xref: /linux/tools/perf/util/evsel.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 static struct {
45 	bool sample_id_all;
46 	bool exclude_guest;
47 	bool mmap2;
48 	bool cloexec;
49 	bool clockid;
50 	bool clockid_wrong;
51 	bool lbr_flags;
52 	bool write_backward;
53 	bool group_read;
54 } perf_missing_features;
55 
56 static clockid_t clockid;
57 
58 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
59 {
60 	return 0;
61 }
62 
63 void __weak test_attr__ready(void) { }
64 
65 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
66 {
67 }
68 
69 static struct {
70 	size_t	size;
71 	int	(*init)(struct perf_evsel *evsel);
72 	void	(*fini)(struct perf_evsel *evsel);
73 } perf_evsel__object = {
74 	.size = sizeof(struct perf_evsel),
75 	.init = perf_evsel__no_extra_init,
76 	.fini = perf_evsel__no_extra_fini,
77 };
78 
79 int perf_evsel__object_config(size_t object_size,
80 			      int (*init)(struct perf_evsel *evsel),
81 			      void (*fini)(struct perf_evsel *evsel))
82 {
83 
84 	if (object_size == 0)
85 		goto set_methods;
86 
87 	if (perf_evsel__object.size > object_size)
88 		return -EINVAL;
89 
90 	perf_evsel__object.size = object_size;
91 
92 set_methods:
93 	if (init != NULL)
94 		perf_evsel__object.init = init;
95 
96 	if (fini != NULL)
97 		perf_evsel__object.fini = fini;
98 
99 	return 0;
100 }
101 
102 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
103 
104 int __perf_evsel__sample_size(u64 sample_type)
105 {
106 	u64 mask = sample_type & PERF_SAMPLE_MASK;
107 	int size = 0;
108 	int i;
109 
110 	for (i = 0; i < 64; i++) {
111 		if (mask & (1ULL << i))
112 			size++;
113 	}
114 
115 	size *= sizeof(u64);
116 
117 	return size;
118 }
119 
120 /**
121  * __perf_evsel__calc_id_pos - calculate id_pos.
122  * @sample_type: sample type
123  *
124  * This function returns the position of the event id (PERF_SAMPLE_ID or
125  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
126  * sample_event.
127  */
128 static int __perf_evsel__calc_id_pos(u64 sample_type)
129 {
130 	int idx = 0;
131 
132 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
133 		return 0;
134 
135 	if (!(sample_type & PERF_SAMPLE_ID))
136 		return -1;
137 
138 	if (sample_type & PERF_SAMPLE_IP)
139 		idx += 1;
140 
141 	if (sample_type & PERF_SAMPLE_TID)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TIME)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_ADDR)
148 		idx += 1;
149 
150 	return idx;
151 }
152 
153 /**
154  * __perf_evsel__calc_is_pos - calculate is_pos.
155  * @sample_type: sample type
156  *
157  * This function returns the position (counting backwards) of the event id
158  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
159  * sample_id_all is used there is an id sample appended to non-sample events.
160  */
161 static int __perf_evsel__calc_is_pos(u64 sample_type)
162 {
163 	int idx = 1;
164 
165 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
166 		return 1;
167 
168 	if (!(sample_type & PERF_SAMPLE_ID))
169 		return -1;
170 
171 	if (sample_type & PERF_SAMPLE_CPU)
172 		idx += 1;
173 
174 	if (sample_type & PERF_SAMPLE_STREAM_ID)
175 		idx += 1;
176 
177 	return idx;
178 }
179 
180 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
181 {
182 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
183 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
184 }
185 
186 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
187 				  enum perf_event_sample_format bit)
188 {
189 	if (!(evsel->attr.sample_type & bit)) {
190 		evsel->attr.sample_type |= bit;
191 		evsel->sample_size += sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
197 				    enum perf_event_sample_format bit)
198 {
199 	if (evsel->attr.sample_type & bit) {
200 		evsel->attr.sample_type &= ~bit;
201 		evsel->sample_size -= sizeof(u64);
202 		perf_evsel__calc_id_pos(evsel);
203 	}
204 }
205 
206 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
207 			       bool can_sample_identifier)
208 {
209 	if (can_sample_identifier) {
210 		perf_evsel__reset_sample_bit(evsel, ID);
211 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
212 	} else {
213 		perf_evsel__set_sample_bit(evsel, ID);
214 	}
215 	evsel->attr.read_format |= PERF_FORMAT_ID;
216 }
217 
218 /**
219  * perf_evsel__is_function_event - Return whether given evsel is a function
220  * trace event
221  *
222  * @evsel - evsel selector to be tested
223  *
224  * Return %true if event is function trace event
225  */
226 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
227 {
228 #define FUNCTION_EVENT "ftrace:function"
229 
230 	return evsel->name &&
231 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
232 
233 #undef FUNCTION_EVENT
234 }
235 
236 void perf_evsel__init(struct perf_evsel *evsel,
237 		      struct perf_event_attr *attr, int idx)
238 {
239 	evsel->idx	   = idx;
240 	evsel->tracking	   = !idx;
241 	evsel->attr	   = *attr;
242 	evsel->leader	   = evsel;
243 	evsel->unit	   = "";
244 	evsel->scale	   = 1.0;
245 	evsel->evlist	   = NULL;
246 	evsel->bpf_fd	   = -1;
247 	INIT_LIST_HEAD(&evsel->node);
248 	INIT_LIST_HEAD(&evsel->config_terms);
249 	perf_evsel__object.init(evsel);
250 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
251 	perf_evsel__calc_id_pos(evsel);
252 	evsel->cmdline_group_boundary = false;
253 	evsel->metric_expr   = NULL;
254 	evsel->metric_name   = NULL;
255 	evsel->metric_events = NULL;
256 	evsel->collect_stat  = false;
257 }
258 
259 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
260 {
261 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
262 
263 	if (evsel != NULL)
264 		perf_evsel__init(evsel, attr, idx);
265 
266 	if (perf_evsel__is_bpf_output(evsel)) {
267 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 		evsel->attr.sample_period = 1;
270 	}
271 
272 	return evsel;
273 }
274 
275 static bool perf_event_can_profile_kernel(void)
276 {
277 	return geteuid() == 0 || perf_event_paranoid() == -1;
278 }
279 
280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
281 {
282 	struct perf_event_attr attr = {
283 		.type	= PERF_TYPE_HARDWARE,
284 		.config	= PERF_COUNT_HW_CPU_CYCLES,
285 		.exclude_kernel	= !perf_event_can_profile_kernel(),
286 	};
287 	struct perf_evsel *evsel;
288 
289 	event_attr_init(&attr);
290 
291 	if (!precise)
292 		goto new_event;
293 	/*
294 	 * Unnamed union member, not supported as struct member named
295 	 * initializer in older compilers such as gcc 4.4.7
296 	 *
297 	 * Just for probing the precise_ip:
298 	 */
299 	attr.sample_period = 1;
300 
301 	perf_event_attr__set_max_precise_ip(&attr);
302 	/*
303 	 * Now let the usual logic to set up the perf_event_attr defaults
304 	 * to kick in when we return and before perf_evsel__open() is called.
305 	 */
306 	attr.sample_period = 0;
307 new_event:
308 	evsel = perf_evsel__new(&attr);
309 	if (evsel == NULL)
310 		goto out;
311 
312 	/* use asprintf() because free(evsel) assumes name is allocated */
313 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 		     attr.exclude_kernel ? "u" : "",
316 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 		goto error_free;
318 out:
319 	return evsel;
320 error_free:
321 	perf_evsel__delete(evsel);
322 	evsel = NULL;
323 	goto out;
324 }
325 
326 /*
327  * Returns pointer with encoded error via <linux/err.h> interface.
