1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 32 static struct { 33 bool sample_id_all; 34 bool exclude_guest; 35 bool mmap2; 36 bool cloexec; 37 bool clockid; 38 bool clockid_wrong; 39 bool lbr_flags; 40 bool write_backward; 41 } perf_missing_features; 42 43 static clockid_t clockid; 44 45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 46 { 47 return 0; 48 } 49 50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 51 { 52 } 53 54 static struct { 55 size_t size; 56 int (*init)(struct perf_evsel *evsel); 57 void (*fini)(struct perf_evsel *evsel); 58 } perf_evsel__object = { 59 .size = sizeof(struct perf_evsel), 60 .init = perf_evsel__no_extra_init, 61 .fini = perf_evsel__no_extra_fini, 62 }; 63 64 int perf_evsel__object_config(size_t object_size, 65 int (*init)(struct perf_evsel *evsel), 66 void (*fini)(struct perf_evsel *evsel)) 67 { 68 69 if (object_size == 0) 70 goto set_methods; 71 72 if (perf_evsel__object.size > object_size) 73 return -EINVAL; 74 75 perf_evsel__object.size = object_size; 76 77 set_methods: 78 if (init != NULL) 79 perf_evsel__object.init = init; 80 81 if (fini != NULL) 82 perf_evsel__object.fini = fini; 83 84 return 0; 85 } 86 87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 88 89 int __perf_evsel__sample_size(u64 sample_type) 90 { 91 u64 mask = sample_type & PERF_SAMPLE_MASK; 92 int size = 0; 93 int i; 94 95 for (i = 0; i < 64; i++) { 96 if (mask & (1ULL << i)) 97 size++; 98 } 99 100 size *= sizeof(u64); 101 102 return size; 103 } 104 105 /** 106 * __perf_evsel__calc_id_pos - calculate id_pos. 107 * @sample_type: sample type 108 * 109 * This function returns the position of the event id (PERF_SAMPLE_ID or 110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 111 * sample_event. 112 */ 113 static int __perf_evsel__calc_id_pos(u64 sample_type) 114 { 115 int idx = 0; 116 117 if (sample_type & PERF_SAMPLE_IDENTIFIER) 118 return 0; 119 120 if (!(sample_type & PERF_SAMPLE_ID)) 121 return -1; 122 123 if (sample_type & PERF_SAMPLE_IP) 124 idx += 1; 125 126 if (sample_type & PERF_SAMPLE_TID) 127 idx += 1; 128 129 if (sample_type & PERF_SAMPLE_TIME) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_ADDR) 133 idx += 1; 134 135 return idx; 136 } 137 138 /** 139 * __perf_evsel__calc_is_pos - calculate is_pos. 140 * @sample_type: sample type 141 * 142 * This function returns the position (counting backwards) of the event id 143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 144 * sample_id_all is used there is an id sample appended to non-sample events. 145 */ 146 static int __perf_evsel__calc_is_pos(u64 sample_type) 147 { 148 int idx = 1; 149 150 if (sample_type & PERF_SAMPLE_IDENTIFIER) 151 return 1; 152 153 if (!(sample_type & PERF_SAMPLE_ID)) 154 return -1; 155 156 if (sample_type & PERF_SAMPLE_CPU) 157 idx += 1; 158 159 if (sample_type & PERF_SAMPLE_STREAM_ID) 160 idx += 1; 161 162 return idx; 163 } 164 165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 166 { 167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 169 } 170 171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 172 enum perf_event_sample_format bit) 173 { 174 if (!(evsel->attr.sample_type & bit)) { 175 evsel->attr.sample_type |= bit; 176 evsel->sample_size += sizeof(u64); 177 perf_evsel__calc_id_pos(evsel); 178 } 179 } 180 181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 182 enum perf_event_sample_format bit) 183 { 184 if (evsel->attr.sample_type & bit) { 185 evsel->attr.sample_type &= ~bit; 186 evsel->sample_size -= sizeof(u64); 187 perf_evsel__calc_id_pos(evsel); 188 } 189 } 190 191 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 192 bool can_sample_identifier) 193 { 194 if (can_sample_identifier) { 195 perf_evsel__reset_sample_bit(evsel, ID); 196 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 197 } else { 198 perf_evsel__set_sample_bit(evsel, ID); 199 } 200 evsel->attr.read_format |= PERF_FORMAT_ID; 201 } 202 203 void perf_evsel__init(struct perf_evsel *evsel, 204 struct perf_event_attr *attr, int idx) 205 { 206 evsel->idx = idx; 207 evsel->tracking = !idx; 208 evsel->attr = *attr; 209 evsel->leader = evsel; 210 evsel->unit = ""; 211 evsel->scale = 1.0; 212 evsel->evlist = NULL; 213 evsel->bpf_fd = -1; 214 INIT_LIST_HEAD(&evsel->node); 215 INIT_LIST_HEAD(&evsel->config_terms); 216 perf_evsel__object.init(evsel); 217 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 218 perf_evsel__calc_id_pos(evsel); 219 evsel->cmdline_group_boundary = false; 220 } 221 222 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 223 { 224 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 225 226 if (evsel != NULL) 227 perf_evsel__init(evsel, attr, idx); 228 229 if (perf_evsel__is_bpf_output(evsel)) { 230 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 231 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 232 evsel->attr.sample_period = 1; 233 } 234 235 return evsel; 236 } 237 238 /* 239 * Returns pointer with encoded error via <linux/err.h> interface. 240 */ 241 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 242 { 243 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 244 int err = -ENOMEM; 245 246 if (evsel == NULL) { 247 goto out_err; 248 } else { 249 struct perf_event_attr attr = { 250 .type = PERF_TYPE_TRACEPOINT, 251 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 252 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 253 }; 254 255 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 256 goto out_free; 257 258 evsel->tp_format = trace_event__tp_format(sys, name); 259 if (IS_ERR(evsel->tp_format)) { 260 err = PTR_ERR(evsel->tp_format); 261 goto out_free; 262 } 263 264 event_attr_init(&attr); 265 attr.config = evsel->tp_format->id; 266 attr.sample_period = 1; 267 perf_evsel__init(evsel, &attr, idx); 268 } 269 270 return evsel; 271 272 out_free: 273 zfree(&evsel->name); 274 free(evsel); 275 out_err: 276 return ERR_PTR(err); 277 } 278 279 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 280 "cycles", 281 "instructions", 282 "cache-references", 283 "cache-misses", 284 "branches", 285 "branch-misses", 286 "bus-cycles", 287 "stalled-cycles-frontend", 288 "stalled-cycles-backend", 289 "ref-cycles", 290 }; 291 292 static const char *__perf_evsel__hw_name(u64 config) 293 { 294 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 295 return perf_evsel__hw_names[config]; 296 297 return "unknown-hardware"; 298 } 299 300 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 301 { 302 int colon = 0, r = 0; 303 struct perf_event_attr *attr = &evsel->attr; 304 bool exclude_guest_default = false; 305 306 #define MOD_PRINT(context, mod) do { \ 307 if (!attr->exclude_##context) { \ 308 if (!colon) colon = ++r; \ 309 r += scnprintf(bf + r, size - r, "%c", mod); \ 310 } } while(0) 311 312 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 313 MOD_PRINT(kernel, 'k'); 314 MOD_PRINT(user, 'u'); 315 MOD_PRINT(hv, 'h'); 316 exclude_guest_default = true; 317 } 318 319 if (attr->precise_ip) { 320 if (!colon) 321 colon = ++r; 322 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 323 exclude_guest_default = true; 324 } 325 326 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 327 MOD_PRINT(host, 'H'); 328 MOD_PRINT(guest, 'G'); 329 } 330 #undef MOD_PRINT 331 if (colon) 332 bf[colon - 1] = ':'; 333 return r; 334 } 335 336 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 337 { 338 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 339 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 340 } 341 342 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 343 "cpu-clock", 344 "task-clock", 345 "page-faults", 346 "context-switches", 347 "cpu-migrations", 348 "minor-faults", 349 "major-faults", 350 "alignment-faults", 351 "emulation-faults", 352 "dummy", 353 }; 354 355 static const char *__perf_evsel__sw_name(u64 config) 356 { 357 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 358 return perf_evsel__sw_names[config]; 359 return "unknown-software"; 360 } 361 362 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 363 { 364 