1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 static struct { 45 bool sample_id_all; 46 bool exclude_guest; 47 bool mmap2; 48 bool cloexec; 49 bool clockid; 50 bool clockid_wrong; 51 bool lbr_flags; 52 bool write_backward; 53 bool group_read; 54 } perf_missing_features; 55 56 static clockid_t clockid; 57 58 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 59 { 60 return 0; 61 } 62 63 void __weak test_attr__ready(void) { } 64 65 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 66 { 67 } 68 69 static struct { 70 size_t size; 71 int (*init)(struct perf_evsel *evsel); 72 void (*fini)(struct perf_evsel *evsel); 73 } perf_evsel__object = { 74 .size = sizeof(struct perf_evsel), 75 .init = perf_evsel__no_extra_init, 76 .fini = perf_evsel__no_extra_fini, 77 }; 78 79 int perf_evsel__object_config(size_t object_size, 80 int (*init)(struct perf_evsel *evsel), 81 void (*fini)(struct perf_evsel *evsel)) 82 { 83 84 if (object_size == 0) 85 goto set_methods; 86 87 if (perf_evsel__object.size > object_size) 88 return -EINVAL; 89 90 perf_evsel__object.size = object_size; 91 92 set_methods: 93 if (init != NULL) 94 perf_evsel__object.init = init; 95 96 if (fini != NULL) 97 perf_evsel__object.fini = fini; 98 99 return 0; 100 } 101 102 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 103 104 int __perf_evsel__sample_size(u64 sample_type) 105 { 106 u64 mask = sample_type & PERF_SAMPLE_MASK; 107 int size = 0; 108 int i; 109 110 for (i = 0; i < 64; i++) { 111 if (mask & (1ULL << i)) 112 size++; 113 } 114 115 size *= sizeof(u64); 116 117 return size; 118 } 119 120 /** 121 * __perf_evsel__calc_id_pos - calculate id_pos. 122 * @sample_type: sample type 123 * 124 * This function returns the position of the event id (PERF_SAMPLE_ID or 125 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 126 * sample_event. 127 */ 128 static int __perf_evsel__calc_id_pos(u64 sample_type) 129 { 130 int idx = 0; 131 132 if (sample_type & PERF_SAMPLE_IDENTIFIER) 133 return 0; 134 135 if (!(sample_type & PERF_SAMPLE_ID)) 136 return -1; 137 138 if (sample_type & PERF_SAMPLE_IP) 139 idx += 1; 140 141 if (sample_type & PERF_SAMPLE_TID) 142 idx += 1; 143 144 if (sample_type & PERF_SAMPLE_TIME) 145 idx += 1; 146 147 if (sample_type & PERF_SAMPLE_ADDR) 148 idx += 1; 149 150 return idx; 151 } 152 153 /** 154 * __perf_evsel__calc_is_pos - calculate is_pos. 155 * @sample_type: sample type 156 * 157 * This function returns the position (counting backwards) of the event id 158 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 159 * sample_id_all is used there is an id sample appended to non-sample events. 160 */ 161 static int __perf_evsel__calc_is_pos(u64 sample_type) 162 { 163 int idx = 1; 164 165 if (sample_type & PERF_SAMPLE_IDENTIFIER) 166 return 1; 167 168 if (!(sample_type & PERF_SAMPLE_ID)) 169 return -1; 170 171 if (sample_type & PERF_SAMPLE_CPU) 172 idx += 1; 173 174 if (sample_type & PERF_SAMPLE_STREAM_ID) 175 idx += 1; 176 177 return idx; 178 } 179 180 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 181 { 182 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 183 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 184 } 185 186 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (!(evsel->attr.sample_type & bit)) { 190 evsel->attr.sample_type |= bit; 191 evsel->sample_size += sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 197 enum perf_event_sample_format bit) 198 { 199 if (evsel->attr.sample_type & bit) { 200 evsel->attr.sample_type &= ~bit; 201 evsel->sample_size -= sizeof(u64); 202 perf_evsel__calc_id_pos(evsel); 203 } 204 } 205 206 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 207 bool can_sample_identifier) 208 { 209 if (can_sample_identifier) { 210 perf_evsel__reset_sample_bit(evsel, ID); 211 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 212 } else { 213 perf_evsel__set_sample_bit(evsel, ID); 214 } 215 evsel->attr.read_format |= PERF_FORMAT_ID; 216 } 217 218 /** 219 * perf_evsel__is_function_event - Return whether given evsel is a function 220 * trace event 221 * 222 * @evsel - evsel selector to be tested 223 * 224 * Return %true if event is function trace event 225 */ 226 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 227 { 228 #define FUNCTION_EVENT "ftrace:function" 229 230 return evsel->name && 231 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 232 233 #undef FUNCTION_EVENT 234 } 235 236 void perf_evsel__init(struct perf_evsel *evsel, 237 struct perf_event_attr *attr, int idx) 238 { 239 evsel->idx = idx; 240 evsel->tracking = !idx; 241 evsel->attr = *attr; 242 evsel->leader = evsel; 243 evsel->unit = ""; 244 evsel->scale = 1.0; 245 evsel->evlist = NULL; 246 evsel->bpf_fd = -1; 247 INIT_LIST_HEAD(&evsel->node); 248 INIT_LIST_HEAD(&evsel->config_terms); 249 perf_evsel__object.init(evsel); 250 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 251 perf_evsel__calc_id_pos(evsel); 252 evsel->cmdline_group_boundary = false; 253 evsel->metric_expr = NULL; 254 evsel->metric_name = NULL; 255 evsel->metric_events = NULL; 256 evsel->collect_stat = false; 257 } 258 259 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 260 { 261 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 262 263 if (evsel != NULL) 264 perf_evsel__init(evsel, attr, idx); 265 266 if (perf_evsel__is_bpf_output(evsel)) { 267 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 268 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 269 evsel->attr.sample_period = 1; 270 } 271 272 return evsel; 273 } 274 275 static bool perf_event_can_profile_kernel(void) 276 { 277 return geteuid() == 0 || perf_event_paranoid() == -1; 278 } 279 280 struct perf_evsel *perf_evsel__new_cycles(bool precise) 281 { 282 struct perf_event_attr attr = { 283 .type = PERF_TYPE_HARDWARE, 284 .config = PERF_COUNT_HW_CPU_CYCLES, 285 .exclude_kernel = !perf_event_can_profile_kernel(), 286 }; 287 struct perf_evsel *evsel; 288 289 event_attr_init(&attr); 290 291 if (!precise) 292 goto new_event; 293 /* 294 * Unnamed union member, not supported as struct member named 295 * initializer in older compilers such as gcc 4.4.7 296 * 297 * Just for probing the precise_ip: 298 */ 299 attr.sample_period = 1; 300 301 perf_event_attr__set_max_precise_ip(&attr); 302 /* 303 * Now let the usual logic to set up the perf_event_attr defaults 304 * to kick in when we return and before perf_evsel__open() is called. 305 */ 306 attr.sample_period = 0; 307 new_event: 308 evsel = perf_evsel__new(&attr); 309 if (evsel == NULL) 310 goto out; 311 312 /* use asprintf() because free(evsel) assumes name is allocated */ 313 if (asprintf(&evsel->name, "cycles%s%s%.*s", 314 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 315 attr.exclude_kernel ? "u" : "", 316 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 317 goto error_free; 318 out: 319 return evsel; 320 error_free: 321 perf_evsel__delete(evsel); 322 evsel = NULL; 323 goto out; 324 } 325 326 /* 327 * Returns pointer with encoded error via <linux/err.h> interface. 328 */ 329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 330 { 331 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 332 int err = -ENOMEM; 333 334 if (evsel == NULL) { 335 goto out_err; 336 } else { 337 struct perf_event_attr attr = { 338 .type = PERF_TYPE_TRACEPOINT, 339 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 340 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 341 }; 342 343 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 344 goto out_free; 345 346 evsel->tp_format = trace_event__tp_format(sys, name); 347 if (IS_ERR(evsel->tp_format)) { 348 err = PTR_ERR(evsel->tp_format); 349 goto out_free; 350 } 351 352 event_attr_init(&attr); 353 attr.config = evsel->tp_format->id; 354 attr.sample_period = 1; 355 perf_evsel__init(evsel, &attr, idx); 356 } 357 358 return evsel; 359 360 out_free: 361 zfree(&evsel->name); 362 free(evsel); 363 out_err: 364 return ERR_PTR(err); 365 } 366 367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 368 "cycles", 369 "instructions", 370 "cache-references", 371 "cache-misses", 372 "branches", 373 "branch-misses", 374 "bus-cycles", 375 "stalled-cycles-frontend", 376 "stalled-cycles-backend", 377 "ref-cycles", 378 }; 379 380 static const char *__perf_evsel__hw_name(u64 config) 381 { 382 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 383 return perf_evsel__hw_names[config]; 384 385 return "unknown-hardware"; 386 } 387 388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 389 { 390 int colon = 0, r = 0; 391 struct perf_event_attr *attr = &evsel->attr; 392 bool exclude_guest_default = false; 393 394 #define MOD_PRINT(context, mod) do { \ 395 if (!attr->exclude_##context) { \ 396 if (!colon) colon = ++r; \ 397 r += scnprintf(bf + r, size - r, "%c", mod); \ 398 } } while(0) 399 400 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 401 MOD_PRINT(kernel, 'k'); 402 MOD_PRINT(user, 'u'); 403 MOD_PRINT(hv, 'h'); 404 exclude_guest_default = true; 405 } 406 407 if (attr->precise_ip) { 408 if (!colon) 409 colon = ++r; 410 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 411 exclude_guest_default = true; 412 } 413 414 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 415 MOD_PRINT(host, 'H'); 416 MOD_PRINT(guest, 'G'); 417 } 418 #undef MOD_PRINT 419 if (colon) 420 bf[colon - 1] = ':'; 421 return r; 422 } 423 424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 425 { 426 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 427 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 428 } 429 430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 431 "cpu-clock", 432 "task-clock", 433 "page-faults", 434 "context-switches", 435 "cpu-migrations", 436 "minor-faults", 437 "major-faults", 438 "alignment-faults", 439 "emulation-faults", 440 "dummy", 441 }; 442 443 static const char *__perf_evsel__sw_name(u64 config) 444 { 445 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 446 return perf_evsel__sw_names[config]; 447 return "unknown-software"; 448 } 449 450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 451 { 452 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 453 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 454 } 455 456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 457 { 458 int r; 459 460 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 461 462 if (type & HW_BREAKPOINT_R) 463 r += scnprintf(bf + r, size - r, "r"); 464 465 if (type & HW_BREAKPOINT_W) 466 r += scnprintf(bf + r, size - r, "w"); 467 468 if (type & HW_BREAKPOINT_X) 469 r += scnprintf(bf + r, size - r, "x"); 470 471 return r; 472 } 473 474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 475 { 476 struct perf_event_attr *attr = &evsel->attr; 477 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 478 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 479 } 480 481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 482 [PERF_EVSEL__MAX_ALIASES] = { 483 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 484 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 485 { "LLC", "L2", }, 486 { "dTLB", "d-tlb", "Data-TLB", }, 487 { "iTLB", "i-tlb", "Instruction-TLB", }, 488 { "branch", "branches", "bpu", "btb", "bpc", }, 489 { "node", }, 490 }; 491 492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 493 [PERF_EVSEL__MAX_ALIASES] = { 494 { "load", "loads", "read", }, 495 { "store", "stores", "write", }, 496 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 497 }; 498 499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 500 [PERF_EVSEL__MAX_ALIASES] = { 501 { "refs", "Reference", "ops", "access", }, 502 { "misses", "miss", }, 503 }; 504 505 #define C(x) PERF_COUNT_HW_CACHE_##x 506 #define CACHE_READ (1 << C(OP_READ)) 507 #define CACHE_WRITE (1 << C(OP_WRITE)) 508 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 509 #define COP(x) (1 << x) 510 511 /* 512 * cache operartion stat 513 * L1I : Read and prefetch only 514 * ITLB and BPU : Read-only 515 */ 516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 517 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 519 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 520 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 [C(ITLB)] = (CACHE_READ), 522 [C(BPU)] = (CACHE_READ), 523 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 }; 525 526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 527 { 528 if (perf_evsel__hw_cache_stat[type] & COP(op)) 529 return true; /* valid */ 530 else 531 return false; /* invalid */ 532 } 533 534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 535 char *bf, size_t size) 536 { 537 if (result) { 538 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 539 perf_evsel__hw_cache_op[op][0], 540 perf_evsel__hw_cache_result[result][0]); 541 } 542 543 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 544 perf_evsel__hw_cache_op[op][1]); 545 } 546 547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 548 { 549 u8 op, result, type = (config >> 0) & 0xff; 550 const char *err = "unknown-ext-hardware-cache-type"; 551 552 if (type >= PERF_COUNT_HW_CACHE_MAX) 553 goto out_err; 554 555 op = (config >> 8) & 0xff; 556 err = "unknown-ext-hardware-cache-op"; 557 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 558 goto out_err; 559 560 result = (config >> 16) & 0xff; 561 err = "unknown-ext-hardware-cache-result"; 562 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 563 goto out_err; 564 565 err = "invalid-cache"; 566 if (!perf_evsel__is_cache_op_valid(type, op)) 567 goto out_err; 568 569 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 570 out_err: 571 return scnprintf(bf, size, "%s", err); 572 } 573 574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 575 { 576 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 577 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 578 } 579 580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 581 { 582 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 583 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 584 } 585 586 const char *perf_evsel__name(struct perf_evsel *evsel) 587 { 588 char bf[128]; 589 590 if (evsel->name) 591 return evsel->name; 592 593 switch (evsel->attr.type) { 594 case PERF_TYPE_RAW: 595 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 596 break; 597 598 case PERF_TYPE_HARDWARE: 599 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 600 break; 601 602 case PERF_TYPE_HW_CACHE: 603 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 604 break; 605 606 case PERF_TYPE_SOFTWARE: 607 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 608 break; 609 610 case PERF_TYPE_TRACEPOINT: 611 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 612 break; 613 614 case PERF_TYPE_BREAKPOINT: 615 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 616 break; 617 618 default: 619 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 620 evsel->attr.type); 621 break; 622 } 623 624 evsel->name = strdup(bf); 625 626 return evsel->name ?: "unknown"; 627 } 628 629 const char *perf_evsel__group_name(struct perf_evsel *evsel) 630 { 631 return evsel->group_name ?: "anon group"; 632 } 633 634 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 635 { 636 int ret; 637 struct perf_evsel *pos; 638 const char *group_name = perf_evsel__group_name(evsel); 639 640 ret = scnprintf(buf, size, "%s", group_name); 641 642 ret += scnprintf(buf + ret, size - ret, " { %s", 643 perf_evsel__name(evsel)); 644 645 for_each_group_member(pos, evsel) 646 ret += scnprintf(buf + ret, size - ret, ", %s", 647 perf_evsel__name(pos)); 648 649 ret += scnprintf(buf + ret, size - ret, " }"); 650 651 return ret; 652 } 653 654 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 655 struct record_opts *opts, 656 struct callchain_param *param) 657 { 658 bool function = perf_evsel__is_function_event(evsel); 659 struct perf_event_attr *attr = &evsel->attr; 660 661 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 662 663 attr->sample_max_stack = param->max_stack; 664 665 if (param->record_mode == CALLCHAIN_LBR) { 666 if (!opts->branch_stack) { 667 if (attr->exclude_user) { 668 pr_warning("LBR callstack option is only available " 669 "to get user callchain information. " 670 "Falling back to framepointers.\n"); 671 } else { 672 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 673 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 674 PERF_SAMPLE_BRANCH_CALL_STACK | 675 PERF_SAMPLE_BRANCH_NO_CYCLES | 676 PERF_SAMPLE_BRANCH_NO_FLAGS; 677 } 678 } else 679 pr_warning("Cannot use LBR callstack with branch stack. " 680 "Falling back to framepointers.\n"); 681 } 682 683 if (param->record_mode == CALLCHAIN_DWARF) { 684 if (!function) { 685 perf_evsel__set_sample_bit(evsel, REGS_USER); 686 perf_evsel__set_sample_bit(evsel, STACK_USER); 687 attr->sample_regs_user |= PERF_REGS_MASK; 688 attr->sample_stack_user = param->dump_size; 689 attr->exclude_callchain_user = 1; 690 } else { 691 pr_info("Cannot use DWARF unwind for function trace event," 692 " falling back to framepointers.\n"); 693 } 694 } 695 696 if (function) { 697 pr_info("Disabling user space callchains for function trace event.\n"); 698 attr->exclude_callchain_user = 1; 699 } 700 } 701 702 void perf_evsel__config_callchain(struct perf_evsel *evsel, 703 struct record_opts *opts, 704 struct callchain_param *param) 705 { 706 if (param->enabled) 707 return __perf_evsel__config_callchain(evsel, opts, param); 708 } 709 710 static void 711 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 712 struct callchain_param *param) 713 { 714 struct perf_event_attr *attr = &evsel->attr; 715 716 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 717 if (param->record_mode == CALLCHAIN_LBR) { 718 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 719 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 720 PERF_SAMPLE_BRANCH_CALL_STACK); 721 } 722 if (param->record_mode == CALLCHAIN_DWARF) { 723 perf_evsel__reset_sample_bit(evsel, REGS_USER); 724 perf_evsel__reset_sample_bit(evsel, STACK_USER); 725 } 726 } 727 728 static void apply_config_terms(struct perf_evsel *evsel, 729 struct record_opts *opts, bool track) 730 { 731 struct perf_evsel_config_term *term; 732 struct list_head *config_terms = &evsel->config_terms; 733 struct perf_event_attr *attr = &evsel->attr; 734 /* callgraph default */ 735 struct callchain_param param = { 736 .record_mode = callchain_param.record_mode, 737 }; 738 u32 dump_size = 0; 739 int max_stack = 0; 740 const char *callgraph_buf = NULL; 741 742 list_for_each_entry(term, config_terms, list) { 743 switch (term->type) { 744 case PERF_EVSEL__CONFIG_TERM_PERIOD: 745 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 746 attr->sample_period = term->val.period; 747 attr->freq = 0; 748 perf_evsel__reset_sample_bit(evsel, PERIOD); 749 } 750 break; 751 case PERF_EVSEL__CONFIG_TERM_FREQ: 752 if (!