xref: /linux/tools/perf/util/evsel.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 
27 static struct {
28 	bool sample_id_all;
29 	bool exclude_guest;
30 } perf_missing_features;
31 
32 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
33 
34 int __perf_evsel__sample_size(u64 sample_type)
35 {
36 	u64 mask = sample_type & PERF_SAMPLE_MASK;
37 	int size = 0;
38 	int i;
39 
40 	for (i = 0; i < 64; i++) {
41 		if (mask & (1ULL << i))
42 			size++;
43 	}
44 
45 	size *= sizeof(u64);
46 
47 	return size;
48 }
49 
50 /**
51  * __perf_evsel__calc_id_pos - calculate id_pos.
52  * @sample_type: sample type
53  *
54  * This function returns the position of the event id (PERF_SAMPLE_ID or
55  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
56  * sample_event.
57  */
58 static int __perf_evsel__calc_id_pos(u64 sample_type)
59 {
60 	int idx = 0;
61 
62 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
63 		return 0;
64 
65 	if (!(sample_type & PERF_SAMPLE_ID))
66 		return -1;
67 
68 	if (sample_type & PERF_SAMPLE_IP)
69 		idx += 1;
70 
71 	if (sample_type & PERF_SAMPLE_TID)
72 		idx += 1;
73 
74 	if (sample_type & PERF_SAMPLE_TIME)
75 		idx += 1;
76 
77 	if (sample_type & PERF_SAMPLE_ADDR)
78 		idx += 1;
79 
80 	return idx;
81 }
82 
83 /**
84  * __perf_evsel__calc_is_pos - calculate is_pos.
85  * @sample_type: sample type
86  *
87  * This function returns the position (counting backwards) of the event id
88  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
89  * sample_id_all is used there is an id sample appended to non-sample events.
90  */
91 static int __perf_evsel__calc_is_pos(u64 sample_type)
92 {
93 	int idx = 1;
94 
95 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
96 		return 1;
97 
98 	if (!(sample_type & PERF_SAMPLE_ID))
99 		return -1;
100 
101 	if (sample_type & PERF_SAMPLE_CPU)
102 		idx += 1;
103 
104 	if (sample_type & PERF_SAMPLE_STREAM_ID)
105 		idx += 1;
106 
107 	return idx;
108 }
109 
110 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
111 {
112 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
113 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
114 }
115 
116 void hists__init(struct hists *hists)
117 {
118 	memset(hists, 0, sizeof(*hists));
119 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
120 	hists->entries_in = &hists->entries_in_array[0];
121 	hists->entries_collapsed = RB_ROOT;
122 	hists->entries = RB_ROOT;
123 	pthread_mutex_init(&hists->lock, NULL);
124 }
125 
126 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
127 				  enum perf_event_sample_format bit)
128 {
129 	if (!(evsel->attr.sample_type & bit)) {
130 		evsel->attr.sample_type |= bit;
131 		evsel->sample_size += sizeof(u64);
132 		perf_evsel__calc_id_pos(evsel);
133 	}
134 }
135 
136 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
137 				    enum perf_event_sample_format bit)
138 {
139 	if (evsel->attr.sample_type & bit) {
140 		evsel->attr.sample_type &= ~bit;
141 		evsel->sample_size -= sizeof(u64);
142 		perf_evsel__calc_id_pos(evsel);
143 	}
144 }
145 
146 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
147 			       bool can_sample_identifier)
148 {
149 	if (can_sample_identifier) {
150 		perf_evsel__reset_sample_bit(evsel, ID);
151 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
152 	} else {
153 		perf_evsel__set_sample_bit(evsel, ID);
154 	}
155 	evsel->attr.read_format |= PERF_FORMAT_ID;
156 }
157 
158 void perf_evsel__init(struct perf_evsel *evsel,
159 		      struct perf_event_attr *attr, int idx)
160 {
161 	evsel->idx	   = idx;
162 	evsel->attr	   = *attr;
163 	evsel->leader	   = evsel;
164 	INIT_LIST_HEAD(&evsel->node);
165 	hists__init(&evsel->hists);
166 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
167 	perf_evsel__calc_id_pos(evsel);
168 }
169 
170 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
171 {
172 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
173 
174 	if (evsel != NULL)
175 		perf_evsel__init(evsel, attr, idx);
176 
177 	return evsel;
178 }
179 
180 struct event_format *event_format__new(const char *sys, const char *name)
181 {
182 	int fd, n;
183 	char *filename;
184 	void *bf = NULL, *nbf;
185 	size_t size = 0, alloc_size = 0;
186 	struct event_format *format = NULL;
187 
188 	if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
189 		goto out;
190 
191 	fd = open(filename, O_RDONLY);
192 	if (fd < 0)
193 		goto out_free_filename;
194 
195 	do {
196 		if (size == alloc_size) {
197 			alloc_size += BUFSIZ;
198 			nbf = realloc(bf, alloc_size);
199 			if (nbf == NULL)
200 				goto out_free_bf;
201 			bf = nbf;
202 		}
203 
204 		n = read(fd, bf + size, alloc_size - size);
205 		if (n < 0)
206 			goto out_free_bf;
207 		size += n;
208 	} while (n > 0);
209 
210 	pevent_parse_format(&format, bf, size, sys);
211 
212 out_free_bf:
213 	free(bf);
214 	close(fd);
215 out_free_filename:
216 	free(filename);
217 out:
218 	return format;
219 }
220 
221 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
222 {
223 	struct perf_evsel *evsel = zalloc(sizeof(*evsel));
224 
225 	if (evsel != NULL) {
226 		struct perf_event_attr attr = {
227 			.type	       = PERF_TYPE_TRACEPOINT,
228 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
229 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
230 		};
231 
232 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
233 			goto out_free;
234 
235 		evsel->tp_format = event_format__new(sys, name);
236 		if (evsel->tp_format == NULL)
237 			goto out_free;
238 
239 		event_attr_init(&attr);
240 		attr.config = evsel->tp_format->id;
241 		attr.sample_period = 1;
242 		perf_evsel__init(evsel, &attr, idx);
243 	}
244 
245 	return evsel;
246 
247 out_free:
248 	free(evsel->name);
249 	free(evsel);
250 	return NULL;
251 }
252 
253 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
254 	"cycles",
255 	"instructions",
256 	"cache-references",
257 	"cache-misses",
258 	"branches",
259 	"branch-misses",
260 	"bus-cycles",
261 	"stalled-cycles-frontend",
262 	"stalled-cycles-backend",
263 	"ref-cycles",
264 };
265 
266 static const char *__perf_evsel__hw_name(u64 config)
267 {
268 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
269 		return perf_evsel__hw_names[config];
270 
271 	return "unknown-hardware";
272 }
273 
274 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
275 {
276 	int colon = 0, r = 0;
277 	struct perf_event_attr *attr = &evsel->attr;
278 	bool exclude_guest_default = false;
279 
280 #define MOD_PRINT(context, mod)	do {					\
281 		if (!attr->exclude_##context) {				\
282 			if (!colon) colon = ++r;			\
283 			r += scnprintf(bf + r, size - r, "%c", mod);	\
284 		} } while(0)
285 
286 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
287 		MOD_PRINT(kernel, 'k');
288 		MOD_PRINT(user, 'u');
289 		MOD_PRINT(hv, 'h');
290 		exclude_guest_default = true;
291 	}
292 
293 	if (attr->precise_ip) {
294 		if (!colon)
295 			colon = ++r;
296 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
297 		exclude_guest_default = true;
298 	}
299 
300 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
301 		MOD_PRINT(host, 'H');
302 		MOD_PRINT(guest, 'G');
303 	}
304 #undef MOD_PRINT
305 	if (colon)
306 		bf[colon - 1] = ':';
307 	return r;
308 }
309 
310 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
311 {
312 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
313 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
314 }
315 
316 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
317 	"cpu-clock",
318 	"task-clock",
319 	"page-faults",
320 	"context-switches",
321 	"cpu-migrations",
322 	"minor-faults",
323 	"major-faults",
324 	"alignment-faults",
325 	"emulation-faults",
326 	"dummy",
327 };
328 
329 static const char *__perf_evsel__sw_name(u64 config)
330 {
331 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