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 366 } 367 368 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 369 { 370 int r; 371 372 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 373 374 if (type & HW_BREAKPOINT_R) 375 r += scnprintf(bf + r, size - r, "r"); 376 377 if (type & HW_BREAKPOINT_W) 378 r += scnprintf(bf + r, size - r, "w"); 379 380 if (type & HW_BREAKPOINT_X) 381 r += scnprintf(bf + r, size - r, "x"); 382 383 return r; 384 } 385 386 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 387 { 388 struct perf_event_attr *attr = &evsel->attr; 389 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 390 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 391 } 392 393 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 394 [PERF_EVSEL__MAX_ALIASES] = { 395 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 396 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 397 { "LLC", "L2", }, 398 { "dTLB", "d-tlb", "Data-TLB", }, 399 { "iTLB", "i-tlb", "Instruction-TLB", }, 400 { "branch", "branches", "bpu", "btb", "bpc", }, 401 { "node", }, 402 }; 403 404 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 405 [PERF_EVSEL__MAX_ALIASES] = { 406 { "load", "loads", "read", }, 407 { "store", "stores", "write", }, 408 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 409 }; 410 411 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 412 [PERF_EVSEL__MAX_ALIASES] = { 413 { "refs", "Reference", "ops", "access", }, 414 { "misses", "miss", }, 415 }; 416 417 #define C(x) PERF_COUNT_HW_CACHE_##x 418 #define CACHE_READ (1 << C(OP_READ)) 419 #define CACHE_WRITE (1 << C(OP_WRITE)) 420 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 421 #define COP(x) (1 << x) 422 423 /* 424 * cache operartion stat 425 * L1I : Read and prefetch only 426 * ITLB and BPU : Read-only 427 */ 428 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 429 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 430 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 431 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 432 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 433 [C(ITLB)] = (CACHE_READ), 434 [C(BPU)] = (CACHE_READ), 435 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 436 }; 437 438 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 439 { 440 if (perf_evsel__hw_cache_stat[type] & COP(op)) 441 return true; /* valid */ 442 else 443 return false; /* invalid */ 444 } 445 446 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 447 char *bf, size_t size) 448 { 449 if (result) { 450 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 451 perf_evsel__hw_cache_op[op][0], 452 perf_evsel__hw_cache_result[result][0]); 453 } 454 455 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 456 perf_evsel__hw_cache_op[op][1]); 457 } 458 459 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 460 { 461 u8 op, result, type = (config >> 0) & 0xff; 462 const char *err = "unknown-ext-hardware-cache-type"; 463 464 if (type > PERF_COUNT_HW_CACHE_MAX) 465 goto out_err; 466 467 op = (config >> 8) & 0xff; 468 err = "unknown-ext-hardware-cache-op"; 469 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 470 goto out_err; 471 472 result = (config >> 16) & 0xff; 473 err = "unknown-ext-hardware-cache-result"; 474 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 475 goto out_err; 476 477 err = "invalid-cache"; 478 if (!perf_evsel__is_cache_op_valid(type, op)) 479 goto out_err; 480 481 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 482 out_err: 483 return scnprintf(bf, size, "%s", err); 484 } 485 486 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 487 { 488 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 489 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 490 } 491 492 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 493 { 494 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 495 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 496 } 497 498 const char *perf_evsel__name(struct perf_evsel *evsel) 499 { 500 char bf[128]; 501 502 if (evsel->name) 503 return evsel->name; 504 505 switch (evsel->attr.type) { 506 case PERF_TYPE_RAW: 507 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 508 break; 509 510 case PERF_TYPE_HARDWARE: 511 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 512 break; 513 514 case PERF_TYPE_HW_CACHE: 515 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 516 break; 517 518 case PERF_TYPE_SOFTWARE: 519 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 520 break; 521 522 case PERF_TYPE_TRACEPOINT: 523 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 524 break; 525 526 case PERF_TYPE_BREAKPOINT: 527 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 528 break; 529 530 default: 531 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 532 evsel->attr.type); 533 break; 534 } 535 536 evsel->name = strdup(bf); 537 538 return evsel->name ?: "unknown"; 539 } 540 541 const char *perf_evsel__group_name(struct perf_evsel *evsel) 542 { 543 return evsel->group_name ?: "anon group"; 544 } 545 546 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 547 { 548 int ret; 549 struct perf_evsel *pos; 550 const char *group_name = perf_evsel__group_name(evsel); 551 552 ret = scnprintf(buf, size, "%s", group_name); 553 554 ret += scnprintf(buf + ret, size - ret, " { %s", 555 perf_evsel__name(evsel)); 556 557 for_each_group_member(pos, evsel) 558 ret += scnprintf(buf + ret, size - ret, ", %s", 559 perf_evsel__name(pos)); 560 561 ret += scnprintf(buf + ret, size - ret, " }"); 562 563 return ret; 564 } 565 566 void perf_evsel__config_callchain(struct perf_evsel *evsel, 567 struct record_opts *opts, 568 struct callchain_param *param) 569 { 570 bool function = perf_evsel__is_function_event(evsel); 571 struct perf_event_attr *attr = &evsel->attr; 572 573 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 574 575 attr->sample_max_stack = param->max_stack; 576 577 if (param->record_mode == CALLCHAIN_LBR) { 578 if (!opts->branch_stack) { 579 if (attr->exclude_user) { 580 pr_warning("LBR callstack option is only available " 581 "to get user callchain information. " 582 "Falling back to framepointers.\n"); 583 } else { 584 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 585 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 586 PERF_SAMPLE_BRANCH_CALL_STACK | 587 PERF_SAMPLE_BRANCH_NO_CYCLES | 588 PERF_SAMPLE_BRANCH_NO_FLAGS; 589 } 590 } else 591 pr_warning("Cannot use LBR callstack with branch stack. " 592 "Falling back to framepointers.\n"); 593 } 594 595 if (param->record_mode == CALLCHAIN_DWARF) { 596 if (!function) { 597 perf_evsel__set_sample_bit(evsel, REGS_USER); 598 perf_evsel__set_sample_bit(evsel, STACK_USER); 599 attr->sample_regs_user = PERF_REGS_MASK; 600 attr->sample_stack_user = param->dump_size; 601 attr->exclude_callchain_user = 1; 602 } else { 603 pr_info("Cannot use DWARF unwind for function trace event," 604 " falling back to framepointers.\n"); 605 } 606 } 607 608 if (function) { 609 pr_info("Disabling user space callchains for function trace event.