr->disabled = 0; 1112 attr->enable_on_exec = 0; 1113 } 1114 1115 clockid = opts->clockid; 1116 if (opts->use_clockid) { 1117 attr->use_clockid = 1; 1118 attr->clockid = opts->clockid; 1119 } 1120 1121 if (evsel->precise_max) 1122 attr->precise_ip = 3; 1123 1124 if (opts->all_user) { 1125 attr->exclude_kernel = 1; 1126 attr->exclude_user = 0; 1127 } 1128 1129 if (opts->all_kernel) { 1130 attr->exclude_kernel = 0; 1131 attr->exclude_user = 1; 1132 } 1133 1134 if (evsel->core.own_cpus || evsel->unit) 1135 evsel->core.attr.read_format |= PERF_FORMAT_ID; 1136 1137 /* 1138 * Apply event specific term settings, 1139 * it overloads any global configuration. 1140 */ 1141 apply_config_terms(evsel, opts, track); 1142 1143 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1144 1145 /* The --period option takes the precedence. */ 1146 if (opts->period_set) { 1147 if (opts->period) 1148 perf_evsel__set_sample_bit(evsel, PERIOD); 1149 else 1150 perf_evsel__reset_sample_bit(evsel, PERIOD); 1151 } 1152 1153 /* 1154 * For initial_delay, a dummy event is added implicitly. 1155 * The software event will trigger -EOPNOTSUPP error out, 1156 * if BRANCH_STACK bit is set. 1157 */ 1158 if (opts->initial_delay && is_dummy_event(evsel)) 1159 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1160 } 1161 1162 int perf_evsel__set_filter(struct evsel *evsel, const char *filter) 1163 { 1164 char *new_filter = strdup(filter); 1165 1166 if (new_filter != NULL) { 1167 free(evsel->filter); 1168 evsel->filter = new_filter; 1169 return 0; 1170 } 1171 1172 return -1; 1173 } 1174 1175 static int perf_evsel__append_filter(struct evsel *evsel, 1176 const char *fmt, const char *filter) 1177 { 1178 char *new_filter; 1179 1180 if (evsel->filter == NULL) 1181 return perf_evsel__set_filter(evsel, filter); 1182 1183 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1184 free(evsel->filter); 1185 evsel->filter = new_filter; 1186 return 0; 1187 } 1188 1189 return -1; 1190 } 1191 1192 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter) 1193 { 1194 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1195 } 1196 1197 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter) 1198 { 1199 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1200 } 1201 1202 int evsel__enable(struct evsel *evsel) 1203 { 1204 int err = perf_evsel__enable(&evsel->core); 1205 1206 if (!err) 1207 evsel->disabled = false; 1208 1209 return err; 1210 } 1211 1212 int evsel__disable(struct evsel *evsel) 1213 { 1214 int err = perf_evsel__disable(&evsel->core); 1215 /* 1216 * We mark it disabled here so that tools that disable a event can 1217 * ignore events after they disable it. I.e. the ring buffer may have 1218 * already a few more events queued up before the kernel got the stop 1219 * request. 1220 */ 1221 if (!err) 1222 evsel->disabled = true; 1223 1224 return err; 1225 } 1226 1227 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads) 1228 { 1229 if (ncpus == 0 || nthreads == 0) 1230 return 0; 1231 1232 if (evsel->system_wide) 1233 nthreads = 1; 1234 1235 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1236 if (evsel->sample_id == NULL) 1237 return -ENOMEM; 1238 1239 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1240 if (evsel->id == NULL) { 1241 xyarray__delete(evsel->sample_id); 1242 evsel->sample_id = NULL; 1243 return -ENOMEM; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static void perf_evsel__free_id(struct evsel *evsel) 1250 { 1251 xyarray__delete(evsel->sample_id); 1252 evsel->sample_id = NULL; 1253 zfree(&evsel->id); 1254 evsel->ids = 0; 1255 } 1256 1257 static void perf_evsel__free_config_terms(struct evsel *evsel) 1258 { 1259 struct perf_evsel_config_term *term, *h; 1260 1261 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1262 list_del_init(&term->list); 1263 free(term); 1264 } 1265 } 1266 1267 void perf_evsel__exit(struct evsel *evsel) 1268 { 1269 assert(list_empty(&evsel->core.node)); 1270 assert(evsel->evlist == NULL); 1271 perf_evsel__free_counts(evsel); 1272 perf_evsel__free_fd(&evsel->core); 1273 perf_evsel__free_id(evsel); 1274 perf_evsel__free_config_terms(evsel); 1275 cgroup__put(evsel->cgrp); 1276 perf_cpu_map__put(evsel->core.cpus); 1277 perf_cpu_map__put(evsel->core.own_cpus); 1278 perf_thread_map__put(evsel->core.threads); 1279 zfree(&evsel->group_name); 1280 zfree(&evsel->name); 1281 perf_evsel__object.fini(evsel); 1282 } 1283 1284 void evsel__delete(struct evsel *evsel) 1285 { 1286 perf_evsel__exit(evsel); 1287 free(evsel); 1288 } 1289 1290 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread, 1291 struct perf_counts_values *count) 1292 { 1293 struct perf_counts_values tmp; 1294 1295 if (!evsel->prev_raw_counts) 1296 return; 1297 1298 if (cpu == -1) { 1299 tmp = evsel->prev_raw_counts->aggr; 1300 evsel->prev_raw_counts->aggr = *count; 1301 } else { 1302 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1303 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1304 } 1305 1306 count->val = count->val - tmp.val; 1307 count->ena = count->ena - tmp.ena; 1308 count->run = count->run - tmp.run; 1309 } 1310 1311 void perf_counts_values__scale(struct perf_counts_values *count, 1312 bool scale, s8 *pscaled) 1313 { 1314 s8 scaled = 0; 1315 1316 if (scale) { 1317 if (count->run == 0) { 1318 scaled = -1; 1319 count->val = 0; 1320 } else if (count->run < count->ena) { 1321 scaled = 1; 1322 count->val = (u64)((double) count->val * count->ena / count->run); 1323 } 1324 } 1325 1326 if (pscaled) 1327 *pscaled = scaled; 1328 } 1329 1330 static int 1331 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread) 1332 { 1333 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1334 1335 return perf_evsel__read(&evsel->core, cpu, thread, count); 1336 } 1337 1338 static void 1339 perf_evsel__set_count(struct evsel *counter, int cpu, int thread, 1340 u64 val, u64 ena, u64 run) 1341 { 1342 struct perf_counts_values *count; 1343 1344 count = perf_counts(counter->counts, cpu, thread); 1345 1346 count->val = val; 1347 count->ena = ena; 1348 count->run = run; 1349 1350 perf_counts__set_loaded(counter->counts, cpu, thread, true); 1351 } 1352 1353 static int 1354 perf_evsel__process_group_data(struct evsel *leader, 1355 int cpu, int thread, u64 *data) 1356 { 1357 u64 read_format = leader->core.attr.read_format; 1358 struct sample_read_value *v; 1359 u64 nr, ena = 0, run = 0, i; 1360 1361 nr = *data++; 1362 1363 if (nr != (u64) leader->core.nr_members) 1364 return -EINVAL; 1365 1366 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1367 ena = *data++; 1368 1369 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1370 run = *data++; 1371 1372 v = (struct sample_read_value *) data; 1373 1374 perf_evsel__set_count(leader, cpu, thread, 1375 v[0].value, ena, run); 1376 1377 for (i = 1; i < nr; i++) { 1378 struct evsel *counter; 1379 1380 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1381 if (!counter) 1382 return -EINVAL; 1383 1384 perf_evsel__set_count(counter, cpu, thread, 1385 v[i].value, ena, run); 1386 } 1387 1388 return 0; 1389 } 1390 1391 static int 1392 perf_evsel__read_group(struct evsel *leader, int cpu, int thread) 1393 { 1394 struct perf_stat_evsel *ps = leader->stats; 1395 u64 read_format = leader->core.attr.read_format; 1396 int size = perf_evsel__read_size(&leader->core); 1397 u64 *data = ps->group_data; 1398 1399 if (!(read_format & PERF_FORMAT_ID)) 1400 return -EINVAL; 1401 1402 if (!perf_evsel__is_group_leader(leader)) 1403 return -EINVAL; 1404 1405 if (!data) { 1406 data = zalloc(size); 1407 if (!data) 1408 return -ENOMEM; 1409 1410 ps->group_data = data; 1411 } 1412 1413 if (FD(leader, cpu, thread) < 0) 1414 return -EINVAL; 1415 1416 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1417 return -errno; 1418 1419 return perf_evsel__process_group_data(leader, cpu, thread, data); 1420 } 1421 1422 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread) 1423 { 1424 u64 read_format = evsel->core.attr.read_format; 1425 1426 if (read_format & PERF_FORMAT_GROUP) 1427 return perf_evsel__read_group(evsel, cpu, thread); 1428 else 1429 return perf_evsel__read_one(evsel, cpu, thread); 1430 } 1431 1432 int __perf_evsel__read_on_cpu(struct evsel *evsel, 1433 int cpu, int thread, bool scale) 1434 { 1435 struct perf_counts_values count; 1436 size_t nv = scale ? 3 : 1; 1437 1438 if (FD(evsel, cpu, thread) < 0) 1439 return -EINVAL; 1440 1441 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1442 return -ENOMEM; 1443 1444 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1445 return -errno; 1446 1447 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1448 perf_counts_values__scale(&count, scale, NULL); 1449 *perf_counts(evsel->counts, cpu, thread) = count; 1450 return 0; 1451 } 1452 1453 static int get_group_fd(struct evsel *evsel, int cpu, int thread) 1454 { 1455 struct evsel *leader = evsel->leader; 1456 int fd; 1457 1458 if (perf_evsel__is_group_leader(evsel)) 1459 return -1; 1460 1461 /* 1462 * Leader must be already processed/open, 1463 * if not it's a bug. 1464 */ 1465 BUG_ON(!leader->core.fd); 1466 1467 fd = FD(leader, cpu, thread); 1468 BUG_ON(fd == -1); 1469 1470 return fd; 1471 } 1472 1473 struct bit_names { 1474 int bit; 1475 const char *name; 1476 }; 1477 1478 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1479 { 1480 bool first_bit = true; 1481 int i = 0; 1482 1483 do { 1484 if (value & bits[i].bit) { 1485 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1486 first_bit = false; 1487 } 1488 } while (bits[++i].name != NULL); 1489 } 1490 1491 static void __p_sample_type(char *buf, size_t size, u64 value) 1492 { 1493 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1494 struct bit_names bits[] = { 1495 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1496 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1497 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1498 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1499 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1500 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1501 { .name = NULL, } 1502 }; 1503 #undef bit_name 1504 __p_bits(buf, size, value, bits); 1505 } 1506 1507 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1508 { 1509 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1510 struct bit_names bits[] = { 1511 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1512 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1513 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1514 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1515 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1516 { .name = NULL, } 1517 }; 1518 #undef bit_name 1519 __p_bits(buf, size, value, bits); 1520 } 1521 1522 static void __p_read_format(char *buf, size_t size, u64 value) 1523 { 1524 #define bit_name(n) { PERF_FORMAT_##n, #n } 1525 struct bit_names bits[] = { 1526 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1527 bit_name(ID), bit_name(GROUP), 1528 { .name = NULL, } 1529 }; 1530 #undef bit_name 1531 __p_bits(buf, size, value, bits); 1532 } 1533 1534 #define BUF_SIZE 1024 1535 1536 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1537 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1538 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1539 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1540 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1541 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1542 1543 #define PRINT_ATTRn(_n, _f, _p) \ 1544 do { \ 1545 if (attr->_f) { \ 1546 _p(attr->_f); \ 1547 ret += attr__fprintf(fp, _n, buf, priv);\ 1548 } \ 1549 } while (0) 1550 1551 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1552 1553 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1554 attr__fprintf_f attr__fprintf, void *priv) 1555 { 1556 char buf[BUF_SIZE]; 1557 int ret = 0; 1558 1559 PRINT_ATTRf(type, p_unsigned); 1560 PRINT_ATTRf(size, p_unsigned); 1561 PRINT_ATTRf(config, p_hex); 1562 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1563 PRINT_ATTRf(sample_type, p_sample_type); 1564 PRINT_ATTRf(read_format, p_read_format); 1565 1566 PRINT_ATTRf(disabled, p_unsigned); 1567 PRINT_ATTRf(inherit, p_unsigned); 1568 PRINT_ATTRf(pinned, p_unsigned); 1569 PRINT_ATTRf(exclusive, p_unsigned); 1570 PRINT_ATTRf(exclude_user, p_unsigned); 1571 PRINT_ATTRf(exclude_kernel, p_unsigned); 1572 PRINT_ATTRf(exclude_hv, p_unsigned); 1573 PRINT_ATTRf(exclude_idle, p_unsigned); 1574 PRINT_ATTRf(mmap, p_unsigned); 1575 PRINT_ATTRf(comm, p_unsigned); 1576 PRINT_ATTRf(freq, p_unsigned); 1577 PRINT_ATTRf(inherit_stat, p_unsigned); 1578 PRINT_ATTRf(enable_on_exec, p_unsigned); 1579 PRINT_ATTRf(task, p_unsigned); 1580 PRINT_ATTRf(watermark, p_unsigned); 1581 PRINT_ATTRf(precise_ip, p_unsigned); 1582 PRINT_ATTRf(mmap_data, p_unsigned); 