328  */
329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
330 {
331 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 	int err = -ENOMEM;
333 
334 	if (evsel == NULL) {
335 		goto out_err;
336 	} else {
337 		struct perf_event_attr attr = {
338 			.type	       = PERF_TYPE_TRACEPOINT,
339 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
341 		};
342 
343 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 			goto out_free;
345 
346 		evsel->tp_format = trace_event__tp_format(sys, name);
347 		if (IS_ERR(evsel->tp_format)) {
348 			err = PTR_ERR(evsel->tp_format);
349 			goto out_free;
350 		}
351 
352 		event_attr_init(&attr);
353 		attr.config = evsel->tp_format->id;
354 		attr.sample_period = 1;
355 		perf_evsel__init(evsel, &attr, idx);
356 	}
357 
358 	return evsel;
359 
360 out_free:
361 	zfree(&evsel->name);
362 	free(evsel);
363 out_err:
364 	return ERR_PTR(err);
365 }
366 
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 	"cycles",
369 	"instructions",
370 	"cache-references",
371 	"cache-misses",
372 	"branches",
373 	"branch-misses",
374 	"bus-cycles",
375 	"stalled-cycles-frontend",
376 	"stalled-cycles-backend",
377 	"ref-cycles",
378 };
379 
380 static const char *__perf_evsel__hw_name(u64 config)
381 {
382 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 		return perf_evsel__hw_names[config];
384 
385 	return "unknown-hardware";
386 }
387 
388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 	int colon = 0, r = 0;
391 	struct perf_event_attr *attr = &evsel->attr;
392 	bool exclude_guest_default = false;
393 
394 #define MOD_PRINT(context, mod)	do {					\
395 		if (!attr->exclude_##context) {				\
396 			if (!colon) colon = ++r;			\
397 			r += scnprintf(bf + r, size - r, "%c", mod);	\
398 		} } while(0)
399 
400 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 		MOD_PRINT(kernel, 'k');
402 		MOD_PRINT(user, 'u');
403 		MOD_PRINT(hv, 'h');
404 		exclude_guest_default = true;
405 	}
406 
407 	if (attr->precise_ip) {
408 		if (!colon)
409 			colon = ++r;
410 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 		exclude_guest_default = true;
412 	}
413 
414 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 		MOD_PRINT(host, 'H');
416 		MOD_PRINT(guest, 'G');
417 	}
418 #undef MOD_PRINT
419 	if (colon)
420 		bf[colon - 1] = ':';
421 	return r;
422 }
423 
424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
428 }
429 
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 	"cpu-clock",
432 	"task-clock",
433 	"page-faults",
434 	"context-switches",
435 	"cpu-migrations",
436 	"minor-faults",
437 	"major-faults",
438 	"alignment-faults",
439 	"emulation-faults",
440 	"dummy",
441 };
442 
443 static const char *__perf_evsel__sw_name(u64 config)
444 {
445 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 		return perf_evsel__sw_names[config];
447 	return "unknown-software";
448 }
449 
450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
451 {
452 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
454 }
455 
456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
457 {
458 	int r;
459 
460 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
461 
462 	if (type & HW_BREAKPOINT_R)
463 		r += scnprintf(bf + r, size - r, "r");
464 
465 	if (type & HW_BREAKPOINT_W)
466 		r += scnprintf(bf + r, size - r, "w");
467 
468 	if (type & HW_BREAKPOINT_X)
469 		r += scnprintf(bf + r, size - r, "x");
470 
471 	return r;
472 }
473 
474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
475 {
476 	struct perf_event_attr *attr = &evsel->attr;
477 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
479 }
480 
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 				[PERF_EVSEL__MAX_ALIASES] = {
483  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
484  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
485  { "LLC",	"L2",							},
486  { "dTLB",	"d-tlb",	"Data-TLB",				},
487  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
488  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
489  { "node",								},
490 };
491 
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 				   [PERF_EVSEL__MAX_ALIASES] = {
494  { "load",	"loads",	"read",					},
495  { "store",	"stores",	"write",				},
496  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
497 };
498 
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 				       [PERF_EVSEL__MAX_ALIASES] = {
501  { "refs",	"Reference",	"ops",		"access",		},
502  { "misses",	"miss",							},
503 };
504 
505 #define C(x)		PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ	(1 << C(OP_READ))
507 #define CACHE_WRITE	(1 << C(OP_WRITE))
508 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
509 #define COP(x)		(1 << x)
510 
511 /*
512  * cache operartion stat
513  * L1I : Read and prefetch only
514  * ITLB and BPU : Read-only
515  */
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
519  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(ITLB)]	= (CACHE_READ),
522  [C(BPU)]	= (CACHE_READ),
523  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 };
525 
526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
527 {
528 	if (perf_evsel__hw_cache_stat[type] & COP(op))
529 		return true;	/* valid */
530 	else
531 		return false;	/* invalid */
532 }
533 
534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 					    char *bf, size_t size)
536 {
537 	if (result) {
538 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 				 perf_evsel__hw_cache_op[op][0],
540 				 perf_evsel__hw_cache_result[result][0]);
541 	}
542 
543 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 			 perf_evsel__hw_cache_op[op][1]);
545 }
546 
547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
548 {
549 	u8 op, result, type = (config >>  0) & 0xff;
550 	const char *err = "unknown-ext-hardware-cache-type";
551 
552 	if (type >= PERF_COUNT_HW_CACHE_MAX)
553 		goto out_err;
554 
555 	op = (config >>  8) & 0xff;
556 	err = "unknown-ext-hardware-cache-op";
557 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 		goto out_err;
559 
560 	result = (config >> 16) & 0xff;
561 	err = "unknown-ext-hardware-cache-result";
562 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 		goto out_err;
564 
565 	err = "invalid-cache";
566 	if (!perf_evsel__is_cache_op_valid(type, op))
567 		goto out_err;
568 
569 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 	return scnprintf(bf, size, "%s", err);
572 }
573 
574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579 
580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
581 {
582 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
584 }
585 
586 const char *perf_evsel__name(struct perf_evsel *evsel)
587 {
588 	char bf[128];
589 
590 	if (evsel->name)
591 		return evsel->name;
592 
593 	switch (evsel->attr.type) {
594 	case PERF_TYPE_RAW:
595 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
596 		break;
597 
598 	case PERF_TYPE_HARDWARE:
599 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_HW_CACHE:
603 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_SOFTWARE:
607 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_TRACEPOINT:
611 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
612 		break;
613 
614 	case PERF_TYPE_BREAKPOINT:
615 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
616 		break;
617 
618 	default:
619 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
620 			  evsel->attr.type);
621 		break;
622 	}
623 
624 	evsel->name = strdup(bf);
625 
626 	return evsel->name ?: "unknown";
627 }
628 
629 const char *perf_evsel__group_name(struct perf_evsel *evsel)
630 {
631 	return evsel->group_name ?: "anon group";
632 }
633 
634 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
635 {
636 	int ret;
637 	struct perf_evsel *pos;
638 	const char *group_name = perf_evsel__group_name(evsel);
639 
640 	ret = scnprintf(buf, size, "%s", group_name);
641 
642 	ret += scnprintf(buf + ret, size - ret, " { %s",
643 			 perf_evsel__name(evsel));
644 
645 	for_each_group_member(pos, evsel)
646 		ret += scnprintf(buf + ret, size - ret, ", %s",
647 				 perf_evsel__name(pos));
648 
649 	ret += scnprintf(buf + ret, size - ret, " }");
650 
651 	return ret;
652 }
653 
654 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
655 					   struct record_opts *opts,
656 					   struct callchain_param *param)
657 {
658 	bool function = perf_evsel__is_function_event(evsel);
659 	struct perf_event_attr *attr = &evsel->attr;
660 
661 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
662 
663 	attr->sample_max_stack = param->max_stack;
664 
665 	if (param->record_mode == CALLCHAIN_LBR) {
666 		if (!opts->branch_stack) {
667 			if (attr->exclude_user) {
668 				pr_warning("LBR callstack option is only available "
669 					   "to get user callchain information. "
670 					   "Falling back to framepointers.\n");
671 			} else {
672 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
674 							PERF_SAMPLE_BRANCH_CALL_STACK |
675 							PERF_SAMPLE_BRANCH_NO_CYCLES |
676 							PERF_SAMPLE_BRANCH_NO_FLAGS;
677 			}
678 		} else
679 			 pr_warning("Cannot use LBR callstack with branch stack. "
680 				    "Falling back to framepointers.\n");
681 	}
682 
683 	if (param->record_mode == CALLCHAIN_DWARF) {
684 		if (!function) {
685 			perf_evsel__set_sample_bit(evsel, REGS_USER);
686 			perf_evsel__set_sample_bit(evsel, STACK_USER);
687 			attr->sample_regs_user |= PERF_REGS_MASK;
688 			attr->sample_stack_user = param->dump_size;
689 			attr->exclude_callchain_user = 1;
690 		} else {
691 			pr_info("Cannot use DWARF unwind for function trace event,"
692 				" falling back to framepointers.\n");
693 		}
694 	}
695 
696 	if (function) {
697 		pr_info("Disabling user space callchains for function trace event.\n");
698 		attr->exclude_callchain_user = 1;
699 	}
700 }
701 
702 void perf_evsel__config_callchain(struct perf_evsel *evsel,
703 				  struct record_opts *opts,
704 				  struct callchain_param *param)
705 {
706 	if (param->enabled)
707 		return __perf_evsel__config_callchain(evsel, opts, param);
708 }
709 
710 static void
711 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
712 			    struct callchain_param *param)
713 {
714 	struct perf_event_attr *attr = &evsel->attr;
715 
716 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
717 	if (param->record_mode == CALLCHAIN_LBR) {
718 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
719 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
720 					      PERF_SAMPLE_BRANCH_CALL_STACK);
721 	}
722 	if (param->record_mode == CALLCHAIN_DWARF) {
723 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
724 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
725 	}
726 }
727 
728 static void apply_config_terms(struct perf_evsel *evsel,
729 			       struct record_opts *opts, bool track)
730 {
731 	struct perf_evsel_config_term *term;
732 	struct list_head *config_terms = &evsel->config_terms;
733 	struct perf_event_attr *attr = &evsel->attr;
734 	/* callgraph default */
735 	struct callchain_param param = {
736 		.record_mode = callchain_param.record_mode,
737 	};
738 	u32 dump_size = 0;
739 	int max_stack = 0;
740 	const char *callgraph_buf = NULL;
741 
742 	list_for_each_entry(term, config_terms, list) {
743 		switch (term->type) {
744 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
745 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
746 				attr->sample_period = term->val.period;
747 				attr->freq = 0;
748 			}
749 			break;
750 		case PERF_EVSEL__CONFIG_TERM_FREQ:
751 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
752 				attr->sample_freq = term->val.freq;
753 				attr->freq = 1;
754 			}
755 			break;
756 		case PERF_EVSEL__CONFIG_TERM_TIME:
757 			if (term->val.time)
758 				perf_evsel__set_sample_bit(evsel, TIME);
759 			else
760 				perf_evsel__reset_sample_bit(evsel, TIME);
761 			break;
762 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
763 			callgraph_buf = term->val.callgraph;
764 			break;
765 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
766 			if (term->val.branch && strcmp(term->val.branch, "no")) {
767 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
768 				parse_branch_str(term->val.branch,
769 						 &attr->branch_sample_type);
770 			} else
771 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
772 			break;
773 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
774 			dump_size = term->val.stack_user;
775 			break;
776 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
777 			max_stack = term->val.max_stack;
778 			break;
779 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
780 			/*
781 			 * attr->inherit should has already been set by
782 			 * perf_evsel__config. If user explicitly set
783 			 * inherit using config terms, override global
784 			 * opt->no_inherit setting.
785 			 */
786 			attr->inherit = term->val.inherit ? 1 : 0;
787 			break;
788 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
789 			attr->write_backward = term->val.overwrite ? 1 : 0;
790 			break;
791 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
792 			break;
793 		default:
794 			break;
795 		}
796 	}
797 
798 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
799 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
800 		bool sample_address = false;
801 
802 		if (max_stack) {
803 			param.max_stack = max_stack;
804 			if (callgraph_buf == NULL)
805 				callgraph_buf = "fp";
806 		}
807 
808 		/* parse callgraph parameters */
809 		if (callgraph_buf != NULL) {
810 			if (!strcmp(callgraph_buf, "no")) {
811 				param.enabled = false;
812 				param.record_mode = CALLCHAIN_NONE;
813 			} else {
814 				param.enabled = true;
815 				if (parse_callchain_record(callgraph_buf, &param)) {
816 					pr_err("per-event callgraph setting for %s failed. "
817 					       "Apply callgraph global setting for it\n",
818 					       evsel->name);
819 					return;
820 				}
821 				if (param.record_mode == CALLCHAIN_DWARF)
822 					sample_address = true;
823 			}
824 		}
825 		if (dump_size > 0) {
826 			dump_size = round_up(dump_size, sizeof(u64));
827 			param.dump_size = dump_size;
828 		}
829 
830 		/* If global callgraph set, clear it */
831 		if (callchain_param.enabled)
832 			perf_evsel__reset_callgraph(evsel, &callchain_param);
833 
834 		/* set perf-event callgraph */
835 		if (param.enabled) {
836 			if (sample_address) {
837 				perf_evsel__set_sample_bit(evsel, ADDR);
838 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
839 				evsel->attr.mmap_data = track;
840 			}
841 			perf_evsel__config_callchain(evsel, opts, &param);
842 		}
843 	}
844 }
845 
846 /*
847  * The enable_on_exec/disabled value strategy:
848  *
849  *  1) For any type of traced program:
850  *    - all independent events and group leaders are disabled
851  *    - all group members are enabled
852  *
853  *     Group members are ruled by group leaders. They need to
854  *     be enabled, because the group scheduling relies on that.