(term->weak && opts->user_freq != UINT_MAX)) { 753 attr->sample_freq = term->val.freq; 754 attr->freq = 1; 755 perf_evsel__set_sample_bit(evsel, PERIOD); 756 } 757 break; 758 case PERF_EVSEL__CONFIG_TERM_TIME: 759 if (term->val.time) 760 perf_evsel__set_sample_bit(evsel, TIME); 761 else 762 perf_evsel__reset_sample_bit(evsel, TIME); 763 break; 764 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 765 callgraph_buf = term->val.callgraph; 766 break; 767 case PERF_EVSEL__CONFIG_TERM_BRANCH: 768 if (term->val.branch && strcmp(term->val.branch, "no")) { 769 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 770 parse_branch_str(term->val.branch, 771 &attr->branch_sample_type); 772 } else 773 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 774 break; 775 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 776 dump_size = term->val.stack_user; 777 break; 778 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 779 max_stack = term->val.max_stack; 780 break; 781 case PERF_EVSEL__CONFIG_TERM_INHERIT: 782 /* 783 * attr->inherit should has already been set by 784 * perf_evsel__config. If user explicitly set 785 * inherit using config terms, override global 786 * opt->no_inherit setting. 787 */ 788 attr->inherit = term->val.inherit ? 1 : 0; 789 break; 790 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 791 attr->write_backward = term->val.overwrite ? 1 : 0; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 794 break; 795 default: 796 break; 797 } 798 } 799 800 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 801 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 802 bool sample_address = false; 803 804 if (max_stack) { 805 param.max_stack = max_stack; 806 if (callgraph_buf == NULL) 807 callgraph_buf = "fp"; 808 } 809 810 /* parse callgraph parameters */ 811 if (callgraph_buf != NULL) { 812 if (!strcmp(callgraph_buf, "no")) { 813 param.enabled = false; 814 param.record_mode = CALLCHAIN_NONE; 815 } else { 816 param.enabled = true; 817 if (parse_callchain_record(callgraph_buf, ¶m)) { 818 pr_err("per-event callgraph setting for %s failed. " 819 "Apply callgraph global setting for it\n", 820 evsel->name); 821 return; 822 } 823 if (param.record_mode == CALLCHAIN_DWARF) 824 sample_address = true; 825 } 826 } 827 if (dump_size > 0) { 828 dump_size = round_up(dump_size, sizeof(u64)); 829 param.dump_size = dump_size; 830 } 831 832 /* If global callgraph set, clear it */ 833 if (callchain_param.enabled) 834 perf_evsel__reset_callgraph(evsel, &callchain_param); 835 836 /* set perf-event callgraph */ 837 if (param.enabled) { 838 if (sample_address) { 839 perf_evsel__set_sample_bit(evsel, ADDR); 840 perf_evsel__set_sample_bit(evsel, DATA_SRC); 841 evsel->attr.mmap_data = track; 842 } 843 perf_evsel__config_callchain(evsel, opts, ¶m); 844 } 845 } 846 } 847 848 /* 849 * The enable_on_exec/disabled value strategy: 850 * 851 * 1) For any type of traced program: 852 * - all independent events and group leaders are disabled 853 * - all group members are enabled 854 * 855 * Group members are ruled by group leaders. They need to 856 * be enabled, because the group scheduling relies on that. 857 * 858 * 2) For traced programs executed by perf: 859 * - all independent events and group leaders have 860 * enable_on_exec set 861 * - we don't specifically enable or disable any event during 862 * the record command 863 * 864 * Independent events and group leaders are initially disabled 865 * and get enabled by exec. Group members are ruled by group 866 * leaders as stated in 1). 867 * 868 * 3) For traced programs attached by perf (pid/tid): 869 * - we specifically enable or disable all events during 870 * the record command 871 * 872 * When attaching events to already running traced we 873 * enable/disable events specifically, as there's no 874 * initial traced exec call. 875 */ 876 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 877 struct callchain_param *callchain) 878 { 879 struct perf_evsel *leader = evsel->leader; 880 struct perf_event_attr *attr = &evsel->attr; 881 int track = evsel->tracking; 882 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 883 884 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 885 attr->inherit = !opts->no_inherit; 886 attr->write_backward = opts->overwrite ? 1 : 0; 887 888 perf_evsel__set_sample_bit(evsel, IP); 889 perf_evsel__set_sample_bit(evsel, TID); 890 891 if (evsel->sample_read) { 892 perf_evsel__set_sample_bit(evsel, READ); 893 894 /* 895 * We need ID even in case of single event, because 896 * PERF_SAMPLE_READ process ID specific data. 897 */ 898 perf_evsel__set_sample_id(evsel, false); 899 900 /* 901 * Apply group format only if we belong to group 902 * with more than one members. 903 */ 904 if (leader->nr_members > 1) { 905 attr->read_format |= PERF_FORMAT_GROUP; 906 attr->inherit = 0; 907 } 908 } 909 910 /* 911 * We default some events to have a default interval. But keep 912 * it a weak assumption overridable by the user. 913 */ 914 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 915 opts->user_interval != ULLONG_MAX)) { 916 if (opts->freq) { 917 perf_evsel__set_sample_bit(evsel, PERIOD); 918 attr->freq = 1; 919 attr->sample_freq = opts->freq; 920 } else { 921 attr->sample_period = opts->default_interval; 922 } 923 } 924 925 /* 926 * Disable sampling for all group members other 927 * than leader in case leader 'leads' the sampling. 928 */ 929 if ((leader != evsel) && leader->sample_read) { 930 attr->sample_freq = 0; 931 attr->sample_period = 0; 932 } 933 934 if (opts->no_samples) 935 attr->sample_freq = 0; 936 937 if (opts->inherit_stat) { 938 evsel->attr.read_format |= 939 PERF_FORMAT_TOTAL_TIME_ENABLED | 940 PERF_FORMAT_TOTAL_TIME_RUNNING | 941 PERF_FORMAT_ID; 942 attr->inherit_stat = 1; 943 } 944 945 if (opts->sample_address) { 946 perf_evsel__set_sample_bit(evsel, ADDR); 947 attr->mmap_data = track; 948 } 949 950 /* 951 * We don't allow user space callchains for function trace 952 * event, due to issues with page faults while tracing page 953 * fault handler and its overall trickiness nature. 954 */ 955 if (perf_evsel__is_function_event(evsel)) 956 evsel->attr.exclude_callchain_user = 1; 957 958 if (callchain && callchain->enabled && !evsel->no_aux_samples) 959 perf_evsel__config_callchain(evsel, opts, callchain); 960 961 if (opts->sample_intr_regs) { 962 attr->sample_regs_intr = opts->sample_intr_regs; 963 perf_evsel__set_sample_bit(evsel, REGS_INTR); 964 } 965 966 if (opts->sample_user_regs) { 967 attr->sample_regs_user |= opts->sample_user_regs; 968 perf_evsel__set_sample_bit(evsel, REGS_USER); 969 } 970 971 if (target__has_cpu(&opts->target) || opts->sample_cpu) 972 perf_evsel__set_sample_bit(evsel, CPU); 973 974 /* 975 * When the user explicitly disabled time don't force it here. 976 */ 977 if (opts->sample_time && 978 (!perf_missing_features.sample_id_all && 979 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 980 opts->sample_time_set))) 981 perf_evsel__set_sample_bit(evsel, TIME); 982 983 if (opts->raw_samples && !evsel->no_aux_samples) { 984 perf_evsel__set_sample_bit(evsel, TIME); 985 perf_evsel__set_sample_bit(evsel, RAW); 986 perf_evsel__set_sample_bit(evsel, CPU); 987 } 988 989 if (opts->sample_address) 990 perf_evsel__set_sample_bit(evsel, DATA_SRC); 991 992 if (opts->sample_phys_addr) 993 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 994 995 if (opts->no_buffering) { 996 attr->watermark = 0; 997 attr->wakeup_events = 1; 998 } 999 if (opts->branch_stack && !evsel->no_aux_samples) { 1000 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1001 attr->branch_sample_type = opts->branch_stack; 1002 } 1003 1004 if (opts->sample_weight) 1005 perf_evsel__set_sample_bit(evsel, WEIGHT); 1006 1007 attr->task = track; 1008 attr->mmap = track; 1009 attr->mmap2 = track && !perf_missing_features.mmap2; 1010 attr->comm = track; 1011 1012 if (opts->record_namespaces) 1013 attr->namespaces = track; 1014 1015 if (opts->record_switch_events) 1016 attr->context_switch = track; 1017 1018 if (opts->sample_transaction) 1019 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1020 1021 if (opts->running_time) { 1022 evsel->attr.read_format |= 1023 PERF_FORMAT_TOTAL_TIME_ENABLED | 1024 PERF_FORMAT_TOTAL_TIME_RUNNING; 1025 } 1026 1027 /* 1028 * XXX see the function comment above 1029 * 1030 * Disabling only independent events or group leaders, 1031 * keeping group members enabled. 