332 		return perf_evsel__sw_names[config];
333 	return "unknown-software";
334 }
335 
336 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
337 {
338 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
339 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
340 }
341 
342 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
343 {
344 	int r;
345 
346 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
347 
348 	if (type & HW_BREAKPOINT_R)
349 		r += scnprintf(bf + r, size - r, "r");
350 
351 	if (type & HW_BREAKPOINT_W)
352 		r += scnprintf(bf + r, size - r, "w");
353 
354 	if (type & HW_BREAKPOINT_X)
355 		r += scnprintf(bf + r, size - r, "x");
356 
357 	return r;
358 }
359 
360 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
361 {
362 	struct perf_event_attr *attr = &evsel->attr;
363 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
364 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
365 }
366 
367 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
368 				[PERF_EVSEL__MAX_ALIASES] = {
369  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
370  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
371  { "LLC",	"L2",							},
372  { "dTLB",	"d-tlb",	"Data-TLB",				},
373  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
374  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
375  { "node",								},
376 };
377 
378 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
379 				   [PERF_EVSEL__MAX_ALIASES] = {
380  { "load",	"loads",	"read",					},
381  { "store",	"stores",	"write",				},
382  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
383 };
384 
385 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
386 				       [PERF_EVSEL__MAX_ALIASES] = {
387  { "refs",	"Reference",	"ops",		"access",		},
388  { "misses",	"miss",							},
389 };
390 
391 #define C(x)		PERF_COUNT_HW_CACHE_##x
392 #define CACHE_READ	(1 << C(OP_READ))
393 #define CACHE_WRITE	(1 << C(OP_WRITE))
394 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
395 #define COP(x)		(1 << x)
396 
397 /*
398  * cache operartion stat
399  * L1I : Read and prefetch only
400  * ITLB and BPU : Read-only
401  */
402 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
403  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
404  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
405  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(ITLB)]	= (CACHE_READ),
408  [C(BPU)]	= (CACHE_READ),
409  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410 };
411 
412 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
413 {
414 	if (perf_evsel__hw_cache_stat[type] & COP(op))
415 		return true;	/* valid */
416 	else
417 		return false;	/* invalid */
418 }
419 
420 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
421 					    char *bf, size_t size)
422 {
423 	if (result) {
424 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
425 				 perf_evsel__hw_cache_op[op][0],
426 				 perf_evsel__hw_cache_result[result][0]);
427 	}
428 
429 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
430 			 perf_evsel__hw_cache_op[op][1]);
431 }
432 
433 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
434 {
435 	u8 op, result, type = (config >>  0) & 0xff;
436 	const char *err = "unknown-ext-hardware-cache-type";
437 
438 	if (type > PERF_COUNT_HW_CACHE_MAX)
439 		goto out_err;
440 
441 	op = (config >>  8) & 0xff;
442 	err = "unknown-ext-hardware-cache-op";
443 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
444 		goto out_err;
445 
446 	result = (config >> 16) & 0xff;
447 	err = "unknown-ext-hardware-cache-result";
448 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
449 		goto out_err;
450 
451 	err = "invalid-cache";
452 	if (!perf_evsel__is_cache_op_valid(type, op))
453 		goto out_err;
454 
455 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
456 out_err:
457 	return scnprintf(bf, size, "%s", err);
458 }
459 
460 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
461 {
462 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
463 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
464 }
465 
466 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
467 {
468 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
469 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
470 }
471 
472 const char *perf_evsel__name(struct perf_evsel *evsel)
473 {
474 	char bf[128];
475 
476 	if (evsel->name)
477 		return evsel->name;
478 
479 	switch (evsel->attr.type) {
480 	case PERF_TYPE_RAW:
481 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
482 		break;
483 
484 	case PERF_TYPE_HARDWARE:
485 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
486 		break;
487 
488 	case PERF_TYPE_HW_CACHE:
489 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
490 		break;
491 
492 	case PERF_TYPE_SOFTWARE:
493 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
494 		break;
495 
496 	case PERF_TYPE_TRACEPOINT:
497 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
498 		break;
499 
500 	case PERF_TYPE_BREAKPOINT:
501 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
502 		break;
503 
504 	default:
505 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
506 			  evsel->attr.type);
507 		break;
508 	}
509 
510 	evsel->name = strdup(bf);
511 
512 	return evsel->name ?: "unknown";
513 }
514 
515 const char *perf_evsel__group_name(struct perf_evsel *evsel)
516 {
517 	return evsel->group_name ?: "anon group";
518 }
519 
520 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
521 {
522 	int ret;
523 	struct perf_evsel *pos;
524 	const char *group_name = perf_evsel__group_name(evsel);
525 
526 	ret = scnprintf(buf, size, "%s", group_name);
527 
528 	ret += scnprintf(buf + ret, size - ret, " { %s",
529 			 perf_evsel__name(evsel));
530 
531 	for_each_group_member(pos, evsel)
532 		ret += scnprintf(buf + ret, size - ret, ", %s",
533 				 perf_evsel__name(pos));
534 
535 	ret += scnprintf(buf + ret, size - ret, " }");
536 
537 	return ret;
538 }
539 
540 /*
541  * The enable_on_exec/disabled value strategy:
542  *
543  *  1) For any type of traced program:
544  *    - all independent events and group leaders are disabled
545  *    - all group members are enabled
546  *
547  *     Group members are ruled by group leaders. They need to
548  *     be enabled, because the group scheduling relies on that.
549  *
550  *  2) For traced programs executed by perf:
551  *     - all independent events and group leaders have
552  *       enable_on_exec set
553  *     - we don't specifically enable or disable any event during
554  *       the record command
555  *
556  *     Independent events and group leaders are initially disabled
557  *     and get enabled by exec. Group members are ruled by group
558  *     leaders as stated in 1).
559  *
560  *  3) For traced programs attached by perf (pid/tid):
561  *     - we specifically enable or disable all events during
562  *       the record command
563  *
564  *     When attaching events to already running traced we
565  *     enable/disable events specifically, as there's no
566  *     initial traced exec call.
567  */
568 void perf_evsel__config(struct perf_evsel *evsel,
569 			struct perf_record_opts *opts)
570 {
571 	struct perf_evsel *leader = evsel->leader;
572 	struct perf_event_attr *attr = &evsel->attr;
573 	int track = !evsel->idx; /* only the first counter needs these */
574 
575 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
576 	attr->inherit	    = !opts->no_inherit;
577 
578 	perf_evsel__set_sample_bit(evsel, IP);
579 	perf_evsel__set_sample_bit(evsel, TID);
580 
581 	if (evsel->sample_read) {
582 		perf_evsel__set_sample_bit(evsel, READ);
583 
584 		/*
585 		 * We need ID even in case of single event, because
586 		 * PERF_SAMPLE_READ process ID specific data.