1583 PRINT_ATTRf(sample_id_all, p_unsigned); 1584 PRINT_ATTRf(exclude_host, p_unsigned); 1585 PRINT_ATTRf(exclude_guest, p_unsigned); 1586 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1587 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1588 PRINT_ATTRf(mmap2, p_unsigned); 1589 PRINT_ATTRf(comm_exec, p_unsigned); 1590 PRINT_ATTRf(use_clockid, p_unsigned); 1591 PRINT_ATTRf(context_switch, p_unsigned); 1592 PRINT_ATTRf(write_backward, p_unsigned); 1593 PRINT_ATTRf(namespaces, p_unsigned); 1594 PRINT_ATTRf(ksymbol, p_unsigned); 1595 PRINT_ATTRf(bpf_event, p_unsigned); 1596 PRINT_ATTRf(aux_output, p_unsigned); 1597 1598 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1599 PRINT_ATTRf(bp_type, p_unsigned); 1600 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1601 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1602 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1603 PRINT_ATTRf(sample_regs_user, p_hex); 1604 PRINT_ATTRf(sample_stack_user, p_unsigned); 1605 PRINT_ATTRf(clockid, p_signed); 1606 PRINT_ATTRf(sample_regs_intr, p_hex); 1607 PRINT_ATTRf(aux_watermark, p_unsigned); 1608 PRINT_ATTRf(sample_max_stack, p_unsigned); 1609 1610 return ret; 1611 } 1612 1613 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1614 void *priv __maybe_unused) 1615 { 1616 return fprintf(fp, " %-32s %s\n", name, val); 1617 } 1618 1619 static void perf_evsel__remove_fd(struct evsel *pos, 1620 int nr_cpus, int nr_threads, 1621 int thread_idx) 1622 { 1623 for (int cpu = 0; cpu < nr_cpus; cpu++) 1624 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1625 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1626 } 1627 1628 static int update_fds(struct evsel *evsel, 1629 int nr_cpus, int cpu_idx, 1630 int nr_threads, int thread_idx) 1631 { 1632 struct evsel *pos; 1633 1634 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1635 return -EINVAL; 1636 1637 evlist__for_each_entry(evsel->evlist, pos) { 1638 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1639 1640 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1641 1642 /* 1643 * Since fds for next evsel has not been created, 1644 * there is no need to iterate whole event list. 1645 */ 1646 if (pos == evsel) 1647 break; 1648 } 1649 return 0; 1650 } 1651 1652 static bool ignore_missing_thread(struct evsel *evsel, 1653 int nr_cpus, int cpu, 1654 struct perf_thread_map *threads, 1655 int thread, int err) 1656 { 1657 pid_t ignore_pid = perf_thread_map__pid(threads, thread); 1658 1659 if (!evsel->ignore_missing_thread) 1660 return false; 1661 1662 /* The system wide setup does not work with threads. */ 1663 if (evsel->system_wide) 1664 return false; 1665 1666 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1667 if (err != -ESRCH) 1668 return false; 1669 1670 /* If there's only one thread, let it fail. */ 1671 if (threads->nr == 1) 1672 return false; 1673 1674 /* 1675 * We should remove fd for missing_thread first 1676 * because thread_map__remove() will decrease threads->nr. 1677 */ 1678 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1679 return false; 1680 1681 if (thread_map__remove(threads, thread)) 1682 return false; 1683 1684 pr_warning("WARNING: Ignored open failure for pid %d\n", 1685 ignore_pid); 1686 return true; 1687 } 1688 1689 static void display_attr(struct perf_event_attr *attr) 1690 { 1691 if (verbose >= 2) { 1692 fprintf(stderr, "%.60s\n", graph_dotted_line); 1693 fprintf(stderr, "perf_event_attr:\n"); 1694 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1695 fprintf(stderr, "%.60s\n", graph_dotted_line); 1696 } 1697 } 1698 1699 static int perf_event_open(struct evsel *evsel, 1700 pid_t pid, int cpu, int group_fd, 1701 unsigned long flags) 1702 { 1703 int precise_ip = evsel->core.attr.precise_ip; 1704 int fd; 1705 1706 while (1) { 1707 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1708 pid, cpu, group_fd, flags); 1709 1710 fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags); 1711 if (fd >= 0) 1712 break; 1713 1714 /* Do not try less precise if not requested. */ 1715 if (!evsel->precise_max) 1716 break; 1717 1718 /* 1719 * We tried all the precise_ip values, and it's 1720 * still failing, so leave it to standard fallback. 1721 */ 1722 if (!evsel->core.attr.precise_ip) { 1723 evsel->core.attr.precise_ip = precise_ip; 1724 break; 1725 } 1726 1727 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1728 evsel->core.attr.precise_ip--; 1729 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); 1730 display_attr(&evsel->core.attr); 1731 } 1732 1733 return fd; 1734 } 1735 1736 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, 1737 struct perf_thread_map *threads) 1738 { 1739 int cpu, thread, nthreads; 1740 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1741 int pid = -1, err; 1742 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1743 1744 if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) || 1745 (perf_missing_features.aux_output && evsel->core.attr.aux_output)) 1746 return -EINVAL; 1747 1748 if (cpus == NULL) { 1749 static struct perf_cpu_map *empty_cpu_map; 1750 1751 if (empty_cpu_map == NULL) { 1752 empty_cpu_map = perf_cpu_map__dummy_new(); 1753 if (empty_cpu_map == NULL) 1754 return -ENOMEM; 1755 } 1756 1757 cpus = empty_cpu_map; 1758 } 1759 1760 if (threads == NULL) { 1761 static struct perf_thread_map *empty_thread_map; 1762 1763 if (empty_thread_map == NULL) { 1764 empty_thread_map = thread_map__new_by_tid(-1); 1765 if (empty_thread_map == NULL) 1766 return -ENOMEM; 1767 } 1768 1769 threads = empty_thread_map; 1770 } 1771 1772 if (evsel->system_wide) 1773 nthreads = 1; 1774 else 1775 nthreads = threads->nr; 1776 1777 if (evsel->core.fd == NULL && 1778 perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0) 1779 return -ENOMEM; 1780 1781 if (evsel->cgrp) { 1782 flags |= PERF_FLAG_PID_CGROUP; 1783 pid = evsel->cgrp->fd; 1784 } 1785 1786 fallback_missing_features: 1787 if (perf_missing_features.clockid_wrong) 1788 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1789 if (perf_missing_features.clockid) { 1790 evsel->core.attr.use_clockid = 0; 1791 evsel->core.attr.clockid = 0; 1792 } 1793 if (perf_missing_features.cloexec) 1794 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1795 if (perf_missing_features.mmap2) 1796 evsel->core.attr.mmap2 = 0; 1797 if (perf_missing_features.exclude_guest) 1798 