1032 */ 1033 if (perf_evsel__is_group_leader(evsel)) 1034 attr->disabled = 1; 1035 1036 /* 1037 * Setting enable_on_exec for independent events and 1038 * group leaders for traced executed by perf. 1039 */ 1040 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1041 !opts->initial_delay) 1042 attr->enable_on_exec = 1; 1043 1044 if (evsel->immediate) { 1045 attr->disabled = 0; 1046 attr->enable_on_exec = 0; 1047 } 1048 1049 clockid = opts->clockid; 1050 if (opts->use_clockid) { 1051 attr->use_clockid = 1; 1052 attr->clockid = opts->clockid; 1053 } 1054 1055 if (evsel->precise_max) 1056 perf_event_attr__set_max_precise_ip(attr); 1057 1058 if (opts->all_user) { 1059 attr->exclude_kernel = 1; 1060 attr->exclude_user = 0; 1061 } 1062 1063 if (opts->all_kernel) { 1064 attr->exclude_kernel = 0; 1065 attr->exclude_user = 1; 1066 } 1067 1068 /* 1069 * Apply event specific term settings, 1070 * it overloads any global configuration. 1071 */ 1072 apply_config_terms(evsel, opts, track); 1073 1074 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1075 1076 /* The --period option takes the precedence. */ 1077 if (opts->period_set) { 1078 if (opts->period) 1079 perf_evsel__set_sample_bit(evsel, PERIOD); 1080 else 1081 perf_evsel__reset_sample_bit(evsel, PERIOD); 1082 } 1083 } 1084 1085 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1086 { 1087 if (evsel->system_wide) 1088 nthreads = 1; 1089 1090 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1091 1092 if (evsel->fd) { 1093 int cpu, thread; 1094 for (cpu = 0; cpu < ncpus; cpu++) { 1095 for (thread = 0; thread < nthreads; thread++) { 1096 FD(evsel, cpu, thread) = -1; 1097 } 1098 } 1099 } 1100 1101 return evsel->fd != NULL ? 0 : -ENOMEM; 1102 } 1103 1104 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1105 int ioc, void *arg) 1106 { 1107 int cpu, thread; 1108 1109 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1110 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1111 int fd = FD(evsel, cpu, thread), 1112 err = ioctl(fd, ioc, arg); 1113 1114 if (err) 1115 return err; 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1123 { 1124 return perf_evsel__run_ioctl(evsel, 1125 PERF_EVENT_IOC_SET_FILTER, 1126 (void *)filter); 1127 } 1128 1129 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1130 { 1131 char *new_filter = strdup(filter); 1132 1133 if (new_filter != NULL) { 1134 free(evsel->filter); 1135 evsel->filter = new_filter; 1136 return 0; 1137 } 1138 1139 return -1; 1140 } 1141 1142 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1143 const char *fmt, const char *filter) 1144 { 1145 char *new_filter; 1146 1147 if (evsel->filter == NULL) 1148 return perf_evsel__set_filter(evsel, filter); 1149 1150 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1151 free(evsel->filter); 1152 evsel->filter = new_filter; 1153 return 0; 1154 } 1155 1156 return -1; 1157 } 1158 1159 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1160 { 1161 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1162 } 1163 1164 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1165 { 1166 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1167 } 1168 1169 int perf_evsel__enable(struct perf_evsel *evsel) 1170 { 1171 return perf_evsel__run_ioctl(evsel, 1172 PERF_EVENT_IOC_ENABLE, 1173 0); 1174 } 1175 1176 int perf_evsel__disable(struct perf_evsel *evsel) 1177 { 1178 return perf_evsel__run_ioctl(evsel, 1179 PERF_EVENT_IOC_DISABLE, 1180 0); 1181 } 1182 1183 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1184 { 1185 if (ncpus == 0 || nthreads == 0) 1186 return 0; 1187 1188 if (evsel->system_wide) 1189 nthreads = 1; 1190 1191 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1192 if (evsel->sample_id == NULL) 1193 return -ENOMEM; 1194 1195 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1196 if (evsel->id == NULL) { 1197 xyarray__delete(evsel->sample_id); 1198 evsel->sample_id = NULL; 1199 return -ENOMEM; 1200 } 1201 1202 return 0; 1203 } 1204 1205 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1206 { 1207 xyarray__delete(evsel->fd); 1208 evsel->fd = NULL; 1209 } 1210 1211 static void perf_evsel__free_id(struct perf_evsel *evsel) 1212 { 1213 xyarray__delete(evsel->sample_id); 1214 evsel->sample_id = NULL; 1215 zfree(&evsel->id); 1216 } 1217 1218 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1219 { 1220 struct perf_evsel_config_term *term, *h; 1221 1222 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1223 list_del(&term->list); 1224 free(term); 1225 } 1226 } 1227 1228 void perf_evsel__close_fd(struct perf_evsel *evsel) 1229 { 1230 int cpu, thread; 1231 1232 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1233 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1234 close(FD(evsel, cpu, thread)); 1235 FD(evsel, cpu, thread) = -1; 1236 } 1237 } 1238 1239 void perf_evsel__exit(struct perf_evsel *evsel) 1240 { 1241 assert(list_empty(&evsel->node)); 1242 assert(evsel->evlist == NULL); 1243 perf_evsel__free_fd(evsel); 1244 perf_evsel__free_id(evsel); 1245 perf_evsel__free_config_terms(evsel); 1246 close_cgroup(evsel->cgrp); 1247 cpu_map__put(evsel->cpus); 1248 cpu_map__put(evsel->own_cpus); 1249 thread_map__put(evsel->threads); 1250 zfree(&evsel->group_name); 1251 zfree(&evsel->name); 1252 perf_evsel__object.fini(evsel); 1253 } 1254 1255 void perf_evsel__delete(struct perf_evsel *evsel) 1256 { 1257 perf_evsel__exit(evsel); 1258 free(evsel); 1259 } 1260 1261 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1262 struct perf_counts_values *count) 1263 { 1264 struct perf_counts_values tmp; 1265 1266 if (!evsel->prev_raw_counts) 1267 return; 1268 1269 if (cpu == -1) { 1270 tmp = evsel->prev_raw_counts->aggr; 1271 evsel->prev_raw_counts->aggr = *count; 1272 } else { 1273 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1274 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1275 } 1276 1277 count->val = count->val - tmp.val; 1278 count->ena = count->ena - tmp.ena; 1279 count->run = count->run - tmp.run; 1280 } 1281 1282 void perf_counts_values__scale(struct perf_counts_values *count, 1283 bool scale, s8 *pscaled) 1284 { 1285 s8 scaled = 0; 1286 1287 if (scale) { 1288 if (count->run == 0) { 1289 scaled = -1; 1290 count->val = 0; 1291 } else if (count->run < count->ena) { 1292 scaled = 1; 1293 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1294 } 1295 } else 1296 count->ena = count->run = 0; 1297 1298 if (pscaled) 1299 *pscaled = scaled; 1300 } 1301 1302 static int perf_evsel__read_size(struct perf_evsel *evsel) 1303 { 1304 u64 read_format = evsel->attr.read_format; 1305 int entry = sizeof(u64); /* value */ 1306 int size = 0; 1307 int nr = 1; 1308 1309 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1310 size += sizeof(u64); 1311 1312 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1313 size += sizeof(u64); 1314 1315 if (read_format & PERF_FORMAT_ID) 1316 entry += sizeof(u64); 1317 1318 if (read_format & PERF_FORMAT_GROUP) { 1319 nr = evsel->nr_members; 1320 size += sizeof(u64); 1321 } 1322 1323 size += entry * nr; 1324 return size; 1325 } 1326 1327 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1328 struct perf_counts_values *count) 1329 { 1330 size_t size = perf_evsel__read_size(evsel); 1331 1332 memset(count, 0, sizeof(*count)); 1333 1334 if (FD(evsel, cpu, thread) < 0) 1335 return -EINVAL; 1336 1337 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1338 return -errno; 1339 1340 return 0; 1341 } 1342 1343 static int 1344 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1345 { 1346 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1347 1348 return perf_evsel__read(evsel, cpu, thread, count); 1349 } 1350 1351 static void 1352 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1353 u64 val, u64 ena, u64 run) 1354 { 1355 struct perf_counts_values *count; 1356 1357 count = perf_counts(counter->counts, cpu, thread); 1358 1359 count->val = val; 1360 count->ena = ena; 1361 count->run = run; 1362 count->loaded = true; 1363 } 1364 1365 static int 1366 perf_evsel__process_group_data(struct perf_evsel *leader, 1367 int cpu, int thread, u64 *data) 1368 { 1369 u64 read_format = leader->attr.read_format; 1370 struct sample_read_value *v; 1371 u64 nr, ena = 0, run = 0, i; 1372 1373 nr = *data++; 1374 1375 if (nr != (u64) leader->nr_members) 1376 return -EINVAL; 1377 1378 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1379 ena = *data++; 1380 1381 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1382 run = *data++; 1383 1384 v = (struct sample_read_value *) data; 1385 1386 perf_evsel__set_count(leader, cpu, thread, 1387 v[0].value, ena, run); 1388 1389 for (i = 1; i < nr; i++) { 1390 struct perf_evsel *counter; 1391 1392 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1393 if (!counter) 1394 return -EINVAL; 1395 1396 perf_evsel__set_count(counter, cpu, thread, 1397 v[i].value, ena, run); 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int 1404 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1405 { 1406 struct perf_stat_evsel *ps = leader->stats; 1407 u64 read_format = leader->attr.read_format; 1408 int size = perf_evsel__read_size(leader); 1409 u64 *data = ps->group_data; 1410 1411 if (!