587 		 */
588 		perf_evsel__set_sample_id(evsel, false);
589 
590 		/*
591 		 * Apply group format only if we belong to group
592 		 * with more than one members.
593 		 */
594 		if (leader->nr_members > 1) {
595 			attr->read_format |= PERF_FORMAT_GROUP;
596 			attr->inherit = 0;
597 		}
598 	}
599 
600 	/*
601 	 * We default some events to a 1 default interval. But keep
602 	 * it a weak assumption overridable by the user.
603 	 */
604 	if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
605 				     opts->user_interval != ULLONG_MAX)) {
606 		if (opts->freq) {
607 			perf_evsel__set_sample_bit(evsel, PERIOD);
608 			attr->freq		= 1;
609 			attr->sample_freq	= opts->freq;
610 		} else {
611 			attr->sample_period = opts->default_interval;
612 		}
613 	}
614 
615 	/*
616 	 * Disable sampling for all group members other
617 	 * than leader in case leader 'leads' the sampling.
618 	 */
619 	if ((leader != evsel) && leader->sample_read) {
620 		attr->sample_freq   = 0;
621 		attr->sample_period = 0;
622 	}
623 
624 	if (opts->no_samples)
625 		attr->sample_freq = 0;
626 
627 	if (opts->inherit_stat)
628 		attr->inherit_stat = 1;
629 
630 	if (opts->sample_address) {
631 		perf_evsel__set_sample_bit(evsel, ADDR);
632 		attr->mmap_data = track;
633 	}
634 
635 	if (opts->call_graph) {
636 		perf_evsel__set_sample_bit(evsel, CALLCHAIN);
637 
638 		if (opts->call_graph == CALLCHAIN_DWARF) {
639 			perf_evsel__set_sample_bit(evsel, REGS_USER);
640 			perf_evsel__set_sample_bit(evsel, STACK_USER);
641 			attr->sample_regs_user = PERF_REGS_MASK;
642 			attr->sample_stack_user = opts->stack_dump_size;
643 			attr->exclude_callchain_user = 1;
644 		}
645 	}
646 
647 	if (perf_target__has_cpu(&opts->target))
648 		perf_evsel__set_sample_bit(evsel, CPU);
649 
650 	if (opts->period)
651 		perf_evsel__set_sample_bit(evsel, PERIOD);
652 
653 	if (!perf_missing_features.sample_id_all &&
654 	    (opts->sample_time || !opts->no_inherit ||
655 	     perf_target__has_cpu(&opts->target)))
656 		perf_evsel__set_sample_bit(evsel, TIME);
657 
658 	if (opts->raw_samples) {
659 		perf_evsel__set_sample_bit(evsel, TIME);
660 		perf_evsel__set_sample_bit(evsel, RAW);
661 		perf_evsel__set_sample_bit(evsel, CPU);
662 	}
663 
664 	if (opts->sample_address)
665 		attr->sample_type	|= PERF_SAMPLE_DATA_SRC;
666 
667 	if (opts->no_delay) {
668 		attr->watermark = 0;
669 		attr->wakeup_events = 1;
670 	}
671 	if (opts->branch_stack) {
672 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673 		attr->branch_sample_type = opts->branch_stack;
674 	}
675 
676 	if (opts->sample_weight)
677 		attr->sample_type	|= PERF_SAMPLE_WEIGHT;
678 
679 	attr->mmap = track;
680 	attr->comm = track;
681 
682 	/*
683 	 * XXX see the function comment above
684 	 *
685 	 * Disabling only independent events or group leaders,
686 	 * keeping group members enabled.
687 	 */
688 	if (perf_evsel__is_group_leader(evsel))
689 		attr->disabled = 1;
690 
691 	/*
692 	 * Setting enable_on_exec for independent events and
693 	 * group leaders for traced executed by perf.
694 	 */
695 	if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
696 		attr->enable_on_exec = 1;
697 }
698 
699 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
700 {
701 	int cpu, thread;
702 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
703 
704 	if (evsel->fd) {
705 		for (cpu = 0; cpu < ncpus; cpu++) {
706 			for (thread = 0; thread < nthreads; thread++) {
707 				FD(evsel, cpu, thread) = -1;
708 			}
709 		}
710 	}
711 
712 	return evsel->fd != NULL ? 0 : -ENOMEM;
713 }
714 
715 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
716 			  int ioc,  void *arg)
717 {
718 	int cpu, thread;
719 
720 	for (cpu = 0; cpu < ncpus; cpu++) {
721 		for (thread = 0; thread < nthreads; thread++) {
722 			int fd = FD(evsel, cpu, thread),
723 			    err = ioctl(fd, ioc, arg);
724 
725 			if (err)
726 				return err;
727 		}
728 	}
729 
730 	return 0;
731 }
732 
733 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
734 			   const char *filter)
735 {
736 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
737 				     PERF_EVENT_IOC_SET_FILTER,
738 				     (void *)filter);
739 }
740 
741 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
742 {
743 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
744 				     PERF_EVENT_IOC_ENABLE,
745 				     0);
746 }
747 
748 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
749 {
750 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
751 	if (evsel->sample_id == NULL)
752 		return -ENOMEM;
753 
754 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
755 	if (evsel->id == NULL) {
756 		xyarray__delete(evsel->sample_id);
757 		evsel->sample_id = NULL;
758 		return -ENOMEM;
759 	}
760 
761 	return 0;
762 }
763 
764 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
765 {
766 	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
767 				 (ncpus * sizeof(struct perf_counts_values))));
768 }
769 
770 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
771 {
772 	evsel->counts = zalloc((sizeof(*evsel->counts) +
773 				(ncpus * sizeof(struct perf_counts_values))));
774 	return evsel->counts != NULL ? 0 : -ENOMEM;
775 }
776 
777 void perf_evsel__free_fd(struct perf_evsel *evsel)
778 {
779 	xyarray__delete(evsel->fd);
780 	evsel->fd = NULL;
781 }
782 
783 void perf_evsel__free_id(struct perf_evsel *evsel)
784 {
785 	xyarray__delete(evsel->sample_id);
786 	evsel->sample_id = NULL;
787 	free(evsel->id);
788 	evsel->id = NULL;
789 }
790 
791 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
792 {
793 	int cpu, thread;
794 
795 	for (cpu = 0; cpu < ncpus; cpu++)
796 		for (thread = 0; thread < nthreads; ++thread) {
797 			close(FD(evsel, cpu, thread));
798 			FD(evsel, cpu, thread) = -1;
799 		}
800 }
801 
802 void perf_evsel__free_counts(struct perf_evsel *evsel)
803 {
804 	free(evsel->counts);
805 }
806 
807 void perf_evsel__exit(struct perf_evsel *evsel)
808 {
809 	assert(list_empty(&evsel->node));
810 	perf_evsel__free_fd(evsel);
811 	perf_evsel__free_id(evsel);
812 }
813 
814 void perf_evsel__delete(struct perf_evsel *evsel)
815 {
816 	perf_evsel__exit(evsel);
817 	close_cgroup(evsel->cgrp);
818 	free(evsel->group_name);
819 	if (evsel->tp_format)
820 		pevent_free_format(evsel->tp_format);
821 	free(evsel->name);
822 	free(evsel);
823 }
824 
825 static inline void compute_deltas(struct perf_evsel *evsel,
826 				  int cpu,
827 				  struct perf_counts_values *count)
828 {
829 	struct perf_counts_values tmp;
830 
831 	if (!evsel->prev_raw_counts)