\n"); 610 attr->exclude_callchain_user = 1; 611 } 612 } 613 614 static void 615 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 616 struct callchain_param *param) 617 { 618 struct perf_event_attr *attr = &evsel->attr; 619 620 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 621 if (param->record_mode == CALLCHAIN_LBR) { 622 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 623 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 624 PERF_SAMPLE_BRANCH_CALL_STACK); 625 } 626 if (param->record_mode == CALLCHAIN_DWARF) { 627 perf_evsel__reset_sample_bit(evsel, REGS_USER); 628 perf_evsel__reset_sample_bit(evsel, STACK_USER); 629 } 630 } 631 632 static void apply_config_terms(struct perf_evsel *evsel, 633 struct record_opts *opts) 634 { 635 struct perf_evsel_config_term *term; 636 struct list_head *config_terms = &evsel->config_terms; 637 struct perf_event_attr *attr = &evsel->attr; 638 struct callchain_param param; 639 u32 dump_size = 0; 640 int max_stack = 0; 641 const char *callgraph_buf = NULL; 642 643 /* callgraph default */ 644 param.record_mode = callchain_param.record_mode; 645 646 list_for_each_entry(term, config_terms, list) { 647 switch (term->type) { 648 case PERF_EVSEL__CONFIG_TERM_PERIOD: 649 attr->sample_period = term->val.period; 650 attr->freq = 0; 651 break; 652 case PERF_EVSEL__CONFIG_TERM_FREQ: 653 attr->sample_freq = term->val.freq; 654 attr->freq = 1; 655 break; 656 case PERF_EVSEL__CONFIG_TERM_TIME: 657 if (term->val.time) 658 perf_evsel__set_sample_bit(evsel, TIME); 659 else 660 perf_evsel__reset_sample_bit(evsel, TIME); 661 break; 662 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 663 callgraph_buf = term->val.callgraph; 664 break; 665 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 666 dump_size = term->val.stack_user; 667 break; 668 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 669 max_stack = term->val.max_stack; 670 break; 671 case PERF_EVSEL__CONFIG_TERM_INHERIT: 672 /* 673 * attr->inherit should has already been set by 674 * perf_evsel__config. If user explicitly set 675 * inherit using config terms, override global 676 * opt->no_inherit setting. 677 */ 678 attr->inherit = term->val.inherit ? 1 : 0; 679 break; 680 default: 681 break; 682 } 683 } 684 685 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 686 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 687 if (max_stack) { 688 param.max_stack = max_stack; 689 if (callgraph_buf == NULL) 690 callgraph_buf = "fp"; 691 } 692 693 /* parse callgraph parameters */ 694 if (callgraph_buf != NULL) { 695 if (!strcmp(callgraph_buf, "no")) { 696 param.enabled = false; 697 param.record_mode = CALLCHAIN_NONE; 698 } else { 699 param.enabled = true; 700 if (parse_callchain_record(callgraph_buf, ¶m)) { 701 pr_err("per-event callgraph setting for %s failed. " 702 "Apply callgraph global setting for it\n", 703 evsel->name); 704 return; 705 } 706 } 707 } 708 if (dump_size > 0) { 709 dump_size = round_up(dump_size, sizeof(u64)); 710 param.dump_size = dump_size; 711 } 712 713 /* If global callgraph set, clear it */ 714 if (callchain_param.enabled) 715 perf_evsel__reset_callgraph(evsel, &callchain_param); 716 717 /* set perf-event callgraph */ 718 if (param.enabled) 719 perf_evsel__config_callchain(evsel, opts, ¶m); 720 } 721 } 722 723 /* 724 * The enable_on_exec/disabled value strategy: 725 * 726 * 1) For any type of traced program: 727 * - all independent events and group leaders are disabled 728 * - all group members are enabled 729 * 730 * Group members are ruled by group leaders. They need to 731 * be enabled, because the group scheduling relies on that. 732 * 733 * 2) For traced programs executed by perf: 734 * - all independent events and group leaders have 735 * enable_on_exec set 736 * - we don't specifically enable or disable any event during 737 * the record command 738 * 739 * Independent events and group leaders are initially disabled 740 * and get enabled by exec. Group members are ruled by group 741 * leaders as stated in 1). 742 * 743 * 3) For traced programs attached by perf (pid/tid): 744 * - we specifically enable or disable all events during 745 * the record command 746 * 747 * When attaching events to already running traced we 748 * enable/disable events specifically, as there's no 749 * initial traced exec call. 750 */ 751 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 752 struct callchain_param *callchain) 753 { 754 struct perf_evsel *leader = evsel->leader; 755 struct perf_event_attr *attr = &evsel->attr; 756 int track = evsel->tracking; 757 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 758 759 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 760 attr->inherit = !opts->no_inherit; 761 762 perf_evsel__set_sample_bit(evsel, IP); 763 perf_evsel__set_sample_bit(evsel, TID); 764 765 if (evsel->sample_read) { 766 perf_evsel__set_sample_bit(evsel, READ); 767 768 /* 769 * We need ID even in case of single event, because 770 * PERF_SAMPLE_READ process ID specific data. 771 */ 772 perf_evsel__set_sample_id(evsel, false); 773 774 /* 775 * Apply group format only if we belong to group 776 * with more than one members. 777 */ 778 if (leader->nr_members > 1) { 779 attr->read_format |= PERF_FORMAT_GROUP; 780 attr->inherit = 0; 781 } 782 } 783 784 /* 785 * We default some events to have a default interval. But keep 786 * it a weak assumption overridable by the user. 787 */ 788 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 789 opts->user_interval != ULLONG_MAX)) { 790 if (opts->freq) { 791 perf_evsel__set_sample_bit(evsel, PERIOD); 792 attr->freq = 1; 793 attr->sample_freq = opts->freq; 794 } else { 795 attr->sample_period = opts->default_interval; 796 } 797 } 798 799 /* 800 * Disable sampling for all group members other 801 * than leader in case leader 'leads' the sampling. 802 */ 803 if ((leader != evsel) && leader->sample_read) { 804 attr->sample_freq = 0; 805 attr->sample_period = 0; 806 } 807 808 if (opts->no_samples) 809 attr->sample_freq = 0; 810 811 if (opts->inherit_stat) 812 attr->inherit_stat = 1; 813 814 if (opts->sample_address) { 815 perf_evsel__set_sample_bit(evsel, ADDR); 816 attr->mmap_data = track; 817 } 818 819 /* 820 * We don't allow user space callchains for function trace 821 * event, due to issues with page faults while tracing page 822 * fault handler and its overall trickiness nature. 823 */ 824 if (perf_evsel__is_function_event(evsel)) 825 evsel->attr.exclude_callchain_user = 1; 826 827 if (callchain && callchain->enabled && !evsel->no_aux_samples) 828 perf_evsel__config_callchain(evsel, opts, callchain); 829 830 if (opts->sample_intr_regs) { 831 attr->sample_regs_intr = opts->sample_intr_regs; 832 perf_evsel__set_sample_bit(evsel, REGS_INTR); 833 } 834 835 if (target__has_cpu(&opts->target)) 836 perf_evsel__set_sample_bit(evsel, CPU); 837 838 if (opts->period) 839 perf_evsel__set_sample_bit(evsel, PERIOD); 840 841 /* 842 * When the user explicitly disabled time don't force it here. 843 */ 844 if (opts->sample_time && 845 (!perf_missing_features.sample_id_all && 846 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 847 opts->sample_time_set))) 848 perf_evsel__set_sample_bit(evsel, TIME); 849 850 if (opts->raw_samples && !evsel->no_aux_samples) { 851 perf_evsel__set_sample_bit(evsel, TIME); 852 perf_evsel__set_sample_bit(evsel, RAW); 853 perf_evsel__set_sample_bit(evsel, CPU); 854 } 855 856 if (opts->sample_address) 857 perf_evsel__set_sample_bit(evsel, DATA_SRC); 858 859 if (opts->no_buffering) { 860 attr->watermark = 0; 861 attr->wakeup_events = 1; 862 } 863 if (opts->branch_stack && !evsel->no_aux_samples) { 864 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 865 attr->branch_sample_type = opts->branch_stack; 866 } 867 868 if (opts->sample_weight) 869 perf_evsel__set_sample_bit(evsel, WEIGHT); 870 871 attr->task = track; 872 attr->mmap = track; 873 attr->mmap2 = track && !perf_missing_features.mmap2; 874 attr->comm = track; 875 876 if (opts->record_switch_events) 877 attr->context_switch = track; 878 879 if (opts->sample_transaction) 880 perf_evsel__set_sample_bit(evsel, TRANSACTION); 881 882 if (opts->running_time) { 883 evsel->attr.read_format |= 884 PERF_FORMAT_TOTAL_TIME_ENABLED | 885 PERF_FORMAT_TOTAL_TIME_RUNNING; 886 } 887 888 /* 889 * XXX see the function comment above 890 * 891 * Disabling only independent events or group leaders, 892 * keeping group members enabled. 893 */ 894 if (perf_evsel__is_group_leader(evsel)) 895 attr->disabled = 1; 896 897 /* 898 * Setting enable_on_exec for independent events and 899 * group leaders for traced executed by perf. 900 */ 901 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 902 !opts->initial_delay) 903 attr->enable_on_exec = 1; 904 905 if (evsel->immediate) { 906 attr->disabled = 0; 907 attr->enable_on_exec = 0; 908 } 909 910 clockid = opts->clockid; 911 if (opts->use_clockid) { 912 attr->use_clockid = 1; 913 attr->clockid = opts->clockid; 914 } 915 916 if (evsel->precise_max) 917 perf_event_attr__set_max_precise_ip(attr); 918 919 if (opts->all_user) { 920 attr->exclude_kernel = 1; 921 attr->exclude_user = 0; 922 } 923 924 if (opts->all_kernel) { 925 attr->exclude_kernel = 0; 926 attr->exclude_user = 1; 927 } 928 929 /* 930 * Apply event specific term settings, 931 * it overloads any global configuration. 