(read_format & PERF_FORMAT_ID)) 1412 return -EINVAL; 1413 1414 if (!perf_evsel__is_group_leader(leader)) 1415 return -EINVAL; 1416 1417 if (!data) { 1418 data = zalloc(size); 1419 if (!data) 1420 return -ENOMEM; 1421 1422 ps->group_data = data; 1423 } 1424 1425 if (FD(leader, cpu, thread) < 0) 1426 return -EINVAL; 1427 1428 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1429 return -errno; 1430 1431 return perf_evsel__process_group_data(leader, cpu, thread, data); 1432 } 1433 1434 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1435 { 1436 u64 read_format = evsel->attr.read_format; 1437 1438 if (read_format & PERF_FORMAT_GROUP) 1439 return perf_evsel__read_group(evsel, cpu, thread); 1440 else 1441 return perf_evsel__read_one(evsel, cpu, thread); 1442 } 1443 1444 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1445 int cpu, int thread, bool scale) 1446 { 1447 struct perf_counts_values count; 1448 size_t nv = scale ? 3 : 1; 1449 1450 if (FD(evsel, cpu, thread) < 0) 1451 return -EINVAL; 1452 1453 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1454 return -ENOMEM; 1455 1456 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1457 return -errno; 1458 1459 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1460 perf_counts_values__scale(&count, scale, NULL); 1461 *perf_counts(evsel->counts, cpu, thread) = count; 1462 return 0; 1463 } 1464 1465 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1466 { 1467 struct perf_evsel *leader = evsel->leader; 1468 int fd; 1469 1470 if (perf_evsel__is_group_leader(evsel)) 1471 return -1; 1472 1473 /* 1474 * Leader must be already processed/open, 1475 * if not it's a bug. 1476 */ 1477 BUG_ON(!leader->fd); 1478 1479 fd = FD(leader, cpu, thread); 1480 BUG_ON(fd == -1); 1481 1482 return fd; 1483 } 1484 1485 struct bit_names { 1486 int bit; 1487 const char *name; 1488 }; 1489 1490 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1491 { 1492 bool first_bit = true; 1493 int i = 0; 1494 1495 do { 1496 if (value & bits[i].bit) { 1497 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1498 first_bit = false; 1499 } 1500 } while (bits[++i].name != NULL); 1501 } 1502 1503 static void __p_sample_type(char *buf, size_t size, u64 value) 1504 { 1505 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1506 struct bit_names bits[] = { 1507 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1508 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1509 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1510 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1511 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1512 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1513 { .name = NULL, } 1514 }; 1515 #undef bit_name 1516 __p_bits(buf, size, value, bits); 1517 } 1518 1519 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1520 { 1521 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1522 struct bit_names bits[] = { 1523 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1524 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1525 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1526 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1527 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1528 { .name = NULL, } 1529 }; 1530 #undef bit_name 1531 __p_bits(buf, size, value, bits); 1532 } 1533 1534 static void __p_read_format(char *buf, size_t size, u64 value) 1535 { 1536 #define bit_name(n) { PERF_FORMAT_##n, #n } 1537 struct bit_names bits[] = { 1538 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1539 bit_name(ID), bit_name(GROUP), 1540 { .name = NULL, } 1541 }; 1542 #undef bit_name 1543 __p_bits(buf, size, value, bits); 1544 } 1545 1546 #define BUF_SIZE 1024 1547 1548 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1549 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1550 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1551 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1552 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1553 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1554 1555 #define PRINT_ATTRn(_n, _f, _p) \ 1556 do { \ 1557 if (attr->_f) { \ 1558 _p(attr->_f); \ 1559 ret += attr__fprintf(fp, _n, buf, priv);\ 1560 } \ 1561 } while (0) 1562 1563 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1564 1565 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1566 attr__fprintf_f attr__fprintf, void *priv) 1567 { 1568 char buf[BUF_SIZE]; 1569 int ret = 0; 1570 1571 PRINT_ATTRf(type, p_unsigned); 1572 PRINT_ATTRf(size, p_unsigned); 1573 PRINT_ATTRf(config, p_hex); 1574 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1575 PRINT_ATTRf(sample_type, p_sample_type); 1576 PRINT_ATTRf(read_format, p_read_format); 1577 1578 PRINT_ATTRf(disabled, p_unsigned); 1579 PRINT_ATTRf(inherit, p_unsigned); 1580 PRINT_ATTRf(pinned, p_unsigned); 1581 PRINT_ATTRf(exclusive, p_unsigned); 1582 PRINT_ATTRf(exclude_user, p_unsigned); 1583 PRINT_ATTRf(exclude_kernel, p_unsigned); 1584 PRINT_ATTRf(exclude_hv, p_unsigned); 1585 PRINT_ATTRf(exclude_idle, p_unsigned); 1586 PRINT_ATTRf(mmap, p_unsigned); 1587 PRINT_ATTRf(comm, p_unsigned); 1588 PRINT_ATTRf(freq, p_unsigned); 1589 PRINT_ATTRf(inherit_stat, p_unsigned); 1590 PRINT_ATTRf(enable_on_exec, p_unsigned); 1591 PRINT_ATTRf(task, p_unsigned); 1592 PRINT_ATTRf(watermark, p_unsigned); 1593 PRINT_ATTRf(precise_ip, p_unsigned); 1594 PRINT_ATTRf(mmap_data, p_unsigned); 1595 PRINT_ATTRf(sample_id_all, p_unsigned); 1596 PRINT_ATTRf(exclude_host, p_unsigned); 1597 PRINT_ATTRf(exclude_guest, p_unsigned); 1598 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1599 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1600 PRINT_ATTRf(mmap2, p_unsigned); 1601 PRINT_ATTRf(comm_exec, p_unsigned); 1602 PRINT_ATTRf(use_clockid, p_unsigned); 1603 PRINT_ATTRf(context_switch, p_unsigned); 1604 PRINT_ATTRf(write_backward, p_unsigned); 1605 PRINT_ATTRf(namespaces, p_unsigned); 1606 1607 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1608 PRINT_ATTRf(bp_type, p_unsigned); 1609 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1610 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1611 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1612 PRINT_ATTRf(sample_regs_user, p_hex); 1613 PRINT_ATTRf(sample_stack_user, p_unsigned); 1614 PRINT_ATTRf(clockid, p_signed); 1615 PRINT_ATTRf(sample_regs_intr, p_hex); 1616 PRINT_ATTRf(aux_watermark, p_unsigned); 1617 PRINT_ATTRf(sample_max_stack, p_unsigned); 1618 1619 return ret; 1620 } 1621 1622 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1623 void *priv __maybe_unused) 1624 { 1625 return fprintf(fp, " %-32s %s\n", name, val); 1626 } 1627 1628 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1629 int nr_cpus, int nr_threads, 1630 int thread_idx) 1631 { 1632 for (int cpu = 0; cpu < nr_cpus; cpu++) 1633 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1634 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1635 } 1636 1637 static int update_fds(struct perf_evsel *evsel, 1638 int nr_cpus, int cpu_idx, 1639 int nr_threads, int thread_idx) 1640 { 1641 struct perf_evsel *pos; 1642 1643 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1644 return -EINVAL; 1645 1646 evlist__for_each_entry(evsel->evlist, pos) { 1647 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1648 1649 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1650 1651 /* 1652 * Since fds for next evsel has not been created, 1653 * there is no need to iterate whole event list. 1654 */ 1655 if (pos == evsel) 1656 break; 1657 } 1658 return 0; 1659 } 1660 1661 static bool ignore_missing_thread(struct perf_evsel *evsel, 1662 int nr_cpus, int cpu, 1663 struct thread_map *threads, 1664 int thread, int err) 1665 { 1666 pid_t ignore_pid = thread_map__pid(threads, thread); 1667 1668 if (!evsel->ignore_missing_thread) 1669 return false; 1670 1671 /* The system wide setup does not work with threads. */ 1672 if (evsel->system_wide) 1673 return false; 1674 1675 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1676 if (err != -ESRCH) 1677 return false; 1678 1679 /* If there's only one thread, let it fail. */ 1680 if (threads->nr == 1) 1681 return false; 1682 1683 /* 1684 * We should remove fd for missing_thread first 1685 * because thread_map__remove() will decrease threads->nr. 1686 */ 1687 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1688 return false; 1689 1690 if (thread_map__remove(threads, thread)) 1691 return false; 1692 1693 pr_warning("WARNING: Ignored open failure for pid %d\n", 1694 ignore_pid); 1695 return true; 1696 } 1697 1698 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1699 struct thread_map *threads) 1700 { 1701 int cpu, thread, nthreads; 1702 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1703 int pid = -1, err; 1704 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1705 1706 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1707 return -EINVAL; 1708 1709 if (cpus == NULL) { 1710 static struct cpu_map *empty_cpu_map; 1711 1712 if (empty_cpu_map == NULL) { 1713 empty_cpu_map = cpu_map__dummy_new(); 1714 if (empty_cpu_map == NULL) 1715 return -ENOMEM; 1716 } 1717 1718 cpus = empty_cpu_map; 1719 } 1720 1721 if (threads == NULL) { 1722 static struct thread_map *empty_thread_map; 1723 1724 if (empty_thread_map == NULL) { 1725 empty_thread_map = thread_map__new_by_tid(-1); 1726 if (empty_thread_map == NULL) 1727 return -ENOMEM; 1728 } 1729 1730 threads = empty_thread_map; 1731 } 1732 1733 if (evsel->system_wide) 1734 nthreads = 1; 1735 else 1736 nthreads = threads->nr; 1737 1738 if (evsel->fd == NULL && 1739 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1740 return -ENOMEM; 1741 1742 if (evsel->cgrp) { 1743 flags |= PERF_FLAG_PID_CGROUP; 1744 pid = evsel->cgrp->fd; 1745 } 1746 1747 fallback_missing_features: 1748 if (perf_missing_features.clockid_wrong) 1749 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1750 if (perf_missing_features.clockid) { 1751 evsel->attr.use_clockid = 0; 1752 evsel->attr.clockid = 0; 1753 } 1754 if (perf_missing_features.cloexec) 1755 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1756 if (perf_missing_features.mmap2) 1757 evsel->attr.mmap2 = 0; 1758 if (perf_missing_features.exclude_guest) 1759 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1760 if (perf_missing_features.lbr_flags) 1761 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1762 PERF_SAMPLE_BRANCH_NO_CYCLES); 1763 if (perf_missing_features.group_read && evsel->attr.inherit) 1764 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1765 retry_sample_id: 1766 if (perf_missing_features.sample_id_all) 1767 evsel->attr.sample_id_all = 0; 1768 1769 if (verbose >= 2) { 1770 fprintf(stderr, "%.60s\n", graph_dotted_line); 1771 fprintf(stderr, "perf_event_attr:\n"); 1772 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1773 fprintf(stderr, "%.60s\n", graph_dotted_line); 1774 } 1775 1776 for (cpu = 0; cpu < cpus->nr; cpu++) { 1777 1778 for (thread = 0; thread < nthreads; thread++) { 1779 int fd, group_fd; 1780 1781 if (!evsel->cgrp && !evsel->system_wide) 1782 pid = thread_map__pid(threads, thread); 1783 1784 group_fd = get_group_fd(evsel, cpu, thread); 1785 retry_open: 1786 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1787 pid, cpus->map[cpu], group_fd, flags); 1788 1789 test_attr__ready(); 1790 1791 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1792 group_fd, flags); 1793 1794 FD(evsel, cpu, thread) = fd; 1795 1796 if (fd < 0) { 1797 err = -errno; 1798 1799 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1800 /* 1801 * We just removed 1 thread, so take a step 1802 * back on thread index and lower the upper 1803 * nthreads limit. 1804 */ 1805 nthreads--; 1806 thread--; 1807 1808 /* ... and pretend like nothing have happened. */ 1809 err = 0; 1810 continue; 1811 } 1812 1813 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1814 err); 1815 goto try_fallback; 1816 } 1817 1818 pr_debug2(" = %d\n", fd); 1819 1820 if (evsel->bpf_fd >= 0) { 1821 int evt_fd = fd; 1822 int bpf_fd = evsel->bpf_fd; 1823 1824 err = ioctl(evt_fd, 1825 PERF_EVENT_IOC_SET_BPF, 1826 bpf_fd); 1827 if (err && errno != EEXIST) { 1828 pr_err("failed to attach bpf fd %d: %s\n", 1829 bpf_fd, strerror(errno)); 1830 err = -EINVAL; 1831 goto out_close; 1832 } 1833 } 1834 1835 set_rlimit = NO_CHANGE; 1836 1837 /* 1838 * If we succeeded but had to kill clockid, fail and 1839 * have perf_evsel__open_strerror() print us a nice 1840 * error. 1841 */ 1842 if (perf_missing_features.clockid || 1843 perf_missing_features.clockid_wrong) { 1844 err = -EINVAL; 1845 goto out_close; 1846 } 1847 } 1848 } 1849 1850 return 0; 1851 1852 try_fallback: 1853 /* 1854 * perf stat needs between 5 and 22 fds per CPU. When we run out 1855 * of them try to increase the limits. 1856 */ 1857 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1858 struct rlimit l; 1859 int old_errno = errno; 1860 1861 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1862 if (set_rlimit == NO_CHANGE) 1863 l.rlim_cur = l.rlim_max; 1864 else { 1865 l.rlim_cur = l.rlim_max + 1000; 1866 l.rlim_max = l.rlim_cur; 1867 } 1868 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1869 set_rlimit++; 1870 errno = old_errno; 1871 goto retry_open; 1872 } 1873 } 1874 errno = old_errno; 1875 } 1876 1877 if (err != -EINVAL || cpu > 0 || thread > 0) 1878 goto out_close; 1879 1880 /* 1881 * Must probe features in the order they were added to the 1882 * perf_event_attr interface. 1883 */ 1884 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1885 perf_missing_features.write_backward = true; 1886 pr_debug2("switching off write_backward\n"); 1887 goto out_close; 1888 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1889 perf_missing_features.clockid_wrong = true; 1890 pr_debug2("switching off clockid\n"); 1891 goto fallback_missing_features; 1892 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1893 perf_missing_features.clockid = true; 1894 pr_debug2("switching off use_clockid\n"); 1895 goto fallback_missing_features; 1896 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1897 perf_missing_features.cloexec = true; 1898 pr_debug2("switching off cloexec flag\n"); 1899 goto fallback_missing_features; 1900 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1901 perf_missing_features.mmap2 = true; 1902 pr_debug2("switching off mmap2\n"); 1903 goto fallback_missing_features; 1904 } else if (!perf_missing_features.exclude_guest && 1905 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1906 perf_missing_features.exclude_guest = true; 1907 pr_debug2("switching off exclude_guest, exclude_host\n"); 1908 goto fallback_missing_features; 1909 } else if (!perf_missing_features.sample_id_all) { 1910 perf_missing_features.sample_id_all = true; 1911 pr_debug2("switching off sample_id_all\n"); 1912 goto retry_sample_id; 1913 } else if (!perf_missing_features.lbr_flags && 1914 (evsel->attr.branch_sample_type & 1915 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1916 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1917 perf_missing_features.lbr_flags = true; 1918 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1919 goto fallback_missing_features; 1920 } else if (!perf_missing_features.group_read && 1921 evsel->attr.inherit && 1922 (evsel->attr.read_format & PERF_FORMAT_GROUP)) { 1923 perf_missing_features.group_read = true; 1924 pr_debug2("switching off group read\n"); 1925 goto fallback_missing_features; 1926 } 1927 out_close: 1928 do { 1929 while (--thread >= 0) { 1930 close(FD(evsel, cpu, thread)); 1931 FD(evsel, cpu, thread) = -1; 1932 } 1933 thread = nthreads; 1934 } while (--cpu >= 0); 1935 return err; 1936 } 1937 1938 void perf_evsel__close(struct perf_evsel *evsel) 1939 { 1940 if (evsel->fd == NULL) 1941 return; 1942 1943 perf_evsel__close_fd(evsel); 1944 perf_evsel__free_fd(evsel); 1945 } 1946 1947 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1948 struct cpu_map *cpus) 1949 { 1950 return perf_evsel__open(evsel, cpus, NULL); 1951 } 1952 1953 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1954 struct thread_map *threads) 1955 { 1956 return perf_evsel__open(evsel, NULL, threads); 1957 } 1958 1959 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1960 const union perf_event *event, 1961 struct perf_sample *sample) 1962 { 1963 u64 type = evsel->attr.sample_type; 1964 const u64 *array = event->sample.array; 1965 bool swapped = evsel->needs_swap; 1966 union u64_swap u; 1967 1968 array += ((event->header.size - 1969 sizeof(event->header)) / sizeof(u64)) - 1; 1970 1971 if (type & PERF_SAMPLE_IDENTIFIER) { 1972 sample->id = *array; 1973 array--; 1974 } 1975 1976 if (type & PERF_SAMPLE_CPU) { 1977 u.val64 = *array; 1978 if (swapped) { 1979 /* undo swap of u64, then swap on individual u32s */ 1980 u.val64 = bswap_64(u.val64); 1981 u.val32[0] = bswap_32(u.val32[0]); 1982 } 1983 1984 sample->cpu = u.val32[0]; 1985 array--; 1986 } 1987 1988 if (type & PERF_SAMPLE_STREAM_ID) { 1989 sample->stream_id = *array; 1990 array--; 1991 } 1992 1993 if (type & PERF_SAMPLE_ID) { 1994 sample->id = *array; 1995 array--; 1996 } 1997 1998 if (type & PERF_SAMPLE_TIME) { 1999 sample->time = *array; 2000 array--; 2001 } 2002 2003 if (type & PERF_SAMPLE_TID) { 2004 u.val64 = *array; 2005 if (swapped) { 2006 /* undo swap of u64, then swap on individual u32s */ 2007 u.val64 = bswap_64(u.val64); 2008 u.val32[0] = bswap_32(u.val32[0]); 2009 u.val32[1] = bswap_32(u.val32[1]); 2010 } 2011 2012 sample->pid = u.val32[0]; 2013 sample->tid = u.val32[1]; 2014 array--; 2015 } 2016 2017 return 0; 2018 } 2019 2020 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2021 u64 size) 2022 { 2023 return size > max_size || offset + size > endp; 2024 } 2025 2026 #define OVERFLOW_CHECK(offset, size, max_size) \ 2027 do { \ 2028 if (overflow(endp, (max_size), (offset), (size))) \ 2029 return -EFAULT; \ 2030 } while (0) 2031 2032 #define OVERFLOW_CHECK_u64(offset) \ 2033 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2034 2035 static int 2036 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2037 { 2038 /* 2039 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2040 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2041 * check the format does not go past the end of the event. 