xref: /linux/tools/perf/util/evsel.c (revision 42fc2e9ef9603a7948aaa4ffd8dfb94b30294ad8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <perf/evsel.h>
26 #include "asm/bug.h"
27 #include "callchain.h"
28 #include "cgroup.h"
29 #include "event.h"
30 #include "evsel.h"
31 #include "evlist.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "string2.h"
40 #include "memswap.h"
41 #include "util/parse-branch-options.h"
42 
43 #include <linux/ctype.h>
44 
45 struct perf_missing_features perf_missing_features;
46 
47 static clockid_t clockid;
48 
49 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
50 {
51 	return 0;
52 }
53 
54 void __weak test_attr__ready(void) { }
55 
56 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
57 {
58 }
59 
60 static struct {
61 	size_t	size;
62 	int	(*init)(struct evsel *evsel);
63 	void	(*fini)(struct evsel *evsel);
64 } perf_evsel__object = {
65 	.size = sizeof(struct evsel),
66 	.init = perf_evsel__no_extra_init,
67 	.fini = perf_evsel__no_extra_fini,
68 };
69 
70 int perf_evsel__object_config(size_t object_size,
71 			      int (*init)(struct evsel *evsel),
72 			      void (*fini)(struct evsel *evsel))
73 {
74 
75 	if (object_size == 0)
76 		goto set_methods;
77 
78 	if (perf_evsel__object.size > object_size)
79 		return -EINVAL;
80 
81 	perf_evsel__object.size = object_size;
82 
83 set_methods:
84 	if (init != NULL)
85 		perf_evsel__object.init = init;
86 
87 	if (fini != NULL)
88 		perf_evsel__object.fini = fini;
89 
90 	return 0;
91 }
92 
93 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
94 
95 int __perf_evsel__sample_size(u64 sample_type)
96 {
97 	u64 mask = sample_type & PERF_SAMPLE_MASK;
98 	int size = 0;
99 	int i;
100 
101 	for (i = 0; i < 64; i++) {
102 		if (mask & (1ULL << i))
103 			size++;
104 	}
105 
106 	size *= sizeof(u64);
107 
108 	return size;
109 }
110 
111 /**
112  * __perf_evsel__calc_id_pos - calculate id_pos.
113  * @sample_type: sample type
114  *
115  * This function returns the position of the event id (PERF_SAMPLE_ID or
116  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
117  * sample_event.
118  */
119 static int __perf_evsel__calc_id_pos(u64 sample_type)
120 {
121 	int idx = 0;
122 
123 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
124 		return 0;
125 
126 	if (!(sample_type & PERF_SAMPLE_ID))
127 		return -1;
128 
129 	if (sample_type & PERF_SAMPLE_IP)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_TID)
133 		idx += 1;
134 
135 	if (sample_type & PERF_SAMPLE_TIME)
136 		idx += 1;
137 
138 	if (sample_type & PERF_SAMPLE_ADDR)
139 		idx += 1;
140 
141 	return idx;
142 }
143 
144 /**
145  * __perf_evsel__calc_is_pos - calculate is_pos.
146  * @sample_type: sample type
147  *
148  * This function returns the position (counting backwards) of the event id
149  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
150  * sample_id_all is used there is an id sample appended to non-sample events.
151  */
152 static int __perf_evsel__calc_is_pos(u64 sample_type)
153 {
154 	int idx = 1;
155 
156 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
157 		return 1;
158 
159 	if (!(sample_type & PERF_SAMPLE_ID))
160 		return -1;
161 
162 	if (sample_type & PERF_SAMPLE_CPU)
163 		idx += 1;
164 
165 	if (sample_type & PERF_SAMPLE_STREAM_ID)
166 		idx += 1;
167 
168 	return idx;
169 }
170 
171 void perf_evsel__calc_id_pos(struct evsel *evsel)
172 {
173 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
174 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
175 }
176 
177 void __perf_evsel__set_sample_bit(struct evsel *evsel,
178 				  enum perf_event_sample_format bit)
179 {
180 	if (!(evsel->core.attr.sample_type & bit)) {
181 		evsel->core.attr.sample_type |= bit;
182 		evsel->sample_size += sizeof(u64);
183 		perf_evsel__calc_id_pos(evsel);
184 	}
185 }
186 
187 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
188 				    enum perf_event_sample_format bit)
189 {
190 	if (evsel->core.attr.sample_type & bit) {
191 		evsel->core.attr.sample_type &= ~bit;
192 		evsel->sample_size -= sizeof(u64);
193 		perf_evsel__calc_id_pos(evsel);
194 	}
195 }
196 
197 void perf_evsel__set_sample_id(struct evsel *evsel,
198 			       bool can_sample_identifier)
199 {
200 	if (can_sample_identifier) {
201 		perf_evsel__reset_sample_bit(evsel, ID);
202 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
203 	} else {
204 		perf_evsel__set_sample_bit(evsel, ID);
205 	}
206 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
207 }
208 
209 /**
210  * perf_evsel__is_function_event - Return whether given evsel is a function
211  * trace event
212  *
213  * @evsel - evsel selector to be tested
214  *
215  * Return %true if event is function trace event
216  */
217 bool perf_evsel__is_function_event(struct evsel *evsel)
218 {
219 #define FUNCTION_EVENT "ftrace:function"
220 
221 	return evsel->name &&
222 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
223 
224 #undef FUNCTION_EVENT
225 }
226 
227 void evsel__init(struct evsel *evsel,
228 		 struct perf_event_attr *attr, int idx)
229 {
230 	perf_evsel__init(&evsel->core, attr);
231 	evsel->idx	   = idx;
232 	evsel->tracking	   = !idx;
233 	evsel->leader	   = evsel;
234 	evsel->unit	   = "";
235 	evsel->scale	   = 1.0;
236 	evsel->max_events  = ULONG_MAX;
237 	evsel->evlist	   = NULL;
238 	evsel->bpf_obj	   = NULL;
239 	evsel->bpf_fd	   = -1;
240 	INIT_LIST_HEAD(&evsel->config_terms);
241 	perf_evsel__object.init(evsel);
242 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243 	perf_evsel__calc_id_pos(evsel);
244 	evsel->cmdline_group_boundary = false;
245 	evsel->metric_expr   = NULL;
246 	evsel->metric_name   = NULL;
247 	evsel->metric_events = NULL;
248 	evsel->collect_stat  = false;
249 	evsel->pmu_name      = NULL;
250 }
251 
252 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
253 {
254 	struct evsel *evsel = zalloc(perf_evsel__object.size);
255 
256 	if (!evsel)
257 		return NULL;
258 	evsel__init(evsel, attr, idx);
259 
260 	if (perf_evsel__is_bpf_output(evsel)) {
261 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
262 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
263 		evsel->core.attr.sample_period = 1;
264 	}
265 
266 	if (perf_evsel__is_clock(evsel)) {
267 		/*
268 		 * The evsel->unit points to static alias->unit
269 		 * so it's ok to use static string in here.
270 		 */
271 		static const char *unit = "msec";
272 
273 		evsel->unit = unit;
274 		evsel->scale = 1e-6;
275 	}
276 
277 	return evsel;
278 }
279 
280 static bool perf_event_can_profile_kernel(void)
281 {
282 	return geteuid() == 0 || perf_event_paranoid() == -1;
283 }
284 
285 struct evsel *perf_evsel__new_cycles(bool precise)
286 {
287 	struct perf_event_attr attr = {
288 		.type	= PERF_TYPE_HARDWARE,
289 		.config	= PERF_COUNT_HW_CPU_CYCLES,
290 		.exclude_kernel	= !perf_event_can_profile_kernel(),
291 	};
292 	struct evsel *evsel;
293 
294 	event_attr_init(&attr);
295 
296 	if (!precise)
297 		goto new_event;
298 
299 	/*
300 	 * Now let the usual logic to set up the perf_event_attr defaults
301 	 * to kick in when we return and before perf_evsel__open() is called.
302 	 */
303 new_event:
304 	evsel = evsel__new(&attr);
305 	if (evsel == NULL)
306 		goto out;
307 
308 	evsel->precise_max = true;
309 
310 	/* use asprintf() because free(evsel) assumes name is allocated */
311 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
312 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
313 		     attr.exclude_kernel ? "u" : "",
314 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
315 		goto error_free;
316 out:
317 	return evsel;
318 error_free:
319 	evsel__delete(evsel);
320 	evsel = NULL;
321 	goto out;
322 }
323 
324 /*
325  * Returns pointer with encoded error via <linux/err.h> interface.