932 */ 933 apply_config_terms(evsel, opts); 934 } 935 936 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 937 { 938 int cpu, thread; 939 940 if (evsel->system_wide) 941 nthreads = 1; 942 943 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 944 945 if (evsel->fd) { 946 for (cpu = 0; cpu < ncpus; cpu++) { 947 for (thread = 0; thread < nthreads; thread++) { 948 FD(evsel, cpu, thread) = -1; 949 } 950 } 951 } 952 953 return evsel->fd != NULL ? 0 : -ENOMEM; 954 } 955 956 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 957 int ioc, void *arg) 958 { 959 int cpu, thread; 960 961 if (evsel->system_wide) 962 nthreads = 1; 963 964 for (cpu = 0; cpu < ncpus; cpu++) { 965 for (thread = 0; thread < nthreads; thread++) { 966 int fd = FD(evsel, cpu, thread), 967 err = ioctl(fd, ioc, arg); 968 969 if (err) 970 return err; 971 } 972 } 973 974 return 0; 975 } 976 977 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 978 const char *filter) 979 { 980 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 981 PERF_EVENT_IOC_SET_FILTER, 982 (void *)filter); 983 } 984 985 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 986 { 987 char *new_filter = strdup(filter); 988 989 if (new_filter != NULL) { 990 free(evsel->filter); 991 evsel->filter = new_filter; 992 return 0; 993 } 994 995 return -1; 996 } 997 998 int perf_evsel__append_filter(struct perf_evsel *evsel, 999 const char *op, const char *filter) 1000 { 1001 char *new_filter; 1002 1003 if (evsel->filter == NULL) 1004 return perf_evsel__set_filter(evsel, filter); 1005 1006 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 1007 free(evsel->filter); 1008 evsel->filter = new_filter; 1009 return 0; 1010 } 1011 1012 return -1; 1013 } 1014 1015 int perf_evsel__enable(struct perf_evsel *evsel) 1016 { 1017 int nthreads = thread_map__nr(evsel->threads); 1018 int ncpus = cpu_map__nr(evsel->cpus); 1019 1020 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1021 PERF_EVENT_IOC_ENABLE, 1022 0); 1023 } 1024 1025 int perf_evsel__disable(struct perf_evsel *evsel) 1026 { 1027 int nthreads = thread_map__nr(evsel->threads); 1028 int ncpus = cpu_map__nr(evsel->cpus); 1029 1030 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1031 PERF_EVENT_IOC_DISABLE, 1032 0); 1033 } 1034 1035 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1036 { 1037 if (ncpus == 0 || nthreads == 0) 1038 return 0; 1039 1040 if (evsel->system_wide) 1041 nthreads = 1; 1042 1043 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1044 if (evsel->sample_id == NULL) 1045 return -ENOMEM; 1046 1047 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1048 if (evsel->id == NULL) { 1049 xyarray__delete(evsel->sample_id); 1050 evsel->sample_id = NULL; 1051 return -ENOMEM; 1052 } 1053 1054 return 0; 1055 } 1056 1057 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1058 { 1059 xyarray__delete(evsel->fd); 1060 evsel->fd = NULL; 1061 } 1062 1063 static void perf_evsel__free_id(struct perf_evsel *evsel) 1064 { 1065 xyarray__delete(evsel->sample_id); 1066 evsel->sample_id = NULL; 1067 zfree(&evsel->id); 1068 } 1069 1070 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1071 { 1072 struct perf_evsel_config_term *term, *h; 1073 1074 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1075 list_del(&term->list); 1076 free(term); 1077 } 1078 } 1079 1080 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1081 { 1082 int cpu, thread; 1083 1084 if (evsel->system_wide) 1085 nthreads = 1; 1086 1087 for (cpu = 0; cpu < ncpus; cpu++) 1088 for (thread = 0; thread < nthreads; ++thread) { 1089 close(FD(evsel, cpu, thread)); 1090 FD(evsel, cpu, thread) = -1; 1091 } 1092 } 1093 1094 void perf_evsel__exit(struct perf_evsel *evsel) 1095 { 1096 assert(list_empty(&evsel->node)); 1097 assert(evsel->evlist == NULL); 1098 perf_evsel__free_fd(evsel); 1099 perf_evsel__free_id(evsel); 1100 perf_evsel__free_config_terms(evsel); 1101 close_cgroup(evsel->cgrp); 1102 cpu_map__put(evsel->cpus); 1103 cpu_map__put(evsel->own_cpus); 1104 thread_map__put(evsel->threads); 1105 zfree(&evsel->group_name); 1106 zfree(&evsel->name); 1107 perf_evsel__object.fini(evsel); 1108 } 1109 1110 void perf_evsel__delete(struct perf_evsel *evsel) 1111 { 1112 perf_evsel__exit(evsel); 1113 free(evsel); 1114 } 1115 1116 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1117 struct perf_counts_values *count) 1118 { 1119 struct perf_counts_values tmp; 1120 1121 if (!evsel->prev_raw_counts) 1122 return; 1123 1124 if (cpu == -1) { 1125 tmp = evsel->prev_raw_counts->aggr; 1126 evsel->prev_raw_counts->aggr = *count; 1127 } else { 1128 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1129 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1130 } 1131 1132 count->val = count->val - tmp.val; 1133 count->ena = count->ena - tmp.ena; 1134 count->run = count->run - tmp.run; 1135 } 1136 1137 void perf_counts_values__scale(struct perf_counts_values *count, 1138 bool scale, s8 *pscaled) 1139 { 1140 s8 scaled = 0; 1141 1142 if (scale) { 1143 if (count->run == 0) { 1144 scaled = -1; 1145 count->val = 0; 1146 } else if (count->run < count->ena) { 1147 scaled = 1; 1148 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1149 } 1150 } else 1151 count->ena = count->run = 0; 1152 1153 if (pscaled) 1154 *pscaled = scaled; 1155 } 1156 1157 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1158 struct perf_counts_values *count) 1159 { 1160 memset(count, 0, sizeof(*count)); 1161 1162 if (FD(evsel, cpu, thread) < 0) 1163 return -EINVAL; 1164 1165 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1166 return -errno; 1167 1168 return 0; 1169 } 1170 1171 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1172 int cpu, int thread, bool scale) 1173 { 1174 struct perf_counts_values count; 1175 size_t nv = scale ? 3 : 1; 1176 1177 if (FD(evsel, cpu, thread) < 0) 1178 return -EINVAL; 1179 1180 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1181 return -ENOMEM; 1182 1183 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1184 return -errno; 1185 1186 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1187 perf_counts_values__scale(&count, scale, NULL); 1188 *perf_counts(evsel->counts, cpu, thread) = count; 1189 return 0; 1190 } 1191 1192 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1193 { 1194 struct perf_evsel *leader = evsel->leader; 1195 int fd; 1196 1197 if (perf_evsel__is_group_leader(evsel)) 1198 return -1; 1199 1200 /* 1201 * Leader must be already processed/open, 1202 * if not it's a bug. 1203 */ 1204 BUG_ON(!leader->fd); 1205 1206 fd = FD(leader, cpu, thread); 1207 BUG_ON(fd == -1); 1208 1209 return fd; 1210 } 1211 1212 struct bit_names { 1213 int bit; 1214 const char *name; 1215 }; 1216 1217 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1218 { 1219 bool first_bit = true; 1220 int i = 0; 1221 1222 do { 1223 if (value & bits[i].bit) { 1224 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1225 first_bit = false; 1226 } 1227 } while (bits[++i].name != NULL); 1228 } 1229 1230 static void __p_sample_type(char *buf, size_t size, u64 value) 1231 { 1232 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1233 struct bit_names bits[] = { 1234 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1235 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1236 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1237 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1238 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1239 bit_name(WEIGHT), 1240 { .name = NULL, } 1241 }; 1242 #undef bit_name 1243 __p_bits(buf, size, value, bits); 1244 } 1245 1246 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1247 { 1248 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1249 struct bit_names bits[] = { 1250 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1251 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1252 