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; 1799 if (perf_missing_features.lbr_flags) 1800 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1801 PERF_SAMPLE_BRANCH_NO_CYCLES); 1802 if (perf_missing_features.group_read && evsel->core.attr.inherit) 1803 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1804 if (perf_missing_features.ksymbol) 1805 evsel->core.attr.ksymbol = 0; 1806 if (perf_missing_features.bpf) 1807 evsel->core.attr.bpf_event = 0; 1808 retry_sample_id: 1809 if (perf_missing_features.sample_id_all) 1810 evsel->core.attr.sample_id_all = 0; 1811 1812 display_attr(&evsel->core.attr); 1813 1814 for (cpu = 0; cpu < cpus->nr; cpu++) { 1815 1816 for (thread = 0; thread < nthreads; thread++) { 1817 int fd, group_fd; 1818 1819 if (!evsel->cgrp && !evsel->system_wide) 1820 pid = perf_thread_map__pid(threads, thread); 1821 1822 group_fd = get_group_fd(evsel, cpu, thread); 1823 retry_open: 1824 test_attr__ready(); 1825 1826 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1827 group_fd, flags); 1828 1829 FD(evsel, cpu, thread) = fd; 1830 1831 if (fd < 0) { 1832 err = -errno; 1833 1834 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1835 /* 1836 * We just removed 1 thread, so take a step 1837 * back on thread index and lower the upper 1838 * nthreads limit. 1839 */ 1840 nthreads--; 1841 thread--; 1842 1843 /* ... and pretend like nothing have happened. */ 1844 err = 0; 1845 continue; 1846 } 1847 1848 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1849 err); 1850 goto try_fallback; 1851 } 1852 1853 pr_debug2(" = %d\n", fd); 1854 1855 if (evsel->bpf_fd >= 0) { 1856 int evt_fd = fd; 1857 int bpf_fd = evsel->bpf_fd; 1858 1859 err = ioctl(evt_fd, 1860 PERF_EVENT_IOC_SET_BPF, 1861 bpf_fd); 1862 if (err && errno != EEXIST) { 1863 pr_err("failed to attach bpf fd %d: %s\n", 1864 bpf_fd, strerror(errno)); 1865 err = -EINVAL; 1866 goto out_close; 1867 } 1868 } 1869 1870 set_rlimit = NO_CHANGE; 1871 1872 /* 1873 * If we succeeded but had to kill clockid, fail and 1874 * have perf_evsel__open_strerror() print us a nice 1875 * error. 1876 */ 1877 if (perf_missing_features.clockid || 1878 perf_missing_features.clockid_wrong) { 1879 err = -EINVAL; 1880 goto out_close; 1881 } 1882 } 1883 } 1884 1885 return 0; 1886 1887 try_fallback: 1888 /* 1889 * perf stat needs between 5 and 22 fds per CPU. When we run out 1890 * of them try to increase the limits. 1891 */ 1892 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1893 struct rlimit l; 1894 int old_errno = errno; 1895 1896 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1897 if (set_rlimit == NO_CHANGE) 1898 l.rlim_cur = l.rlim_max; 1899 else { 1900 l.rlim_cur = l.rlim_max + 1000; 1901 l.rlim_max = l.rlim_cur; 1902 } 1903 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1904 set_rlimit++; 1905 errno = old_errno; 1906 goto retry_open; 1907 } 1908 } 1909 errno = old_errno; 1910 } 1911 1912 if (err != -EINVAL || cpu > 0 || thread > 0) 1913 goto out_close; 1914 1915 /* 1916 * Must probe features in the order they were added to the 1917 * perf_event_attr interface. 1918 */ 1919 if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) { 1920 perf_missing_features.aux_output = true; 1921 pr_debug2("Kernel has no attr.aux_output support, bailing out\n"); 1922 goto out_close; 1923 } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) { 1924 perf_missing_features.bpf = true; 1925 pr_debug2("switching off bpf_event\n"); 1926 goto fallback_missing_features; 1927 } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { 1928 perf_missing_features.ksymbol = true; 1929 pr_debug2("switching off ksymbol\n"); 1930 goto fallback_missing_features; 1931 } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { 1932 perf_missing_features.write_backward = true; 1933 pr_debug2("switching off write_backward\n"); 1934 goto out_close; 1935 } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { 1936 perf_missing_features.clockid_wrong = true; 1937 pr_debug2("switching off clockid\n"); 1938 goto fallback_missing_features; 1939 } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { 1940 perf_missing_features.clockid = true; 1941 pr_debug2("switching off use_clockid\n"); 1942 goto fallback_missing_features; 1943 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1944 perf_missing_features.cloexec = true; 1945 pr_debug2("switching off cloexec flag\n"); 1946 goto fallback_missing_features; 1947 } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { 1948 perf_missing_features.mmap2 = true; 1949 pr_debug2("switching off mmap2\n"); 1950 goto fallback_missing_features; 1951 } else if (!perf_missing_features.exclude_guest && 1952 (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) { 1953 perf_missing_features.exclude_guest = true; 1954 pr_debug2("switching off exclude_guest, exclude_host\n"); 1955 goto fallback_missing_features; 1956 } else if (!perf_missing_features.sample_id_all) { 1957 perf_missing_features.sample_id_all = true; 1958 pr_debug2("switching off sample_id_all\n"); 1959 goto retry_sample_id; 1960 } else if (!perf_missing_features.lbr_flags && 1961 (evsel->core.attr.branch_sample_type & 1962 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1963 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1964 perf_missing_features.lbr_flags = true; 1965 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1966 goto fallback_missing_features; 1967 } else if (!perf_missing_features.group_read && 1968 evsel->core.attr.inherit && 1969 (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && 1970 perf_evsel__is_group_leader(evsel)) { 1971 perf_missing_features.group_read = true; 1972 pr_debug2("switching off group read\n"); 1973 goto fallback_missing_features; 1974 } 1975 out_close: 1976 if (err) 1977 threads->err_thread = thread; 1978 1979 do { 1980 while (--thread >= 0) { 1981 close(FD(evsel, cpu, thread)); 1982 FD(evsel, cpu, thread) = -1; 1983 } 1984 thread = nthreads; 1985 } while (--cpu >= 0); 1986 return err; 1987 } 1988 1989 void evsel__close(struct evsel *evsel) 1990 { 1991 perf_evsel__close(&evsel->core); 1992 perf_evsel__free_id(evsel); 1993 } 1994 1995 int perf_evsel__open_per_cpu(struct evsel *evsel, 1996 struct perf_cpu_map *cpus) 1997 { 1998 return evsel__open(evsel, cpus, NULL); 1999 } 2000 2001 int perf_evsel__open_per_thread(struct evsel *evsel, 2002 struct perf_thread_map *threads) 2003 { 2004 return