855  *
856  *  2) For traced programs executed by perf:
857  *     - all independent events and group leaders have
858  *       enable_on_exec set
859  *     - we don't specifically enable or disable any event during
860  *       the record command
861  *
862  *     Independent events and group leaders are initially disabled
863  *     and get enabled by exec. Group members are ruled by group
864  *     leaders as stated in 1).
865  *
866  *  3) For traced programs attached by perf (pid/tid):
867  *     - we specifically enable or disable all events during
868  *       the record command
869  *
870  *     When attaching events to already running traced we
871  *     enable/disable events specifically, as there's no
872  *     initial traced exec call.
873  */
874 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
875 			struct callchain_param *callchain)
876 {
877 	struct perf_evsel *leader = evsel->leader;
878 	struct perf_event_attr *attr = &evsel->attr;
879 	int track = evsel->tracking;
880 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
881 
882 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
883 	attr->inherit	    = !opts->no_inherit;
884 	attr->write_backward = opts->overwrite ? 1 : 0;
885 
886 	perf_evsel__set_sample_bit(evsel, IP);
887 	perf_evsel__set_sample_bit(evsel, TID);
888 
889 	if (evsel->sample_read) {
890 		perf_evsel__set_sample_bit(evsel, READ);
891 
892 		/*
893 		 * We need ID even in case of single event, because
894 		 * PERF_SAMPLE_READ process ID specific data.
895 		 */
896 		perf_evsel__set_sample_id(evsel, false);
897 
898 		/*
899 		 * Apply group format only if we belong to group
900 		 * with more than one members.
901 		 */
902 		if (leader->nr_members > 1) {
903 			attr->read_format |= PERF_FORMAT_GROUP;
904 			attr->inherit = 0;
905 		}
906 	}
907 
908 	/*
909 	 * We default some events to have a default interval. But keep
910 	 * it a weak assumption overridable by the user.
911 	 */
912 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
913 				     opts->user_interval != ULLONG_MAX)) {
914 		if (opts->freq) {
915 			perf_evsel__set_sample_bit(evsel, PERIOD);
916 			attr->freq		= 1;
917 			attr->sample_freq	= opts->freq;
918 		} else {
919 			attr->sample_period = opts->default_interval;
920 		}
921 	}
922 
923 	/*
924 	 * Disable sampling for all group members other
925 	 * than leader in case leader 'leads' the sampling.
926 	 */
927 	if ((leader != evsel) && leader->sample_read) {
928 		attr->sample_freq   = 0;
929 		attr->sample_period = 0;
930 	}
931 
932 	if (opts->no_samples)
933 		attr->sample_freq = 0;
934 
935 	if (opts->inherit_stat) {
936 		evsel->attr.read_format |=
937 			PERF_FORMAT_TOTAL_TIME_ENABLED |
938 			PERF_FORMAT_TOTAL_TIME_RUNNING |
939 			PERF_FORMAT_ID;
940 		attr->inherit_stat = 1;
941 	}
942 
943 	if (opts->sample_address) {
944 		perf_evsel__set_sample_bit(evsel, ADDR);
945 		attr->mmap_data = track;
946 	}
947 
948 	/*
949 	 * We don't allow user space callchains for  function trace
950 	 * event, due to issues with page faults while tracing page
951 	 * fault handler and its overall trickiness nature.
952 	 */
953 	if (perf_evsel__is_function_event(evsel))
954 		evsel->attr.exclude_callchain_user = 1;
955 
956 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
957 		perf_evsel__config_callchain(evsel, opts, callchain);
958 
959 	if (opts->sample_intr_regs) {
960 		attr->sample_regs_intr = opts->sample_intr_regs;
961 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
962 	}
963 
964 	if (opts->sample_user_regs) {
965 		attr->sample_regs_user |= opts->sample_user_regs;
966 		perf_evsel__set_sample_bit(evsel, REGS_USER);
967 	}
968 
969 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
970 		perf_evsel__set_sample_bit(evsel, CPU);
971 
972 	if (opts->period)
973 		perf_evsel__set_sample_bit(evsel, PERIOD);
974 
975 	/*
976 	 * When the user explicitly disabled time don't force it here.
977 	 */
978 	if (opts->sample_time &&
979 	    (!perf_missing_features.sample_id_all &&
980 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
981 	     opts->sample_time_set)))
982 		perf_evsel__set_sample_bit(evsel, TIME);
983 
984 	if (opts->raw_samples && !evsel->no_aux_samples) {
985 		perf_evsel__set_sample_bit(evsel, TIME);
986 		perf_evsel__set_sample_bit(evsel, RAW);
987 		perf_evsel__set_sample_bit(evsel, CPU);
988 	}
989 
990 	if (opts->sample_address)
991 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
992 
993 	if (opts->sample_phys_addr)
994 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
995 
996 	if (opts->no_buffering) {
997 		attr->watermark = 0;
998 		attr->wakeup_events = 1;
999 	}
1000 	if (opts->branch_stack && !evsel->no_aux_samples) {
1001 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1002 		attr->branch_sample_type = opts->branch_stack;
1003 	}
1004 
1005 	if (opts->sample_weight)
1006 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1007 
1008 	attr->task  = track;
1009 	attr->mmap  = track;
1010 	attr->mmap2 = track && !perf_missing_features.mmap2;
1011 	attr->comm  = track;
1012 
1013 	if (opts->record_namespaces)
1014 		attr->namespaces  = track;
1015 
1016 	if (opts->record_switch_events)
1017 		attr->context_switch = track;
1018 
1019 	if (opts->sample_transaction)
1020 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1021 
1022 	if (opts->running_time) {
1023 		evsel->attr.read_format |=
1024 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1025 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1026 	}
1027 
1028 	/*
1029 	 * XXX see the function comment above
1030 	 *
1031 	 * Disabling only independent events or group leaders,
1032 	 * keeping group members enabled.
1033 	 */
1034 	if (perf_evsel__is_group_leader(evsel))
1035 		attr->disabled = 1;
1036 
1037 	/*
1038 	 * Setting enable_on_exec for independent events and
1039 	 * group leaders for traced executed by perf.
1040 	 */
1041 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1042 		!opts->initial_delay)
1043 		attr->enable_on_exec = 1;
1044 
1045 	if (evsel->immediate) {
1046 		attr->disabled = 0;
1047 		attr->enable_on_exec = 0;
1048 	}
1049 
1050 	clockid = opts->clockid;
1051 	if (opts->use_clockid) {
1052 		attr->use_clockid = 1;
1053 		attr->clockid = opts->clockid;
1054 	}
1055 
1056 	if (evsel->precise_max)
1057 		perf_event_attr__set_max_precise_ip(attr);
1058 
1059 	if (opts->all_user) {
1060 		attr->exclude_kernel = 1;
1061 		attr->exclude_user   = 0;
1062 	}
1063 
1064 	if (opts->all_kernel) {
1065 		attr->exclude_kernel = 0;
1066 		attr->exclude_user   = 1;
1067 	}
1068 
1069 	/*
1070 	 * Apply event specific term settings,
1071 	 * it overloads any global configuration.