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1253 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1254 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1255 { .name = NULL, } 1256 }; 1257 #undef bit_name 1258 __p_bits(buf, size, value, bits); 1259 } 1260 1261 static void __p_read_format(char *buf, size_t size, u64 value) 1262 { 1263 #define bit_name(n) { PERF_FORMAT_##n, #n } 1264 struct bit_names bits[] = { 1265 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1266 bit_name(ID), bit_name(GROUP), 1267 { .name = NULL, } 1268 }; 1269 #undef bit_name 1270 __p_bits(buf, size, value, bits); 1271 } 1272 1273 #define BUF_SIZE 1024 1274 1275 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1276 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1277 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1278 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1279 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1280 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1281 1282 #define PRINT_ATTRn(_n, _f, _p) \ 1283 do { \ 1284 if (attr->_f) { \ 1285 _p(attr->_f); \ 1286 ret += attr__fprintf(fp, _n, buf, priv);\ 1287 } \ 1288 } while (0) 1289 1290 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1291 1292 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1293 attr__fprintf_f attr__fprintf, void *priv) 1294 { 1295 char buf[BUF_SIZE]; 1296 int ret = 0; 1297 1298 PRINT_ATTRf(type, p_unsigned); 1299 PRINT_ATTRf(size, p_unsigned); 1300 PRINT_ATTRf(config, p_hex); 1301 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1302 PRINT_ATTRf(sample_type, p_sample_type); 1303 PRINT_ATTRf(read_format, p_read_format); 1304 1305 PRINT_ATTRf(disabled, p_unsigned); 1306 PRINT_ATTRf(inherit, p_unsigned); 1307 PRINT_ATTRf(pinned, p_unsigned); 1308 PRINT_ATTRf(exclusive, p_unsigned); 1309 PRINT_ATTRf(exclude_user, p_unsigned); 1310 PRINT_ATTRf(exclude_kernel, p_unsigned); 1311 PRINT_ATTRf(exclude_hv, p_unsigned); 1312 PRINT_ATTRf(exclude_idle, p_unsigned); 1313 PRINT_ATTRf(mmap, p_unsigned); 1314 PRINT_ATTRf(comm, p_unsigned); 1315 PRINT_ATTRf(freq, p_unsigned); 1316 PRINT_ATTRf(inherit_stat, p_unsigned); 1317 PRINT_ATTRf(enable_on_exec, p_unsigned); 1318 PRINT_ATTRf(task, p_unsigned); 1319 PRINT_ATTRf(watermark, p_unsigned); 1320 PRINT_ATTRf(precise_ip, p_unsigned); 1321 PRINT_ATTRf(mmap_data, p_unsigned); 1322 PRINT_ATTRf(sample_id_all, p_unsigned); 1323 PRINT_ATTRf(exclude_host, p_unsigned); 1324 PRINT_ATTRf(exclude_guest, p_unsigned); 1325 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1326 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1327 PRINT_ATTRf(mmap2, p_unsigned); 1328 PRINT_ATTRf(comm_exec, p_unsigned); 1329 PRINT_ATTRf(use_clockid, p_unsigned); 1330 PRINT_ATTRf(context_switch, p_unsigned); 1331 PRINT_ATTRf(write_backward, p_unsigned); 1332 1333 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1334 PRINT_ATTRf(bp_type, p_unsigned); 1335 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1336 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1337 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1338 PRINT_ATTRf(sample_regs_user, p_hex); 1339 PRINT_ATTRf(sample_stack_user, p_unsigned); 1340 PRINT_ATTRf(clockid, p_signed); 1341 PRINT_ATTRf(sample_regs_intr, p_hex); 1342 PRINT_ATTRf(aux_watermark, p_unsigned); 1343 PRINT_ATTRf(sample_max_stack, p_unsigned); 1344 1345 return ret; 1346 } 1347 1348 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1349 void *priv __attribute__((unused))) 1350 { 1351 return fprintf(fp, " %-32s %s\n", name, val); 1352 } 1353 1354 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1355 struct thread_map *threads) 1356 { 1357 int cpu, thread, nthreads; 1358 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1359 int pid = -1, err; 1360 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1361 1362 if (evsel->system_wide) 1363 nthreads = 1; 1364 else 1365 nthreads = threads->nr; 1366 1367 if (evsel->fd == NULL && 1368 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1369 return -ENOMEM; 1370 1371 if (evsel->cgrp) { 1372 flags |= PERF_FLAG_PID_CGROUP; 1373 pid = evsel->cgrp->fd; 1374 } 1375 1376 fallback_missing_features: 1377 if (perf_missing_features.clockid_wrong) 1378 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1379 if (perf_missing_features.clockid) { 1380 evsel->attr.use_clockid = 0; 1381 evsel->attr.clockid = 0; 1382 } 1383 if (perf_missing_features.cloexec) 1384 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1385 if (perf_missing_features.mmap2) 1386 evsel->attr.mmap2 = 0; 1387 if (perf_missing_features.exclude_guest) 1388 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1389 if (perf_missing_features.lbr_flags) 1390 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1391 PERF_SAMPLE_BRANCH_NO_CYCLES); 1392 if (perf_missing_features.write_backward) { 1393 if (evsel->overwrite) 1394 return -EINVAL; 1395 evsel->attr.write_backward = false; 1396 } 1397 retry_sample_id: 1398 if (perf_missing_features.sample_id_all) 1399 evsel->attr.sample_id_all = 0; 1400 1401 if (verbose >= 2) { 1402 fprintf(stderr, "%.60s\n", graph_dotted_line); 1403 fprintf(stderr, "perf_event_attr:\n"); 1404 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1405 fprintf(stderr, "%.60s\n", graph_dotted_line); 1406 } 1407 1408 for (cpu = 0; cpu < cpus->nr; cpu++) { 1409 1410 for (thread = 0; thread < nthreads; thread++) { 1411 int group_fd; 1412 1413 if (!evsel->cgrp && !evsel->system_wide) 1414 pid = thread_map__pid(threads, thread); 1415 1416 group_fd = get_group_fd(evsel, cpu, thread); 1417 retry_open: 1418 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1419 pid, cpus->map[cpu], group_fd, flags); 1420 1421 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1422 pid, 1423 cpus->map[cpu], 1424 group_fd, flags); 1425 if (FD(evsel, cpu, thread) < 0) { 1426 err = -errno; 1427 pr_debug2("sys_perf_event_open failed, error %d\n", 1428 err); 1429 goto try_fallback; 1430 } 1431 1432 if (evsel->bpf_fd >= 0) { 1433 int evt_fd = FD(evsel, cpu, thread); 1434 int bpf_fd = evsel->bpf_fd; 1435 1436 err = ioctl(evt_fd, 1437 PERF_EVENT_IOC_SET_BPF, 1438 bpf_fd); 1439 if (err && errno != EEXIST) { 1440 pr_err("failed to attach bpf fd %d: %s\n", 1441 bpf_fd, strerror(errno)); 1442 err = -EINVAL; 1443 goto out_close; 1444 } 1445 } 1446 1447 set_rlimit = NO_CHANGE; 1448 1449 /* 1450 * If we succeeded but had to kill clockid, fail and 1451 * have perf_evsel__open_strerror() print us a nice 1452 * error. 1453 */ 1454 if (perf_missing_features.clockid || 1455 perf_missing_features.clockid_wrong) { 1456 err = -EINVAL; 1457 goto out_close; 1458 } 1459 } 1460 } 1461 1462 return 0; 1463 1464 try_fallback: 1465 /* 1466 * perf stat needs between 5 and 22 fds per CPU. When we run out 1467 * of them try to increase the limits. 1468 */ 1469 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1470 struct rlimit l; 1471 int old_errno = errno; 1472 1473 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1474 if (set_rlimit == NO_CHANGE) 1475 l.rlim_cur = l.rlim_max; 1476 else { 1477 l.rlim_cur = l.rlim_max + 1000; 1478 l.rlim_max = l.rlim_cur; 1479 } 1480 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1481 set_rlimit++; 1482 errno = old_errno; 1483 goto retry_open; 1484 } 1485 } 1486 errno = old_errno; 1487 } 1488 1489 if (err != -EINVAL || cpu > 0 || thread > 0) 1490 goto out_close; 1491 1492 /* 1493 * Must probe features in the order they were added to the 1494 * perf_event_attr interface. 