evsel__open(evsel, NULL, threads); 2005 } 2006 2007 static int perf_evsel__parse_id_sample(const struct evsel *evsel, 2008 const union perf_event *event, 2009 struct perf_sample *sample) 2010 { 2011 u64 type = evsel->core.attr.sample_type; 2012 const __u64 *array = event->sample.array; 2013 bool swapped = evsel->needs_swap; 2014 union u64_swap u; 2015 2016 array += ((event->header.size - 2017 sizeof(event->header)) / sizeof(u64)) - 1; 2018 2019 if (type & PERF_SAMPLE_IDENTIFIER) { 2020 sample->id = *array; 2021 array--; 2022 } 2023 2024 if (type & PERF_SAMPLE_CPU) { 2025 u.val64 = *array; 2026 if (swapped) { 2027 /* undo swap of u64, then swap on individual u32s */ 2028 u.val64 = bswap_64(u.val64); 2029 u.val32[0] = bswap_32(u.val32[0]); 2030 } 2031 2032 sample->cpu = u.val32[0]; 2033 array--; 2034 } 2035 2036 if (type & PERF_SAMPLE_STREAM_ID) { 2037 sample->stream_id = *array; 2038 array--; 2039 } 2040 2041 if (type & PERF_SAMPLE_ID) { 2042 sample->id = *array; 2043 array--; 2044 } 2045 2046 if (type & PERF_SAMPLE_TIME) { 2047 sample->time = *array; 2048 array--; 2049 } 2050 2051 if (type & PERF_SAMPLE_TID) { 2052 u.val64 = *array; 2053 if (swapped) { 2054 /* undo swap of u64, then swap on individual u32s */ 2055 u.val64 = bswap_64(u.val64); 2056 u.val32[0] = bswap_32(u.val32[0]); 2057 u.val32[1] = bswap_32(u.val32[1]); 2058 } 2059 2060 sample->pid = u.val32[0]; 2061 sample->tid = u.val32[1]; 2062 array--; 2063 } 2064 2065 return 0; 2066 } 2067 2068 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2069 u64 size) 2070 { 2071 return size > max_size || offset + size > endp; 2072 } 2073 2074 #define OVERFLOW_CHECK(offset, size, max_size) \ 2075 do { \ 2076 if (overflow(endp, (max_size), (offset), (size))) \ 2077 return -EFAULT; \ 2078 } while (0) 2079 2080 #define OVERFLOW_CHECK_u64(offset) \ 2081 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2082 2083 static int 2084 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2085 { 2086 /* 2087 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2088 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2089 * check the format does not go past the end of the event. 2090 */ 2091 if (sample_size + sizeof(event->header) > event->header.size) 2092 return -EFAULT; 2093 2094 return 0; 2095 } 2096 2097 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event, 2098 struct perf_sample *data) 2099 { 2100 u64 type = evsel->core.attr.sample_type; 2101 bool swapped = evsel->needs_swap; 2102 const __u64 *array; 2103 u16 max_size = event->header.size; 2104 const void *endp = (void *)event + max_size; 2105 u64 sz; 2106 2107 /* 2108 * used for cross-endian analysis. See git commit 65014ab3 2109 * for why this goofiness is needed. 2110 */ 2111 union u64_swap u; 2112 2113 memset(data, 0, sizeof(*data)); 2114 data->cpu = data->pid = data->tid = -1; 2115 data->stream_id = data->id = data->time = -1ULL; 2116 data->period = evsel->core.attr.sample_period; 2117 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2118 data->misc = event->header.misc; 2119 data->id = -1ULL; 2120 data->data_src = PERF_MEM_DATA_SRC_NONE; 2121 2122 if (event->header.type != PERF_RECORD_SAMPLE) { 2123 if (!evsel->core.attr.sample_id_all) 2124 return 0; 2125 return perf_evsel__parse_id_sample(evsel, event, data); 2126 } 2127 2128 array = event->sample.array; 2129 2130 if (perf_event__check_size(event, evsel->sample_size)) 2131 return -EFAULT; 2132 2133 if (type & PERF_SAMPLE_IDENTIFIER) { 2134 data->id = *array; 2135 array++; 2136 } 2137 2138 if (type & PERF_SAMPLE_IP) { 2139 data->ip = *array; 2140 array++; 2141 } 2142 2143 if (type & PERF_SAMPLE_TID) { 2144 u.val64 = *array; 2145 if (swapped) { 2146 /* undo swap of u64, then swap on individual u32s */ 2147 u.val64 = bswap_64(u.val64); 2148 u.val32[0] = bswap_32(u.val32[0]); 2149 u.val32[1] = bswap_32(u.val32[1]); 2150 } 2151 2152 data->pid = u.val32[0]; 2153 data->tid = u.val32[1]; 2154 array++; 2155 } 2156 2157 if (type & PERF_SAMPLE_TIME) { 2158 data->time = *array; 2159 array++; 2160 } 2161 2162 if (type & PERF_SAMPLE_ADDR) { 2163 data->addr = *array; 2164 array++; 2165 } 2166 2167 if (type & PERF_SAMPLE_ID) { 2168 data->id = *array; 2169 array++; 2170 } 2171 2172 if (type & PERF_SAMPLE_STREAM_ID) { 2173 data->stream_id = *array; 2174 array++; 2175 } 2176 2177 if (type & PERF_SAMPLE_CPU) { 2178 2179 u.val64 = *array; 2180 if (swapped) { 2181 /* undo swap of u64, then swap on individual u32s */ 2182 u.val64 = bswap_64(u.val64); 2183 u.val32[0] = bswap_32(u.val32[0]); 2184 } 2185 2186 data->cpu = u.val32[0]; 2187 array++; 2188 } 2189 2190 if (type & PERF_SAMPLE_PERIOD) { 2191 data->period = *array; 2192 array++; 2193 } 2194 2195 if (type & PERF_SAMPLE_READ) { 2196 u64 read_format = evsel->core.attr.read_format; 2197 2198 OVERFLOW_CHECK_u64(array); 2199 if (read_format & PERF_FORMAT_GROUP) 2200 data->read.group.nr = *array; 2201 else 2202 data->read.one.value = *array; 2203 2204 array++; 2205 2206 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2207 OVERFLOW_CHECK_u64(array); 2208 data->read.time_enabled = *array; 2209 array++; 2210 } 2211 2212 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2213 OVERFLOW_CHECK_u64(array); 2214 data->read.time_running = *array; 2215 array++; 2216 } 2217 2218 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2219 if (read_format & PERF_FORMAT_GROUP) { 2220 const u64 max_group_nr = UINT64_MAX / 2221 sizeof(struct sample_read_value); 2222 2223 if (data->read.group.nr > max_group_nr) 2224 return -EFAULT; 2225 sz = data->read.group.nr * 2226 sizeof(struct sample_read_value); 2227 OVERFLOW_CHECK(array, sz, max_size); 2228 data->read.group.values = 2229 (struct sample_read_value *)array; 2230 array = (void *)array + sz; 2231 } else { 2232 OVERFLOW_CHECK_u64(array); 2233 data->read.one.id = *array; 2234 array++; 2235 } 2236 } 2237 2238 if (evsel__has_callchain(evsel)) { 2239 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2240 2241 OVERFLOW_CHECK_u64(array); 2242 data->callchain = (struct ip_callchain *)array++; 2243 if (data->callchain->nr > max_callchain_nr) 2244 return -EFAULT; 2245 sz = data->callchain->nr * sizeof(u64); 2246 OVERFLOW_CHECK(array, sz, max_size); 2247 array = (void *)array + sz; 2248 } 2249 2250 if (type & PERF_SAMPLE_RAW) { 2251 OVERFLOW_CHECK_u64(array); 2252 u.val64 = *array; 2253 2254 /* 2255 * Undo swap of u64, then swap on individual u32s, 2256 * get the size of the raw area and undo all of the 2257 * swap. The pevent interface handles endianity by 2258 * itself. 