1072 	 */
1073 	apply_config_terms(evsel, opts, track);
1074 
1075 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1076 }
1077 
1078 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1079 {
1080 	if (evsel->system_wide)
1081 		nthreads = 1;
1082 
1083 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1084 
1085 	if (evsel->fd) {
1086 		int cpu, thread;
1087 		for (cpu = 0; cpu < ncpus; cpu++) {
1088 			for (thread = 0; thread < nthreads; thread++) {
1089 				FD(evsel, cpu, thread) = -1;
1090 			}
1091 		}
1092 	}
1093 
1094 	return evsel->fd != NULL ? 0 : -ENOMEM;
1095 }
1096 
1097 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1098 			  int ioc,  void *arg)
1099 {
1100 	int cpu, thread;
1101 
1102 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1103 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1104 			int fd = FD(evsel, cpu, thread),
1105 			    err = ioctl(fd, ioc, arg);
1106 
1107 			if (err)
1108 				return err;
1109 		}
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1116 {
1117 	return perf_evsel__run_ioctl(evsel,
1118 				     PERF_EVENT_IOC_SET_FILTER,
1119 				     (void *)filter);
1120 }
1121 
1122 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1123 {
1124 	char *new_filter = strdup(filter);
1125 
1126 	if (new_filter != NULL) {
1127 		free(evsel->filter);
1128 		evsel->filter = new_filter;
1129 		return 0;
1130 	}
1131 
1132 	return -1;
1133 }
1134 
1135 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1136 				     const char *fmt, const char *filter)
1137 {
1138 	char *new_filter;
1139 
1140 	if (evsel->filter == NULL)
1141 		return perf_evsel__set_filter(evsel, filter);
1142 
1143 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1144 		free(evsel->filter);
1145 		evsel->filter = new_filter;
1146 		return 0;
1147 	}
1148 
1149 	return -1;
1150 }
1151 
1152 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1153 {
1154 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1155 }
1156 
1157 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1158 {
1159 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1160 }
1161 
1162 int perf_evsel__enable(struct perf_evsel *evsel)
1163 {
1164 	return perf_evsel__run_ioctl(evsel,
1165 				     PERF_EVENT_IOC_ENABLE,
1166 				     0);
1167 }
1168 
1169 int perf_evsel__disable(struct perf_evsel *evsel)
1170 {
1171 	return perf_evsel__run_ioctl(evsel,
1172 				     PERF_EVENT_IOC_DISABLE,
1173 				     0);
1174 }
1175 
1176 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1177 {
1178 	if (ncpus == 0 || nthreads == 0)
1179 		return 0;
1180 
1181 	if (evsel->system_wide)
1182 		nthreads = 1;
1183 
1184 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1185 	if (evsel->sample_id == NULL)
1186 		return -ENOMEM;
1187 
1188 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1189 	if (evsel->id == NULL) {
1190 		xyarray__delete(evsel->sample_id);
1191 		evsel->sample_id = NULL;
1192 		return -ENOMEM;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1199 {
1200 	xyarray__delete(evsel->fd);
1201 	evsel->fd = NULL;
1202 }
1203 
1204 static void perf_evsel__free_id(struct perf_evsel *evsel)
1205 {
1206 	xyarray__delete(evsel->sample_id);
1207 	evsel->sample_id = NULL;
1208 	zfree(&evsel->id);
1209 }
1210 
1211 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1212 {
1213 	struct perf_evsel_config_term *term, *h;
1214 
1215 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1216 		list_del(&term->list);
1217 		free(term);
1218 	}
1219 }
1220 
1221 void perf_evsel__close_fd(struct perf_evsel *evsel)
1222 {
1223 	int cpu, thread;
1224 
1225 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1226 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1227 			close(FD(evsel, cpu, thread));
1228 			FD(evsel, cpu, thread) = -1;
1229 		}
1230 }
1231 
1232 void perf_evsel__exit(struct perf_evsel *evsel)
1233 {
1234 	assert(list_empty(&evsel->node));
1235 	assert(evsel->evlist == NULL);
1236 	perf_evsel__free_fd(evsel);
1237 	perf_evsel__free_id(evsel);
1238 	perf_evsel__free_config_terms(evsel);
1239 	close_cgroup(evsel->cgrp);
1240 	cpu_map__put(evsel->cpus);
1241 	cpu_map__put(evsel->own_cpus);
1242 	thread_map__put(evsel->threads);
1243 	zfree(&evsel->group_name);
1244 	zfree(&evsel->name);
1245 	perf_evsel__object.fini(evsel);
1246 }
1247 
1248 void perf_evsel__delete(struct perf_evsel *evsel)
1249 {
1250 	perf_evsel__exit(evsel);
1251 	free(evsel);
1252 }
1253 
1254 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1255 				struct perf_counts_values *count)
1256 {
1257 	struct perf_counts_values tmp;
1258 
1259 	if (!evsel->prev_raw_counts)
1260 		return;
1261 
1262 	if (cpu == -1) {
1263 		tmp = evsel->prev_raw_counts->aggr;
1264 		evsel->prev_raw_counts->aggr = *count;
1265 	} else {
1266 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1267 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1268 	}
1269 
1270 	count->val = count->val - tmp.val;
1271 	count->ena = count->ena - tmp.ena;
1272 	count->run = count->run - tmp.run;
1273 }
1274 
1275 void perf_counts_values__scale(struct perf_counts_values *count,
1276 			       bool scale, s8 *pscaled)
1277 {
1278 	s8 scaled = 0;
1279 
1280 	if (scale) {
1281 		if (count->run == 0) {
1282 			scaled = -1;
1283 			count->val = 0;
1284 		} else if (count->run < count->ena) {
1285 			scaled = 1;
1286 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1287 		}
1288 	} else
1289 		count->ena = count->run = 0;
1290 
1291 	if (pscaled)
1292 		*pscaled = scaled;
1293 }
1294 
1295 static int perf_evsel__read_size(struct perf_evsel *evsel)
1296 {
1297 	u64 read_format = evsel->attr.read_format;
1298 	int entry = sizeof(u64); /* value */
1299 	int size = 0;
1300 	int nr = 1;
1301 
1302 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1303 		size += sizeof(u64);
1304 
1305 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1306 		size += sizeof(u64);
1307 
1308 	if (read_format & PERF_FORMAT_ID)
1309 		entry += sizeof(u64);
1310 
1311 	if (read_format & PERF_FORMAT_GROUP) {
1312 		nr = evsel->nr_members;
1313 		size += sizeof(u64);
1314 	}
1315 
1316 	size += entry * nr;
1317 	return size;
1318 }
1319 
1320 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1321 		     struct perf_counts_values *count)
1322 {
1323 	size_t size = perf_evsel__read_size(evsel);
1324 
1325 	memset(count, 0, sizeof(*count));
1326 
1327 	if (FD(evsel, cpu, thread) < 0)
1328 		return -EINVAL;
1329 
1330 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1331 		return -errno;
1332 
1333 	return 0;
1334 }
1335 
1336 static int
1337 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1338 {
1339 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1340 
1341 	return perf_evsel__read(evsel, cpu, thread, count);
1342 }
1343 
1344 static void
1345 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1346 		      u64 val, u64 ena, u64 run)
1347 {
1348 	struct perf_counts_values *count;
1349 
1350 	count = perf_counts(counter->counts, cpu, thread);
1351 
1352 	count->val    = val;
1353 	count->ena    = ena;
1354 	count->run    = run;
1355 	count->loaded = true;
1356 }
1357 
1358 static int
1359 perf_evsel__process_group_data(struct perf_evsel *leader,
1360 			       int cpu, int thread, u64 *data)
1361 {
1362 	u64 read_format = leader->attr.read_format;
1363 	struct sample_read_value *v;
1364 	u64 nr, ena = 0, run = 0, i;
1365 
1366 	nr = *data++;
1367 
1368 	if (nr != (u64) leader->nr_members)
1369 		return -EINVAL;
1370 
1371 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1372 		ena = *data++;
1373 
1374 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1375 		run = *data++;
1376 
1377 	v = (struct sample_read_value *) data;
1378 
1379 	perf_evsel__set_count(leader, cpu, thread,
1380 			      v[0].value, ena, run);
1381 
1382 	for (i = 1; i < nr; i++) {
1383 		struct perf_evsel *counter;
1384 
1385 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1386 		if (!counter)
1387 			return -EINVAL;
1388 
1389 		perf_evsel__set_count(counter, cpu, thread,
1390 				      v[i].value, ena, run);
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 static int
1397 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1398 {
1399 	struct perf_stat_evsel *ps = leader->stats;
1400 	u64 read_format = leader->attr.read_format;
1401 	int size = perf_evsel__read_size(leader);
1402 	u64 *data = ps->group_data;
1403 
1404 	if (!(read_format & PERF_FORMAT_ID))
1405 		return -EINVAL;
1406 
1407 	if (!perf_evsel__is_group_leader(leader))
1408 		return -EINVAL;
1409 
1410 	if (!data) {
1411 		data = zalloc(size);
1412 		if (!data)
1413 			return -ENOMEM;
1414 
1415 		ps->group_data = data;
1416 	}
1417 
1418 	if (FD(leader, cpu, thread) < 0)
1419 		return -EINVAL;
1420 
1421 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1422 		return -errno;
1423 
1424 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1425 }
1426 
1427 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1428 {
1429 	u64 read_format = evsel->attr.read_format;
1430 
1431 	if (read_format & PERF_FORMAT_GROUP)
1432 		return perf_evsel__read_group(evsel, cpu, thread);
1433 	else
1434 		return perf_evsel__read_one(evsel, cpu, thread);
1435 }
1436 
1437 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1438 			      int cpu, int thread, bool scale)
1439 {
1440 	struct perf_counts_values count;
1441 	size_t nv = scale ? 3 : 1;
1442 
1443 	if (FD(evsel, cpu, thread) < 0)
1444 		return -EINVAL;
1445 
1446 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1447 		return -ENOMEM;
1448 
1449 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1450 		return -errno;
1451 
1452 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1453 	perf_counts_values__scale(&count, scale, NULL);
1454 	*perf_counts(evsel->counts, cpu, thread) = count;
1455 	return 0;
1456 }
1457 
1458 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1459 {
1460 	struct perf_evsel *leader = evsel->leader;
1461 	int fd;
1462 
1463 	if (perf_evsel__is_group_leader(evsel))
1464 		return -1;
1465 
1466 	/*
1467 	 * Leader must be already processed/open,
1468 	 * if not it's a bug.