1495 */ 1496 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1497 perf_missing_features.write_backward = true; 1498 goto fallback_missing_features; 1499 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1500 perf_missing_features.clockid_wrong = true; 1501 goto fallback_missing_features; 1502 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1503 perf_missing_features.clockid = true; 1504 goto fallback_missing_features; 1505 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1506 perf_missing_features.cloexec = true; 1507 goto fallback_missing_features; 1508 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1509 perf_missing_features.mmap2 = true; 1510 goto fallback_missing_features; 1511 } else if (!perf_missing_features.exclude_guest && 1512 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1513 perf_missing_features.exclude_guest = true; 1514 goto fallback_missing_features; 1515 } else if (!perf_missing_features.sample_id_all) { 1516 perf_missing_features.sample_id_all = true; 1517 goto retry_sample_id; 1518 } else if (!perf_missing_features.lbr_flags && 1519 (evsel->attr.branch_sample_type & 1520 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1521 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1522 perf_missing_features.lbr_flags = true; 1523 goto fallback_missing_features; 1524 } 1525 out_close: 1526 do { 1527 while (--thread >= 0) { 1528 close(FD(evsel, cpu, thread)); 1529 FD(evsel, cpu, thread) = -1; 1530 } 1531 thread = nthreads; 1532 } while (--cpu >= 0); 1533 return err; 1534 } 1535 1536 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1537 { 1538 if (evsel->fd == NULL) 1539 return; 1540 1541 perf_evsel__close_fd(evsel, ncpus, nthreads); 1542 perf_evsel__free_fd(evsel); 1543 } 1544 1545 static struct { 1546 struct cpu_map map; 1547 int cpus[1]; 1548 } empty_cpu_map = { 1549 .map.nr = 1, 1550 .cpus = { -1, }, 1551 }; 1552 1553 static struct { 1554 struct thread_map map; 1555 int threads[1]; 1556 } empty_thread_map = { 1557 .map.nr = 1, 1558 .threads = { -1, }, 1559 }; 1560 1561 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1562 struct thread_map *threads) 1563 { 1564 if (cpus == NULL) { 1565 /* Work around old compiler warnings about strict aliasing */ 1566 cpus = &empty_cpu_map.map; 1567 } 1568 1569 if (threads == NULL) 1570 threads = &empty_thread_map.map; 1571 1572 return __perf_evsel__open(evsel, cpus, threads); 1573 } 1574 1575 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1576 struct cpu_map *cpus) 1577 { 1578 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1579 } 1580 1581 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1582 struct thread_map *threads) 1583 { 1584 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1585 } 1586 1587 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1588 const union perf_event *event, 1589 struct perf_sample *sample) 1590 { 1591 u64 type = evsel->attr.sample_type; 1592 const u64 *array = event->sample.array; 1593 bool swapped = evsel->needs_swap; 1594 union u64_swap u; 1595 1596 array += ((event->header.size - 1597 sizeof(event->header)) / sizeof(u64)) - 1; 1598 1599 if (type & PERF_SAMPLE_IDENTIFIER) { 1600 sample->id = *array; 1601 array--; 1602 } 1603 1604 if (type & PERF_SAMPLE_CPU) { 1605 u.val64 = *array; 1606 if (swapped) { 1607 /* undo swap of u64, then swap on individual u32s */ 1608 u.val64 = bswap_64(u.val64); 1609 u.val32[0] = bswap_32(u.val32[0]); 1610 } 1611 1612 sample->cpu = u.val32[0]; 1613 array--; 1614 } 1615 1616 if (type & PERF_SAMPLE_STREAM_ID) { 1617 sample->stream_id = *array; 1618 array--; 1619 } 1620 1621 if (type & PERF_SAMPLE_ID) { 1622 sample->id = *array; 1623 array--; 1624 } 1625 1626 if (type & PERF_SAMPLE_TIME) { 1627 sample->time = *array; 1628 array--; 1629 } 1630 1631 if (type & PERF_SAMPLE_TID) { 1632 u.val64 = *array; 1633 if (swapped) { 1634 /* undo swap of u64, then swap on individual u32s */ 1635 u.val64 = bswap_64(u.val64); 1636 u.val32[0] = bswap_32(u.val32[0]); 1637 u.val32[1] = bswap_32(u.val32[1]); 1638 } 1639 1640 sample->pid = u.val32[0]; 1641 sample->tid = u.val32[1]; 1642 array--; 1643 } 1644 1645 return 0; 1646 } 1647 1648 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1649 u64 size) 1650 { 1651 return size > max_size || offset + size > endp; 1652 } 1653 1654 #define OVERFLOW_CHECK(offset, size, max_size) \ 1655 do { \ 1656 if (overflow(endp, (max_size), (offset), (size))) \ 1657 return -EFAULT; \ 1658 } while (0) 1659 1660 #define OVERFLOW_CHECK_u64(offset) \ 1661 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1662 1663 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1664 struct perf_sample *data) 1665 { 1666 u64 type = evsel->attr.sample_type; 1667 bool swapped = evsel->needs_swap; 1668 const u64 *array; 1669 u16 max_size = event->header.size; 1670 const void *endp = (void *)event + max_size; 1671 u64 sz; 1672 1673 /* 1674 * used for cross-endian analysis. See git commit 65014ab3 1675 * for why this goofiness is needed. 1676 */ 1677 union u64_swap u; 1678 1679 memset(data, 0, sizeof(*data)); 1680 data->cpu = data->pid = data->tid = -1; 1681 data->stream_id = data->id = data->time = -1ULL; 1682 data->period = evsel->attr.sample_period; 1683 data->weight = 0; 1684 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1685 1686 if (event->header.type != PERF_RECORD_SAMPLE) { 1687 if (!evsel->attr.sample_id_all) 1688 return 0; 1689 return perf_evsel__parse_id_sample(evsel, event, data); 1690 } 1691 1692 array = event->sample.array; 1693 1694 /* 1695 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1696 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1697 * check the format does not go past the end of the event. 1698 */ 1699 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1700 return -EFAULT; 1701 1702 data->id = -1ULL; 1703 if (type & PERF_SAMPLE_IDENTIFIER) { 1704 data->id = *array; 1705 array++; 1706 } 1707 1708 if (type & PERF_SAMPLE_IP) { 1709 data->ip = *array; 1710 array++; 1711 } 1712 1713 if (type & PERF_SAMPLE_TID) { 1714 u.val64 = *array; 1715 if (swapped) { 1716 /* undo swap of u64, then swap on individual u32s */ 1717 u.val64 = bswap_64(u.val64); 1718 u.val32[0] = bswap_32(u.val32[0]); 1719 u.val32[1] = bswap_32(u.val32[1]); 1720 } 1721 1722 data->pid = u.val32[0]; 1723 data->tid = u.val32[1]; 1724 array++; 1725 } 1726 1727 if (type & PERF_SAMPLE_TIME) { 1728 data->time = *array; 1729 array++; 1730 } 1731 1732 data->addr = 0; 1733 if (type & PERF_SAMPLE_ADDR) { 1734 data->addr = *array; 1735 array++; 1736 } 1737 1738 if (type & PERF_SAMPLE_ID) { 1739 data->id = *array; 1740 array++; 1741 } 1742 1743 if (type & PERF_SAMPLE_STREAM_ID) { 1744 data->stream_id = *array; 1745 array++; 1746 } 1747 1748 if (type & PERF_SAMPLE_CPU) { 1749 1750 u.val64 = *array; 1751 if (swapped) { 1752 /* undo swap of u64, then swap on individual u32s */ 1753 u.val64 = bswap_64(u.val64); 1754 u.val32[0] = bswap_32(u.val32[0]); 1755 } 1756 1757 data->cpu = u.val32[0]; 1758 array++; 1759 } 1760 1761 if (type & PERF_SAMPLE_PERIOD) { 1762 data->period = *array; 1763 array++; 1764 } 1765 1766 if (type & PERF_SAMPLE_READ) { 1767 u64 read_format = evsel->attr.read_format; 1768 1769 OVERFLOW_CHECK_u64(array); 1770 if (read_format & PERF_FORMAT_GROUP) 1771 data->read.group.nr = *array; 1772 else 1773 data->read.one.value = *array; 1774 1775 array++; 1776 1777 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1778 OVERFLOW_CHECK_u64(array); 1779 data->read.time_enabled = *array; 1780 array++; 1781 } 1782 1783 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1784 OVERFLOW_CHECK_u64(array); 1785 data->read.time_running = *array; 1786 array++; 1787 } 1788 1789 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1790 if (read_format & PERF_FORMAT_GROUP) { 1791 const u64 max_group_nr = UINT64_MAX / 1792 sizeof(struct sample_read_value); 1793 1794 if (data->read.group.nr > max_group_nr) 1795 return -EFAULT; 1796 sz = data->read.group.nr * 1797 sizeof(struct sample_read_value); 1798 OVERFLOW_CHECK(array, sz, max_size); 1799 data->read.group.values = 1800 (struct sample_read_value *)array; 1801 array = (void *)array + sz; 1802 } else { 1803 OVERFLOW_CHECK_u64(array); 1804 data->read.one.id = *array; 1805 array++; 1806 } 1807 } 1808 1809 if (type & PERF_SAMPLE_CALLCHAIN) { 1810 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1811 1812 OVERFLOW_CHECK_u64(array); 1813 data->callchain = (struct ip_callchain *)array++; 1814 if (data->callchain->nr > max_callchain_nr) 1815 return -EFAULT; 1816 sz = data->callchain->nr * sizeof(u64); 1817 OVERFLOW_CHECK(array, sz, max_size); 1818 array = (void *)array + sz; 1819 } 1820 1821 if (type & PERF_SAMPLE_RAW) { 1822 OVERFLOW_CHECK_u64(array); 1823 u.val64 = *array; 1824 if (WARN_ONCE(swapped, 1825 "Endianness of raw data not corrected!