2259 */ 2260 if (swapped) { 2261 u.val64 = bswap_64(u.val64); 2262 u.val32[0] = bswap_32(u.val32[0]); 2263 u.val32[1] = bswap_32(u.val32[1]); 2264 } 2265 data->raw_size = u.val32[0]; 2266 2267 /* 2268 * The raw data is aligned on 64bits including the 2269 * u32 size, so it's safe to use mem_bswap_64. 2270 */ 2271 if (swapped) 2272 mem_bswap_64((void *) array, data->raw_size); 2273 2274 array = (void *)array + sizeof(u32); 2275 2276 OVERFLOW_CHECK(array, data->raw_size, max_size); 2277 data->raw_data = (void *)array; 2278 array = (void *)array + data->raw_size; 2279 } 2280 2281 if (type & PERF_SAMPLE_BRANCH_STACK) { 2282 const u64 max_branch_nr = UINT64_MAX / 2283 sizeof(struct branch_entry); 2284 2285 OVERFLOW_CHECK_u64(array); 2286 data->branch_stack = (struct branch_stack *)array++; 2287 2288 if (data->branch_stack->nr > max_branch_nr) 2289 return -EFAULT; 2290 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2291 OVERFLOW_CHECK(array, sz, max_size); 2292 array = (void *)array + sz; 2293 } 2294 2295 if (type & PERF_SAMPLE_REGS_USER) { 2296 OVERFLOW_CHECK_u64(array); 2297 data->user_regs.abi = *array; 2298 array++; 2299 2300 if (data->user_regs.abi) { 2301 u64 mask = evsel->core.attr.sample_regs_user; 2302 2303 sz = hweight64(mask) * sizeof(u64); 2304 OVERFLOW_CHECK(array, sz, max_size); 2305 data->user_regs.mask = mask; 2306 data->user_regs.regs = (u64 *)array; 2307 array = (void *)array + sz; 2308 } 2309 } 2310 2311 if (type & PERF_SAMPLE_STACK_USER) { 2312 OVERFLOW_CHECK_u64(array); 2313 sz = *array++; 2314 2315 data->user_stack.offset = ((char *)(array - 1) 2316 - (char *) event); 2317 2318 if (!sz) { 2319 data->user_stack.size = 0; 2320 } else { 2321 OVERFLOW_CHECK(array, sz, max_size); 2322 data->user_stack.data = (char *)array; 2323 array = (void *)array + sz; 2324 OVERFLOW_CHECK_u64(array); 2325 data->user_stack.size = *array++; 2326 if (WARN_ONCE(data->user_stack.size > sz, 2327 "user stack dump failure\n")) 2328 return -EFAULT; 2329 } 2330 } 2331 2332 if (type & PERF_SAMPLE_WEIGHT) { 2333 OVERFLOW_CHECK_u64(array); 2334 data->weight = *array; 2335 array++; 2336 } 2337 2338 if (type & PERF_SAMPLE_DATA_SRC) { 2339 OVERFLOW_CHECK_u64(array); 2340 data->data_src = *array; 2341 array++; 2342 } 2343 2344 if (type & PERF_SAMPLE_TRANSACTION) { 2345 OVERFLOW_CHECK_u64(array); 2346 data->transaction = *array; 2347 array++; 2348 } 2349 2350 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2351 if (type & PERF_SAMPLE_REGS_INTR) { 2352 OVERFLOW_CHECK_u64(array); 2353 data->intr_regs.abi = *array; 2354 array++; 2355 2356 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2357 u64 mask = evsel->core.attr.sample_regs_intr; 2358 2359 sz = hweight64(mask) * sizeof(u64); 2360 OVERFLOW_CHECK(array, sz, max_size); 2361 data->intr_regs.mask = mask; 2362 data->intr_regs.regs = (u64 *)array; 2363 array = (void *)array + sz; 2364 } 2365 } 2366 2367 data->phys_addr = 0; 2368 if (type & PERF_SAMPLE_PHYS_ADDR) { 2369 data->phys_addr = *array; 2370 array++; 2371 } 2372 2373 return 0; 2374 } 2375 2376 int perf_evsel__parse_sample_timestamp(struct evsel *evsel, 2377 union perf_event *event, 2378 u64 *timestamp) 2379 { 2380 u64 type = evsel->core.attr.sample_type; 2381 const __u64 *array; 2382 2383 if (!(type & PERF_SAMPLE_TIME)) 2384 return -1; 2385 2386 if (event->header.type != PERF_RECORD_SAMPLE) { 2387 struct perf_sample data = { 2388 .time = -1ULL, 2389 }; 2390 2391 if (!evsel->core.attr.sample_id_all) 2392 return -1; 2393 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2394 return -1; 2395 2396 *timestamp = data.time; 2397 return 0; 2398 } 2399 2400 array = event->sample.array; 2401 2402 if (perf_event__check_size(event, evsel->sample_size)) 2403 return -EFAULT; 2404 2405 if (type & PERF_SAMPLE_IDENTIFIER) 2406 array++; 2407 2408 if (type & PERF_SAMPLE_IP) 2409 array++; 2410 2411 if (type & PERF_SAMPLE_TID) 2412 array++; 2413 2414 if (type & PERF_SAMPLE_TIME) 2415 *timestamp = *array; 2416 2417 return 0; 2418 } 2419 2420 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2421 u64 read_format) 2422 { 2423 size_t sz, result = sizeof(struct perf_record_sample); 2424 2425 if (type & PERF_SAMPLE_IDENTIFIER) 2426 result += sizeof(u64); 2427 2428 if (type & PERF_SAMPLE_IP) 2429 result += sizeof(u64); 2430 2431 if (type & PERF_SAMPLE_TID) 2432 result += sizeof(u64); 2433 2434 if (type & PERF_SAMPLE_TIME) 2435 result += sizeof(u64); 2436 2437 if (type & PERF_SAMPLE_ADDR) 2438 result += sizeof(u64); 2439 2440 if (type & PERF_SAMPLE_ID) 2441 result += sizeof(u64); 2442 2443 if (type & PERF_SAMPLE_STREAM_ID) 2444 result += sizeof(u64); 2445 2446 if (type & PERF_SAMPLE_CPU) 2447 result += sizeof(u64); 2448 2449 if (type & PERF_SAMPLE_PERIOD) 2450 result += sizeof(u64); 2451 2452 if (type & PERF_SAMPLE_READ) { 2453 result += sizeof(u64); 2454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2455 result += sizeof(u64); 2456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2457 result += sizeof(u64); 2458 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2459 if (read_format & PERF_FORMAT_GROUP) { 2460 sz = sample->read.group.nr * 2461 sizeof(struct sample_read_value); 2462 result += sz; 2463 } else { 2464 result += sizeof(u64); 2465 } 2466 } 2467 2468 if (type & PERF_SAMPLE_CALLCHAIN) { 2469 sz = (sample->callchain->nr + 1) * sizeof(u64); 2470 result += sz; 2471 } 2472 2473 if (type & PERF_SAMPLE_RAW) { 2474 result += sizeof(u32); 2475 result += sample->raw_size; 2476 } 2477 2478 if (type & PERF_SAMPLE_BRANCH_STACK) { 2479 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2480 sz += sizeof(u64); 2481 result += sz; 2482 } 2483 2484 if (type & PERF_SAMPLE_REGS_USER) { 2485 if (sample->user_regs.abi) { 2486 result += sizeof(u64); 2487 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2488 result += sz; 2489 } else { 2490 result += sizeof(u64); 2491 } 2492 } 2493 2494 if (type & PERF_SAMPLE_STACK_USER) { 2495 sz = sample->user_stack.size; 2496 result += sizeof(u64); 2497 if (sz) { 2498 result += sz; 2499 result += sizeof(u64); 2500 } 2501 } 2502 2503 if (type & PERF_SAMPLE_WEIGHT) 2504 result += sizeof(u64); 2505 2506 if (type & PERF_SAMPLE_DATA_SRC) 2507 result += sizeof(u64); 2508 2509 if (type & PERF_SAMPLE_TRANSACTION) 2510 result += sizeof(u64); 2511 2512 if (type & PERF_SAMPLE_REGS_INTR) { 2513 if (sample->intr_regs.abi) { 2514 result += sizeof(u64); 2515 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2516 result += sz; 2517 } else { 2518 result += sizeof(u64); 2519 } 2520 } 2521 2522 if (type & PERF_SAMPLE_PHYS_ADDR) 2523 result += sizeof(u64); 2524 2525 return result; 2526 } 2527 2528 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2529 u64 read_format, 2530 const struct perf_sample *sample) 2531 { 2532 __u64 *array; 2533 size_t sz; 2534 /* 2535 * used for cross-endian analysis. See git commit 65014ab3 2536 * for why this goofiness is needed. 