326  */
327 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
328 {
329 	struct evsel *evsel = zalloc(perf_evsel__object.size);
330 	int err = -ENOMEM;
331 
332 	if (evsel == NULL) {
333 		goto out_err;
334 	} else {
335 		struct perf_event_attr attr = {
336 			.type	       = PERF_TYPE_TRACEPOINT,
337 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
338 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
339 		};
340 
341 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
342 			goto out_free;
343 
344 		evsel->tp_format = trace_event__tp_format(sys, name);
345 		if (IS_ERR(evsel->tp_format)) {
346 			err = PTR_ERR(evsel->tp_format);
347 			goto out_free;
348 		}
349 
350 		event_attr_init(&attr);
351 		attr.config = evsel->tp_format->id;
352 		attr.sample_period = 1;
353 		evsel__init(evsel, &attr, idx);
354 	}
355 
356 	return evsel;
357 
358 out_free:
359 	zfree(&evsel->name);
360 	free(evsel);
361 out_err:
362 	return ERR_PTR(err);
363 }
364 
365 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
366 	"cycles",
367 	"instructions",
368 	"cache-references",
369 	"cache-misses",
370 	"branches",
371 	"branch-misses",
372 	"bus-cycles",
373 	"stalled-cycles-frontend",
374 	"stalled-cycles-backend",
375 	"ref-cycles",
376 };
377 
378 static const char *__perf_evsel__hw_name(u64 config)
379 {
380 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
381 		return perf_evsel__hw_names[config];
382 
383 	return "unknown-hardware";
384 }
385 
386 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
387 {
388 	int colon = 0, r = 0;
389 	struct perf_event_attr *attr = &evsel->core.attr;
390 	bool exclude_guest_default = false;
391 
392 #define MOD_PRINT(context, mod)	do {					\
393 		if (!attr->exclude_##context) {				\
394 			if (!colon) colon = ++r;			\
395 			r += scnprintf(bf + r, size - r, "%c", mod);	\
396 		} } while(0)
397 
398 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
399 		MOD_PRINT(kernel, 'k');
400 		MOD_PRINT(user, 'u');
401 		MOD_PRINT(hv, 'h');
402 		exclude_guest_default = true;
403 	}
404 
405 	if (attr->precise_ip) {
406 		if (!colon)
407 			colon = ++r;
408 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
409 		exclude_guest_default = true;
410 	}
411 
412 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
413 		MOD_PRINT(host, 'H');
414 		MOD_PRINT(guest, 'G');
415 	}
416 #undef MOD_PRINT
417 	if (colon)
418 		bf[colon - 1] = ':';
419 	return r;
420 }
421 
422 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
423 {
424 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
425 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
426 }
427 
428 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
429 	"cpu-clock",
430 	"task-clock",
431 	"page-faults",
432 	"context-switches",
433 	"cpu-migrations",
434 	"minor-faults",
435 	"major-faults",
436 	"alignment-faults",
437 	"emulation-faults",
438 	"dummy",
439 };
440 
441 static const char *__perf_evsel__sw_name(u64 config)
442 {
443 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
444 		return perf_evsel__sw_names[config];
445 	return "unknown-software";
446 }
447 
448 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
449 {
450 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
451 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
452 }
453 
454 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
455 {
456 	int r;
457 
458 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
459 
460 	if (type & HW_BREAKPOINT_R)
461 		r += scnprintf(bf + r, size - r, "r");
462 
463 	if (type & HW_BREAKPOINT_W)
464 		r += scnprintf(bf + r, size - r, "w");
465 
466 	if (type & HW_BREAKPOINT_X)
467 		r += scnprintf(bf + r, size - r, "x");
468 
469 	return r;
470 }
471 
472 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
473 {
474 	struct perf_event_attr *attr = &evsel->core.attr;
475 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
476 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
477 }
478 
479 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
480 				[PERF_EVSEL__MAX_ALIASES] = {
481  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
482  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
483  { "LLC",	"L2",							},
484  { "dTLB",	"d-tlb",	"Data-TLB",				},
485  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
486  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
487  { "node",								},
488 };
489 
490 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
491 				   [PERF_EVSEL__MAX_ALIASES] = {
492  { "load",	"loads",	"read",					},
493  { "store",	"stores",	"write",				},
494  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
495 };
496 
497 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
498 				       [PERF_EVSEL__MAX_ALIASES] = {
499  { "refs",	"Reference",	"ops",		"access",		},
500  { "misses",	"miss",							},
501 };
502 
503 #define C(x)		PERF_COUNT_HW_CACHE_##x
504 #define CACHE_READ	(1 << C(OP_READ))
505 #define CACHE_WRITE	(1 << C(OP_WRITE))
506 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
507 #define COP(x)		(1 << x)
508 
509 /*
510  * cache operartion stat
511  * L1I : Read and prefetch only
512  * ITLB and BPU : Read-only
513  */
514 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
515  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
517  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
519  [C(ITLB)]	= (CACHE_READ),
520  [C(BPU)]	= (CACHE_READ),
521  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522 };
523 
524 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
525 {
526 	if (perf_evsel__hw_cache_stat[type] & COP(op))
527 		return true;	/* valid */
528 	else
529 		return false;	/* invalid */
530 }
531 
532 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
533 					    char *bf, size_t size)
534 {
535 	if (result) {
536 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
537 				 perf_evsel__hw_cache_op[op][0],
538 				 perf_evsel__hw_cache_result[result][0]);
539 	}
540 
541 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
542 			 perf_evsel__hw_cache_op[op][1]);
543 }
544 
545 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
546 {
547 	u8 op, result, type = (config >>  0) & 0xff;
548 	const char *err = "unknown-ext-hardware-cache-type";
549 
550 	if (type >= PERF_COUNT_HW_CACHE_MAX)
551 		goto out_err;
552 
553 	op = (config >>  8) & 0xff;
554 	err = "unknown-ext-hardware-cache-op";
555 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
556 		goto out_err;
557 
558 	result = (config >> 16) & 0xff;
559 	err = "unknown-ext-hardware-cache-result";
560 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
561 		goto out_err;
562 
563 	err = "invalid-cache";
564 	if (!perf_evsel__is_cache_op_valid(type, op))
565 		goto out_err;
566 
567 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
568 out_err:
569 	return scnprintf(bf, size, "%s", err);
570 }
571 
572 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
573 {
574 	int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
575 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
576 }
577 
578 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
579 {
580 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
581 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
582 }
583 
584 static int perf_evsel__tool_name(char *bf, size_t size)
585 {
586 	int ret = scnprintf(bf, size, "duration_time");
587 	return ret;
588 }
589 
590 const char *perf_evsel__name(struct evsel *evsel)
591 {
592 	char bf[128];
593 
594 	if (!evsel)
595 		goto out_unknown;
596 
597 	if (evsel->name)
598 		return evsel->name;
599 
600 	switch (evsel->core.attr.type) {
601 	case PERF_TYPE_RAW:
602 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
603 		break;
604 
605 	case PERF_TYPE_HARDWARE:
606 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	case PERF_TYPE_HW_CACHE:
610 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
611 		break;
612 
613 	case PERF_TYPE_SOFTWARE:
614 		if (evsel->tool_event)
615 			perf_evsel__tool_name(bf, sizeof(bf));
616 		else
617 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
618 		break;
619 
620 	case PERF_TYPE_TRACEPOINT:
621 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
622 		break;
623 
624 	case PERF_TYPE_BREAKPOINT:
625 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
626 		break;
627 
628 	default:
629 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
630 			  evsel->core.attr.type);
631 		break;
632 	}
633 
634 	evsel->name = strdup(bf);
635 
636 	if (evsel->name)
637 		return evsel->name;
638 out_unknown:
639 	return "unknown";
640 }
641 
642 const char *perf_evsel__group_name(struct evsel *evsel)
643 {
644 	return evsel->group_name ?: "anon group";
645 }
646 
647 /*
648  * Returns the group details for the specified leader,
649  * with following rules.
650  *
651  *  For record -e '{cycles,instructions}'
652  *    'anon group { cycles:u, instructions:u }'
653  *
654  *  For record -e 'cycles,instructions' and report --group
655  *    'cycles:u, instructions:u'
656  */
657 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
658 {
659 	int ret = 0;
660 	struct evsel *pos;
661 	const char *group_name = perf_evsel__group_name(evsel);
662 
663 	if (!evsel->forced_leader)
664 		ret = scnprintf(buf, size, "%s { ", group_name);
665 
666 	ret += scnprintf(buf + ret, size - ret, "%s",
667 			 perf_evsel__name(evsel));
668 
669 	for_each_group_member(pos, evsel)
670 		ret += scnprintf(buf + ret, size - ret, ", %s",
671 				 perf_evsel__name(pos));
672 
673 	if (!evsel->forced_leader)
674 		ret += scnprintf(buf + ret, size - ret, " }");
675 
676 	return ret;
677 }
678 
679 static void __perf_evsel__config_callchain(struct evsel *evsel,
680 					   struct record_opts *opts,
681 					   struct callchain_param *param)
682 {
683 	bool function = perf_evsel__is_function_event(evsel);
684 	struct perf_event_attr *attr = &evsel->core.attr;
685 
686 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
687 
688 	attr->sample_max_stack = param->max_stack;
689 
690 	if (opts->kernel_callchains)
691 		attr->exclude_callchain_user = 1;
692 	if (opts->user_callchains)
693 		attr->exclude_callchain_kernel = 1;
694 	if (param->record_mode == CALLCHAIN_LBR) {
695 		if (!opts->branch_stack) {
696 			if (attr->exclude_user) {
697 				pr_warning("LBR callstack option is only available "
698 					   "to get user callchain information. "
699 					   "Falling back to framepointers.\n");
700 			} else {
701 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
702 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
703 							PERF_SAMPLE_BRANCH_CALL_STACK |
704 							PERF_SAMPLE_BRANCH_NO_CYCLES |
705 							PERF_SAMPLE_BRANCH_NO_FLAGS;
706 			}
707 		} else
708 			 pr_warning("Cannot use LBR callstack with branch stack. "
709 				    "Falling back to framepointers.\n");
710 	}
711 
712 	if (param->record_mode == CALLCHAIN_DWARF) {
713 		if (!function) {
714 			perf_evsel__set_sample_bit(evsel, REGS_USER);
715 			perf_evsel__set_sample_bit(evsel, STACK_USER);
716 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
717 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
718 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
719 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
720 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
721 			} else {
722 				attr->sample_regs_user |= PERF_REGS_MASK;
723 			}
724 			attr->sample_stack_user = param->dump_size;
725 			attr->exclude_callchain_user = 1;
726 		} else {
727 			pr_info("Cannot use DWARF unwind for function trace event,"
728 				" falling back to framepointers.\n");
729 		}
730 	}
731 
732 	if (function) {
733 		pr_info("Disabling user space callchains for function trace event.\n");
734 		attr->exclude_callchain_user = 1;
735 	}
736 }
737 
738 void perf_evsel__config_callchain(struct evsel *evsel,
739 				  struct record_opts *opts,
740 				  struct callchain_param *param)
741 {
742 	if (param->enabled)
743 		return __perf_evsel__config_callchain(evsel, opts, param);
744 }
745 
746 static void
747 perf_evsel__reset_callgraph(struct evsel *evsel,
748 			    struct callchain_param *param)
749 {
750 	struct perf_event_attr *attr = &evsel->core.attr;
751 
752 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
753 	if (param->record_mode == CALLCHAIN_LBR) {
754 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
755 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
756 					      PERF_SAMPLE_BRANCH_CALL_STACK);
757 	}
758 	if (param->record_mode == CALLCHAIN_DWARF) {
759 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
760 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
761 	}
762 }
763 
764 static void apply_config_terms(struct evsel *evsel,
765 			       struct record_opts *opts, bool track)
766 {
767 	struct perf_evsel_config_term *term;
768 	struct list_head *config_terms = &evsel->config_terms;
769 	struct perf_event_attr *attr = &evsel->core.attr;
770 	/* callgraph default */
771 	struct callchain_param param = {
772 		.record_mode = callchain_param.record_mode,
773 	};
774 	u32 dump_size = 0;
775 	int max_stack = 0;
776 	const char *callgraph_buf = NULL;
777 
778 	list_for_each_entry(term, config_terms, list) {
779 		switch (term->type) {
780 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
781 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
782 				attr->sample_period = term->val.period;
783 				attr->freq = 0;
784 				perf_evsel__reset_sample_bit(evsel, PERIOD);
785 			}
786 			break;
787 		case PERF_EVSEL__CONFIG_TERM_FREQ:
788 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
789 				attr->sample_freq = term->val.freq;
790 				attr->freq = 1;
791 				perf_evsel__set_sample_bit(evsel, PERIOD);
792 			}
793 			break;
794 		case PERF_EVSEL__CONFIG_TERM_TIME:
795 			if (term->val.time)
796 				perf_evsel__set_sample_bit(evsel, TIME);
797 			else
798 				perf_evsel__reset_sample_bit(evsel, TIME);
799 			break;
800 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
801 			callgraph_buf = term->val.callgraph;
802 			break;
803 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
804 			if (term->val.branch && strcmp(term->val.branch, "no")) {
805 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
806 				parse_branch_str(term->val.branch,
807 						 &attr->branch_sample_type);
808 			} else
809 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
810 			break;
811 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
812 			dump_size = term->val.stack_user;
813 			break;
814 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
815 			max_stack = term->val.max_stack;
816 			break;
817 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
818 			evsel->max_events = term->val.max_events;
819 			break;
820 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
821 			/*
822 			 * attr->inherit should has already been set by
823 			 * perf_evsel__config. If user explicitly set
824 			 * inherit using config terms, override global
825 			 * opt->no_inherit setting.