\n")) { 1826 /* undo swap of u64, then swap on individual u32s */ 1827 u.val64 = bswap_64(u.val64); 1828 u.val32[0] = bswap_32(u.val32[0]); 1829 u.val32[1] = bswap_32(u.val32[1]); 1830 } 1831 data->raw_size = u.val32[0]; 1832 array = (void *)array + sizeof(u32); 1833 1834 OVERFLOW_CHECK(array, data->raw_size, max_size); 1835 data->raw_data = (void *)array; 1836 array = (void *)array + data->raw_size; 1837 } 1838 1839 if (type & PERF_SAMPLE_BRANCH_STACK) { 1840 const u64 max_branch_nr = UINT64_MAX / 1841 sizeof(struct branch_entry); 1842 1843 OVERFLOW_CHECK_u64(array); 1844 data->branch_stack = (struct branch_stack *)array++; 1845 1846 if (data->branch_stack->nr > max_branch_nr) 1847 return -EFAULT; 1848 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1849 OVERFLOW_CHECK(array, sz, max_size); 1850 array = (void *)array + sz; 1851 } 1852 1853 if (type & PERF_SAMPLE_REGS_USER) { 1854 OVERFLOW_CHECK_u64(array); 1855 data->user_regs.abi = *array; 1856 array++; 1857 1858 if (data->user_regs.abi) { 1859 u64 mask = evsel->attr.sample_regs_user; 1860 1861 sz = hweight_long(mask) * sizeof(u64); 1862 OVERFLOW_CHECK(array, sz, max_size); 1863 data->user_regs.mask = mask; 1864 data->user_regs.regs = (u64 *)array; 1865 array = (void *)array + sz; 1866 } 1867 } 1868 1869 if (type & PERF_SAMPLE_STACK_USER) { 1870 OVERFLOW_CHECK_u64(array); 1871 sz = *array++; 1872 1873 data->user_stack.offset = ((char *)(array - 1) 1874 - (char *) event); 1875 1876 if (!sz) { 1877 data->user_stack.size = 0; 1878 } else { 1879 OVERFLOW_CHECK(array, sz, max_size); 1880 data->user_stack.data = (char *)array; 1881 array = (void *)array + sz; 1882 OVERFLOW_CHECK_u64(array); 1883 data->user_stack.size = *array++; 1884 if (WARN_ONCE(data->user_stack.size > sz, 1885 "user stack dump failure\n")) 1886 return -EFAULT; 1887 } 1888 } 1889 1890 data->weight = 0; 1891 if (type & PERF_SAMPLE_WEIGHT) { 1892 OVERFLOW_CHECK_u64(array); 1893 data->weight = *array; 1894 array++; 1895 } 1896 1897 data->data_src = PERF_MEM_DATA_SRC_NONE; 1898 if (type & PERF_SAMPLE_DATA_SRC) { 1899 OVERFLOW_CHECK_u64(array); 1900 data->data_src = *array; 1901 array++; 1902 } 1903 1904 data->transaction = 0; 1905 if (type & PERF_SAMPLE_TRANSACTION) { 1906 OVERFLOW_CHECK_u64(array); 1907 data->transaction = *array; 1908 array++; 1909 } 1910 1911 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1912 if (type & PERF_SAMPLE_REGS_INTR) { 1913 OVERFLOW_CHECK_u64(array); 1914 data->intr_regs.abi = *array; 1915 array++; 1916 1917 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1918 u64 mask = evsel->attr.sample_regs_intr; 1919 1920 sz = hweight_long(mask) * sizeof(u64); 1921 OVERFLOW_CHECK(array, sz, max_size); 1922 data->intr_regs.mask = mask; 1923 data->intr_regs.regs = (u64 *)array; 1924 array = (void *)array + sz; 1925 } 1926 } 1927 1928 return 0; 1929 } 1930 1931 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1932 u64 read_format) 1933 { 1934 size_t sz, result = sizeof(struct sample_event); 1935 1936 if (type & PERF_SAMPLE_IDENTIFIER) 1937 result += sizeof(u64); 1938 1939 if (type & PERF_SAMPLE_IP) 1940 result += sizeof(u64); 1941 1942 if (type & PERF_SAMPLE_TID) 1943 result += sizeof(u64); 1944 1945 if (type & PERF_SAMPLE_TIME) 1946 result += sizeof(u64); 1947 1948 if (type & PERF_SAMPLE_ADDR) 1949 result += sizeof(u64); 1950 1951 if (type & PERF_SAMPLE_ID) 1952 result += sizeof(u64); 1953 1954 if (type & PERF_SAMPLE_STREAM_ID) 1955 result += sizeof(u64); 1956 1957 if (type & PERF_SAMPLE_CPU) 1958 result += sizeof(u64); 1959 1960 if (type & PERF_SAMPLE_PERIOD) 1961 result += sizeof(u64); 1962 1963 if (type & PERF_SAMPLE_READ) { 1964 result += sizeof(u64); 1965 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1966 result += sizeof(u64); 1967 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1968 result += sizeof(u64); 1969 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1970 if (read_format & PERF_FORMAT_GROUP) { 1971 sz = sample->read.group.nr * 1972 sizeof(struct sample_read_value); 1973 result += sz; 1974 } else { 1975 result += sizeof(u64); 1976 } 1977 } 1978 1979 if (type & PERF_SAMPLE_CALLCHAIN) { 1980 sz = (sample->callchain->nr + 1) * sizeof(u64); 1981 result += sz; 1982 } 1983 1984 if (type & PERF_SAMPLE_RAW) { 1985 result += sizeof(u32); 1986 result += sample->raw_size; 1987 } 1988 1989 if (type & PERF_SAMPLE_BRANCH_STACK) { 1990 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1991 sz += sizeof(u64); 1992 result += sz; 1993 } 1994 1995 if (type & PERF_SAMPLE_REGS_USER) { 1996 if (sample->user_regs.abi) { 1997 result += sizeof(u64); 1998 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1999 result += sz; 2000 } else { 2001 result += sizeof(u64); 2002 } 2003 } 2004 2005 if (type & PERF_SAMPLE_STACK_USER) { 2006 sz = sample->user_stack.size; 2007 result += sizeof(u64); 2008 if (sz) { 2009 result += sz; 2010 result += sizeof(u64); 2011 } 2012 } 2013 2014 if (type & PERF_SAMPLE_WEIGHT) 2015 result += sizeof(u64); 2016 2017 if (type & PERF_SAMPLE_DATA_SRC) 2018 result += sizeof(u64); 2019 2020 if (type & PERF_SAMPLE_TRANSACTION) 2021 result += sizeof(u64); 2022 2023 if (type & PERF_SAMPLE_REGS_INTR) { 2024 if (sample->intr_regs.abi) { 2025 result += sizeof(u64); 2026 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2027 result += sz; 2028 } else { 2029 result += sizeof(u64); 2030 } 2031 } 2032 2033 return result; 2034 } 2035 2036 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2037 u64 read_format, 2038 const struct perf_sample *sample, 2039 bool swapped) 2040 { 2041 u64 *array; 2042 size_t sz; 2043 /* 2044 * used for cross-endian analysis. See git commit 65014ab3 2045 * for why this goofiness is needed. 2046 */ 2047 union u64_swap u; 2048 2049 array = event->sample.array; 2050 2051 if (type & PERF_SAMPLE_IDENTIFIER) { 2052 *array = sample->id; 2053 array++; 2054 } 2055 2056 if (type & PERF_SAMPLE_IP) { 2057 *array = sample->ip; 2058 array++; 2059 } 2060 2061 if (type & PERF_SAMPLE_TID) { 2062 u.val32[0] = sample->pid; 2063 u.val32[1] = sample->tid; 2064 if (swapped) { 2065 /* 2066 * Inverse of what is done in perf_evsel__parse_sample 2067 */ 2068 u.val32[0] = bswap_32(u.val32[0]); 2069 u.val32[1] = bswap_32(u.val32[1]); 2070 u.val64 = bswap_64(u.val64); 2071 } 2072 2073 *array = u.val64; 2074 array++; 2075 } 2076 2077 if (type & PERF_SAMPLE_TIME) { 2078 *array = sample->time; 2079 array++; 2080 } 2081 2082 if (type & PERF_SAMPLE_ADDR) { 2083 *array = sample->addr; 2084 array++; 2085 } 2086 2087 if (type & PERF_SAMPLE_ID) { 2088 *array = sample->id; 2089 array++; 2090 } 2091 2092 if (type & PERF_SAMPLE_STREAM_ID) { 2093 *array = sample->stream_id; 2094 array++; 2095 } 2096 2097 if (type & PERF_SAMPLE_CPU) { 2098 u.val32[0] = sample->cpu; 2099 if (swapped) { 2100 /* 2101 * Inverse of what is done in perf_evsel__parse_sample 2102 */ 2103 u.val32[0] = bswap_32(u.val32[0]); 2104 u.val64 = bswap_64(u.val64); 2105 } 2106 *array = u.val64; 2107 array++; 2108 } 2109 2110 if (type & PERF_SAMPLE_PERIOD) { 2111 *array = sample->period; 2112 array++; 2113 } 2114 2115 if (type & PERF_SAMPLE_READ) { 2116 if (read_format & PERF_FORMAT_GROUP) 2117 *array = sample->read.group.nr; 2118 else 2119 *array = sample->read.one.value; 2120 array++; 2121 2122 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2123 *array = sample->read.time_enabled; 2124 array++; 2125 } 2126 2127 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2128 *array = sample->read.time_running; 2129 array++; 2130 } 2131 2132 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2133 if (read_format & PERF_FORMAT_GROUP) { 2134 sz = sample->read.group.nr * 2135 sizeof(struct sample_read_value); 2136 memcpy(array, sample->read.group.values, sz); 2137 array = (void *)array + sz; 2138 } else { 2139 *array = sample->read.one.id; 2140 array++; 2141 } 2142 } 2143 2144 if (type & PERF_SAMPLE_CALLCHAIN) { 2145 sz = (sample->callchain->nr + 1) * sizeof(u64); 2146 memcpy(array, sample->callchain, sz); 2147 array = (void *)array + sz; 2148 } 2149 2150 if (type & PERF_SAMPLE_RAW) { 2151 u.val32[0] = sample->raw_size; 2152 if (WARN_ONCE(swapped, 2153 "Endianness of raw data not corrected!