832 		return;
833 
834 	if (cpu == -1) {
835 		tmp = evsel->prev_raw_counts->aggr;
836 		evsel->prev_raw_counts->aggr = *count;
837 	} else {
838 		tmp = evsel->prev_raw_counts->cpu[cpu];
839 		evsel->prev_raw_counts->cpu[cpu] = *count;
840 	}
841 
842 	count->val = count->val - tmp.val;
843 	count->ena = count->ena - tmp.ena;
844 	count->run = count->run - tmp.run;
845 }
846 
847 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
848 			      int cpu, int thread, bool scale)
849 {
850 	struct perf_counts_values count;
851 	size_t nv = scale ? 3 : 1;
852 
853 	if (FD(evsel, cpu, thread) < 0)
854 		return -EINVAL;
855 
856 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
857 		return -ENOMEM;
858 
859 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
860 		return -errno;
861 
862 	compute_deltas(evsel, cpu, &count);
863 
864 	if (scale) {
865 		if (count.run == 0)
866 			count.val = 0;
867 		else if (count.run < count.ena)
868 			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
869 	} else
870 		count.ena = count.run = 0;
871 
872 	evsel->counts->cpu[cpu] = count;
873 	return 0;
874 }
875 
876 int __perf_evsel__read(struct perf_evsel *evsel,
877 		       int ncpus, int nthreads, bool scale)
878 {
879 	size_t nv = scale ? 3 : 1;
880 	int cpu, thread;
881 	struct perf_counts_values *aggr = &evsel->counts->aggr, count;
882 
883 	aggr->val = aggr->ena = aggr->run = 0;
884 
885 	for (cpu = 0; cpu < ncpus; cpu++) {
886 		for (thread = 0; thread < nthreads; thread++) {
887 			if (FD(evsel, cpu, thread) < 0)
888 				continue;
889 
890 			if (readn(FD(evsel, cpu, thread),
891 				  &count, nv * sizeof(u64)) < 0)
892 				return -errno;
893 
894 			aggr->val += count.val;
895 			if (scale) {
896 				aggr->ena += count.ena;
897 				aggr->run += count.run;
898 			}
899 		}
900 	}
901 
902 	compute_deltas(evsel, -1, aggr);
903 
904 	evsel->counts->scaled = 0;
905 	if (scale) {
906 		if (aggr->run == 0) {
907 			evsel->counts->scaled = -1;
908 			aggr->val = 0;
909 			return 0;
910 		}
911 
912 		if (aggr->run < aggr->ena) {
913 			evsel->counts->scaled = 1;
914 			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
915 		}
916 	} else
917 		aggr->ena = aggr->run = 0;
918 
919 	return 0;
920 }
921 
922 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
923 {
924 	struct perf_evsel *leader = evsel->leader;
925 	int fd;
926 
927 	if (perf_evsel__is_group_leader(evsel))
928 		return -1;
929 
930 	/*
931 	 * Leader must be already processed/open,
932 	 * if not it's a bug.
933 	 */
934 	BUG_ON(!leader->fd);
935 
936 	fd = FD(leader, cpu, thread);
937 	BUG_ON(fd == -1);
938 
939 	return fd;
940 }
941 
942 #define __PRINT_ATTR(fmt, cast, field)  \
943 	fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
944 
945 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
946 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
947 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
948 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
949 
950 #define PRINT_ATTR2N(name1, field1, name2, field2)	\
951 	fprintf(fp, "  %-19s %u    %-19s %u\n",		\
952 	name1, attr->field1, name2, attr->field2)
953 
954 #define PRINT_ATTR2(field1, field2) \
955 	PRINT_ATTR2N(#field1, field1, #field2, field2)
956 
957 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
958 {
959 	size_t ret = 0;
960 
961 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
962 	ret += fprintf(fp, "perf_event_attr:\n");
963 
964 	ret += PRINT_ATTR_U32(type);
965 	ret += PRINT_ATTR_U32(size);
966 	ret += PRINT_ATTR_X64(config);
967 	ret += PRINT_ATTR_U64(sample_period);
968 	ret += PRINT_ATTR_U64(sample_freq);
969 	ret += PRINT_ATTR_X64(sample_type);
970 	ret += PRINT_ATTR_X64(read_format);
971 
972 	ret += PRINT_ATTR2(disabled, inherit);
973 	ret += PRINT_ATTR2(pinned, exclusive);
974 	ret += PRINT_ATTR2(exclude_user, exclude_kernel);
975 	ret += PRINT_ATTR2(exclude_hv, exclude_idle);
976 	ret += PRINT_ATTR2(mmap, comm);
977 	ret += PRINT_ATTR2(freq, inherit_stat);
978 	ret += PRINT_ATTR2(enable_on_exec, task);
979 	ret += PRINT_ATTR2(watermark, precise_ip);
980 	ret += PRINT_ATTR2(mmap_data, sample_id_all);
981 	ret += PRINT_ATTR2(exclude_host, exclude_guest);
982 	ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
983 			    "excl.callchain_user", exclude_callchain_user);
984 
985 	ret += PRINT_ATTR_U32(wakeup_events);
986 	ret += PRINT_ATTR_U32(wakeup_watermark);
987 	ret += PRINT_ATTR_X32(bp_type);
988 	ret += PRINT_ATTR_X64(bp_addr);
989 	ret += PRINT_ATTR_X64(config1);
990 	ret += PRINT_ATTR_U64(bp_len);
991 	ret += PRINT_ATTR_X64(config2);
992 	ret += PRINT_ATTR_X64(branch_sample_type);
993 	ret += PRINT_ATTR_X64(sample_regs_user);
994 	ret += PRINT_ATTR_U32(sample_stack_user);
995 
996 	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
997 
998 	return ret;
999 }
1000 
1001 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1002 			      struct thread_map *threads)
1003 {
1004 	int cpu, thread;
1005 	unsigned long flags = 0;
1006 	int pid = -1, err;
1007 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1008 
1009 	if (evsel->fd == NULL &&
1010 	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1011 		return -ENOMEM;
1012 
1013 	if (evsel->cgrp) {
1014 		flags = PERF_FLAG_PID_CGROUP;
1015 		pid = evsel->cgrp->fd;
1016 	}
1017 
1018 fallback_missing_features:
1019 	if (perf_missing_features.exclude_guest)
1020 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1021 retry_sample_id:
1022 	if (perf_missing_features.sample_id_all)
1023 		evsel->attr.sample_id_all = 0;
1024 
1025 	if (verbose >= 2)
1026 		perf_event_attr__fprintf(&evsel->attr, stderr);
1027 
1028 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1029 
1030 		for (thread = 0; thread < threads->nr; thread++) {
1031 			int group_fd;
1032 
1033 			if (!evsel->cgrp)
1034 				pid = threads->map[thread];
1035 
1036 			group_fd = get_group_fd(evsel, cpu, thread);
1037 retry_open:
1038 			pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1039 				  pid, cpus->map[cpu], group_fd, flags);
1040 
1041 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1042 								     pid,
1043 								     cpus->map[cpu],
1044 								     group_fd, flags);
1045 			if (FD(evsel, cpu, thread) < 0) {
1046 				err = -errno;
1047 				goto try_fallback;
1048 			}
1049 			set_rlimit = NO_CHANGE;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 
1055 try_fallback:
1056 	/*
1057 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1058 	 * of them try to increase the limits.