826 			 */
827 			attr->inherit = term->val.inherit ? 1 : 0;
828 			break;
829 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
830 			attr->write_backward = term->val.overwrite ? 1 : 0;
831 			break;
832 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
833 			break;
834 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
835 			break;
836 		case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT:
837 			attr->aux_output = term->val.aux_output ? 1 : 0;
838 			break;
839 		default:
840 			break;
841 		}
842 	}
843 
844 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
845 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
846 		bool sample_address = false;
847 
848 		if (max_stack) {
849 			param.max_stack = max_stack;
850 			if (callgraph_buf == NULL)
851 				callgraph_buf = "fp";
852 		}
853 
854 		/* parse callgraph parameters */
855 		if (callgraph_buf != NULL) {
856 			if (!strcmp(callgraph_buf, "no")) {
857 				param.enabled = false;
858 				param.record_mode = CALLCHAIN_NONE;
859 			} else {
860 				param.enabled = true;
861 				if (parse_callchain_record(callgraph_buf, &param)) {
862 					pr_err("per-event callgraph setting for %s failed. "
863 					       "Apply callgraph global setting for it\n",
864 					       evsel->name);
865 					return;
866 				}
867 				if (param.record_mode == CALLCHAIN_DWARF)
868 					sample_address = true;
869 			}
870 		}
871 		if (dump_size > 0) {
872 			dump_size = round_up(dump_size, sizeof(u64));
873 			param.dump_size = dump_size;
874 		}
875 
876 		/* If global callgraph set, clear it */
877 		if (callchain_param.enabled)
878 			perf_evsel__reset_callgraph(evsel, &callchain_param);
879 
880 		/* set perf-event callgraph */
881 		if (param.enabled) {
882 			if (sample_address) {
883 				perf_evsel__set_sample_bit(evsel, ADDR);
884 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
885 				evsel->core.attr.mmap_data = track;
886 			}
887 			perf_evsel__config_callchain(evsel, opts, &param);
888 		}
889 	}
890 }
891 
892 static bool is_dummy_event(struct evsel *evsel)
893 {
894 	return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
895 	       (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
896 }
897 
898 /*
899  * The enable_on_exec/disabled value strategy:
900  *
901  *  1) For any type of traced program:
902  *    - all independent events and group leaders are disabled
903  *    - all group members are enabled
904  *
905  *     Group members are ruled by group leaders. They need to
906  *     be enabled, because the group scheduling relies on that.
907  *
908  *  2) For traced programs executed by perf:
909  *     - all independent events and group leaders have
910  *       enable_on_exec set
911  *     - we don't specifically enable or disable any event during
912  *       the record command
913  *
914  *     Independent events and group leaders are initially disabled
915  *     and get enabled by exec. Group members are ruled by group
916  *     leaders as stated in 1).
917  *
918  *  3) For traced programs attached by perf (pid/tid):
919  *     - we specifically enable or disable all events during
920  *       the record command
921  *
922  *     When attaching events to already running traced we
923  *     enable/disable events specifically, as there's no
924  *     initial traced exec call.
925  */
926 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
927 			struct callchain_param *callchain)
928 {
929 	struct evsel *leader = evsel->leader;
930 	struct perf_event_attr *attr = &evsel->core.attr;
931 	int track = evsel->tracking;
932 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
933 
934 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
935 	attr->inherit	    = !opts->no_inherit;
936 	attr->write_backward = opts->overwrite ? 1 : 0;
937 
938 	perf_evsel__set_sample_bit(evsel, IP);
939 	perf_evsel__set_sample_bit(evsel, TID);
940 
941 	if (evsel->sample_read) {
942 		perf_evsel__set_sample_bit(evsel, READ);
943 
944 		/*
945 		 * We need ID even in case of single event, because
946 		 * PERF_SAMPLE_READ process ID specific data.
947 		 */
948 		perf_evsel__set_sample_id(evsel, false);
949 
950 		/*
951 		 * Apply group format only if we belong to group
952 		 * with more than one members.
953 		 */
954 		if (leader->core.nr_members > 1) {
955 			attr->read_format |= PERF_FORMAT_GROUP;
956 			attr->inherit = 0;
957 		}
958 	}
959 
960 	/*
961 	 * We default some events to have a default interval. But keep
962 	 * it a weak assumption overridable by the user.
963 	 */
964 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
965 				     opts->user_interval != ULLONG_MAX)) {
966 		if (opts->freq) {
967 			perf_evsel__set_sample_bit(evsel, PERIOD);
968 			attr->freq		= 1;
969 			attr->sample_freq	= opts->freq;
970 		} else {
971 			attr->sample_period = opts->default_interval;
972 		}
973 	}
974 
975 	/*
976 	 * Disable sampling for all group members other
977 	 * than leader in case leader 'leads' the sampling.
978 	 */
979 	if ((leader != evsel) && leader->sample_read) {
980 		attr->freq           = 0;
981 		attr->sample_freq    = 0;
982 		attr->sample_period  = 0;
983 		attr->write_backward = 0;
984 
985 		/*
986 		 * We don't get sample for slave events, we make them
987 		 * when delivering group leader sample. Set the slave
988 		 * event to follow the master sample_type to ease up
989 		 * report.
990 		 */
991 		attr->sample_type = leader->core.attr.sample_type;
992 	}
993 
994 	if (opts->no_samples)
995 		attr->sample_freq = 0;
996 
997 	if (opts->inherit_stat) {
998 		evsel->core.attr.read_format |=
999 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1000 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1001 			PERF_FORMAT_ID;
1002 		attr->inherit_stat = 1;
1003 	}
1004 
1005 	if (opts->sample_address) {
1006 		perf_evsel__set_sample_bit(evsel, ADDR);
1007 		attr->mmap_data = track;
1008 	}
1009 
1010 	/*
1011 	 * We don't allow user space callchains for  function trace
1012 	 * event, due to issues with page faults while tracing page
1013 	 * fault handler and its overall trickiness nature.
1014 	 */
1015 	if (perf_evsel__is_function_event(evsel))
1016 		evsel->core.attr.exclude_callchain_user = 1;
1017 
1018 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1019 		perf_evsel__config_callchain(evsel, opts, callchain);
1020 
1021 	if (opts->sample_intr_regs) {
1022 		attr->sample_regs_intr = opts->sample_intr_regs;
1023 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1024 	}
1025 
1026 	if (opts->sample_user_regs) {
1027 		attr->sample_regs_user |= opts->sample_user_regs;
1028 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1029 	}
1030 
1031 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1032 		perf_evsel__set_sample_bit(evsel, CPU);
1033 
1034 	/*
1035 	 * When the user explicitly disabled time don't force it here.
1036 	 */
1037 	if (opts->sample_time &&
1038 	    (!perf_missing_features.sample_id_all &&
1039 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1040 	     opts->sample_time_set)))
1041 		perf_evsel__set_sample_bit(evsel, TIME);
1042 
1043 	if (opts->raw_samples && !evsel->no_aux_samples) {
1044 		perf_evsel__set_sample_bit(evsel, TIME);
1045 		perf_evsel__set_sample_bit(evsel, RAW);
1046 		perf_evsel__set_sample_bit(evsel, CPU);
1047 	}
1048 
1049 	if (opts->sample_address)
1050 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1051 
1052 	if (opts->sample_phys_addr)
1053 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1054 
1055 	if (opts->no_buffering) {
1056 		attr->watermark = 0;
1057 		attr->wakeup_events = 1;
1058 	}
1059 	if (opts->branch_stack && !evsel->no_aux_samples) {
1060 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1061 		attr->branch_sample_type = opts->branch_stack;
1062 	}
1063 
1064 	if (opts->sample_weight)
1065 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1066 
1067 	attr->task  = track;
1068 	attr->mmap  = track;
1069 	attr->mmap2 = track && !perf_missing_features.mmap2;
1070 	attr->comm  = track;
1071 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1072 	attr->bpf_event = track && !opts->no_bpf_event &&
1073 		!perf_missing_features.bpf_event;
1074 
1075 	if (opts->record_namespaces)
1076 		attr->namespaces  = track;
1077 
1078 	if (opts->record_switch_events)
1079 		attr->context_switch = track;
1080 
1081 	if (opts->sample_transaction)
1082 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1083 
1084 	if (opts->running_time) {
1085 		evsel->core.attr.read_format |=
1086 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1087 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1088 	}
1089 
1090 	/*
1091 	 * XXX see the function comment above
1092 	 *
1093 	 * Disabling only independent events or group leaders,
1094 	 * keeping group members enabled.
1095 	 */
1096 	if (perf_evsel__is_group_leader(evsel))
1097 		attr->disabled = 1;
1098 
1099 	/*
1100 	 * Setting enable_on_exec for independent events and
1101 	 * group leaders for traced executed by perf.
1102 	 */
1103 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1104 		!opts->initial_delay)
1105 		attr->enable_on_exec = 1;
1106 
1107 	if (evsel->immediate) {
1108 		attr->disabled = 0;
1109 		attr->enable_on_exec = 0;
1110 	}
1111 
1112 	clockid = opts->clockid;
1113 	if (opts->use_clockid) {
1114 		attr->use_clockid = 1;
1115 		attr->clockid = opts->clockid;
1116 	}
1117 
1118 	if (evsel->precise_max)
1119 		attr->precise_ip = 3;
1120 
1121 	if (opts->all_user) {
1122 		attr->exclude_kernel = 1;
1123 		attr->exclude_user   = 0;
1124 	}
1125 
1126 	if (opts->all_kernel) {
1127 		attr->exclude_kernel = 0;
1128 		attr->exclude_user   = 1;
1129 	}
1130 
1131 	if (evsel->core.own_cpus || evsel->unit)
1132 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1133 
1134 	/*
1135 	 * Apply event specific term settings,
1136 	 * it overloads any global configuration.
1137 	 */
1138 	apply_config_terms(evsel, opts, track);
1139 
1140 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1141 
1142 	/* The --period option takes the precedence. */
1143 	if (opts->period_set) {
1144 		if (opts->period)
1145 			perf_evsel__set_sample_bit(evsel, PERIOD);
1146 		else
1147 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1148 	}
1149 
1150 	/*
1151 	 * For initial_delay, a dummy event is added implicitly.
1152 	 * The software event will trigger -EOPNOTSUPP error out,
1153 	 * if BRANCH_STACK bit is set.