\n")) { 2154 /* 2155 * Inverse of what is done in perf_evsel__parse_sample 2156 */ 2157 u.val32[0] = bswap_32(u.val32[0]); 2158 u.val32[1] = bswap_32(u.val32[1]); 2159 u.val64 = bswap_64(u.val64); 2160 } 2161 *array = u.val64; 2162 array = (void *)array + sizeof(u32); 2163 2164 memcpy(array, sample->raw_data, sample->raw_size); 2165 array = (void *)array + sample->raw_size; 2166 } 2167 2168 if (type & PERF_SAMPLE_BRANCH_STACK) { 2169 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2170 sz += sizeof(u64); 2171 memcpy(array, sample->branch_stack, sz); 2172 array = (void *)array + sz; 2173 } 2174 2175 if (type & PERF_SAMPLE_REGS_USER) { 2176 if (sample->user_regs.abi) { 2177 *array++ = sample->user_regs.abi; 2178 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2179 memcpy(array, sample->user_regs.regs, sz); 2180 array = (void *)array + sz; 2181 } else { 2182 *array++ = 0; 2183 } 2184 } 2185 2186 if (type & PERF_SAMPLE_STACK_USER) { 2187 sz = sample->user_stack.size; 2188 *array++ = sz; 2189 if (sz) { 2190 memcpy(array, sample->user_stack.data, sz); 2191 array = (void *)array + sz; 2192 *array++ = sz; 2193 } 2194 } 2195 2196 if (type & PERF_SAMPLE_WEIGHT) { 2197 *array = sample->weight; 2198 array++; 2199 } 2200 2201 if (type & PERF_SAMPLE_DATA_SRC) { 2202 *array = sample->data_src; 2203 array++; 2204 } 2205 2206 if (type & PERF_SAMPLE_TRANSACTION) { 2207 *array = sample->transaction; 2208 array++; 2209 } 2210 2211 if (type & PERF_SAMPLE_REGS_INTR) { 2212 if (sample->intr_regs.abi) { 2213 *array++ = sample->intr_regs.abi; 2214 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2215 memcpy(array, sample->intr_regs.regs, sz); 2216 array = (void *)array + sz; 2217 } else { 2218 *array++ = 0; 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2226 { 2227 return pevent_find_field(evsel->tp_format, name); 2228 } 2229 2230 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2231 const char *name) 2232 { 2233 struct format_field *field = perf_evsel__field(evsel, name); 2234 int offset; 2235 2236 if (!field) 2237 return NULL; 2238 2239 offset = field->offset; 2240 2241 if (field->flags & FIELD_IS_DYNAMIC) { 2242 offset = *(int *)(sample->raw_data + field->offset); 2243 offset &= 0xffff; 2244 } 2245 2246 return sample->raw_data + offset; 2247 } 2248 2249 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2250 bool needs_swap) 2251 { 2252 u64 value; 2253 void *ptr = sample->raw_data + field->offset; 2254 2255 switch (field->size) { 2256 case 1: 2257 return *(u8 *)ptr; 2258 case 2: 2259 value = *(u16 *)ptr; 2260 break; 2261 case 4: 2262 value = *(u32 *)ptr; 2263 break; 2264 case 8: 2265 memcpy(&value, ptr, sizeof(u64)); 2266 break; 2267 default: 2268 return 0; 2269 } 2270 2271 if (!needs_swap) 2272 return value; 2273 2274 switch (field->size) { 2275 case 2: 2276 return bswap_16(value); 2277 case 4: 2278 return bswap_32(value); 2279 case 8: 2280 return bswap_64(value); 2281 default: 2282 return 0; 2283 } 2284 2285 return 0; 2286 } 2287 2288 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2289 const char *name) 2290 { 2291 struct format_field *field = perf_evsel__field(evsel, name); 2292 2293 if (!field) 2294 return 0; 2295 2296 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2297 } 2298 2299 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2300 char *msg, size_t msgsize) 2301 { 2302 int paranoid; 2303 2304 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2305 evsel->attr.type == PERF_TYPE_HARDWARE && 2306 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2307 /* 2308 * If it's cycles then fall back to hrtimer based 2309 * cpu-clock-tick sw counter, which is always available even if 2310 * no PMU support. 2311 * 2312 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2313 * b0a873e). 2314 */ 2315 scnprintf(msg, msgsize, "%s", 2316 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2317 2318 evsel->attr.type = PERF_TYPE_SOFTWARE; 2319 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2320 2321 zfree(&evsel->name); 2322 return true; 2323 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2324 (paranoid = perf_event_paranoid()) > 1) { 2325 const char *name = perf_evsel__name(evsel); 2326 char *new_name; 2327 2328 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2329 return false; 2330 2331 if (evsel->name) 2332 free(evsel->name); 2333 evsel->name = new_name; 2334 scnprintf(msg, msgsize, 2335 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2336 evsel->attr.exclude_kernel = 1; 2337 2338 return true; 2339 } 2340 2341 return false; 2342 } 2343 2344 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2345 int err, char *msg, size_t size) 2346 { 2347 char sbuf[STRERR_BUFSIZE]; 2348 2349 switch (err) { 2350 case EPERM: 2351 case EACCES: 2352 return scnprintf(msg, size, 2353 "You may not have permission to collect %sstats.\n\n" 2354 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2355 "which controls use of the performance events system by\n" 2356 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2357 "The current value is %d:\n\n" 2358 " -1: Allow use of (almost) all events by all users\n" 2359 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2360 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2361 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN", 2362 target->system_wide ? "system-wide " : "", 2363 perf_event_paranoid()); 2364 case ENOENT: 2365 return scnprintf(msg, size, "The %s event is not supported.", 2366 perf_evsel__name(evsel)); 2367 case EMFILE: 2368 return scnprintf(msg, size, "%s", 2369 "Too many events are opened.\n" 2370 "Probably the maximum number of open file descriptors has been reached.\n" 2371 "Hint: Try again after reducing the number of events.\n" 2372 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2373 case ENOMEM: 2374 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2375 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2376 return scnprintf(msg, size, 2377 "Not enough memory to setup event with callchain.\n" 2378 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2379 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2380 break; 2381 case ENODEV: 2382 if (target->cpu_list) 2383 return scnprintf(msg, size, "%s", 2384 "No such device - did you specify an out-of-range profile CPU?"); 2385 break; 2386 case EOPNOTSUPP: 2387 if (evsel->attr.sample_period != 0) 2388 return scnprintf(msg, size, "%s", 2389 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2390 if (evsel->attr.precise_ip) 2391 return scnprintf(msg, size, "%s", 2392 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2393 #if defined(__i386__) || defined(__x86_64__) 2394 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2395 return scnprintf(msg, size, "%s", 2396 "No hardware sampling interrupt available.\n" 2397 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2398 #endif 2399 break; 2400 case EBUSY: 2401 if (find_process("oprofiled")) 2402 return scnprintf(msg, size, 2403 "The PMU counters are busy/taken by another profiler.\n" 2404 "We found oprofile daemon running, please stop it and try again."); 2405 break; 2406 case EINVAL: 2407 if (evsel->overwrite && perf_missing_features.write_backward) 2408 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2409 if (perf_missing_features.clockid) 2410 return scnprintf(msg, size, "clockid feature not supported."); 2411 if (perf_missing_features.clockid_wrong) 2412 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2413 break; 2414 default: 2415 break; 2416 } 2417 2418 return scnprintf(msg, size, 2419 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2420 "/bin/dmesg may provide additional information.\n" 2421 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2422 err, strerror_r(err, sbuf, sizeof(sbuf)), 2423 perf_evsel__name(evsel)); 2424 } 2425