1059 	 */
1060 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1061 		struct rlimit l;
1062 		int old_errno = errno;
1063 
1064 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1065 			if (set_rlimit == NO_CHANGE)
1066 				l.rlim_cur = l.rlim_max;
1067 			else {
1068 				l.rlim_cur = l.rlim_max + 1000;
1069 				l.rlim_max = l.rlim_cur;
1070 			}
1071 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1072 				set_rlimit++;
1073 				errno = old_errno;
1074 				goto retry_open;
1075 			}
1076 		}
1077 		errno = old_errno;
1078 	}
1079 
1080 	if (err != -EINVAL || cpu > 0 || thread > 0)
1081 		goto out_close;
1082 
1083 	if (!perf_missing_features.exclude_guest &&
1084 	    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1085 		perf_missing_features.exclude_guest = true;
1086 		goto fallback_missing_features;
1087 	} else if (!perf_missing_features.sample_id_all) {
1088 		perf_missing_features.sample_id_all = true;
1089 		goto retry_sample_id;
1090 	}
1091 
1092 out_close:
1093 	do {
1094 		while (--thread >= 0) {
1095 			close(FD(evsel, cpu, thread));
1096 			FD(evsel, cpu, thread) = -1;
1097 		}
1098 		thread = threads->nr;
1099 	} while (--cpu >= 0);
1100 	return err;
1101 }
1102 
1103 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1104 {
1105 	if (evsel->fd == NULL)
1106 		return;
1107 
1108 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1109 	perf_evsel__free_fd(evsel);
1110 	evsel->fd = NULL;
1111 }
1112 
1113 static struct {
1114 	struct cpu_map map;
1115 	int cpus[1];
1116 } empty_cpu_map = {
1117 	.map.nr	= 1,
1118 	.cpus	= { -1, },
1119 };
1120 
1121 static struct {
1122 	struct thread_map map;
1123 	int threads[1];
1124 } empty_thread_map = {
1125 	.map.nr	 = 1,
1126 	.threads = { -1, },
1127 };
1128 
1129 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1130 		     struct thread_map *threads)
1131 {
1132 	if (cpus == NULL) {
1133 		/* Work around old compiler warnings about strict aliasing */
1134 		cpus = &empty_cpu_map.map;
1135 	}
1136 
1137 	if (threads == NULL)
1138 		threads = &empty_thread_map.map;
1139 
1140 	return __perf_evsel__open(evsel, cpus, threads);
1141 }
1142 
1143 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1144 			     struct cpu_map *cpus)
1145 {
1146 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1147 }
1148 
1149 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1150 				struct thread_map *threads)
1151 {
1152 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1153 }
1154 
1155 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1156 				       const union perf_event *event,
1157 				       struct perf_sample *sample)
1158 {
1159 	u64 type = evsel->attr.sample_type;
1160 	const u64 *array = event->sample.array;
1161 	bool swapped = evsel->needs_swap;
1162 	union u64_swap u;
1163 
1164 	array += ((event->header.size -
1165 		   sizeof(event->header)) / sizeof(u64)) - 1;
1166 
1167 	if (type & PERF_SAMPLE_IDENTIFIER) {
1168 		sample->id = *array;
1169 		array--;
1170 	}
1171 
1172 	if (type & PERF_SAMPLE_CPU) {
1173 		u.val64 = *array;
1174 		if (swapped) {
1175 			/* undo swap of u64, then swap on individual u32s */
1176 			u.val64 = bswap_64(u.val64);
1177 			u.val32[0] = bswap_32(u.val32[0]);
1178 		}
1179 
1180 		sample->cpu = u.val32[0];
1181 		array--;
1182 	}
1183 
1184 	if (type & PERF_SAMPLE_STREAM_ID) {
1185 		sample->stream_id = *array;
1186 		array--;
1187 	}
1188 
1189 	if (type & PERF_SAMPLE_ID) {
1190 		sample->id = *array;
1191 		array--;
1192 	}
1193 
1194 	if (type & PERF_SAMPLE_TIME) {
1195 		sample->time = *array;
1196 		array--;
1197 	}
1198 
1199 	if (type & PERF_SAMPLE_TID) {
1200 		u.val64 = *array;
1201 		if (swapped) {
1202 			/* undo swap of u64, then swap on individual u32s */
1203 			u.val64 = bswap_64(u.val64);
1204 			u.val32[0] = bswap_32(u.val32[0]);
1205 			u.val32[1] = bswap_32(u.val32[1]);
1206 		}
1207 
1208 		sample->pid = u.val32[0];
1209 		sample->tid = u.val32[1];
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1216 			    u64 size)
1217 {
1218 	return size > max_size || offset + size > endp;
1219 }
1220 
1221 #define OVERFLOW_CHECK(offset, size, max_size)				\
1222 	do {								\
1223 		if (overflow(endp, (max_size), (offset), (size)))	\
1224 			return -EFAULT;					\
1225 	} while (0)
1226 
1227 #define OVERFLOW_CHECK_u64(offset) \
1228 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1229 
1230 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1231 			     struct perf_sample *data)
1232 {
1233 	u64 type = evsel->attr.sample_type;
1234 	bool swapped = evsel->needs_swap;
1235 	const u64 *array;
1236 	u16 max_size = event->header.size;
1237 	const void *endp = (void *)event + max_size;
1238 	u64 sz;
1239 
1240 	/*
1241 	 * used for cross-endian analysis. See git commit 65014ab3
1242 	 * for why this goofiness is needed.
1243 	 */
1244 	union u64_swap u;
1245 
1246 	memset(data, 0, sizeof(*data));
1247 	data->cpu = data->pid = data->tid = -1;
1248 	data->stream_id = data->id = data->time = -1ULL;
1249 	data->period = 1;
1250 	data->weight = 0;
1251 
1252 	if (event->header.type != PERF_RECORD_SAMPLE) {
1253 		if (!evsel->attr.sample_id_all)
1254 			return 0;
1255 		return perf_evsel__parse_id_sample(evsel, event, data);
1256 	}
1257 
1258 	array = event->sample.array;
1259 
1260 	/*
1261 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1262 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1263 	 * check the format does not go past the end of the event.