1469 	 */
1470 	BUG_ON(!leader->fd);
1471 
1472 	fd = FD(leader, cpu, thread);
1473 	BUG_ON(fd == -1);
1474 
1475 	return fd;
1476 }
1477 
1478 struct bit_names {
1479 	int bit;
1480 	const char *name;
1481 };
1482 
1483 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1484 {
1485 	bool first_bit = true;
1486 	int i = 0;
1487 
1488 	do {
1489 		if (value & bits[i].bit) {
1490 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1491 			first_bit = false;
1492 		}
1493 	} while (bits[++i].name != NULL);
1494 }
1495 
1496 static void __p_sample_type(char *buf, size_t size, u64 value)
1497 {
1498 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1499 	struct bit_names bits[] = {
1500 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1501 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1502 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1503 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1504 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1505 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1506 		{ .name = NULL, }
1507 	};
1508 #undef bit_name
1509 	__p_bits(buf, size, value, bits);
1510 }
1511 
1512 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1513 {
1514 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1515 	struct bit_names bits[] = {
1516 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1517 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1518 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1519 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1520 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1521 		{ .name = NULL, }
1522 	};
1523 #undef bit_name
1524 	__p_bits(buf, size, value, bits);
1525 }
1526 
1527 static void __p_read_format(char *buf, size_t size, u64 value)
1528 {
1529 #define bit_name(n) { PERF_FORMAT_##n, #n }
1530 	struct bit_names bits[] = {
1531 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1532 		bit_name(ID), bit_name(GROUP),
1533 		{ .name = NULL, }
1534 	};
1535 #undef bit_name
1536 	__p_bits(buf, size, value, bits);
1537 }
1538 
1539 #define BUF_SIZE		1024
1540 
1541 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1542 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1543 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1544 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1545 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1546 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1547 
1548 #define PRINT_ATTRn(_n, _f, _p)				\
1549 do {							\
1550 	if (attr->_f) {					\
1551 		_p(attr->_f);				\
1552 		ret += attr__fprintf(fp, _n, buf, priv);\
1553 	}						\
1554 } while (0)
1555 
1556 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1557 
1558 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1559 			     attr__fprintf_f attr__fprintf, void *priv)
1560 {
1561 	char buf[BUF_SIZE];
1562 	int ret = 0;
1563 
1564 	PRINT_ATTRf(type, p_unsigned);
1565 	PRINT_ATTRf(size, p_unsigned);
1566 	PRINT_ATTRf(config, p_hex);
1567 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1568 	PRINT_ATTRf(sample_type, p_sample_type);
1569 	PRINT_ATTRf(read_format, p_read_format);
1570 
1571 	PRINT_ATTRf(disabled, p_unsigned);
1572 	PRINT_ATTRf(inherit, p_unsigned);
1573 	PRINT_ATTRf(pinned, p_unsigned);
1574 	PRINT_ATTRf(exclusive, p_unsigned);
1575 	PRINT_ATTRf(exclude_user, p_unsigned);
1576 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1577 	PRINT_ATTRf(exclude_hv, p_unsigned);
1578 	PRINT_ATTRf(exclude_idle, p_unsigned);
1579 	PRINT_ATTRf(mmap, p_unsigned);
1580 	PRINT_ATTRf(comm, p_unsigned);
1581 	PRINT_ATTRf(freq, p_unsigned);
1582 	PRINT_ATTRf(inherit_stat, p_unsigned);
1583 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1584 	PRINT_ATTRf(task, p_unsigned);
1585 	PRINT_ATTRf(watermark, p_unsigned);
1586 	PRINT_ATTRf(precise_ip, p_unsigned);
1587 	PRINT_ATTRf(mmap_data, p_unsigned);
1588 	PRINT_ATTRf(sample_id_all, p_unsigned);
1589 	PRINT_ATTRf(exclude_host, p_unsigned);
1590 	PRINT_ATTRf(exclude_guest, p_unsigned);
1591 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1592 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1593 	PRINT_ATTRf(mmap2, p_unsigned);
1594 	PRINT_ATTRf(comm_exec, p_unsigned);
1595 	PRINT_ATTRf(use_clockid, p_unsigned);
1596 	PRINT_ATTRf(context_switch, p_unsigned);
1597 	PRINT_ATTRf(write_backward, p_unsigned);
1598 	PRINT_ATTRf(namespaces, p_unsigned);
1599 
1600 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1601 	PRINT_ATTRf(bp_type, p_unsigned);
1602 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1603 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1604 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1605 	PRINT_ATTRf(sample_regs_user, p_hex);
1606 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1607 	PRINT_ATTRf(clockid, p_signed);
1608 	PRINT_ATTRf(sample_regs_intr, p_hex);
1609 	PRINT_ATTRf(aux_watermark, p_unsigned);
1610 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1611 
1612 	return ret;
1613 }
1614 
1615 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1616 				void *priv __maybe_unused)
1617 {
1618 	return fprintf(fp, "  %-32s %s\n", name, val);
1619 }
1620 
1621 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1622 				  int nr_cpus, int nr_threads,
1623 				  int thread_idx)
1624 {
1625 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1626 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1627 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1628 }
1629 
1630 static int update_fds(struct perf_evsel *evsel,
1631 		      int nr_cpus, int cpu_idx,
1632 		      int nr_threads, int thread_idx)
1633 {
1634 	struct perf_evsel *pos;
1635 
1636 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1637 		return -EINVAL;
1638 
1639 	evlist__for_each_entry(evsel->evlist, pos) {
1640 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1641 
1642 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1643 
1644 		/*
1645 		 * Since fds for next evsel has not been created,
1646 		 * there is no need to iterate whole event list.
1647 		 */
1648 		if (pos == evsel)
1649 			break;
1650 	}
1651 	return 0;
1652 }
1653 
1654 static bool ignore_missing_thread(struct perf_evsel *evsel,
1655 				  int nr_cpus, int cpu,
1656 				  struct thread_map *threads,
1657 				  int thread, int err)
1658 {
1659 	pid_t ignore_pid = thread_map__pid(threads, thread);
1660 
1661 	if (!evsel->ignore_missing_thread)
1662 		return false;
1663 
1664 	/* The system wide setup does not work with threads. */
1665 	if (evsel->system_wide)
1666 		return false;
1667 
1668 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1669 	if (err != -ESRCH)
1670 		return false;
1671 
1672 	/* If there's only one thread, let it fail. */
1673 	if (threads->nr == 1)
1674 		return false;
1675 
1676 	/*
1677 	 * We should remove fd for missing_thread first
1678 	 * because thread_map__remove() will decrease threads->nr.
1679 	 */
1680 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1681 		return false;
1682 
1683 	if (thread_map__remove(threads, thread))
1684 		return false;
1685 
1686 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1687 		   ignore_pid);
1688 	return true;
1689 }
1690 
1691 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1692 		     struct thread_map *threads)
1693 {
1694 	int cpu, thread, nthreads;
1695 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1696 	int pid = -1, err;
1697 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1698 
1699 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1700 		return -EINVAL;
1701 
1702 	if (cpus == NULL) {
1703 		static struct cpu_map *empty_cpu_map;
1704 
1705 		if (empty_cpu_map == NULL) {
1706 			empty_cpu_map = cpu_map__dummy_new();
1707 			if (empty_cpu_map == NULL)
1708 				return -ENOMEM;
1709 		}
1710 
1711 		cpus = empty_cpu_map;
1712 	}
1713 
1714 	if (threads == NULL) {
1715 		static struct thread_map *empty_thread_map;
1716 
1717 		if (empty_thread_map == NULL) {
1718 			empty_thread_map = thread_map__new_by_tid(-1);
1719 			if (empty_thread_map == NULL)
1720 				return -ENOMEM;
1721 		}
1722 
1723 		threads = empty_thread_map;
1724 	}
1725 
1726 	if (evsel->system_wide)
1727 		nthreads = 1;
1728 	else
1729 		nthreads = threads->nr;
1730 
1731 	if (evsel->fd == NULL &&
1732 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1733 		return -ENOMEM;
1734 
1735 	if (evsel->cgrp) {
1736 		flags |= PERF_FLAG_PID_CGROUP;
1737 		pid = evsel->cgrp->fd;
1738 	}
1739 
1740 fallback_missing_features:
1741 	if (perf_missing_features.clockid_wrong)
1742 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1743 	if (perf_missing_features.clockid) {
1744 		evsel->attr.use_clockid = 0;
1745 		evsel->attr.clockid = 0;
1746 	}
1747 	if (perf_missing_features.cloexec)
1748 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1749 	if (perf_missing_features.mmap2)
1750 		evsel->attr.mmap2 = 0;
1751 	if (perf_missing_features.exclude_guest)
1752 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1753 	if (perf_missing_features.lbr_flags)
1754 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1755 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1756 	if (perf_missing_features.group_read && evsel->attr.inherit)
1757 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1758 retry_sample_id:
1759 	if (perf_missing_features.sample_id_all)
1760 		evsel->attr.sample_id_all = 0;
1761 
1762 	if (verbose >= 2) {
1763 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1764 		fprintf(stderr, "perf_event_attr:\n");
1765 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1766 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1767 	}
1768 
1769 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1770 
1771 		for (thread = 0; thread < nthreads; thread++) {
1772 			int fd, group_fd;
1773 
1774 			if (!evsel->cgrp && !evsel->system_wide)
1775 				pid = thread_map__pid(threads, thread);
1776 
1777 			group_fd = get_group_fd(evsel, cpu, thread);
1778 retry_open:
1779 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1780 				  pid, cpus->map[cpu], group_fd, flags);
1781 
1782 			test_attr__ready();
1783 
1784 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1785 						 group_fd, flags);
1786 
1787 			FD(evsel, cpu, thread) = fd;
1788 
1789 			if (fd < 0) {
1790 				err = -errno;
1791 
1792 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1793 					/*
1794 					 * We just removed 1 thread, so take a step
1795 					 * back on thread index and lower the upper
1796 					 * nthreads limit.
1797 					 */
1798 					nthreads--;
1799 					thread--;
1800 
1801 					/* ... and pretend like nothing have happened. */
1802 					err = 0;
1803 					continue;
1804 				}
1805 
1806 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1807 					  err);
1808 				goto try_fallback;
1809 			}
1810 
1811 			pr_debug2(" = %d\n", fd);
1812 
1813 			if (evsel->bpf_fd >= 0) {
1814 				int evt_fd = fd;
1815 				int bpf_fd = evsel->bpf_fd;
1816 
1817 				err = ioctl(evt_fd,
1818 					    PERF_EVENT_IOC_SET_BPF,
1819 					    bpf_fd);
1820 				if (err && errno != EEXIST) {
1821 					pr_err("failed to attach bpf fd %d: %s\n",
1822 					       bpf_fd, strerror(errno));
1823 					err = -EINVAL;
1824 					goto out_close;
1825 				}
1826 			}
1827 
1828 			set_rlimit = NO_CHANGE;
1829 
1830 			/*
1831 			 * If we succeeded but had to kill clockid, fail and
1832 			 * have perf_evsel__open_strerror() print us a nice
1833 			 * error.
1834 			 */
1835 			if (perf_missing_features.clockid ||
1836 			    perf_missing_features.clockid_wrong) {
1837 				err = -EINVAL;
1838 				goto out_close;
1839 			}
1840 		}
1841 	}
1842 
1843 	return 0;
1844 
1845 try_fallback:
1846 	/*
1847 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1848 	 * of them try to increase the limits.
1849 	 */
1850 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1851 		struct rlimit l;
1852 		int old_errno = errno;
1853 
1854 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1855 			if (set_rlimit == NO_CHANGE)
1856 				l.rlim_cur = l.rlim_max;
1857 			else {
1858 				l.rlim_cur = l.rlim_max + 1000;
1859 				l.rlim_max = l.rlim_cur;
1860 			}
1861 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1862 				set_rlimit++;
1863 				errno = old_errno;
1864 				goto retry_open;
1865 			}
1866 		}
1867 		errno = old_errno;
1868 	}
1869 
1870 	if (err != -EINVAL || cpu > 0 || thread > 0)
1871 		goto out_close;
1872 
1873 	/*
1874 	 * Must probe features in the order they were added to the
1875 	 * perf_event_attr interface.