1154 	 */
1155 	if (opts->initial_delay && is_dummy_event(evsel))
1156 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1157 }
1158 
1159 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1160 {
1161 	char *new_filter = strdup(filter);
1162 
1163 	if (new_filter != NULL) {
1164 		free(evsel->filter);
1165 		evsel->filter = new_filter;
1166 		return 0;
1167 	}
1168 
1169 	return -1;
1170 }
1171 
1172 static int perf_evsel__append_filter(struct evsel *evsel,
1173 				     const char *fmt, const char *filter)
1174 {
1175 	char *new_filter;
1176 
1177 	if (evsel->filter == NULL)
1178 		return perf_evsel__set_filter(evsel, filter);
1179 
1180 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1181 		free(evsel->filter);
1182 		evsel->filter = new_filter;
1183 		return 0;
1184 	}
1185 
1186 	return -1;
1187 }
1188 
1189 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1190 {
1191 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1192 }
1193 
1194 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1195 {
1196 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1197 }
1198 
1199 int evsel__enable(struct evsel *evsel)
1200 {
1201 	int err = perf_evsel__enable(&evsel->core);
1202 
1203 	if (!err)
1204 		evsel->disabled = false;
1205 
1206 	return err;
1207 }
1208 
1209 int evsel__disable(struct evsel *evsel)
1210 {
1211 	int err = perf_evsel__disable(&evsel->core);
1212 	/*
1213 	 * We mark it disabled here so that tools that disable a event can
1214 	 * ignore events after they disable it. I.e. the ring buffer may have
1215 	 * already a few more events queued up before the kernel got the stop
1216 	 * request.
1217 	 */
1218 	if (!err)
1219 		evsel->disabled = true;
1220 
1221 	return err;
1222 }
1223 
1224 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1225 {
1226 	if (ncpus == 0 || nthreads == 0)
1227 		return 0;
1228 
1229 	if (evsel->system_wide)
1230 		nthreads = 1;
1231 
1232 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1233 	if (evsel->sample_id == NULL)
1234 		return -ENOMEM;
1235 
1236 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1237 	if (evsel->id == NULL) {
1238 		xyarray__delete(evsel->sample_id);
1239 		evsel->sample_id = NULL;
1240 		return -ENOMEM;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static void perf_evsel__free_id(struct evsel *evsel)
1247 {
1248 	xyarray__delete(evsel->sample_id);
1249 	evsel->sample_id = NULL;
1250 	zfree(&evsel->id);
1251 	evsel->ids = 0;
1252 }
1253 
1254 static void perf_evsel__free_config_terms(struct evsel *evsel)
1255 {
1256 	struct perf_evsel_config_term *term, *h;
1257 
1258 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1259 		list_del_init(&term->list);
1260 		free(term);
1261 	}
1262 }
1263 
1264 void perf_evsel__exit(struct evsel *evsel)
1265 {
1266 	assert(list_empty(&evsel->core.node));
1267 	assert(evsel->evlist == NULL);
1268 	perf_evsel__free_counts(evsel);
1269 	perf_evsel__free_fd(&evsel->core);
1270 	perf_evsel__free_id(evsel);
1271 	perf_evsel__free_config_terms(evsel);
1272 	cgroup__put(evsel->cgrp);
1273 	perf_cpu_map__put(evsel->core.cpus);
1274 	perf_cpu_map__put(evsel->core.own_cpus);
1275 	perf_thread_map__put(evsel->core.threads);
1276 	zfree(&evsel->group_name);
1277 	zfree(&evsel->name);
1278 	perf_evsel__object.fini(evsel);
1279 }
1280 
1281 void evsel__delete(struct evsel *evsel)
1282 {
1283 	perf_evsel__exit(evsel);
1284 	free(evsel);
1285 }
1286 
1287 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1288 				struct perf_counts_values *count)
1289 {
1290 	struct perf_counts_values tmp;
1291 
1292 	if (!evsel->prev_raw_counts)
1293 		return;
1294 
1295 	if (cpu == -1) {
1296 		tmp = evsel->prev_raw_counts->aggr;
1297 		evsel->prev_raw_counts->aggr = *count;
1298 	} else {
1299 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1300 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1301 	}
1302 
1303 	count->val = count->val - tmp.val;
1304 	count->ena = count->ena - tmp.ena;
1305 	count->run = count->run - tmp.run;
1306 }
1307 
1308 void perf_counts_values__scale(struct perf_counts_values *count,
1309 			       bool scale, s8 *pscaled)
1310 {
1311 	s8 scaled = 0;
1312 
1313 	if (scale) {
1314 		if (count->run == 0) {
1315 			scaled = -1;
1316 			count->val = 0;
1317 		} else if (count->run < count->ena) {
1318 			scaled = 1;
1319 			count->val = (u64)((double) count->val * count->ena / count->run);
1320 		}
1321 	}
1322 
1323 	if (pscaled)
1324 		*pscaled = scaled;
1325 }
1326 
1327 static int
1328 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1329 {
1330 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1331 
1332 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1333 }
1334 
1335 static void
1336 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1337 		      u64 val, u64 ena, u64 run)
1338 {
1339 	struct perf_counts_values *count;
1340 
1341 	count = perf_counts(counter->counts, cpu, thread);
1342 
1343 	count->val    = val;
1344 	count->ena    = ena;
1345 	count->run    = run;
1346 
1347 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1348 }
1349 
1350 static int
1351 perf_evsel__process_group_data(struct evsel *leader,
1352 			       int cpu, int thread, u64 *data)
1353 {
1354 	u64 read_format = leader->core.attr.read_format;
1355 	struct sample_read_value *v;
1356 	u64 nr, ena = 0, run = 0, i;
1357 
1358 	nr = *data++;
1359 
1360 	if (nr != (u64) leader->core.nr_members)
1361 		return -EINVAL;
1362 
1363 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1364 		ena = *data++;
1365 
1366 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1367 		run = *data++;
1368 
1369 	v = (struct sample_read_value *) data;
1370 
1371 	perf_evsel__set_count(leader, cpu, thread,
1372 			      v[0].value, ena, run);
1373 
1374 	for (i = 1; i < nr; i++) {
1375 		struct evsel *counter;
1376 
1377 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1378 		if (!counter)
1379 			return -EINVAL;
1380 
1381 		perf_evsel__set_count(counter, cpu, thread,
1382 				      v[i].value, ena, run);
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int
1389 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1390 {
1391 	struct perf_stat_evsel *ps = leader->stats;
1392 	u64 read_format = leader->core.attr.read_format;
1393 	int size = perf_evsel__read_size(&leader->core);
1394 	u64 *data = ps->group_data;
1395 
1396 	if (!(read_format & PERF_FORMAT_ID))
1397 		return -EINVAL;
1398 
1399 	if (!perf_evsel__is_group_leader(leader))
1400 		return -EINVAL;
1401 
1402 	if (!data) {
1403 		data = zalloc(size);
1404 		if (!data)
1405 			return -ENOMEM;
1406 
1407 		ps->group_data = data;
1408 	}
1409 
1410 	if (FD(leader, cpu, thread) < 0)
1411 		return -EINVAL;
1412 
1413 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1414 		return -errno;
1415 
1416 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1417 }
1418 
1419 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1420 {
1421 	u64 read_format = evsel->core.attr.read_format;
1422 
1423 	if (read_format & PERF_FORMAT_GROUP)
1424 		return perf_evsel__read_group(evsel, cpu, thread);
1425 	else
1426 		return perf_evsel__read_one(evsel, cpu, thread);
1427 }
1428 
1429 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1430 			      int cpu, int thread, bool scale)
1431 {
1432 	struct perf_counts_values count;
1433 	size_t nv = scale ? 3 : 1;
1434 
1435 	if (FD(evsel, cpu, thread) < 0)
1436 		return -EINVAL;
1437 
1438 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1439 		return -ENOMEM;
1440 
1441 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1442 		return -errno;
1443 
1444 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1445 	perf_counts_values__scale(&count, scale, NULL);
1446 	*perf_counts(evsel->counts, cpu, thread) = count;
1447 	return 0;
1448 }
1449 
1450 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1451 {
1452 	struct evsel *leader = evsel->leader;
1453 	int fd;
1454 
1455 	if (perf_evsel__is_group_leader(evsel))
1456 		return -1;
1457 
1458 	/*
1459 	 * Leader must be already processed/open,
1460 	 * if not it's a bug.
1461 	 */
1462 	BUG_ON(!leader->core.fd);
1463 
1464 	fd = FD(leader, cpu, thread);
1465 	BUG_ON(fd == -1);
1466 
1467 	return fd;
1468 }
1469 
1470 struct bit_names {
1471 	int bit;
1472 	const char *name;
1473 };
1474 
1475 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1476 {
1477 	bool first_bit = true;
1478 	int i = 0;
1479 
1480 	do {
1481 		if (value & bits[i].bit) {
1482 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1483 			first_bit = false;
1484 		}
1485 	} while (bits[++i].name != NULL);
1486 }
1487 
1488 static void __p_sample_type(char *buf, size_t size, u64 value)
1489 {
1490 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1491 	struct bit_names bits[] = {
1492 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1493 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1494 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1495 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1496 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1497 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1498 		{ .name = NULL, }
1499 	};
1500 #undef bit_name
1501 	__p_bits(buf, size, value, bits);
1502 }
1503 
1504 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1505 {
1506 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1507 	struct bit_names bits[] = {
1508 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1509 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1510 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1511 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1512 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1513 		{ .name = NULL, }
1514 	};
1515 #undef bit_name
1516 	__p_bits(buf, size, value, bits);
1517 }
1518 
1519 static void __p_read_format(char *buf, size_t size, u64 value)
1520 {
1521 #define bit_name(n) { PERF_FORMAT_##n, #n }
1522 	struct bit_names bits[] = {
1523 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1524 		bit_name(ID), bit_name(GROUP),
1525 		{ .name = NULL, }
1526 	};
1527 #undef bit_name
1528 	__p_bits(buf, size, value, bits);
1529 }
1530 
1531 #define BUF_SIZE		1024
1532 
1533 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1534 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1535 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1536 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1537 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1538 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1539 
1540 #define PRINT_ATTRn(_n, _f, _p)				\
1541 do {							\
1542 	if (attr->_f) {					\
1543 		_p(attr->_f);				\
1544 		ret += attr__fprintf(fp, _n, buf, priv);\
1545 	}						\
1546 } while (0)
1547 
1548 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1549 
1550 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1551 			     attr__fprintf_f attr__fprintf, void *priv)
1552 {
1553 	char buf[BUF_SIZE];
1554 	int ret = 0;
1555 
1556 	PRINT_ATTRf(type, p_unsigned);
1557 	PRINT_ATTRf(size, p_unsigned);
1558 	PRINT_ATTRf(config, p_hex);
1559 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1560 	PRINT_ATTRf(sample_type, p_sample_type);
1561 	PRINT_ATTRf(read_format, p_read_format);
1562 
1563 	PRINT_ATTRf(disabled, p_unsigned);
1564 	PRINT_ATTRf(inherit, p_unsigned);
1565 	PRINT_ATTRf(pinned, p_unsigned);
1566 	PRINT_ATTRf(exclusive, p_unsigned);
1567 	PRINT_ATTRf(exclude_user, p_unsigned);
1568 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1569 	PRINT_ATTRf(exclude_hv, p_unsigned);
1570 	PRINT_ATTRf(exclude_idle, p_unsigned);
1571 	PRINT_ATTRf(mmap, p_unsigned);
1572 	PRINT_ATTRf(comm, p_unsigned);
1573 	PRINT_ATTRf(freq, p_unsigned);
1574 	PRINT_ATTRf(inherit_stat, p_unsigned);
1575 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1576 	PRINT_ATTRf(task, p_unsigned);
1577 	PRINT_ATTRf(watermark, p_unsigned);
1578 	PRINT_ATTRf(precise_ip, p_unsigned);
1579 	PRINT_ATTRf(mmap_data, p_unsigned);
1580 	PRINT_ATTRf(sample_id_all, p_unsigned);
1581 	PRINT_ATTRf(exclude_host, p_unsigned);
1582 	PRINT_ATTRf(exclude_guest, p_unsigned);
1583 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1584 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1585 	PRINT_ATTRf(mmap2, p_unsigned);
1586 	PRINT_ATTRf(comm_exec, p_unsigned);
1587 	PRINT_ATTRf(use_clockid, p_unsigned);
1588 	PRINT_ATTRf(context_switch, p_unsigned);
1589 	PRINT_ATTRf(write_backward, p_unsigned);
1590 	PRINT_ATTRf(namespaces, p_unsigned);
1591 	PRINT_ATTRf(ksymbol, p_unsigned);
1592 	PRINT_ATTRf(bpf_event, p_unsigned);
1593 	PRINT_ATTRf(aux_output, p_unsigned);
1594 
1595 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1596 	PRINT_ATTRf(bp_type, p_unsigned);
1597 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1598 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1599 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1600 	PRINT_ATTRf(sample_regs_user, p_hex);
1601 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1602 	PRINT_ATTRf(clockid, p_signed);
1603 	PRINT_ATTRf(sample_regs_intr, p_hex);
1604 	PRINT_ATTRf(aux_watermark, p_unsigned);
1605 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1606 
1607 	return ret;
1608 }
1609 
1610 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1611 				void *priv __maybe_unused)
1612 {
1613 	return fprintf(fp, "  %-32s %s\n", name, val);
1614 }
1615 
1616 static void perf_evsel__remove_fd(struct evsel *pos,
1617 				  int nr_cpus, int nr_threads,
1618 				  int thread_idx)
1619 {
1620 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1621 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1622 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1623 }
1624 
1625 static int update_fds(struct evsel *evsel,
1626 		      int nr_cpus, int cpu_idx,
1627 		      int nr_threads, int thread_idx)
1628 {
1629 	struct evsel *pos;
1630 
1631 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1632 		return -EINVAL;
1633 
1634 	evlist__for_each_entry(evsel->evlist, pos) {
1635 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1636 
1637 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1638 
1639 		/*
1640 		 * Since fds for next evsel has not been created,
1641 		 * there is no need to iterate whole event list.