1264 	 */
1265 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1266 		return -EFAULT;
1267 
1268 	data->id = -1ULL;
1269 	if (type & PERF_SAMPLE_IDENTIFIER) {
1270 		data->id = *array;
1271 		array++;
1272 	}
1273 
1274 	if (type & PERF_SAMPLE_IP) {
1275 		data->ip = *array;
1276 		array++;
1277 	}
1278 
1279 	if (type & PERF_SAMPLE_TID) {
1280 		u.val64 = *array;
1281 		if (swapped) {
1282 			/* undo swap of u64, then swap on individual u32s */
1283 			u.val64 = bswap_64(u.val64);
1284 			u.val32[0] = bswap_32(u.val32[0]);
1285 			u.val32[1] = bswap_32(u.val32[1]);
1286 		}
1287 
1288 		data->pid = u.val32[0];
1289 		data->tid = u.val32[1];
1290 		array++;
1291 	}
1292 
1293 	if (type & PERF_SAMPLE_TIME) {
1294 		data->time = *array;
1295 		array++;
1296 	}
1297 
1298 	data->addr = 0;
1299 	if (type & PERF_SAMPLE_ADDR) {
1300 		data->addr = *array;
1301 		array++;
1302 	}
1303 
1304 	if (type & PERF_SAMPLE_ID) {
1305 		data->id = *array;
1306 		array++;
1307 	}
1308 
1309 	if (type & PERF_SAMPLE_STREAM_ID) {
1310 		data->stream_id = *array;
1311 		array++;
1312 	}
1313 
1314 	if (type & PERF_SAMPLE_CPU) {
1315 
1316 		u.val64 = *array;
1317 		if (swapped) {
1318 			/* undo swap of u64, then swap on individual u32s */
1319 			u.val64 = bswap_64(u.val64);
1320 			u.val32[0] = bswap_32(u.val32[0]);
1321 		}
1322 
1323 		data->cpu = u.val32[0];
1324 		array++;
1325 	}
1326 
1327 	if (type & PERF_SAMPLE_PERIOD) {
1328 		data->period = *array;
1329 		array++;
1330 	}
1331 
1332 	if (type & PERF_SAMPLE_READ) {
1333 		u64 read_format = evsel->attr.read_format;
1334 
1335 		OVERFLOW_CHECK_u64(array);
1336 		if (read_format & PERF_FORMAT_GROUP)
1337 			data->read.group.nr = *array;
1338 		else
1339 			data->read.one.value = *array;
1340 
1341 		array++;
1342 
1343 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1344 			OVERFLOW_CHECK_u64(array);
1345 			data->read.time_enabled = *array;
1346 			array++;
1347 		}
1348 
1349 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1350 			OVERFLOW_CHECK_u64(array);
1351 			data->read.time_running = *array;
1352 			array++;
1353 		}
1354 
1355 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1356 		if (read_format & PERF_FORMAT_GROUP) {
1357 			const u64 max_group_nr = UINT64_MAX /
1358 					sizeof(struct sample_read_value);
1359 
1360 			if (data->read.group.nr > max_group_nr)
1361 				return -EFAULT;
1362 			sz = data->read.group.nr *
1363 			     sizeof(struct sample_read_value);
1364 			OVERFLOW_CHECK(array, sz, max_size);
1365 			data->read.group.values =
1366 					(struct sample_read_value *)array;
1367 			array = (void *)array + sz;
1368 		} else {
1369 			OVERFLOW_CHECK_u64(array);
1370 			data->read.one.id = *array;
1371 			array++;
1372 		}
1373 	}
1374 
1375 	if (type & PERF_SAMPLE_CALLCHAIN) {
1376 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1377 
1378 		OVERFLOW_CHECK_u64(array);
1379 		data->callchain = (struct ip_callchain *)array++;
1380 		if (data->callchain->nr > max_callchain_nr)
1381 			return -EFAULT;
1382 		sz = data->callchain->nr * sizeof(u64);
1383 		OVERFLOW_CHECK(array, sz, max_size);
1384 		array = (void *)array + sz;
1385 	}
1386 
1387 	if (type & PERF_SAMPLE_RAW) {
1388 		OVERFLOW_CHECK_u64(array);
1389 		u.val64 = *array;
1390 		if (WARN_ONCE(swapped,
1391 			      "Endianness of raw data not corrected!\n")) {
1392 			/* undo swap of u64, then swap on individual u32s */
1393 			u.val64 = bswap_64(u.val64);
1394 			u.val32[0] = bswap_32(u.val32[0]);
1395 			u.val32[1] = bswap_32(u.val32[1]);
1396 		}
1397 		data->raw_size = u.val32[0];
1398 		array = (void *)array + sizeof(u32);
1399 
1400 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1401 		data->raw_data = (void *)array;
1402 		array = (void *)array + data->raw_size;
1403 	}
1404 
1405 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1406 		const u64 max_branch_nr = UINT64_MAX /
1407 					  sizeof(struct branch_entry);
1408 
1409 		OVERFLOW_CHECK_u64(array);
1410 		data->branch_stack = (struct branch_stack *)array++;
1411 
1412 		if (data->branch_stack->nr > max_branch_nr)
1413 			return -EFAULT;
1414 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1415 		OVERFLOW_CHECK(array, sz, max_size);
1416 		array = (void *)array + sz;
1417 	}
1418 
1419 	if (type & PERF_SAMPLE_REGS_USER) {
1420 		OVERFLOW_CHECK_u64(array);
1421 		data->user_regs.abi = *array;
1422 		array++;
1423 
1424 		if (data->user_regs.abi) {
1425 			u64 regs_user = evsel->attr.sample_regs_user;
1426 
1427 			sz = hweight_long(regs_user) * sizeof(u64);
1428 			OVERFLOW_CHECK(array, sz, max_size);
1429 			data->user_regs.regs = (u64 *)array;
1430 			array = (void *)array + sz;
1431 		}
1432 	}
1433 
1434 	if (type & PERF_SAMPLE_STACK_USER) {
1435 		OVERFLOW_CHECK_u64(array);
1436 		sz = *array++;
1437 
1438 		data->user_stack.offset = ((char *)(array - 1)
1439 					  - (char *) event);
1440 
1441 		if (!sz) {
1442 			data->user_stack.size = 0;
1443 		} else {
1444 			OVERFLOW_CHECK(array, sz, max_size);
1445 			data->user_stack.data = (char *)array;
1446 			array = (void *)array + sz;
1447 			OVERFLOW_CHECK_u64(array);
1448 			data->user_stack.size = *array++;
1449 		}
1450 	}
1451 
1452 	data->weight = 0;
1453 	if (type & PERF_SAMPLE_WEIGHT) {
1454 		OVERFLOW_CHECK_u64(array);
1455 		data->weight = *array;
1456 		array++;
1457 	}
1458 
1459 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1460 	if (type & PERF_SAMPLE_DATA_SRC) {
1461 		OVERFLOW_CHECK_u64(array);
1462 		data->data_src = *array;
1463 		array++;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1470 				     u64 sample_regs_user, u64 read_format)
1471 {
1472 	size_t sz, result = sizeof(struct sample_event);
1473 
1474 	if (type & PERF_SAMPLE_IDENTIFIER)
1475 		result += sizeof(u64);
1476 
1477 	if (type & PERF_SAMPLE_IP)
1478 		result += sizeof(u64);
1479 
1480 	if (type & PERF_SAMPLE_TID)
1481 		result += sizeof(u64);
1482 
1483 	if (type & PERF_SAMPLE_TIME)
1484 		result += sizeof(u64);
1485 
1486 	if (type & PERF_SAMPLE_ADDR)
1487 		result += sizeof(u64);
1488 
1489 	if (type & PERF_SAMPLE_ID)
1490 		result += sizeof(u64);
1491 
1492 	if (type & PERF_SAMPLE_STREAM_ID)
1493 		result += sizeof(u64);
1494 
1495 	if (type & PERF_SAMPLE_CPU)
1496 		result += sizeof(u64);
1497 
1498 	if (type & PERF_SAMPLE_PERIOD)
1499 		result += sizeof(u64);
1500 
1501 	if (type & PERF_SAMPLE_READ) {
1502 		result += sizeof(u64);
1503 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1504 			result += sizeof(u64);
1505 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1506 			result += sizeof(u64);
1507 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1508 		if (read_format & PERF_FORMAT_GROUP) {
1509 			sz = sample->read.group.nr *
1510 			     sizeof(struct sample_read_value);
1511 			result += sz;
1512 		} else {
1513 			result += sizeof(u64);
1514 		}
1515 	}
1516 
1517 	if (type & PERF_SAMPLE_CALLCHAIN) {
1518 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1519 		result += sz;
1520 	}
1521 
1522 	if (type & PERF_SAMPLE_RAW) {
1523 		result += sizeof(u32);
1524 		result += sample->raw_size;
1525 	}
1526 
1527 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1528 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1529 		sz += sizeof(u64);
1530 		result += sz;
1531 	}
1532 
1533 	if (type & PERF_SAMPLE_REGS_USER) {
1534 		if (sample->user_regs.abi) {
1535 			result += sizeof(u64);
1536 			sz = hweight_long(sample_regs_user) * sizeof(u64);
1537 			result += sz;
1538 		} else {
1539 			result += sizeof(u64);
1540 		}
1541 	}
1542 
1543 	if (type & PERF_SAMPLE_STACK_USER) {
1544 		sz = sample->user_stack.size;
1545 		result += sizeof(u64);
1546 		if (sz) {
1547 			result += sz;
1548 			result += sizeof(u64);
1549 		}
1550 	}
1551 
1552 	if (type & PERF_SAMPLE_WEIGHT)
1553 		result += sizeof(u64);
1554 
1555 	if (type & PERF_SAMPLE_DATA_SRC)
1556 		result += sizeof(u64);
1557 
1558 	return result;
1559 }
1560 
1561 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1562 				  u64 sample_regs_user, u64 read_format,
1563 				  const struct perf_sample *sample,
1564 				  bool swapped)
1565 {
1566 	u64 *array;
1567 	size_t sz;
1568 	/*
1569 	 * used for cross-endian analysis. See git commit 65014ab3
1570 	 * for why this goofiness is needed.