2537 */ 2538 union u64_swap u; 2539 2540 array = event->sample.array; 2541 2542 if (type & PERF_SAMPLE_IDENTIFIER) { 2543 *array = sample->id; 2544 array++; 2545 } 2546 2547 if (type & PERF_SAMPLE_IP) { 2548 *array = sample->ip; 2549 array++; 2550 } 2551 2552 if (type & PERF_SAMPLE_TID) { 2553 u.val32[0] = sample->pid; 2554 u.val32[1] = sample->tid; 2555 *array = u.val64; 2556 array++; 2557 } 2558 2559 if (type & PERF_SAMPLE_TIME) { 2560 *array = sample->time; 2561 array++; 2562 } 2563 2564 if (type & PERF_SAMPLE_ADDR) { 2565 *array = sample->addr; 2566 array++; 2567 } 2568 2569 if (type & PERF_SAMPLE_ID) { 2570 *array = sample->id; 2571 array++; 2572 } 2573 2574 if (type & PERF_SAMPLE_STREAM_ID) { 2575 *array = sample->stream_id; 2576 array++; 2577 } 2578 2579 if (type & PERF_SAMPLE_CPU) { 2580 u.val32[0] = sample->cpu; 2581 u.val32[1] = 0; 2582 *array = u.val64; 2583 array++; 2584 } 2585 2586 if (type & PERF_SAMPLE_PERIOD) { 2587 *array = sample->period; 2588 array++; 2589 } 2590 2591 if (type & PERF_SAMPLE_READ) { 2592 if (read_format & PERF_FORMAT_GROUP) 2593 *array = sample->read.group.nr; 2594 else 2595 *array = sample->read.one.value; 2596 array++; 2597 2598 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2599 *array = sample->read.time_enabled; 2600 array++; 2601 } 2602 2603 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2604 *array = sample->read.time_running; 2605 array++; 2606 } 2607 2608 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2609 if (read_format & PERF_FORMAT_GROUP) { 2610 sz = sample->read.group.nr * 2611 sizeof(struct sample_read_value); 2612 memcpy(array, sample->read.group.values, sz); 2613 array = (void *)array + sz; 2614 } else { 2615 *array = sample->read.one.id; 2616 array++; 2617 } 2618 } 2619 2620 if (type & PERF_SAMPLE_CALLCHAIN) { 2621 sz = (sample->callchain->nr + 1) * sizeof(u64); 2622 memcpy(array, sample->callchain, sz); 2623 array = (void *)array + sz; 2624 } 2625 2626 if (type & PERF_SAMPLE_RAW) { 2627 u.val32[0] = sample->raw_size; 2628 *array = u.val64; 2629 array = (void *)array + sizeof(u32); 2630 2631 memcpy(array, sample->raw_data, sample->raw_size); 2632 array = (void *)array + sample->raw_size; 2633 } 2634 2635 if (type & PERF_SAMPLE_BRANCH_STACK) { 2636 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2637 sz += sizeof(u64); 2638 memcpy(array, sample->branch_stack, sz); 2639 array = (void *)array + sz; 2640 } 2641 2642 if (type & PERF_SAMPLE_REGS_USER) { 2643 if (sample->user_regs.abi) { 2644 *array++ = sample->user_regs.abi; 2645 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2646 memcpy(array, sample->user_regs.regs, sz); 2647 array = (void *)array + sz; 2648 } else { 2649 *array++ = 0; 2650 } 2651 } 2652 2653 if (type & PERF_SAMPLE_STACK_USER) { 2654 sz = sample->user_stack.size; 2655 *array++ = sz; 2656 if (sz) { 2657 memcpy(array, sample->user_stack.data, sz); 2658 array = (void *)array + sz; 2659 *array++ = sz; 2660 } 2661 } 2662 2663 if (type & PERF_SAMPLE_WEIGHT) { 2664 *array = sample->weight; 2665 array++; 2666 } 2667 2668 if (type & PERF_SAMPLE_DATA_SRC) { 2669 *array = sample->data_src; 2670 array++; 2671 } 2672 2673 if (type & PERF_SAMPLE_TRANSACTION) { 2674 *array = sample->transaction; 2675 array++; 2676 } 2677 2678 if (type & PERF_SAMPLE_REGS_INTR) { 2679 if (sample->intr_regs.abi) { 2680 *array++ = sample->intr_regs.abi; 2681 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2682 memcpy(array, sample->intr_regs.regs, sz); 2683 array = (void *)array + sz; 2684 } else { 2685 *array++ = 0; 2686 } 2687 } 2688 2689 if (type & PERF_SAMPLE_PHYS_ADDR) { 2690 *array = sample->phys_addr; 2691 array++; 2692 } 2693 2694 return 0; 2695 } 2696 2697 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name) 2698 { 2699 return tep_find_field(evsel->tp_format, name); 2700 } 2701 2702 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, 2703 const char *name) 2704 { 2705 struct tep_format_field *field = perf_evsel__field(evsel, name); 2706 int offset; 2707 2708 if (!field) 2709 return NULL; 2710 2711 offset = field->offset; 2712 2713 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2714 offset = *(int *)(sample->raw_data + field->offset); 2715 offset &= 0xffff; 2716 } 2717 2718 return sample->raw_data + offset; 2719 } 2720 2721 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2722 bool needs_swap) 2723 { 2724 u64 value; 2725 void *ptr = sample->raw_data + field->offset; 2726 2727 switch (field->size) { 2728 case 1: 2729 return *(u8 *)ptr; 2730 case 2: 2731 value = *(u16 *)ptr; 2732 break; 2733 case 4: 2734 value = *(u32 *)ptr; 2735 break; 2736 case 8: 2737 memcpy(&value, ptr, sizeof(u64)); 2738 break; 2739 default: 2740 return 0; 2741 } 2742 2743 if (!needs_swap) 2744 return value; 2745 2746 switch (field->size) { 2747 case 2: 2748 return bswap_16(value); 2749 case 4: 2750 return bswap_32(value); 2751 case 8: 2752 return bswap_64(value); 2753 default: 2754 return 0; 2755 } 2756 2757 return 0; 2758 } 2759 2760 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample, 2761 const char *name) 2762 { 2763 struct tep_format_field *field = perf_evsel__field(evsel, name); 2764 2765 if (!field) 2766 return 0; 2767 2768 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2769 } 2770 2771 bool perf_evsel__fallback(struct evsel *evsel, int err, 2772 char *msg, size_t msgsize) 2773 { 2774 int paranoid; 2775 2776 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2777 evsel->core.attr.type == PERF_TYPE_HARDWARE && 2778 evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2779 /* 2780 * If it's cycles then fall back to hrtimer based 2781 * cpu-clock-tick sw counter, which is always available even if 2782 * no PMU support. 2783 * 2784 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2785 * b0a873e). 