1642 		 */
1643 		if (pos == evsel)
1644 			break;
1645 	}
1646 	return 0;
1647 }
1648 
1649 static bool ignore_missing_thread(struct evsel *evsel,
1650 				  int nr_cpus, int cpu,
1651 				  struct perf_thread_map *threads,
1652 				  int thread, int err)
1653 {
1654 	pid_t ignore_pid = thread_map__pid(threads, thread);
1655 
1656 	if (!evsel->ignore_missing_thread)
1657 		return false;
1658 
1659 	/* The system wide setup does not work with threads. */
1660 	if (evsel->system_wide)
1661 		return false;
1662 
1663 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1664 	if (err != -ESRCH)
1665 		return false;
1666 
1667 	/* If there's only one thread, let it fail. */
1668 	if (threads->nr == 1)
1669 		return false;
1670 
1671 	/*
1672 	 * We should remove fd for missing_thread first
1673 	 * because thread_map__remove() will decrease threads->nr.
1674 	 */
1675 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1676 		return false;
1677 
1678 	if (thread_map__remove(threads, thread))
1679 		return false;
1680 
1681 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1682 		   ignore_pid);
1683 	return true;
1684 }
1685 
1686 static void display_attr(struct perf_event_attr *attr)
1687 {
1688 	if (verbose >= 2) {
1689 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1690 		fprintf(stderr, "perf_event_attr:\n");
1691 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1692 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1693 	}
1694 }
1695 
1696 static int perf_event_open(struct evsel *evsel,
1697 			   pid_t pid, int cpu, int group_fd,
1698 			   unsigned long flags)
1699 {
1700 	int precise_ip = evsel->core.attr.precise_ip;
1701 	int fd;
1702 
1703 	while (1) {
1704 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1705 			  pid, cpu, group_fd, flags);
1706 
1707 		fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1708 		if (fd >= 0)
1709 			break;
1710 
1711 		/* Do not try less precise if not requested. */
1712 		if (!evsel->precise_max)
1713 			break;
1714 
1715 		/*
1716 		 * We tried all the precise_ip values, and it's
1717 		 * still failing, so leave it to standard fallback.
1718 		 */
1719 		if (!evsel->core.attr.precise_ip) {
1720 			evsel->core.attr.precise_ip = precise_ip;
1721 			break;
1722 		}
1723 
1724 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1725 		evsel->core.attr.precise_ip--;
1726 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1727 		display_attr(&evsel->core.attr);
1728 	}
1729 
1730 	return fd;
1731 }
1732 
1733 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1734 		struct perf_thread_map *threads)
1735 {
1736 	int cpu, thread, nthreads;
1737 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1738 	int pid = -1, err;
1739 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1740 
1741 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1742 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1743 		return -EINVAL;
1744 
1745 	if (cpus == NULL) {
1746 		static struct perf_cpu_map *empty_cpu_map;
1747 
1748 		if (empty_cpu_map == NULL) {
1749 			empty_cpu_map = perf_cpu_map__dummy_new();
1750 			if (empty_cpu_map == NULL)
1751 				return -ENOMEM;
1752 		}
1753 
1754 		cpus = empty_cpu_map;
1755 	}
1756 
1757 	if (threads == NULL) {
1758 		static struct perf_thread_map *empty_thread_map;
1759 
1760 		if (empty_thread_map == NULL) {
1761 			empty_thread_map = thread_map__new_by_tid(-1);
1762 			if (empty_thread_map == NULL)
1763 				return -ENOMEM;
1764 		}
1765 
1766 		threads = empty_thread_map;
1767 	}
1768 
1769 	if (evsel->system_wide)
1770 		nthreads = 1;
1771 	else
1772 		nthreads = threads->nr;
1773 
1774 	if (evsel->core.fd == NULL &&
1775 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1776 		return -ENOMEM;
1777 
1778 	if (evsel->cgrp) {
1779 		flags |= PERF_FLAG_PID_CGROUP;
1780 		pid = evsel->cgrp->fd;
1781 	}
1782 
1783 fallback_missing_features:
1784 	if (perf_missing_features.clockid_wrong)
1785 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1786 	if (perf_missing_features.clockid) {
1787 		evsel->core.attr.use_clockid = 0;
1788 		evsel->core.attr.clockid = 0;
1789 	}
1790 	if (perf_missing_features.cloexec)
1791 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1792 	if (perf_missing_features.mmap2)
1793 		evsel->core.attr.mmap2 = 0;
1794 	if (perf_missing_features.exclude_guest)
1795 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1796 	if (perf_missing_features.lbr_flags)
1797 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1798 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1799 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1800 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1801 	if (perf_missing_features.ksymbol)
1802 		evsel->core.attr.ksymbol = 0;
1803 	if (perf_missing_features.bpf_event)
1804 		evsel->core.attr.bpf_event = 0;
1805 retry_sample_id:
1806 	if (perf_missing_features.sample_id_all)
1807 		evsel->core.attr.sample_id_all = 0;
1808 
1809 	display_attr(&evsel->core.attr);
1810 
1811 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1812 
1813 		for (thread = 0; thread < nthreads; thread++) {
1814 			int fd, group_fd;
1815 
1816 			if (!evsel->cgrp && !evsel->system_wide)
1817 				pid = thread_map__pid(threads, thread);
1818 
1819 			group_fd = get_group_fd(evsel, cpu, thread);
1820 retry_open:
1821 			test_attr__ready();
1822 
1823 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1824 					     group_fd, flags);
1825 
1826 			FD(evsel, cpu, thread) = fd;
1827 
1828 			if (fd < 0) {
1829 				err = -errno;
1830 
1831 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1832 					/*
1833 					 * We just removed 1 thread, so take a step
1834 					 * back on thread index and lower the upper
1835 					 * nthreads limit.
1836 					 */
1837 					nthreads--;
1838 					thread--;
1839 
1840 					/* ... and pretend like nothing have happened. */
1841 					err = 0;
1842 					continue;
1843 				}
1844 
1845 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1846 					  err);
1847 				goto try_fallback;
1848 			}
1849 
1850 			pr_debug2(" = %d\n", fd);
1851 
1852 			if (evsel->bpf_fd >= 0) {
1853 				int evt_fd = fd;
1854 				int bpf_fd = evsel->bpf_fd;
1855 
1856 				err = ioctl(evt_fd,
1857 					    PERF_EVENT_IOC_SET_BPF,
1858 					    bpf_fd);
1859 				if (err && errno != EEXIST) {
1860 					pr_err("failed to attach bpf fd %d: %s\n",
1861 					       bpf_fd, strerror(errno));
1862 					err = -EINVAL;
1863 					goto out_close;
1864 				}
1865 			}
1866 
1867 			set_rlimit = NO_CHANGE;
1868 
1869 			/*
1870 			 * If we succeeded but had to kill clockid, fail and
1871 			 * have perf_evsel__open_strerror() print us a nice
1872 			 * error.
1873 			 */
1874 			if (perf_missing_features.clockid ||
1875 			    perf_missing_features.clockid_wrong) {
1876 				err = -EINVAL;
1877 				goto out_close;
1878 			}
1879 		}
1880 	}
1881 
1882 	return 0;
1883 
1884 try_fallback:
1885 	/*
1886 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1887 	 * of them try to increase the limits.
1888 	 */
1889 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1890 		struct rlimit l;
1891 		int old_errno = errno;
1892 
1893 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1894 			if (set_rlimit == NO_CHANGE)
1895 				l.rlim_cur = l.rlim_max;
1896 			else {
1897 				l.rlim_cur = l.rlim_max + 1000;
1898 				l.rlim_max = l.rlim_cur;
1899 			}
1900 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1901 				set_rlimit++;
1902 				errno = old_errno;
1903 				goto retry_open;
1904 			}
1905 		}
1906 		errno = old_errno;
1907 	}
1908 
1909 	if (err != -EINVAL || cpu > 0 || thread > 0)
1910 		goto out_close;
1911 
1912 	/*
1913 	 * Must probe features in the order they were added to the
1914 	 * perf_event_attr interface.