1876 	 */
1877 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1878 		perf_missing_features.write_backward = true;
1879 		pr_debug2("switching off write_backward\n");
1880 		goto out_close;
1881 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1882 		perf_missing_features.clockid_wrong = true;
1883 		pr_debug2("switching off clockid\n");
1884 		goto fallback_missing_features;
1885 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1886 		perf_missing_features.clockid = true;
1887 		pr_debug2("switching off use_clockid\n");
1888 		goto fallback_missing_features;
1889 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1890 		perf_missing_features.cloexec = true;
1891 		pr_debug2("switching off cloexec flag\n");
1892 		goto fallback_missing_features;
1893 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1894 		perf_missing_features.mmap2 = true;
1895 		pr_debug2("switching off mmap2\n");
1896 		goto fallback_missing_features;
1897 	} else if (!perf_missing_features.exclude_guest &&
1898 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1899 		perf_missing_features.exclude_guest = true;
1900 		pr_debug2("switching off exclude_guest, exclude_host\n");
1901 		goto fallback_missing_features;
1902 	} else if (!perf_missing_features.sample_id_all) {
1903 		perf_missing_features.sample_id_all = true;
1904 		pr_debug2("switching off sample_id_all\n");
1905 		goto retry_sample_id;
1906 	} else if (!perf_missing_features.lbr_flags &&
1907 			(evsel->attr.branch_sample_type &
1908 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1909 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1910 		perf_missing_features.lbr_flags = true;
1911 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1912 		goto fallback_missing_features;
1913 	} else if (!perf_missing_features.group_read &&
1914 		    evsel->attr.inherit &&
1915 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1916 		perf_missing_features.group_read = true;
1917 		pr_debug2("switching off group read\n");
1918 		goto fallback_missing_features;
1919 	}
1920 out_close:
1921 	do {
1922 		while (--thread >= 0) {
1923 			close(FD(evsel, cpu, thread));
1924 			FD(evsel, cpu, thread) = -1;
1925 		}
1926 		thread = nthreads;
1927 	} while (--cpu >= 0);
1928 	return err;
1929 }
1930 
1931 void perf_evsel__close(struct perf_evsel *evsel)
1932 {
1933 	if (evsel->fd == NULL)
1934 		return;
1935 
1936 	perf_evsel__close_fd(evsel);
1937 	perf_evsel__free_fd(evsel);
1938 }
1939 
1940 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1941 			     struct cpu_map *cpus)
1942 {
1943 	return perf_evsel__open(evsel, cpus, NULL);
1944 }
1945 
1946 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1947 				struct thread_map *threads)
1948 {
1949 	return perf_evsel__open(evsel, NULL, threads);
1950 }
1951 
1952 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1953 				       const union perf_event *event,
1954 				       struct perf_sample *sample)
1955 {
1956 	u64 type = evsel->attr.sample_type;
1957 	const u64 *array = event->sample.array;
1958 	bool swapped = evsel->needs_swap;
1959 	union u64_swap u;
1960 
1961 	array += ((event->header.size -
1962 		   sizeof(event->header)) / sizeof(u64)) - 1;
1963 
1964 	if (type & PERF_SAMPLE_IDENTIFIER) {
1965 		sample->id = *array;
1966 		array--;
1967 	}
1968 
1969 	if (type & PERF_SAMPLE_CPU) {
1970 		u.val64 = *array;
1971 		if (swapped) {
1972 			/* undo swap of u64, then swap on individual u32s */
1973 			u.val64 = bswap_64(u.val64);
1974 			u.val32[0] = bswap_32(u.val32[0]);
1975 		}
1976 
1977 		sample->cpu = u.val32[0];
1978 		array--;
1979 	}
1980 
1981 	if (type & PERF_SAMPLE_STREAM_ID) {
1982 		sample->stream_id = *array;
1983 		array--;
1984 	}
1985 
1986 	if (type & PERF_SAMPLE_ID) {
1987 		sample->id = *array;
1988 		array--;
1989 	}
1990 
1991 	if (type & PERF_SAMPLE_TIME) {
1992 		sample->time = *array;
1993 		array--;
1994 	}
1995 
1996 	if (type & PERF_SAMPLE_TID) {
1997 		u.val64 = *array;
1998 		if (swapped) {
1999 			/* undo swap of u64, then swap on individual u32s */
2000 			u.val64 = bswap_64(u.val64);
2001 			u.val32[0] = bswap_32(u.val32[0]);
2002 			u.val32[1] = bswap_32(u.val32[1]);
2003 		}
2004 
2005 		sample->pid = u.val32[0];
2006 		sample->tid = u.val32[1];
2007 		array--;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2014 			    u64 size)
2015 {
2016 	return size > max_size || offset + size > endp;
2017 }
2018 
2019 #define OVERFLOW_CHECK(offset, size, max_size)				\
2020 	do {								\
2021 		if (overflow(endp, (max_size), (offset), (size)))	\
2022 			return -EFAULT;					\
2023 	} while (0)
2024 
2025 #define OVERFLOW_CHECK_u64(offset) \
2026 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2027 
2028 static int
2029 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2030 {
2031 	/*
2032 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2033 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2034 	 * check the format does not go past the end of the event.
2035 	 */
2036 	if (sample_size + sizeof(event->header) > event->header.size)
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 
2042 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2043 			     struct perf_sample *data)
2044 {
2045 	u64 type = evsel->attr.sample_type;
2046 	bool swapped = evsel->needs_swap;
2047 	const u64 *array;
2048 	u16 max_size = event->header.size;
2049 	const void *endp = (void *)event + max_size;
2050 	u64 sz;
2051 
2052 	/*
2053 	 * used for cross-endian analysis. See git commit 65014ab3
2054 	 * for why this goofiness is needed.
2055 	 */
2056 	union u64_swap u;
2057 
2058 	memset(data, 0, sizeof(*data));
2059 	data->cpu = data->pid = data->tid = -1;
2060 	data->stream_id = data->id = data->time = -1ULL;
2061 	data->period = evsel->attr.sample_period;
2062 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2063 	data->misc    = event->header.misc;
2064 	data->id = -1ULL;
2065 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2066 
2067 	if (event->header.type != PERF_RECORD_SAMPLE) {
2068 		if (!evsel->attr.sample_id_all)
2069 			return 0;
2070 		return perf_evsel__parse_id_sample(evsel, event, data);
2071 	}
2072 
2073 	array = event->sample.array;
2074 
2075 	if (perf_event__check_size(event, evsel->sample_size))
2076 		return -EFAULT;
2077 
2078 	if (type & PERF_SAMPLE_IDENTIFIER) {
2079 		data->id = *array;
2080 		array++;
2081 	}
2082 
2083 	if (type & PERF_SAMPLE_IP) {
2084 		data->ip = *array;
2085 		array++;
2086 	}
2087 
2088 	if (type & PERF_SAMPLE_TID) {
2089 		u.val64 = *array;
2090 		if (swapped) {
2091 			/* undo swap of u64, then swap on individual u32s */
2092 			u.val64 = bswap_64(u.val64);
2093 			u.val32[0] = bswap_32(u.val32[0]);
2094 			u.val32[1] = bswap_32(u.val32[1]);
2095 		}
2096 
2097 		data->pid = u.val32[0];
2098 		data->tid = u.val32[1];
2099 		array++;
2100 	}
2101 
2102 	if (type & PERF_SAMPLE_TIME) {
2103 		data->time = *array;
2104 		array++;
2105 	}
2106 
2107 	if (type & PERF_SAMPLE_ADDR) {
2108 		data->addr = *array;
2109 		array++;
2110 	}
2111 
2112 	if (type & PERF_SAMPLE_ID) {
2113 		data->id = *array;
2114 		array++;
2115 	}
2116 
2117 	if (type & PERF_SAMPLE_STREAM_ID) {
2118 		data->stream_id = *array;
2119 		array++;
2120 	}
2121 
2122 	if (type & PERF_SAMPLE_CPU) {
2123 
2124 		u.val64 = *array;
2125 		if (swapped) {
2126 			/* undo swap of u64, then swap on individual u32s */
2127 			u.val64 = bswap_64(u.val64);
2128 			u.val32[0] = bswap_32(u.val32[0]);
2129 		}
2130 
2131 		data->cpu = u.val32[0];
2132 		array++;
2133 	}
2134 
2135 	if (type & PERF_SAMPLE_PERIOD) {
2136 		data->period = *array;
2137 		array++;
2138 	}
2139 
2140 	if (type & PERF_SAMPLE_READ) {
2141 		u64 read_format = evsel->attr.read_format;
2142 
2143 		OVERFLOW_CHECK_u64(array);
2144 		if (read_format & PERF_FORMAT_GROUP)
2145 			data->read.group.nr = *array;
2146 		else
2147 			data->read.one.value = *array;
2148 
2149 		array++;
2150 
2151 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2152 			OVERFLOW_CHECK_u64(array);
2153 			data->read.time_enabled = *array;
2154 			array++;
2155 		}
2156 
2157 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2158 			OVERFLOW_CHECK_u64(array);
2159 			data->read.time_running = *array;
2160 			array++;
2161 		}
2162 
2163 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2164 		if (read_format & PERF_FORMAT_GROUP) {
2165 			const u64 max_group_nr = UINT64_MAX /
2166 					sizeof(struct sample_read_value);
2167 
2168 			if (data->read.group.nr > max_group_nr)
2169 				return -EFAULT;
2170 			sz = data->read.group.nr *
2171 			     sizeof(struct sample_read_value);
2172 			OVERFLOW_CHECK(array, sz, max_size);
2173 			data->read.group.values =
2174 					(struct sample_read_value *)array;
2175 			array = (void *)array + sz;
2176 		} else {
2177 			OVERFLOW_CHECK_u64(array);
2178 			data->read.one.id = *array;
2179 			array++;
2180 		}
2181 	}
2182 
2183 	if (type & PERF_SAMPLE_CALLCHAIN) {
2184 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2185 
2186 		OVERFLOW_CHECK_u64(array);
2187 		data->callchain = (struct ip_callchain *)array++;
2188 		if (data->callchain->nr > max_callchain_nr)
2189 			return -EFAULT;
2190 		sz = data->callchain->nr * sizeof(u64);
2191 		OVERFLOW_CHECK(array, sz, max_size);
2192 		array = (void *)array + sz;
2193 	}
2194 
2195 	if (type & PERF_SAMPLE_RAW) {
2196 		OVERFLOW_CHECK_u64(array);
2197 		u.val64 = *array;
2198 
2199 		/*
2200 		 * Undo swap of u64, then swap on individual u32s,
2201 		 * get the size of the raw area and undo all of the
2202 		 * swap. The pevent interface handles endianity by
2203 		 * itself.