2786 */ 2787 scnprintf(msg, msgsize, "%s", 2788 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2789 2790 evsel->core.attr.type = PERF_TYPE_SOFTWARE; 2791 evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK; 2792 2793 zfree(&evsel->name); 2794 return true; 2795 } else if (err == EACCES && !evsel->core.attr.exclude_kernel && 2796 (paranoid = perf_event_paranoid()) > 1) { 2797 const char *name = perf_evsel__name(evsel); 2798 char *new_name; 2799 const char *sep = ":"; 2800 2801 /* Is there already the separator in the name. */ 2802 if (strchr(name, '/') || 2803 strchr(name, ':')) 2804 sep = ""; 2805 2806 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2807 return false; 2808 2809 if (evsel->name) 2810 free(evsel->name); 2811 evsel->name = new_name; 2812 scnprintf(msg, msgsize, 2813 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2814 evsel->core.attr.exclude_kernel = 1; 2815 2816 return true; 2817 } 2818 2819 return false; 2820 } 2821 2822 static bool find_process(const char *name) 2823 { 2824 size_t len = strlen(name); 2825 DIR *dir; 2826 struct dirent *d; 2827 int ret = -1; 2828 2829 dir = opendir(procfs__mountpoint()); 2830 if (!dir) 2831 return false; 2832 2833 /* Walk through the directory. */ 2834 while (ret && (d = readdir(dir)) != NULL) { 2835 char path[PATH_MAX]; 2836 char *data; 2837 size_t size; 2838 2839 if ((d->d_type != DT_DIR) || 2840 !strcmp(".", d->d_name) || 2841 !strcmp("..", d->d_name)) 2842 continue; 2843 2844 scnprintf(path, sizeof(path), "%s/%s/comm", 2845 procfs__mountpoint(), d->d_name); 2846 2847 if (filename__read_str(path, &data, &size)) 2848 continue; 2849 2850 ret = strncmp(name, data, len); 2851 free(data); 2852 } 2853 2854 closedir(dir); 2855 return ret ? false : true; 2856 } 2857 2858 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target, 2859 int err, char *msg, size_t size) 2860 { 2861 char sbuf[STRERR_BUFSIZE]; 2862 int printed = 0; 2863 2864 switch (err) { 2865 case EPERM: 2866 case EACCES: 2867 if (err == EPERM) 2868 printed = scnprintf(msg, size, 2869 "No permission to enable %s event.\n\n", 2870 perf_evsel__name(evsel)); 2871 2872 return scnprintf(msg + printed, size - printed, 2873 "You may not have permission to collect %sstats.\n\n" 2874 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2875 "which controls use of the performance events system by\n" 2876 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2877 "The current value is %d:\n\n" 2878 " -1: Allow use of (almost) all events by all users\n" 2879 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2880 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2881 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2882 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2883 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2884 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2885 " kernel.perf_event_paranoid = -1\n" , 2886 target->system_wide ? "system-wide " : "", 2887 perf_event_paranoid()); 2888 case ENOENT: 2889 return scnprintf(msg, size, "The %s event is not supported.", 2890 perf_evsel__name(evsel)); 2891 case EMFILE: 2892 return scnprintf(msg, size, "%s", 2893 "Too many events are opened.\n" 2894 "Probably the maximum number of open file descriptors has been reached.\n" 2895 "Hint: Try again after reducing the number of events.\n" 2896 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2897 case ENOMEM: 2898 if (evsel__has_callchain(evsel) && 2899 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2900 return scnprintf(msg, size, 2901 "Not enough memory to setup event with callchain.\n" 2902 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2903 "Hint: Current value: %d", sysctl__max_stack()); 2904 break; 2905 case ENODEV: 2906 if (target->cpu_list) 2907 return scnprintf(msg, size, "%s", 2908 "No such device - did you specify an out-of-range profile CPU?"); 2909 break; 2910 case EOPNOTSUPP: 2911 if (evsel->core.attr.sample_period != 0) 2912 return scnprintf(msg, size, 2913 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2914 perf_evsel__name(evsel)); 2915 if (evsel->core.attr.precise_ip) 2916 return scnprintf(msg, size, "%s", 2917 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2918 #if defined(__i386__) || defined(__x86_64__) 2919 if (evsel->core.attr.type == PERF_TYPE_HARDWARE) 2920 return scnprintf(msg, size, "%s", 2921 "No hardware sampling interrupt available.\n"); 2922 #endif 2923 break; 2924 case EBUSY: 2925 if (find_process("oprofiled")) 2926 return scnprintf(msg, size, 2927 "The PMU counters are busy/taken by another profiler.\n" 2928 "We found oprofile daemon running, please stop it and try again."); 2929 break; 2930 case EINVAL: 2931 if (evsel->core.attr.write_backward && perf_missing_features.write_backward) 2932 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2933 if (perf_missing_features.clockid) 2934 return scnprintf(msg, size, "clockid feature not supported."); 2935 if (perf_missing_features.clockid_wrong) 2936 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2937 if (perf_missing_features.aux_output) 2938 return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel."); 2939 break; 2940 default: 2941 break; 2942 } 2943 2944 return scnprintf(msg, size, 2945 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2946 "/bin/dmesg | grep -i perf may provide additional information.\n", 2947 err, str_error_r(err, sbuf, sizeof(sbuf)), 2948 perf_evsel__name(evsel)); 2949 } 2950 2951 struct perf_env *perf_evsel__env(struct evsel *evsel) 2952 { 2953 if (evsel && evsel->evlist) 2954 return evsel->evlist->env; 2955 return NULL; 2956 } 2957 2958 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) 2959 { 2960 int cpu, thread; 2961 2962 for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) { 2963 for (thread = 0; thread < xyarray__max_y(evsel->core.fd); 2964 thread++) { 2965 int fd = FD(evsel, cpu, thread); 2966 2967 if (perf_evlist__id_add_fd(evlist, evsel, 2968 cpu, thread, fd) < 0) 2969 return -1; 2970 } 2971 } 2972 2973 return 0; 2974 } 2975 2976 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist) 2977 { 2978 struct perf_cpu_map *cpus = evsel->core.cpus; 2979 struct perf_thread_map *threads = evsel->core.threads; 2980 2981 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 2982 return -ENOMEM; 2983 2984 return store_evsel_ids(evsel, evlist); 2985 } 2986