1915 	 */
1916 	if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1917 		perf_missing_features.aux_output = true;
1918 		pr_debug2("Kernel has no attr.aux_output support, bailing out\n");
1919 		goto out_close;
1920 	} else if (!perf_missing_features.bpf_event && evsel->core.attr.bpf_event) {
1921 		perf_missing_features.bpf_event = true;
1922 		pr_debug2("switching off bpf_event\n");
1923 		goto fallback_missing_features;
1924 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1925 		perf_missing_features.ksymbol = true;
1926 		pr_debug2("switching off ksymbol\n");
1927 		goto fallback_missing_features;
1928 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1929 		perf_missing_features.write_backward = true;
1930 		pr_debug2("switching off write_backward\n");
1931 		goto out_close;
1932 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1933 		perf_missing_features.clockid_wrong = true;
1934 		pr_debug2("switching off clockid\n");
1935 		goto fallback_missing_features;
1936 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1937 		perf_missing_features.clockid = true;
1938 		pr_debug2("switching off use_clockid\n");
1939 		goto fallback_missing_features;
1940 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1941 		perf_missing_features.cloexec = true;
1942 		pr_debug2("switching off cloexec flag\n");
1943 		goto fallback_missing_features;
1944 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1945 		perf_missing_features.mmap2 = true;
1946 		pr_debug2("switching off mmap2\n");
1947 		goto fallback_missing_features;
1948 	} else if (!perf_missing_features.exclude_guest &&
1949 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1950 		perf_missing_features.exclude_guest = true;
1951 		pr_debug2("switching off exclude_guest, exclude_host\n");
1952 		goto fallback_missing_features;
1953 	} else if (!perf_missing_features.sample_id_all) {
1954 		perf_missing_features.sample_id_all = true;
1955 		pr_debug2("switching off sample_id_all\n");
1956 		goto retry_sample_id;
1957 	} else if (!perf_missing_features.lbr_flags &&
1958 			(evsel->core.attr.branch_sample_type &
1959 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1960 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1961 		perf_missing_features.lbr_flags = true;
1962 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1963 		goto fallback_missing_features;
1964 	} else if (!perf_missing_features.group_read &&
1965 		    evsel->core.attr.inherit &&
1966 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1967 		   perf_evsel__is_group_leader(evsel)) {
1968 		perf_missing_features.group_read = true;
1969 		pr_debug2("switching off group read\n");
1970 		goto fallback_missing_features;
1971 	}
1972 out_close:
1973 	if (err)
1974 		threads->err_thread = thread;
1975 
1976 	do {
1977 		while (--thread >= 0) {
1978 			close(FD(evsel, cpu, thread));
1979 			FD(evsel, cpu, thread) = -1;
1980 		}
1981 		thread = nthreads;
1982 	} while (--cpu >= 0);
1983 	return err;
1984 }
1985 
1986 void evsel__close(struct evsel *evsel)
1987 {
1988 	perf_evsel__close(&evsel->core);
1989 	perf_evsel__free_id(evsel);
1990 }
1991 
1992 int perf_evsel__open_per_cpu(struct evsel *evsel,
1993 			     struct perf_cpu_map *cpus)
1994 {
1995 	return evsel__open(evsel, cpus, NULL);
1996 }
1997 
1998 int perf_evsel__open_per_thread(struct evsel *evsel,
1999 				struct perf_thread_map *threads)
2000 {
2001 	return evsel__open(evsel, NULL, threads);
2002 }
2003 
2004 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2005 				       const union perf_event *event,
2006 				       struct perf_sample *sample)
2007 {
2008 	u64 type = evsel->core.attr.sample_type;
2009 	const u64 *array = event->sample.array;
2010 	bool swapped = evsel->needs_swap;
2011 	union u64_swap u;
2012 
2013 	array += ((event->header.size -
2014 		   sizeof(event->header)) / sizeof(u64)) - 1;
2015 
2016 	if (type & PERF_SAMPLE_IDENTIFIER) {
2017 		sample->id = *array;
2018 		array--;
2019 	}
2020 
2021 	if (type & PERF_SAMPLE_CPU) {
2022 		u.val64 = *array;
2023 		if (swapped) {
2024 			/* undo swap of u64, then swap on individual u32s */
2025 			u.val64 = bswap_64(u.val64);
2026 			u.val32[0] = bswap_32(u.val32[0]);
2027 		}
2028 
2029 		sample->cpu = u.val32[0];
2030 		array--;
2031 	}
2032 
2033 	if (type & PERF_SAMPLE_STREAM_ID) {
2034 		sample->stream_id = *array;
2035 		array--;
2036 	}
2037 
2038 	if (type & PERF_SAMPLE_ID) {
2039 		sample->id = *array;
2040 		array--;
2041 	}
2042 
2043 	if (type & PERF_SAMPLE_TIME) {
2044 		sample->time = *array;
2045 		array--;
2046 	}
2047 
2048 	if (type & PERF_SAMPLE_TID) {
2049 		u.val64 = *array;
2050 		if (swapped) {
2051 			/* undo swap of u64, then swap on individual u32s */
2052 			u.val64 = bswap_64(u.val64);
2053 			u.val32[0] = bswap_32(u.val32[0]);
2054 			u.val32[1] = bswap_32(u.val32[1]);
2055 		}
2056 
2057 		sample->pid = u.val32[0];
2058 		sample->tid = u.val32[1];
2059 		array--;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2066 			    u64 size)
2067 {
2068 	return size > max_size || offset + size > endp;
2069 }
2070 
2071 #define OVERFLOW_CHECK(offset, size, max_size)				\
2072 	do {								\
2073 		if (overflow(endp, (max_size), (offset), (size)))	\
2074 			return -EFAULT;					\
2075 	} while (0)
2076 
2077 #define OVERFLOW_CHECK_u64(offset) \
2078 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2079 
2080 static int
2081 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2082 {
2083 	/*
2084 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2085 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2086 	 * check the format does not go past the end of the event.
2087 	 */
2088 	if (sample_size + sizeof(event->header) > event->header.size)
2089 		return -EFAULT;
2090 
2091 	return 0;
2092 }
2093 
2094 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2095 			     struct perf_sample *data)
2096 {
2097 	u64 type = evsel->core.attr.sample_type;
2098 	bool swapped = evsel->needs_swap;
2099 	const u64 *array;
2100 	u16 max_size = event->header.size;
2101 	const void *endp = (void *)event + max_size;
2102 	u64 sz;
2103 
2104 	/*
2105 	 * used for cross-endian analysis. See git commit 65014ab3
2106 	 * for why this goofiness is needed.
2107 	 */
2108 	union u64_swap u;
2109 
2110 	memset(data, 0, sizeof(*data));
2111 	data->cpu = data->pid = data->tid = -1;
2112 	data->stream_id = data->id = data->time = -1ULL;
2113 	data->period = evsel->core.attr.sample_period;
2114 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2115 	data->misc    = event->header.misc;
2116 	data->id = -1ULL;
2117 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2118 
2119 	if (event->header.type != PERF_RECORD_SAMPLE) {
2120 		if (!evsel->core.attr.sample_id_all)
2121 			return 0;
2122 		return perf_evsel__parse_id_sample(evsel, event, data);
2123 	}
2124 
2125 	array = event->sample.array;
2126 
2127 	if (perf_event__check_size(event, evsel->sample_size))
2128 		return -EFAULT;
2129 
2130 	if (type & PERF_SAMPLE_IDENTIFIER) {
2131 		data->id = *array;
2132 		array++;
2133 	}
2134 
2135 	if (type & PERF_SAMPLE_IP) {
2136 		data->ip = *array;
2137 		array++;
2138 	}
2139 
2140 	if (type & PERF_SAMPLE_TID) {
2141 		u.val64 = *array;
2142 		if (swapped) {
2143 			/* undo swap of u64, then swap on individual u32s */
2144 			u.val64 = bswap_64(u.val64);
2145 			u.val32[0] = bswap_32(u.val32[0]);
2146 			u.val32[1] = bswap_32(u.val32[1]);
2147 		}
2148 
2149 		data->pid = u.val32[0];
2150 		data->tid = u.val32[1];
2151 		array++;
2152 	}
2153 
2154 	if (type & PERF_SAMPLE_TIME) {
2155 		data->time = *array;
2156 		array++;
2157 	}
2158 
2159 	if (type & PERF_SAMPLE_ADDR) {
2160 		data->addr = *array;
2161 		array++;
2162 	}
2163 
2164 	if (type & PERF_SAMPLE_ID) {
2165 		data->id = *array;
2166 		array++;
2167 	}
2168 
2169 	if (type & PERF_SAMPLE_STREAM_ID) {
2170 		data->stream_id = *array;
2171 		array++;
2172 	}
2173 
2174 	if (type & PERF_SAMPLE_CPU) {
2175 
2176 		u.val64 = *array;
2177 		if (swapped) {
2178 			/* undo swap of u64, then swap on individual u32s */
2179 			u.val64 = bswap_64(u.val64);
2180 			u.val32[0] = bswap_32(u.val32[0]);
2181 		}
2182 
2183 		data->cpu = u.val32[0];
2184 		array++;
2185 	}
2186 
2187 	if (type & PERF_SAMPLE_PERIOD) {
2188 		data->period = *array;
2189 		array++;
2190 	}
2191 
2192 	if (type & PERF_SAMPLE_READ) {
2193 		u64 read_format = evsel->core.attr.read_format;
2194 
2195 		OVERFLOW_CHECK_u64(array);
2196 		if (read_format & PERF_FORMAT_GROUP)
2197 			data->read.group.nr = *array;
2198 		else
2199 			data->read.one.value = *array;
2200 
2201 		array++;
2202 
2203 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2204 			OVERFLOW_CHECK_u64(array);
2205 			data->read.time_enabled = *array;
2206 			array++;
2207 		}
2208 
2209 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2210 			OVERFLOW_CHECK_u64(array);
2211 			data->read.time_running = *array;
2212 			array++;
2213 		}
2214 
2215 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2216 		if (read_format & PERF_FORMAT_GROUP) {
2217 			const u64 max_group_nr = UINT64_MAX /
2218 					sizeof(struct sample_read_value);
2219 
2220 			if (data->read.group.nr > max_group_nr)
2221 				return -EFAULT;
2222 			sz = data->read.group.nr *
2223 			     sizeof(struct sample_read_value);
2224 			OVERFLOW_CHECK(array, sz, max_size);
2225 			data->read.group.values =
2226 					(struct sample_read_value *)array;
2227 			array = (void *)array + sz;
2228 		} else {
2229 			OVERFLOW_CHECK_u64(array);
2230 			data->read.one.id = *array;
2231 			array++;
2232 		}
2233 	}
2234 
2235 	if (evsel__has_callchain(evsel)) {
2236 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2237 
2238 		OVERFLOW_CHECK_u64(array);
2239 		data->callchain = (struct ip_callchain *)array++;
2240 		if (data->callchain->nr > max_callchain_nr)
2241 			return -EFAULT;
2242 		sz = data->callchain->nr * sizeof(u64);
2243 		OVERFLOW_CHECK(array, sz, max_size);
2244 		array = (void *)array + sz;
2245 	}
2246 
2247 	if (type & PERF_SAMPLE_RAW) {
2248 		OVERFLOW_CHECK_u64(array);
2249 		u.val64 = *array;
2250 
2251 		/*
2252 		 * Undo swap of u64, then swap on individual u32s,
2253 		 * get the size of the raw area and undo all of the
2254 		 * swap. The pevent interface handles endianity by
2255 		 * itself.