1571 	 */
1572 	union u64_swap u;
1573 
1574 	array = event->sample.array;
1575 
1576 	if (type & PERF_SAMPLE_IDENTIFIER) {
1577 		*array = sample->id;
1578 		array++;
1579 	}
1580 
1581 	if (type & PERF_SAMPLE_IP) {
1582 		*array = sample->ip;
1583 		array++;
1584 	}
1585 
1586 	if (type & PERF_SAMPLE_TID) {
1587 		u.val32[0] = sample->pid;
1588 		u.val32[1] = sample->tid;
1589 		if (swapped) {
1590 			/*
1591 			 * Inverse of what is done in perf_evsel__parse_sample
1592 			 */
1593 			u.val32[0] = bswap_32(u.val32[0]);
1594 			u.val32[1] = bswap_32(u.val32[1]);
1595 			u.val64 = bswap_64(u.val64);
1596 		}
1597 
1598 		*array = u.val64;
1599 		array++;
1600 	}
1601 
1602 	if (type & PERF_SAMPLE_TIME) {
1603 		*array = sample->time;
1604 		array++;
1605 	}
1606 
1607 	if (type & PERF_SAMPLE_ADDR) {
1608 		*array = sample->addr;
1609 		array++;
1610 	}
1611 
1612 	if (type & PERF_SAMPLE_ID) {
1613 		*array = sample->id;
1614 		array++;
1615 	}
1616 
1617 	if (type & PERF_SAMPLE_STREAM_ID) {
1618 		*array = sample->stream_id;
1619 		array++;
1620 	}
1621 
1622 	if (type & PERF_SAMPLE_CPU) {
1623 		u.val32[0] = sample->cpu;
1624 		if (swapped) {
1625 			/*
1626 			 * Inverse of what is done in perf_evsel__parse_sample
1627 			 */
1628 			u.val32[0] = bswap_32(u.val32[0]);
1629 			u.val64 = bswap_64(u.val64);
1630 		}
1631 		*array = u.val64;
1632 		array++;
1633 	}
1634 
1635 	if (type & PERF_SAMPLE_PERIOD) {
1636 		*array = sample->period;
1637 		array++;
1638 	}
1639 
1640 	if (type & PERF_SAMPLE_READ) {
1641 		if (read_format & PERF_FORMAT_GROUP)
1642 			*array = sample->read.group.nr;
1643 		else
1644 			*array = sample->read.one.value;
1645 		array++;
1646 
1647 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1648 			*array = sample->read.time_enabled;
1649 			array++;
1650 		}
1651 
1652 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1653 			*array = sample->read.time_running;
1654 			array++;
1655 		}
1656 
1657 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1658 		if (read_format & PERF_FORMAT_GROUP) {
1659 			sz = sample->read.group.nr *
1660 			     sizeof(struct sample_read_value);
1661 			memcpy(array, sample->read.group.values, sz);
1662 			array = (void *)array + sz;
1663 		} else {
1664 			*array = sample->read.one.id;
1665 			array++;
1666 		}
1667 	}
1668 
1669 	if (type & PERF_SAMPLE_CALLCHAIN) {
1670 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1671 		memcpy(array, sample->callchain, sz);
1672 		array = (void *)array + sz;
1673 	}
1674 
1675 	if (type & PERF_SAMPLE_RAW) {
1676 		u.val32[0] = sample->raw_size;
1677 		if (WARN_ONCE(swapped,
1678 			      "Endianness of raw data not corrected!\n")) {
1679 			/*
1680 			 * Inverse of what is done in perf_evsel__parse_sample
1681 			 */
1682 			u.val32[0] = bswap_32(u.val32[0]);
1683 			u.val32[1] = bswap_32(u.val32[1]);
1684 			u.val64 = bswap_64(u.val64);
1685 		}
1686 		*array = u.val64;
1687 		array = (void *)array + sizeof(u32);
1688 
1689 		memcpy(array, sample->raw_data, sample->raw_size);
1690 		array = (void *)array + sample->raw_size;
1691 	}
1692 
1693 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1694 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1695 		sz += sizeof(u64);
1696 		memcpy(array, sample->branch_stack, sz);
1697 		array = (void *)array + sz;
1698 	}
1699 
1700 	if (type & PERF_SAMPLE_REGS_USER) {
1701 		if (sample->user_regs.abi) {
1702 			*array++ = sample->user_regs.abi;
1703 			sz = hweight_long(sample_regs_user) * sizeof(u64);
1704 			memcpy(array, sample->user_regs.regs, sz);
1705 			array = (void *)array + sz;
1706 		} else {
1707 			*array++ = 0;
1708 		}
1709 	}
1710 
1711 	if (type & PERF_SAMPLE_STACK_USER) {
1712 		sz = sample->user_stack.size;
1713 		*array++ = sz;
1714 		if (sz) {
1715 			memcpy(array, sample->user_stack.data, sz);
1716 			array = (void *)array + sz;
1717 			*array++ = sz;
1718 		}
1719 	}
1720 
1721 	if (type & PERF_SAMPLE_WEIGHT) {
1722 		*array = sample->weight;
1723 		array++;
1724 	}
1725 
1726 	if (type & PERF_SAMPLE_DATA_SRC) {
1727 		*array = sample->data_src;
1728 		array++;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1735 {
1736 	return pevent_find_field(evsel->tp_format, name);
1737 }
1738 
1739 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1740 			 const char *name)
1741 {
1742 	struct format_field *field = perf_evsel__field(evsel, name);
1743 	int offset;
1744 
1745 	if (!field)
1746 		return NULL;
1747 
1748 	offset = field->offset;
1749 
1750 	if (field->flags & FIELD_IS_DYNAMIC) {
1751 		offset = *(int *)(sample->raw_data + field->offset);
1752 		offset &= 0xffff;
1753 	}
1754 
1755 	return sample->raw_data + offset;
1756 }
1757 
1758 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1759 		       const char *name)
1760 {
1761 	struct format_field *field = perf_evsel__field(evsel, name);
1762 	void *ptr;
1763 	u64 value;
1764 
1765 	if (!field)
1766 		return 0;
1767 
1768 	ptr = sample->raw_data + field->offset;
1769 
1770 	switch (field->size) {
1771 	case 1:
1772 		return *(u8 *)ptr;
1773 	case 2:
1774 		value = *(u16 *)ptr;
1775 		break;
1776 	case 4:
1777 		value = *(u32 *)ptr;
1778 		break;
1779 	case 8:
1780 		value = *(u64 *)ptr;
1781 		break;
1782 	default:
1783 		return 0;
1784 	}
1785 
1786 	if (!evsel->needs_swap)
1787 		return value;
1788 
1789 	switch (field->size) {
1790 	case 2:
1791 		return bswap_16(value);
1792 	case 4:
1793 		return bswap_32(value);
1794 	case 8:
1795 		return bswap_64(value);
1796 	default:
1797 		return 0;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1804 {
1805 	va_list args;
1806 	int ret = 0;
1807 
1808 	if (!*first) {
1809 		ret += fprintf(fp, ",");
1810 	} else {
1811 		ret += fprintf(fp, ":");
1812 		*first = false;
1813 	}
1814 
1815 	va_start(args, fmt);
1816 	ret += vfprintf(fp, fmt, args);
1817 	va_end(args);
1818 	return ret;
1819 }
1820 
1821 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1822 {
1823 	if (value == 0)
1824 		return 0;
1825 
1826 	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1827 }
1828 
1829 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1830 