2204 		 */
2205 		if (swapped) {
2206 			u.val64 = bswap_64(u.val64);
2207 			u.val32[0] = bswap_32(u.val32[0]);
2208 			u.val32[1] = bswap_32(u.val32[1]);
2209 		}
2210 		data->raw_size = u.val32[0];
2211 
2212 		/*
2213 		 * The raw data is aligned on 64bits including the
2214 		 * u32 size, so it's safe to use mem_bswap_64.
2215 		 */
2216 		if (swapped)
2217 			mem_bswap_64((void *) array, data->raw_size);
2218 
2219 		array = (void *)array + sizeof(u32);
2220 
2221 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2222 		data->raw_data = (void *)array;
2223 		array = (void *)array + data->raw_size;
2224 	}
2225 
2226 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2227 		const u64 max_branch_nr = UINT64_MAX /
2228 					  sizeof(struct branch_entry);
2229 
2230 		OVERFLOW_CHECK_u64(array);
2231 		data->branch_stack = (struct branch_stack *)array++;
2232 
2233 		if (data->branch_stack->nr > max_branch_nr)
2234 			return -EFAULT;
2235 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2236 		OVERFLOW_CHECK(array, sz, max_size);
2237 		array = (void *)array + sz;
2238 	}
2239 
2240 	if (type & PERF_SAMPLE_REGS_USER) {
2241 		OVERFLOW_CHECK_u64(array);
2242 		data->user_regs.abi = *array;
2243 		array++;
2244 
2245 		if (data->user_regs.abi) {
2246 			u64 mask = evsel->attr.sample_regs_user;
2247 
2248 			sz = hweight_long(mask) * sizeof(u64);
2249 			OVERFLOW_CHECK(array, sz, max_size);
2250 			data->user_regs.mask = mask;
2251 			data->user_regs.regs = (u64 *)array;
2252 			array = (void *)array + sz;
2253 		}
2254 	}
2255 
2256 	if (type & PERF_SAMPLE_STACK_USER) {
2257 		OVERFLOW_CHECK_u64(array);
2258 		sz = *array++;
2259 
2260 		data->user_stack.offset = ((char *)(array - 1)
2261 					  - (char *) event);
2262 
2263 		if (!sz) {
2264 			data->user_stack.size = 0;
2265 		} else {
2266 			OVERFLOW_CHECK(array, sz, max_size);
2267 			data->user_stack.data = (char *)array;
2268 			array = (void *)array + sz;
2269 			OVERFLOW_CHECK_u64(array);
2270 			data->user_stack.size = *array++;
2271 			if (WARN_ONCE(data->user_stack.size > sz,
2272 				      "user stack dump failure\n"))
2273 				return -EFAULT;
2274 		}
2275 	}
2276 
2277 	if (type & PERF_SAMPLE_WEIGHT) {
2278 		OVERFLOW_CHECK_u64(array);
2279 		data->weight = *array;
2280 		array++;
2281 	}
2282 
2283 	if (type & PERF_SAMPLE_DATA_SRC) {
2284 		OVERFLOW_CHECK_u64(array);
2285 		data->data_src = *array;
2286 		array++;
2287 	}
2288 
2289 	if (type & PERF_SAMPLE_TRANSACTION) {
2290 		OVERFLOW_CHECK_u64(array);
2291 		data->transaction = *array;
2292 		array++;
2293 	}
2294 
2295 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2296 	if (type & PERF_SAMPLE_REGS_INTR) {
2297 		OVERFLOW_CHECK_u64(array);
2298 		data->intr_regs.abi = *array;
2299 		array++;
2300 
2301 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2302 			u64 mask = evsel->attr.sample_regs_intr;
2303 
2304 			sz = hweight_long(mask) * sizeof(u64);
2305 			OVERFLOW_CHECK(array, sz, max_size);
2306 			data->intr_regs.mask = mask;
2307 			data->intr_regs.regs = (u64 *)array;
2308 			array = (void *)array + sz;
2309 		}
2310 	}
2311 
2312 	data->phys_addr = 0;
2313 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2314 		data->phys_addr = *array;
2315 		array++;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2322 				       union perf_event *event,
2323 				       u64 *timestamp)
2324 {
2325 	u64 type = evsel->attr.sample_type;
2326 	const u64 *array;
2327 
2328 	if (!(type & PERF_SAMPLE_TIME))
2329 		return -1;
2330 
2331 	if (event->header.type != PERF_RECORD_SAMPLE) {
2332 		struct perf_sample data = {
2333 			.time = -1ULL,
2334 		};
2335 
2336 		if (!evsel->attr.sample_id_all)
2337 			return -1;
2338 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2339 			return -1;
2340 
2341 		*timestamp = data.time;
2342 		return 0;
2343 	}
2344 
2345 	array = event->sample.array;
2346 
2347 	if (perf_event__check_size(event, evsel->sample_size))
2348 		return -EFAULT;
2349 
2350 	if (type & PERF_SAMPLE_IDENTIFIER)
2351 		array++;
2352 
2353 	if (type & PERF_SAMPLE_IP)
2354 		array++;
2355 
2356 	if (type & PERF_SAMPLE_TID)
2357 		array++;
2358 
2359 	if (type & PERF_SAMPLE_TIME)
2360 		*timestamp = *array;
2361 
2362 	return 0;
2363 }
2364 
2365 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2366 				     u64 read_format)
2367 {
2368 	size_t sz, result = sizeof(struct sample_event);
2369 
2370 	if (type & PERF_SAMPLE_IDENTIFIER)
2371 		result += sizeof(u64);
2372 
2373 	if (type & PERF_SAMPLE_IP)
2374 		result += sizeof(u64);
2375 
2376 	if (type & PERF_SAMPLE_TID)
2377 		result += sizeof(u64);
2378 
2379 	if (type & PERF_SAMPLE_TIME)
2380 		result += sizeof(u64);
2381 
2382 	if (type & PERF_SAMPLE_ADDR)
2383 		result += sizeof(u64);
2384 
2385 	if (type & PERF_SAMPLE_ID)
2386 		result += sizeof(u64);
2387 
2388 	if (type & PERF_SAMPLE_STREAM_ID)
2389 		result += sizeof(u64);
2390 
2391 	if (type & PERF_SAMPLE_CPU)
2392 		result += sizeof(u64);
2393 
2394 	if (type & PERF_SAMPLE_PERIOD)
2395 		result += sizeof(u64);
2396 
2397 	if (type & PERF_SAMPLE_READ) {
2398 		result += sizeof(u64);
2399 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2400 			result += sizeof(u64);
2401 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2402 			result += sizeof(u64);
2403 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2404 		if (read_format & PERF_FORMAT_GROUP) {
2405 			sz = sample->read.group.nr *
2406 			     sizeof(struct sample_read_value);
2407 			result += sz;
2408 		} else {
2409 			result += sizeof(u64);
2410 		}
2411 	}
2412 
2413 	if (type & PERF_SAMPLE_CALLCHAIN) {
2414 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2415 		result += sz;
2416 	}
2417 
2418 	if (type & PERF_SAMPLE_RAW) {
2419 		result += sizeof(u32);
2420 		result += sample->raw_size;
2421 	}
2422 
2423 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2424 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2425 		sz += sizeof(u64);
2426 		result += sz;
2427 	}
2428 
2429 	if (type & PERF_SAMPLE_REGS_USER) {
2430 		if (sample->user_regs.abi) {
2431 			result += sizeof(u64);
2432 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2433 			result += sz;
2434 		} else {
2435 			result += sizeof(u64);
2436 		}
2437 	}
2438 
2439 	if (type & PERF_SAMPLE_STACK_USER) {
2440 		sz = sample->user_stack.size;
2441 		result += sizeof(u64);
2442 		if (sz) {
2443 			result += sz;
2444 			result += sizeof(u64);
2445 		}
2446 	}
2447 
2448 	if (type & PERF_SAMPLE_WEIGHT)
2449 		result += sizeof(u64);
2450 
2451 	if (type & PERF_SAMPLE_DATA_SRC)
2452 		result += sizeof(u64);
2453 
2454 	if (type & PERF_SAMPLE_TRANSACTION)
2455 		result += sizeof(u64);
2456 
2457 	if (type & PERF_SAMPLE_REGS_INTR) {
2458 		if (sample->intr_regs.abi) {
2459 			result += sizeof(u64);
2460 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2461 			result += sz;
2462 		} else {
2463 			result += sizeof(u64);
2464 		}
2465 	}
2466 
2467 	if (type & PERF_SAMPLE_PHYS_ADDR)
2468 		result += sizeof(u64);
2469 
2470 	return result;
2471 }
2472 
2473 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2474 				  u64 read_format,
2475 				  const struct perf_sample *sample)
2476 {
2477 	u64 *array;
2478 	size_t sz;
2479 	/*
2480 	 * used for cross-endian analysis. See git commit 65014ab3
2481 	 * for why this goofiness is needed.