2256 		 */
2257 		if (swapped) {
2258 			u.val64 = bswap_64(u.val64);
2259 			u.val32[0] = bswap_32(u.val32[0]);
2260 			u.val32[1] = bswap_32(u.val32[1]);
2261 		}
2262 		data->raw_size = u.val32[0];
2263 
2264 		/*
2265 		 * The raw data is aligned on 64bits including the
2266 		 * u32 size, so it's safe to use mem_bswap_64.
2267 		 */
2268 		if (swapped)
2269 			mem_bswap_64((void *) array, data->raw_size);
2270 
2271 		array = (void *)array + sizeof(u32);
2272 
2273 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2274 		data->raw_data = (void *)array;
2275 		array = (void *)array + data->raw_size;
2276 	}
2277 
2278 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2279 		const u64 max_branch_nr = UINT64_MAX /
2280 					  sizeof(struct branch_entry);
2281 
2282 		OVERFLOW_CHECK_u64(array);
2283 		data->branch_stack = (struct branch_stack *)array++;
2284 
2285 		if (data->branch_stack->nr > max_branch_nr)
2286 			return -EFAULT;
2287 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2288 		OVERFLOW_CHECK(array, sz, max_size);
2289 		array = (void *)array + sz;
2290 	}
2291 
2292 	if (type & PERF_SAMPLE_REGS_USER) {
2293 		OVERFLOW_CHECK_u64(array);
2294 		data->user_regs.abi = *array;
2295 		array++;
2296 
2297 		if (data->user_regs.abi) {
2298 			u64 mask = evsel->core.attr.sample_regs_user;
2299 
2300 			sz = hweight64(mask) * sizeof(u64);
2301 			OVERFLOW_CHECK(array, sz, max_size);
2302 			data->user_regs.mask = mask;
2303 			data->user_regs.regs = (u64 *)array;
2304 			array = (void *)array + sz;
2305 		}
2306 	}
2307 
2308 	if (type & PERF_SAMPLE_STACK_USER) {
2309 		OVERFLOW_CHECK_u64(array);
2310 		sz = *array++;
2311 
2312 		data->user_stack.offset = ((char *)(array - 1)
2313 					  - (char *) event);
2314 
2315 		if (!sz) {
2316 			data->user_stack.size = 0;
2317 		} else {
2318 			OVERFLOW_CHECK(array, sz, max_size);
2319 			data->user_stack.data = (char *)array;
2320 			array = (void *)array + sz;
2321 			OVERFLOW_CHECK_u64(array);
2322 			data->user_stack.size = *array++;
2323 			if (WARN_ONCE(data->user_stack.size > sz,
2324 				      "user stack dump failure\n"))
2325 				return -EFAULT;
2326 		}
2327 	}
2328 
2329 	if (type & PERF_SAMPLE_WEIGHT) {
2330 		OVERFLOW_CHECK_u64(array);
2331 		data->weight = *array;
2332 		array++;
2333 	}
2334 
2335 	if (type & PERF_SAMPLE_DATA_SRC) {
2336 		OVERFLOW_CHECK_u64(array);
2337 		data->data_src = *array;
2338 		array++;
2339 	}
2340 
2341 	if (type & PERF_SAMPLE_TRANSACTION) {
2342 		OVERFLOW_CHECK_u64(array);
2343 		data->transaction = *array;
2344 		array++;
2345 	}
2346 
2347 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2348 	if (type & PERF_SAMPLE_REGS_INTR) {
2349 		OVERFLOW_CHECK_u64(array);
2350 		data->intr_regs.abi = *array;
2351 		array++;
2352 
2353 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2354 			u64 mask = evsel->core.attr.sample_regs_intr;
2355 
2356 			sz = hweight64(mask) * sizeof(u64);
2357 			OVERFLOW_CHECK(array, sz, max_size);
2358 			data->intr_regs.mask = mask;
2359 			data->intr_regs.regs = (u64 *)array;
2360 			array = (void *)array + sz;
2361 		}
2362 	}
2363 
2364 	data->phys_addr = 0;
2365 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2366 		data->phys_addr = *array;
2367 		array++;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2374 				       union perf_event *event,
2375 				       u64 *timestamp)
2376 {
2377 	u64 type = evsel->core.attr.sample_type;
2378 	const u64 *array;
2379 
2380 	if (!(type & PERF_SAMPLE_TIME))
2381 		return -1;
2382 
2383 	if (event->header.type != PERF_RECORD_SAMPLE) {
2384 		struct perf_sample data = {
2385 			.time = -1ULL,
2386 		};
2387 
2388 		if (!evsel->core.attr.sample_id_all)
2389 			return -1;
2390 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2391 			return -1;
2392 
2393 		*timestamp = data.time;
2394 		return 0;
2395 	}
2396 
2397 	array = event->sample.array;
2398 
2399 	if (perf_event__check_size(event, evsel->sample_size))
2400 		return -EFAULT;
2401 
2402 	if (type & PERF_SAMPLE_IDENTIFIER)
2403 		array++;
2404 
2405 	if (type & PERF_SAMPLE_IP)
2406 		array++;
2407 
2408 	if (type & PERF_SAMPLE_TID)
2409 		array++;
2410 
2411 	if (type & PERF_SAMPLE_TIME)
2412 		*timestamp = *array;
2413 
2414 	return 0;
2415 }
2416 
2417 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2418 				     u64 read_format)
2419 {
2420 	size_t sz, result = sizeof(struct sample_event);
2421 
2422 	if (type & PERF_SAMPLE_IDENTIFIER)
2423 		result += sizeof(u64);
2424 
2425 	if (type & PERF_SAMPLE_IP)
2426 		result += sizeof(u64);
2427 
2428 	if (type & PERF_SAMPLE_TID)
2429 		result += sizeof(u64);
2430 
2431 	if (type & PERF_SAMPLE_TIME)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_ADDR)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_ID)
2438 		result += sizeof(u64);
2439 
2440 	if (type & PERF_SAMPLE_STREAM_ID)
2441 		result += sizeof(u64);
2442 
2443 	if (type & PERF_SAMPLE_CPU)
2444 		result += sizeof(u64);
2445 
2446 	if (type & PERF_SAMPLE_PERIOD)
2447 		result += sizeof(u64);
2448 
2449 	if (type & PERF_SAMPLE_READ) {
2450 		result += sizeof(u64);
2451 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2452 			result += sizeof(u64);
2453 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2454 			result += sizeof(u64);
2455 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2456 		if (read_format & PERF_FORMAT_GROUP) {
2457 			sz = sample->read.group.nr *
2458 			     sizeof(struct sample_read_value);
2459 			result += sz;
2460 		} else {
2461 			result += sizeof(u64);
2462 		}
2463 	}
2464 
2465 	if (type & PERF_SAMPLE_CALLCHAIN) {
2466 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2467 		result += sz;
2468 	}
2469 
2470 	if (type & PERF_SAMPLE_RAW) {
2471 		result += sizeof(u32);
2472 		result += sample->raw_size;
2473 	}
2474 
2475 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2476 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2477 		sz += sizeof(u64);
2478 		result += sz;
2479 	}
2480 
2481 	if (type & PERF_SAMPLE_REGS_USER) {
2482 		if (sample->user_regs.abi) {
2483 			result += sizeof(u64);
2484 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2485 			result += sz;
2486 		} else {
2487 			result += sizeof(u64);
2488 		}
2489 	}
2490 
2491 	if (type & PERF_SAMPLE_STACK_USER) {
2492 		sz = sample->user_stack.size;
2493 		result += sizeof(u64);
2494 		if (sz) {
2495 			result += sz;
2496 			result += sizeof(u64);
2497 		}
2498 	}
2499 
2500 	if (type & PERF_SAMPLE_WEIGHT)
2501 		result += sizeof(u64);
2502 
2503 	if (type & PERF_SAMPLE_DATA_SRC)
2504 		result += sizeof(u64);
2505 
2506 	if (type & PERF_SAMPLE_TRANSACTION)
2507 		result += sizeof(u64);
2508 
2509 	if (type & PERF_SAMPLE_REGS_INTR) {
2510 		if (sample->intr_regs.abi) {
2511 			result += sizeof(u64);
2512 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2513 			result += sz;
2514 		} else {
2515 			result += sizeof(u64);
2516 		}
2517 	}
2518 
2519 	if (type & PERF_SAMPLE_PHYS_ADDR)
2520 		result += sizeof(u64);
2521 
2522 	return result;
2523 }
2524 
2525 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2526 				  u64 read_format,
2527 				  const struct perf_sample *sample)
2528 {
2529 	u64 *array;
2530 	size_t sz;
2531 	/*
2532 	 * used for cross-endian analysis. See git commit 65014ab3
2533 	 * for why this goofiness is needed.