1831 struct bit_names {
1832 	int bit;
1833 	const char *name;
1834 };
1835 
1836 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1837 			 struct bit_names *bits, bool *first)
1838 {
1839 	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1840 	bool first_bit = true;
1841 
1842 	do {
1843 		if (value & bits[i].bit) {
1844 			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1845 			first_bit = false;
1846 		}
1847 	} while (bits[++i].name != NULL);
1848 
1849 	return printed;
1850 }
1851 
1852 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1853 {
1854 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1855 	struct bit_names bits[] = {
1856 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1857 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1858 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1859 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1860 		bit_name(IDENTIFIER),
1861 		{ .name = NULL, }
1862 	};
1863 #undef bit_name
1864 	return bits__fprintf(fp, "sample_type", value, bits, first);
1865 }
1866 
1867 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1868 {
1869 #define bit_name(n) { PERF_FORMAT_##n, #n }
1870 	struct bit_names bits[] = {
1871 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1872 		bit_name(ID), bit_name(GROUP),
1873 		{ .name = NULL, }
1874 	};
1875 #undef bit_name
1876 	return bits__fprintf(fp, "read_format", value, bits, first);
1877 }
1878 
1879 int perf_evsel__fprintf(struct perf_evsel *evsel,
1880 			struct perf_attr_details *details, FILE *fp)
1881 {
1882 	bool first = true;
1883 	int printed = 0;
1884 
1885 	if (details->event_group) {
1886 		struct perf_evsel *pos;
1887 
1888 		if (!perf_evsel__is_group_leader(evsel))
1889 			return 0;
1890 
1891 		if (evsel->nr_members > 1)
1892 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1893 
1894 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1895 		for_each_group_member(pos, evsel)
1896 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1897 
1898 		if (evsel->nr_members > 1)
1899 			printed += fprintf(fp, "}");
1900 		goto out;
1901 	}
1902 
1903 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1904 
1905 	if (details->verbose || details->freq) {
1906 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1907 					 (u64)evsel->attr.sample_freq);
1908 	}
1909 
1910 	if (details->verbose) {
1911 		if_print(type);
1912 		if_print(config);
1913 		if_print(config1);
1914 		if_print(config2);
1915 		if_print(size);
1916 		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1917 		if (evsel->attr.read_format)
1918 			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1919 		if_print(disabled);
1920 		if_print(inherit);
1921 		if_print(pinned);
1922 		if_print(exclusive);
1923 		if_print(exclude_user);
1924 		if_print(exclude_kernel);
1925 		if_print(exclude_hv);
1926 		if_print(exclude_idle);
1927 		if_print(mmap);
1928 		if_print(comm);
1929 		if_print(freq);
1930 		if_print(inherit_stat);
1931 		if_print(enable_on_exec);
1932 		if_print(task);
1933 		if_print(watermark);
1934 		if_print(precise_ip);
1935 		if_print(mmap_data);
1936 		if_print(sample_id_all);
1937 		if_print(exclude_host);
1938 		if_print(exclude_guest);
1939 		if_print(__reserved_1);
1940 		if_print(wakeup_events);
1941 		if_print(bp_type);
1942 		if_print(branch_sample_type);
1943 	}
1944 out:
1945 	fputc('\n', fp);
1946 	return ++printed;
1947 }
1948 
1949 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1950 			  char *msg, size_t msgsize)
1951 {
1952 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1953 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
1954 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1955 		/*
1956 		 * If it's cycles then fall back to hrtimer based
1957 		 * cpu-clock-tick sw counter, which is always available even if
1958 		 * no PMU support.
1959 		 *
1960 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1961 		 * b0a873e).
1962 		 */
1963 		scnprintf(msg, msgsize, "%s",
1964 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1965 
1966 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
1967 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1968 
1969 		free(evsel->name);
1970 		evsel->name = NULL;
1971 		return true;
1972 	}
1973 
1974 	return false;
1975 }
1976 
1977 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1978 			      struct perf_target *target,
1979 			      int err, char *msg, size_t size)
1980 {
1981 	switch (err) {
1982 	case EPERM:
1983 	case EACCES:
1984 		return scnprintf(msg, size,
1985 		 "You may not have permission to collect %sstats.\n"
1986 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1987 		 " -1 - Not paranoid at all\n"
1988 		 "  0 - Disallow raw tracepoint access for unpriv\n"
1989 		 "  1 - Disallow cpu events for unpriv\n"
1990 		 "  2 - Disallow kernel profiling for unpriv",
1991 				 target->system_wide ? "system-wide " : "");
1992 	case ENOENT:
1993 		return scnprintf(msg, size, "The %s event is not supported.",
1994 				 perf_evsel__name(evsel));
1995 	case EMFILE:
1996 		return scnprintf(msg, size, "%s",
1997 			 "Too many events are opened.\n"
1998 			 "Try again after reducing the number of events.");
1999 	case ENODEV:
2000 		if (target->cpu_list)
2001 			return scnprintf(msg, size, "%s",
2002 	 "No such device - did you specify an out-of-range profile CPU?\n");
2003 		break;
2004 	case EOPNOTSUPP:
2005 		if (evsel->attr.precise_ip)
2006 			return scnprintf(msg, size, "%s",
2007 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2008 #if defined(__i386__) || defined(__x86_64__)
2009 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2010 			return scnprintf(msg, size, "%s",
2011 	"No hardware sampling interrupt available.\n"
2012 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2013 #endif
2014 		break;
2015 	default:
2016 		break;
2017 	}
2018 
2019 	return scnprintf(msg, size,
2020 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2021 	"/bin/dmesg may provide additional information.\n"
2022 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2023 			 err, strerror(err), perf_evsel__name(evsel));
2024 }
2025