2482 	 */
2483 	union u64_swap u;
2484 
2485 	array = event->sample.array;
2486 
2487 	if (type & PERF_SAMPLE_IDENTIFIER) {
2488 		*array = sample->id;
2489 		array++;
2490 	}
2491 
2492 	if (type & PERF_SAMPLE_IP) {
2493 		*array = sample->ip;
2494 		array++;
2495 	}
2496 
2497 	if (type & PERF_SAMPLE_TID) {
2498 		u.val32[0] = sample->pid;
2499 		u.val32[1] = sample->tid;
2500 		*array = u.val64;
2501 		array++;
2502 	}
2503 
2504 	if (type & PERF_SAMPLE_TIME) {
2505 		*array = sample->time;
2506 		array++;
2507 	}
2508 
2509 	if (type & PERF_SAMPLE_ADDR) {
2510 		*array = sample->addr;
2511 		array++;
2512 	}
2513 
2514 	if (type & PERF_SAMPLE_ID) {
2515 		*array = sample->id;
2516 		array++;
2517 	}
2518 
2519 	if (type & PERF_SAMPLE_STREAM_ID) {
2520 		*array = sample->stream_id;
2521 		array++;
2522 	}
2523 
2524 	if (type & PERF_SAMPLE_CPU) {
2525 		u.val32[0] = sample->cpu;
2526 		u.val32[1] = 0;
2527 		*array = u.val64;
2528 		array++;
2529 	}
2530 
2531 	if (type & PERF_SAMPLE_PERIOD) {
2532 		*array = sample->period;
2533 		array++;
2534 	}
2535 
2536 	if (type & PERF_SAMPLE_READ) {
2537 		if (read_format & PERF_FORMAT_GROUP)
2538 			*array = sample->read.group.nr;
2539 		else
2540 			*array = sample->read.one.value;
2541 		array++;
2542 
2543 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2544 			*array = sample->read.time_enabled;
2545 			array++;
2546 		}
2547 
2548 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2549 			*array = sample->read.time_running;
2550 			array++;
2551 		}
2552 
2553 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2554 		if (read_format & PERF_FORMAT_GROUP) {
2555 			sz = sample->read.group.nr *
2556 			     sizeof(struct sample_read_value);
2557 			memcpy(array, sample->read.group.values, sz);
2558 			array = (void *)array + sz;
2559 		} else {
2560 			*array = sample->read.one.id;
2561 			array++;
2562 		}
2563 	}
2564 
2565 	if (type & PERF_SAMPLE_CALLCHAIN) {
2566 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2567 		memcpy(array, sample->callchain, sz);
2568 		array = (void *)array + sz;
2569 	}
2570 
2571 	if (type & PERF_SAMPLE_RAW) {
2572 		u.val32[0] = sample->raw_size;
2573 		*array = u.val64;
2574 		array = (void *)array + sizeof(u32);
2575 
2576 		memcpy(array, sample->raw_data, sample->raw_size);
2577 		array = (void *)array + sample->raw_size;
2578 	}
2579 
2580 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2581 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2582 		sz += sizeof(u64);
2583 		memcpy(array, sample->branch_stack, sz);
2584 		array = (void *)array + sz;
2585 	}
2586 
2587 	if (type & PERF_SAMPLE_REGS_USER) {
2588 		if (sample->user_regs.abi) {
2589 			*array++ = sample->user_regs.abi;
2590 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2591 			memcpy(array, sample->user_regs.regs, sz);
2592 			array = (void *)array + sz;
2593 		} else {
2594 			*array++ = 0;
2595 		}
2596 	}
2597 
2598 	if (type & PERF_SAMPLE_STACK_USER) {
2599 		sz = sample->user_stack.size;
2600 		*array++ = sz;
2601 		if (sz) {
2602 			memcpy(array, sample->user_stack.data, sz);
2603 			array = (void *)array + sz;
2604 			*array++ = sz;
2605 		}
2606 	}
2607 
2608 	if (type & PERF_SAMPLE_WEIGHT) {
2609 		*array = sample->weight;
2610 		array++;
2611 	}
2612 
2613 	if (type & PERF_SAMPLE_DATA_SRC) {
2614 		*array = sample->data_src;
2615 		array++;
2616 	}
2617 
2618 	if (type & PERF_SAMPLE_TRANSACTION) {
2619 		*array = sample->transaction;
2620 		array++;
2621 	}
2622 
2623 	if (type & PERF_SAMPLE_REGS_INTR) {
2624 		if (sample->intr_regs.abi) {
2625 			*array++ = sample->intr_regs.abi;
2626 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2627 			memcpy(array, sample->intr_regs.regs, sz);
2628 			array = (void *)array + sz;
2629 		} else {
2630 			*array++ = 0;
2631 		}
2632 	}
2633 
2634 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2635 		*array = sample->phys_addr;
2636 		array++;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2643 {
2644 	return pevent_find_field(evsel->tp_format, name);
2645 }
2646 
2647 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2648 			 const char *name)
2649 {
2650 	struct format_field *field = perf_evsel__field(evsel, name);
2651 	int offset;
2652 
2653 	if (!field)
2654 		return NULL;
2655 
2656 	offset = field->offset;
2657 
2658 	if (field->flags & FIELD_IS_DYNAMIC) {
2659 		offset = *(int *)(sample->raw_data + field->offset);
2660 		offset &= 0xffff;
2661 	}
2662 
2663 	return sample->raw_data + offset;
2664 }
2665 
2666 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2667 			 bool needs_swap)
2668 {
2669 	u64 value;
2670 	void *ptr = sample->raw_data + field->offset;
2671 
2672 	switch (field->size) {
2673 	case 1:
2674 		return *(u8 *)ptr;
2675 	case 2:
2676 		value = *(u16 *)ptr;
2677 		break;
2678 	case 4:
2679 		value = *(u32 *)ptr;
2680 		break;
2681 	case 8:
2682 		memcpy(&value, ptr, sizeof(u64));
2683 		break;
2684 	default:
2685 		return 0;
2686 	}
2687 
2688 	if (!needs_swap)
2689 		return value;
2690 
2691 	switch (field->size) {
2692 	case 2:
2693 		return bswap_16(value);
2694 	case 4:
2695 		return bswap_32(value);
2696 	case 8:
2697 		return bswap_64(value);
2698 	default:
2699 		return 0;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2706 		       const char *name)
2707 {
2708 	struct format_field *field = perf_evsel__field(evsel, name);
2709 
2710 	if (!field)
2711 		return 0;
2712 
2713 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2714 }
2715 
2716 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2717 			  char *msg, size_t msgsize)
2718 {
2719 	int paranoid;
2720 
2721 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2722 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2723 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2724 		/*
2725 		 * If it's cycles then fall back to hrtimer based
2726 		 * cpu-clock-tick sw counter, which is always available even if
2727 		 * no PMU support.
2728 		 *
2729 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2730 		 * b0a873e).
2731 		 */
2732 		scnprintf(msg, msgsize, "%s",
2733 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2734 
2735 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2736 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2737 
2738 		zfree(&evsel->name);
2739 		return true;
2740 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2741 		   (paranoid = perf_event_paranoid()) > 1) {
2742 		const char *name = perf_evsel__name(evsel);
2743 		char *new_name;
2744 
2745 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2746 			return false;
2747 
2748 		if (evsel->name)
2749 			free(evsel->name);
2750 		evsel->name = new_name;
2751 		scnprintf(msg, msgsize,
2752 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2753 		evsel->attr.exclude_kernel = 1;
2754 
2755 		return true;
2756 	}
2757 
2758 	return false;
2759 }
2760 
2761 static bool find_process(const char *name)
2762 {
2763 	size_t len = strlen(name);
2764 	DIR *dir;
2765 	struct dirent *d;
2766 	int ret = -1;
2767 
2768 	dir = opendir(procfs__mountpoint());
2769 	if (!dir)
2770 		return false;
2771 
2772 	/* Walk through the directory. */
2773 	while (ret && (d = readdir(dir)) != NULL) {
2774 		char path[PATH_MAX];
2775 		char *data;
2776 		size_t size;
2777 
2778 		if ((d->d_type != DT_DIR) ||
2779 		     !strcmp(".", d->d_name) ||
2780 		     !strcmp("..", d->d_name))
2781 			continue;
2782 
2783 		scnprintf(path, sizeof(path), "%s/%s/comm",
2784 			  procfs__mountpoint(), d->d_name);
2785 
2786 		if (filename__read_str(path, &data, &size))
2787 			continue;
2788 
2789 		ret = strncmp(name, data, len);
2790 		free(data);
2791 	}
2792 
2793 	closedir(dir);
2794 	return ret ? false : true;
2795 }
2796 
2797 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2798 			      int err, char *msg, size_t size)
2799 {
2800 	char sbuf[STRERR_BUFSIZE];
2801 	int printed = 0;
2802 
2803 	switch (err) {
2804 	case EPERM:
2805 	case EACCES:
2806 		if (err == EPERM)
2807 			printed = scnprintf(msg, size,
2808 				"No permission to enable %s event.\n\n",
2809 				perf_evsel__name(evsel));
2810 
2811 		return scnprintf(msg + printed, size - printed,
2812 		 "You may not have permission to collect %sstats.\n\n"
2813 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2814 		 "which controls use of the performance events system by\n"
2815 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2816 		 "The current value is %d:\n\n"
2817 		 "  -1: Allow use of (almost) all events by all users\n"
2818 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2819 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2820 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2821 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2822 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2823 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2824 		 "	kernel.perf_event_paranoid = -1\n" ,
2825 				 target->system_wide ? "system-wide " : "",
2826 				 perf_event_paranoid());
2827 	case ENOENT:
2828 		return scnprintf(msg, size, "The %s event is not supported.",
2829 				 perf_evsel__name(evsel));
2830 	case EMFILE:
2831 		return scnprintf(msg, size, "%s",
2832 			 "Too many events are opened.\n"
2833 			 "Probably the maximum number of open file descriptors has been reached.\n"
2834 			 "Hint: Try again after reducing the number of events.\n"
2835 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2836 	case ENOMEM:
2837 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2838 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2839 			return scnprintf(msg, size,
2840 					 "Not enough memory to setup event with callchain.\n"
2841 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2842 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2843 		break;
2844 	case ENODEV:
2845 		if (target->cpu_list)
2846 			return scnprintf(msg, size, "%s",
2847 	 "No such device - did you specify an out-of-range profile CPU?");
2848 		break;
2849 	case EOPNOTSUPP:
2850 		if (evsel->attr.sample_period != 0)
2851 			return scnprintf(msg, size,
2852 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2853 					 perf_evsel__name(evsel));
2854 		if (evsel->attr.precise_ip)
2855 			return scnprintf(msg, size, "%s",
2856 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2857 #if defined(__i386__) || defined(__x86_64__)
2858 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2859 			return scnprintf(msg, size, "%s",
2860 	"No hardware sampling interrupt available.\n"
2861 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2862 #endif
2863 		break;
2864 	case EBUSY:
2865 		if (find_process("oprofiled"))
2866 			return scnprintf(msg, size,
2867 	"The PMU counters are busy/taken by another profiler.\n"
2868 	"We found oprofile daemon running, please stop it and try again.");
2869 		break;
2870 	case EINVAL:
2871 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2872 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2873 		if (perf_missing_features.clockid)
2874 			return scnprintf(msg, size, "clockid feature not supported.");
2875 		if (perf_missing_features.clockid_wrong)
2876 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2877 		break;
2878 	default:
2879 		break;
2880 	}
2881 
2882 	return scnprintf(msg, size,
2883 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2884 	"/bin/dmesg may provide additional information.\n"
2885 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2886 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2887 			 perf_evsel__name(evsel));
2888 }
2889 
2890 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2891 {
2892 	if (evsel && evsel->evlist)
2893 		return evsel->evlist->env;
2894 	return NULL;
2895 }
2896