2534 	 */
2535 	union u64_swap u;
2536 
2537 	array = event->sample.array;
2538 
2539 	if (type & PERF_SAMPLE_IDENTIFIER) {
2540 		*array = sample->id;
2541 		array++;
2542 	}
2543 
2544 	if (type & PERF_SAMPLE_IP) {
2545 		*array = sample->ip;
2546 		array++;
2547 	}
2548 
2549 	if (type & PERF_SAMPLE_TID) {
2550 		u.val32[0] = sample->pid;
2551 		u.val32[1] = sample->tid;
2552 		*array = u.val64;
2553 		array++;
2554 	}
2555 
2556 	if (type & PERF_SAMPLE_TIME) {
2557 		*array = sample->time;
2558 		array++;
2559 	}
2560 
2561 	if (type & PERF_SAMPLE_ADDR) {
2562 		*array = sample->addr;
2563 		array++;
2564 	}
2565 
2566 	if (type & PERF_SAMPLE_ID) {
2567 		*array = sample->id;
2568 		array++;
2569 	}
2570 
2571 	if (type & PERF_SAMPLE_STREAM_ID) {
2572 		*array = sample->stream_id;
2573 		array++;
2574 	}
2575 
2576 	if (type & PERF_SAMPLE_CPU) {
2577 		u.val32[0] = sample->cpu;
2578 		u.val32[1] = 0;
2579 		*array = u.val64;
2580 		array++;
2581 	}
2582 
2583 	if (type & PERF_SAMPLE_PERIOD) {
2584 		*array = sample->period;
2585 		array++;
2586 	}
2587 
2588 	if (type & PERF_SAMPLE_READ) {
2589 		if (read_format & PERF_FORMAT_GROUP)
2590 			*array = sample->read.group.nr;
2591 		else
2592 			*array = sample->read.one.value;
2593 		array++;
2594 
2595 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2596 			*array = sample->read.time_enabled;
2597 			array++;
2598 		}
2599 
2600 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2601 			*array = sample->read.time_running;
2602 			array++;
2603 		}
2604 
2605 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2606 		if (read_format & PERF_FORMAT_GROUP) {
2607 			sz = sample->read.group.nr *
2608 			     sizeof(struct sample_read_value);
2609 			memcpy(array, sample->read.group.values, sz);
2610 			array = (void *)array + sz;
2611 		} else {
2612 			*array = sample->read.one.id;
2613 			array++;
2614 		}
2615 	}
2616 
2617 	if (type & PERF_SAMPLE_CALLCHAIN) {
2618 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2619 		memcpy(array, sample->callchain, sz);
2620 		array = (void *)array + sz;
2621 	}
2622 
2623 	if (type & PERF_SAMPLE_RAW) {
2624 		u.val32[0] = sample->raw_size;
2625 		*array = u.val64;
2626 		array = (void *)array + sizeof(u32);
2627 
2628 		memcpy(array, sample->raw_data, sample->raw_size);
2629 		array = (void *)array + sample->raw_size;
2630 	}
2631 
2632 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2633 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2634 		sz += sizeof(u64);
2635 		memcpy(array, sample->branch_stack, sz);
2636 		array = (void *)array + sz;
2637 	}
2638 
2639 	if (type & PERF_SAMPLE_REGS_USER) {
2640 		if (sample->user_regs.abi) {
2641 			*array++ = sample->user_regs.abi;
2642 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2643 			memcpy(array, sample->user_regs.regs, sz);
2644 			array = (void *)array + sz;
2645 		} else {
2646 			*array++ = 0;
2647 		}
2648 	}
2649 
2650 	if (type & PERF_SAMPLE_STACK_USER) {
2651 		sz = sample->user_stack.size;
2652 		*array++ = sz;
2653 		if (sz) {
2654 			memcpy(array, sample->user_stack.data, sz);
2655 			array = (void *)array + sz;
2656 			*array++ = sz;
2657 		}
2658 	}
2659 
2660 	if (type & PERF_SAMPLE_WEIGHT) {
2661 		*array = sample->weight;
2662 		array++;
2663 	}
2664 
2665 	if (type & PERF_SAMPLE_DATA_SRC) {
2666 		*array = sample->data_src;
2667 		array++;
2668 	}
2669 
2670 	if (type & PERF_SAMPLE_TRANSACTION) {
2671 		*array = sample->transaction;
2672 		array++;
2673 	}
2674 
2675 	if (type & PERF_SAMPLE_REGS_INTR) {
2676 		if (sample->intr_regs.abi) {
2677 			*array++ = sample->intr_regs.abi;
2678 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2679 			memcpy(array, sample->intr_regs.regs, sz);
2680 			array = (void *)array + sz;
2681 		} else {
2682 			*array++ = 0;
2683 		}
2684 	}
2685 
2686 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2687 		*array = sample->phys_addr;
2688 		array++;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2695 {
2696 	return tep_find_field(evsel->tp_format, name);
2697 }
2698 
2699 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2700 			 const char *name)
2701 {
2702 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2703 	int offset;
2704 
2705 	if (!field)
2706 		return NULL;
2707 
2708 	offset = field->offset;
2709 
2710 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2711 		offset = *(int *)(sample->raw_data + field->offset);
2712 		offset &= 0xffff;
2713 	}
2714 
2715 	return sample->raw_data + offset;
2716 }
2717 
2718 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2719 			 bool needs_swap)
2720 {
2721 	u64 value;
2722 	void *ptr = sample->raw_data + field->offset;
2723 
2724 	switch (field->size) {
2725 	case 1:
2726 		return *(u8 *)ptr;
2727 	case 2:
2728 		value = *(u16 *)ptr;
2729 		break;
2730 	case 4:
2731 		value = *(u32 *)ptr;
2732 		break;
2733 	case 8:
2734 		memcpy(&value, ptr, sizeof(u64));
2735 		break;
2736 	default:
2737 		return 0;
2738 	}
2739 
2740 	if (!needs_swap)
2741 		return value;
2742 
2743 	switch (field->size) {
2744 	case 2:
2745 		return bswap_16(value);
2746 	case 4:
2747 		return bswap_32(value);
2748 	case 8:
2749 		return bswap_64(value);
2750 	default:
2751 		return 0;
2752 	}
2753 
2754 	return 0;
2755 }
2756 
2757 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2758 		       const char *name)
2759 {
2760 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2761 
2762 	if (!field)
2763 		return 0;
2764 
2765 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2766 }
2767 
2768 bool perf_evsel__fallback(struct evsel *evsel, int err,
2769 			  char *msg, size_t msgsize)
2770 {
2771 	int paranoid;
2772 
2773 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2774 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2775 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2776 		/*
2777 		 * If it's cycles then fall back to hrtimer based
2778 		 * cpu-clock-tick sw counter, which is always available even if
2779 		 * no PMU support.
2780 		 *
2781 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2782 		 * b0a873e).
2783 		 */
2784 		scnprintf(msg, msgsize, "%s",
2785 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2786 
2787 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2788 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2789 
2790 		zfree(&evsel->name);
2791 		return true;
2792 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2793 		   (paranoid = perf_event_paranoid()) > 1) {
2794 		const char *name = perf_evsel__name(evsel);
2795 		char *new_name;
2796 		const char *sep = ":";
2797 
2798 		/* Is there already the separator in the name. */
2799 		if (strchr(name, '/') ||
2800 		    strchr(name, ':'))
2801 			sep = "";
2802 
2803 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2804 			return false;
2805 
2806 		if (evsel->name)
2807 			free(evsel->name);
2808 		evsel->name = new_name;
2809 		scnprintf(msg, msgsize,
2810 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2811 		evsel->core.attr.exclude_kernel = 1;
2812 
2813 		return true;
2814 	}
2815 
2816 	return false;
2817 }
2818 
2819 static bool find_process(const char *name)
2820 {
2821 	size_t len = strlen(name);
2822 	DIR *dir;
2823 	struct dirent *d;
2824 	int ret = -1;
2825 
2826 	dir = opendir(procfs__mountpoint());
2827 	if (!dir)
2828 		return false;
2829 
2830 	/* Walk through the directory. */
2831 	while (ret && (d = readdir(dir)) != NULL) {
2832 		char path[PATH_MAX];
2833 		char *data;
2834 		size_t size;
2835 
2836 		if ((d->d_type != DT_DIR) ||
2837 		     !strcmp(".", d->d_name) ||
2838 		     !strcmp("..", d->d_name))
2839 			continue;
2840 
2841 		scnprintf(path, sizeof(path), "%s/%s/comm",
2842 			  procfs__mountpoint(), d->d_name);
2843 
2844 		if (filename__read_str(path, &data, &size))
2845 			continue;
2846 
2847 		ret = strncmp(name, data, len);
2848 		free(data);
2849 	}
2850 
2851 	closedir(dir);
2852 	return ret ? false : true;
2853 }
2854 
2855 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2856 			      int err, char *msg, size_t size)
2857 {
2858 	char sbuf[STRERR_BUFSIZE];
2859 	int printed = 0;
2860 
2861 	switch (err) {
2862 	case EPERM:
2863 	case EACCES:
2864 		if (err == EPERM)
2865 			printed = scnprintf(msg, size,
2866 				"No permission to enable %s event.\n\n",
2867 				perf_evsel__name(evsel));
2868 
2869 		return scnprintf(msg + printed, size - printed,
2870 		 "You may not have permission to collect %sstats.\n\n"
2871 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2872 		 "which controls use of the performance events system by\n"
2873 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2874 		 "The current value is %d:\n\n"
2875 		 "  -1: Allow use of (almost) all events by all users\n"
2876 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2877 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2878 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2879 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2880 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2881 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2882 		 "	kernel.perf_event_paranoid = -1\n" ,
2883 				 target->system_wide ? "system-wide " : "",
2884 				 perf_event_paranoid());
2885 	case ENOENT:
2886 		return scnprintf(msg, size, "The %s event is not supported.",
2887 				 perf_evsel__name(evsel));
2888 	case EMFILE:
2889 		return scnprintf(msg, size, "%s",
2890 			 "Too many events are opened.\n"
2891 			 "Probably the maximum number of open file descriptors has been reached.\n"
2892 			 "Hint: Try again after reducing the number of events.\n"
2893 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2894 	case ENOMEM:
2895 		if (evsel__has_callchain(evsel) &&
2896 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2897 			return scnprintf(msg, size,
2898 					 "Not enough memory to setup event with callchain.\n"
2899 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2900 					 "Hint: Current value: %d", sysctl__max_stack());
2901 		break;
2902 	case ENODEV:
2903 		if (target->cpu_list)
2904 			return scnprintf(msg, size, "%s",
2905 	 "No such device - did you specify an out-of-range profile CPU?");
2906 		break;
2907 	case EOPNOTSUPP:
2908 		if (evsel->core.attr.sample_period != 0)
2909 			return scnprintf(msg, size,
2910 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2911 					 perf_evsel__name(evsel));
2912 		if (evsel->core.attr.precise_ip)
2913 			return scnprintf(msg, size, "%s",
2914 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2915 #if defined(__i386__) || defined(__x86_64__)
2916 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2917 			return scnprintf(msg, size, "%s",
2918 	"No hardware sampling interrupt available.\n");
2919 #endif
2920 		break;
2921 	case EBUSY:
2922 		if (find_process("oprofiled"))
2923 			return scnprintf(msg, size,
2924 	"The PMU counters are busy/taken by another profiler.\n"
2925 	"We found oprofile daemon running, please stop it and try again.");
2926 		break;
2927 	case EINVAL:
2928 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2929 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2930 		if (perf_missing_features.clockid)
2931 			return scnprintf(msg, size, "clockid feature not supported.");
2932 		if (perf_missing_features.clockid_wrong)
2933 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2934 		if (perf_missing_features.aux_output)
2935 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2936 		break;
2937 	default:
2938 		break;
2939 	}
2940 
2941 	return scnprintf(msg, size,
2942 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2943 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2944 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2945 			 perf_evsel__name(evsel));
2946 }
2947 
2948 struct perf_env *perf_evsel__env(struct evsel *evsel)
2949 {
2950 	if (evsel && evsel->evlist)
2951 		return evsel->evlist->env;
2952 	return NULL;
2953 }
2954 
2955 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2956 {
2957 	int cpu, thread;
2958 
2959 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2960 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2961 		     thread++) {
2962 			int fd = FD(evsel, cpu, thread);
2963 
2964 			if (perf_evlist__id_add_fd(evlist, evsel,
2965 						   cpu, thread, fd) < 0)
2966 				return -1;
2967 		}
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2974 {
2975 	struct perf_cpu_map *cpus = evsel->core.cpus;
2976 	struct perf_thread_map *threads = evsel->core.threads;
2977 
2978 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2979 		return -ENOMEM;
2980 
2981 	return store_evsel_ids(evsel, evlist);
2982 }
2983