2042 */ 2043 if (sample_size + sizeof(event->header) > event->header.size) 2044 return -EFAULT; 2045 2046 return 0; 2047 } 2048 2049 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2050 struct perf_sample *data) 2051 { 2052 u64 type = evsel->attr.sample_type; 2053 bool swapped = evsel->needs_swap; 2054 const u64 *array; 2055 u16 max_size = event->header.size; 2056 const void *endp = (void *)event + max_size; 2057 u64 sz; 2058 2059 /* 2060 * used for cross-endian analysis. See git commit 65014ab3 2061 * for why this goofiness is needed. 2062 */ 2063 union u64_swap u; 2064 2065 memset(data, 0, sizeof(*data)); 2066 data->cpu = data->pid = data->tid = -1; 2067 data->stream_id = data->id = data->time = -1ULL; 2068 data->period = evsel->attr.sample_period; 2069 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2070 data->misc = event->header.misc; 2071 data->id = -1ULL; 2072 data->data_src = PERF_MEM_DATA_SRC_NONE; 2073 2074 if (event->header.type != PERF_RECORD_SAMPLE) { 2075 if (!evsel->attr.sample_id_all) 2076 return 0; 2077 return perf_evsel__parse_id_sample(evsel, event, data); 2078 } 2079 2080 array = event->sample.array; 2081 2082 if (perf_event__check_size(event, evsel->sample_size)) 2083 return -EFAULT; 2084 2085 if (type & PERF_SAMPLE_IDENTIFIER) { 2086 data->id = *array; 2087 array++; 2088 } 2089 2090 if (type & PERF_SAMPLE_IP) { 2091 data->ip = *array; 2092 array++; 2093 } 2094 2095 if (type & PERF_SAMPLE_TID) { 2096 u.val64 = *array; 2097 if (swapped) { 2098 /* undo swap of u64, then swap on individual u32s */ 2099 u.val64 = bswap_64(u.val64); 2100 u.val32[0] = bswap_32(u.val32[0]); 2101 u.val32[1] = bswap_32(u.val32[1]); 2102 } 2103 2104 data->pid = u.val32[0]; 2105 data->tid = u.val32[1]; 2106 array++; 2107 } 2108 2109 if (type & PERF_SAMPLE_TIME) { 2110 data->time = *array; 2111 array++; 2112 } 2113 2114 if (type & PERF_SAMPLE_ADDR) { 2115 data->addr = *array; 2116 array++; 2117 } 2118 2119 if (type & PERF_SAMPLE_ID) { 2120 data->id = *array; 2121 array++; 2122 } 2123 2124 if (type & PERF_SAMPLE_STREAM_ID) { 2125 data->stream_id = *array; 2126 array++; 2127 } 2128 2129 if (type & PERF_SAMPLE_CPU) { 2130 2131 u.val64 = *array; 2132 if (swapped) { 2133 /* undo swap of u64, then swap on individual u32s */ 2134 u.val64 = bswap_64(u.val64); 2135 u.val32[0] = bswap_32(u.val32[0]); 2136 } 2137 2138 data->cpu = u.val32[0]; 2139 array++; 2140 } 2141 2142 if (type & PERF_SAMPLE_PERIOD) { 2143 data->period = *array; 2144 array++; 2145 } 2146 2147 if (type & PERF_SAMPLE_READ) { 2148 u64 read_format = evsel->attr.read_format; 2149 2150 OVERFLOW_CHECK_u64(array); 2151 if (read_format & PERF_FORMAT_GROUP) 2152 data->read.group.nr = *array; 2153 else 2154 data->read.one.value = *array; 2155 2156 array++; 2157 2158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2159 OVERFLOW_CHECK_u64(array); 2160 data->read.time_enabled = *array; 2161 array++; 2162 } 2163 2164 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2165 OVERFLOW_CHECK_u64(array); 2166 data->read.time_running = *array; 2167 array++; 2168 } 2169 2170 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2171 if (read_format & PERF_FORMAT_GROUP) { 2172 const u64 max_group_nr = UINT64_MAX / 2173 sizeof(struct sample_read_value); 2174 2175 if (data->read.group.nr > max_group_nr) 2176 return -EFAULT; 2177 sz = data->read.group.nr * 2178 sizeof(struct sample_read_value); 2179 OVERFLOW_CHECK(array, sz, max_size); 2180 data->read.group.values = 2181 (struct sample_read_value *)array; 2182 array = (void *)array + sz; 2183 } else { 2184 OVERFLOW_CHECK_u64(array); 2185 data->read.one.id = *array; 2186 array++; 2187 } 2188 } 2189 2190 if (type & PERF_SAMPLE_CALLCHAIN) { 2191 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2192 2193 OVERFLOW_CHECK_u64(array); 2194 data->callchain = (struct ip_callchain *)array++; 2195 if (data->callchain->nr > max_callchain_nr) 2196 return -EFAULT; 2197 sz = data->callchain->nr * sizeof(u64); 2198 OVERFLOW_CHECK(array, sz, max_size); 2199 array = (void *)array + sz; 2200 } 2201 2202 if (type & PERF_SAMPLE_RAW) { 2203 OVERFLOW_CHECK_u64(array); 2204 u.val64 = *array; 2205 2206 /* 2207 * Undo swap of u64, then swap on individual u32s, 2208 * get the size of the raw area and undo all of the 2209 * swap. The pevent interface handles endianity by 2210 * itself. 2211 */ 2212 if (swapped) { 2213 u.val64 = bswap_64(u.val64); 2214 u.val32[0] = bswap_32(u.val32[0]); 2215 u.val32[1] = bswap_32(u.val32[1]); 2216 } 2217 data->raw_size = u.val32[0]; 2218 2219 /* 2220 * The raw data is aligned on 64bits including the 2221 * u32 size, so it's safe to use mem_bswap_64. 2222 */ 2223 if (swapped) 2224 mem_bswap_64((void *) array, data->raw_size); 2225 2226 array = (void *)array + sizeof(u32); 2227 2228 OVERFLOW_CHECK(array, data->raw_size, max_size); 2229 data->raw_data = (void *)array; 2230 array = (void *)array + data->raw_size; 2231 } 2232 2233 if (type & PERF_SAMPLE_BRANCH_STACK) { 2234 const u64 max_branch_nr = UINT64_MAX / 2235 sizeof(struct branch_entry); 2236 2237 OVERFLOW_CHECK_u64(array); 2238 data->branch_stack = (struct branch_stack *)array++; 2239 2240 if (data->branch_stack->nr > max_branch_nr) 2241 return -EFAULT; 2242 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2243 OVERFLOW_CHECK(array, sz, max_size); 2244 array = (void *)array + sz; 2245 } 2246 2247 if (type & PERF_SAMPLE_REGS_USER) { 2248 OVERFLOW_CHECK_u64(array); 2249 data->user_regs.abi = *array; 2250 array++; 2251 2252 if (data->user_regs.abi) { 2253 u64 mask = evsel->attr.sample_regs_user; 2254 2255 sz = hweight_long(mask) * sizeof(u64); 2256 OVERFLOW_CHECK(array, sz, max_size); 2257 data->user_regs.mask = mask; 2258 data->user_regs.regs = (u64 *)array; 2259 array = (void *)array + sz; 2260 } 2261 } 2262 2263 if (type & PERF_SAMPLE_STACK_USER) { 2264 OVERFLOW_CHECK_u64(array); 2265 sz = *array++; 2266 2267 data->user_stack.offset = ((char *)(array - 1) 2268 - (char *) event); 2269 2270 if (!sz) { 2271 data->user_stack.size = 0; 2272 } else { 2273 OVERFLOW_CHECK(array, sz, max_size); 2274 data->user_stack.data = (char *)array; 2275 array = (void *)array + sz; 2276 OVERFLOW_CHECK_u64(array); 2277 data->user_stack.size = *array++; 2278 if (WARN_ONCE(data->user_stack.size > sz, 2279 "user stack dump failure\n")) 2280 return -EFAULT; 2281 } 2282 } 2283 2284 if (type & PERF_SAMPLE_WEIGHT) { 2285 OVERFLOW_CHECK_u64(array); 2286 data->weight = *array; 2287 array++; 2288 } 2289 2290 if (type & PERF_SAMPLE_DATA_SRC) { 2291 OVERFLOW_CHECK_u64(array); 2292 data->data_src = *array; 2293 array++; 2294 } 2295 2296 if (type & PERF_SAMPLE_TRANSACTION) { 2297 OVERFLOW_CHECK_u64(array); 2298 data->transaction = *array; 2299 array++; 2300 } 2301 2302 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2303 if (type & PERF_SAMPLE_REGS_INTR) { 2304 OVERFLOW_CHECK_u64(array); 2305 data->intr_regs.abi = *array; 2306 array++; 2307 2308 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2309 u64 mask = evsel->attr.sample_regs_intr; 2310 2311 sz = hweight_long(mask) * sizeof(u64); 2312 OVERFLOW_CHECK(array, sz, max_size); 2313 data->intr_regs.mask = mask; 2314 data->intr_regs.regs = (u64 *)array; 2315 array = (void *)array + sz; 2316 } 2317 } 2318 2319 data->phys_addr = 0; 2320 if (type & PERF_SAMPLE_PHYS_ADDR) { 2321 data->phys_addr = *array; 2322 array++; 2323 } 2324 2325 return 0; 2326 } 2327 2328 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2329 union perf_event *event, 2330 u64 *timestamp) 2331 { 2332 u64 type = evsel->attr.sample_type; 2333 const u64 *array; 2334 2335 if (!(type & PERF_SAMPLE_TIME)) 2336 return -1; 2337 2338 if (event->header.type != PERF_RECORD_SAMPLE) { 2339 struct perf_sample data = { 2340 .time = -1ULL, 2341 }; 2342 2343 if (!evsel->attr.sample_id_all) 2344 return -1; 2345 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2346 return -1; 2347 2348 *timestamp = data.time; 2349 return 0; 2350 } 2351 2352 array = event->sample.array; 2353 2354 if (perf_event__check_size(event, evsel->sample_size)) 2355 return -EFAULT; 2356 2357 if (type & PERF_SAMPLE_IDENTIFIER) 2358 array++; 2359 2360 if (type & PERF_SAMPLE_IP) 2361 array++; 2362 2363 if (type & PERF_SAMPLE_TID) 2364 array++; 2365 2366 if (type & PERF_SAMPLE_TIME) 2367 *timestamp = *array; 2368 2369 return 0; 2370 } 2371 2372 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2373 u64 read_format) 2374 { 2375 size_t sz, result = sizeof(struct sample_event); 2376 2377 if (type & PERF_SAMPLE_IDENTIFIER) 2378 result += sizeof(u64); 2379 2380 if (type & PERF_SAMPLE_IP) 2381 result += sizeof(u64); 2382 2383 if (type & PERF_SAMPLE_TID) 2384 result += sizeof(u64); 2385 2386 if (type & PERF_SAMPLE_TIME) 2387 result += sizeof(u64); 2388 2389 if (type & PERF_SAMPLE_ADDR) 2390 result += sizeof(u64); 2391 2392 if (type & PERF_SAMPLE_ID) 2393 result += sizeof(u64); 2394 2395 if (type & PERF_SAMPLE_STREAM_ID) 2396 result += sizeof(u64); 2397 2398 if (type & PERF_SAMPLE_CPU) 2399 result += sizeof(u64); 2400 2401 if (type & PERF_SAMPLE_PERIOD) 2402 result += sizeof(u64); 2403 2404 if (type & PERF_SAMPLE_READ) { 2405 result += sizeof(u64); 2406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2407 result += sizeof(u64); 2408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2409 result += sizeof(u64); 2410 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2411 if (read_format & PERF_FORMAT_GROUP) { 2412 sz = sample->read.group.nr * 2413 sizeof(struct sample_read_value); 2414 result += sz; 2415 } else { 2416 result += sizeof(u64); 2417 } 2418 } 2419 2420 if (type & PERF_SAMPLE_CALLCHAIN) { 2421 sz = (sample->callchain->nr + 1) * sizeof(u64); 2422 result += sz; 2423 } 2424 2425 if (type & PERF_SAMPLE_RAW) { 2426 result += sizeof(u32); 2427 result += sample->raw_size; 2428 } 2429 2430 if (type & PERF_SAMPLE_BRANCH_STACK) { 2431 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2432 sz += sizeof(u64); 2433 result += sz; 2434 } 2435 2436 if (type & PERF_SAMPLE_REGS_USER) { 2437 if (sample->user_regs.abi) { 2438 result += sizeof(u64); 2439 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2440 result += sz; 2441 } else { 2442 result += sizeof(u64); 2443 } 2444 } 2445 2446 if (type & PERF_SAMPLE_STACK_USER) { 2447 sz = sample->user_stack.size; 2448 result += sizeof(u64); 2449 if (sz) { 2450 result += sz; 2451 result += sizeof(u64); 2452 } 2453 } 2454 2455 if (type & PERF_SAMPLE_WEIGHT) 2456 result += sizeof(u64); 2457 2458 if (type & PERF_SAMPLE_DATA_SRC) 2459 result += sizeof(u64); 2460 2461 if (type & PERF_SAMPLE_TRANSACTION) 2462 result += sizeof(u64); 2463 2464 if (type & PERF_SAMPLE_REGS_INTR) { 2465 if (sample->intr_regs.abi) { 2466 result += sizeof(u64); 2467 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2468 result += sz; 2469 } else { 2470 result += sizeof(u64); 2471 } 2472 } 2473 2474 if (type & PERF_SAMPLE_PHYS_ADDR) 2475 result += sizeof(u64); 2476 2477 return result; 2478 } 2479 2480 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2481 u64 read_format, 2482 const struct perf_sample *sample) 2483 { 2484 u64 *array; 2485 size_t sz; 2486 /* 2487 * used for cross-endian analysis. See git commit 65014ab3 2488 * for why this goofiness is needed. 2489 */ 2490 union u64_swap u; 2491 2492 array = event->sample.array; 2493 2494 if (type & PERF_SAMPLE_IDENTIFIER) { 2495 *array = sample->id; 2496 array++; 2497 } 2498 2499 if (type & PERF_SAMPLE_IP) { 2500 *array = sample->ip; 2501 array++; 2502 } 2503 2504 if (type & PERF_SAMPLE_TID) { 2505 u.val32[0] = sample->pid; 2506 u.val32[1] = sample->tid; 2507 *array = u.val64; 2508 array++; 2509 } 2510 2511 if (type & PERF_SAMPLE_TIME) { 2512 *array = sample->time; 2513 array++; 2514 } 2515 2516 if (type & PERF_SAMPLE_ADDR) { 2517 *array = sample->addr; 2518 array++; 2519 } 2520 2521 if (type & PERF_SAMPLE_ID) { 2522 *array = sample->id; 2523 array++; 2524 } 2525 2526 if (type & PERF_SAMPLE_STREAM_ID) { 2527 *array = sample->stream_id; 2528 array++; 2529 } 2530 2531 if (type & PERF_SAMPLE_CPU) { 2532 u.val32[0] = sample->cpu; 2533 u.val32[1] = 0; 2534 *array = u.val64; 2535 array++; 2536 } 2537 2538 if (type & PERF_SAMPLE_PERIOD) { 2539 *array = sample->period; 2540 array++; 2541 } 2542 2543 if (type & PERF_SAMPLE_READ) { 2544 if (read_format & PERF_FORMAT_GROUP) 2545 *array = sample->read.group.nr; 2546 else 2547 *array = sample->read.one.value; 2548 array++; 2549 2550 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2551 *array = sample->read.time_enabled; 2552 array++; 2553 } 2554 2555 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2556 *array = sample->read.time_running; 2557 array++; 2558 } 2559 2560 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2561 if (read_format & PERF_FORMAT_GROUP) { 2562 sz = sample->read.group.nr * 2563 sizeof(struct sample_read_value); 2564 memcpy(array, sample->read.group.values, sz); 2565 array = (void *)array + sz; 2566 } else { 2567 *array = sample->read.one.id; 2568 array++; 2569 } 2570 } 2571 2572 if (type & PERF_SAMPLE_CALLCHAIN) { 2573 sz = (sample->callchain->nr + 1) * sizeof(u64); 2574 memcpy(array, sample->callchain, sz); 2575 array = (void *)array + sz; 2576 } 2577 2578 if (type & PERF_SAMPLE_RAW) { 2579 u.val32[0] = sample->raw_size; 2580 *array = u.val64; 2581 array = (void *)array + sizeof(u32); 2582 2583 memcpy(array, sample->raw_data, sample->raw_size); 2584 array = (void *)array + sample->raw_size; 2585 } 2586 2587 if (type & PERF_SAMPLE_BRANCH_STACK) { 2588 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2589 sz += sizeof(u64); 2590 memcpy(array, sample->branch_stack, sz); 2591 array = (void *)array + sz; 2592 } 2593 2594 if (type & PERF_SAMPLE_REGS_USER) { 2595 if (sample->user_regs.abi) { 2596 *array++ = sample->user_regs.abi; 2597 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2598 memcpy(array, sample->user_regs.regs, sz); 2599 array = (void *)array + sz; 2600 } else { 2601 *array++ = 0; 2602 } 2603 } 2604 2605 if (type & PERF_SAMPLE_STACK_USER) { 2606 sz = sample->user_stack.size; 2607 *array++ = sz; 2608 if (sz) { 2609 memcpy(array, sample->user_stack.data, sz); 2610 array = (void *)array + sz; 2611 *array++ = sz; 2612 } 2613 } 2614 2615 if (type & PERF_SAMPLE_WEIGHT) { 2616 *array = sample->weight; 2617 array++; 2618 } 2619 2620 if (type & PERF_SAMPLE_DATA_SRC) { 2621 *array = sample->data_src; 2622 array++; 2623 } 2624 2625 if (type & PERF_SAMPLE_TRANSACTION) { 2626 *array = sample->transaction; 2627 array++; 2628 } 2629 2630 if (type & PERF_SAMPLE_REGS_INTR) { 2631 if (sample->intr_regs.abi) { 2632 *array++ = sample->intr_regs.abi; 2633 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2634 memcpy(array, sample->intr_regs.regs, sz); 2635 array = (void *)array + sz; 2636 } else { 2637 *array++ = 0; 2638 } 2639 } 2640 2641 if (type & PERF_SAMPLE_PHYS_ADDR) { 2642 *array = sample->phys_addr; 2643 array++; 2644 } 2645 2646 return 0; 2647 } 2648 2649 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2650 { 2651 return pevent_find_field(evsel->tp_format, name); 2652 } 2653 2654 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2655 const char *name) 2656 { 2657 struct format_field *field = perf_evsel__field(evsel, name); 2658 int offset; 2659 2660 if (!field) 2661 return NULL; 2662 2663 offset = field->offset; 2664 2665 if (field->flags & FIELD_IS_DYNAMIC) { 2666 offset = *(int *)(sample->raw_data + field->offset); 2667 offset &= 0xffff; 2668 } 2669 2670 return sample->raw_data + offset; 2671 } 2672 2673 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2674 bool needs_swap) 2675 { 2676 u64 value; 2677 void *ptr = sample->raw_data + field->offset; 2678 2679 switch (field->size) { 2680 case 1: 2681 return *(u8 *)ptr; 2682 case 2: 2683 value = *(u16 *)ptr; 2684 break; 2685 case 4: 2686 value = *(u32 *)ptr; 2687 break; 2688 case 8: 2689 memcpy(&value, ptr, sizeof(u64)); 2690 break; 2691 default: 2692 return 0; 2693 } 2694 2695 if (!needs_swap) 2696 return value; 2697 2698 switch (field->size) { 2699 case 2: 2700 return bswap_16(value); 2701 case 4: 2702 return bswap_32(value); 2703 case 8: 2704 return bswap_64(value); 2705 default: 2706 return 0; 2707 } 2708 2709 return 0; 2710 } 2711 2712 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2713 const char *name) 2714 { 2715 struct format_field *field = perf_evsel__field(evsel, name); 2716 2717 if (!field) 2718 return 0; 2719 2720 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2721 } 2722 2723 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2724 char *msg, size_t msgsize) 2725 { 2726 int paranoid; 2727 2728 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2729 evsel->attr.type == PERF_TYPE_HARDWARE && 2730 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2731 /* 2732 * If it's cycles then fall back to hrtimer based 2733 * cpu-clock-tick sw counter, which is always available even if 2734 * no PMU support. 2735 * 2736 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2737 * b0a873e). 2738 */ 2739 scnprintf(msg, msgsize, "%s", 2740 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2741 2742 evsel->attr.type = PERF_TYPE_SOFTWARE; 2743 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2744 2745 zfree(&evsel->name); 2746 return true; 2747 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2748 (paranoid = perf_event_paranoid()) > 1) { 2749 const char *name = perf_evsel__name(evsel); 2750 char *new_name; 2751 2752 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2753 return false; 2754 2755 if (evsel->name) 2756 free(evsel->name); 2757 evsel->name = new_name; 2758 scnprintf(msg, msgsize, 2759 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2760 evsel->attr.exclude_kernel = 1; 2761 2762 return true; 2763 } 2764 2765 return false; 2766 } 2767 2768 static bool find_process(const char *name) 2769 { 2770 size_t len = strlen(name); 2771 DIR *dir; 2772 struct dirent *d; 2773 int ret = -1; 2774 2775 dir = opendir(procfs__mountpoint()); 2776 if (!dir) 2777 return false; 2778 2779 /* Walk through the directory. */ 2780 while (ret && (d = readdir(dir)) != NULL) { 2781 char path[PATH_MAX]; 2782 char *data; 2783 size_t size; 2784 2785 if ((d->d_type != DT_DIR) || 2786 !strcmp(".", d->d_name) || 2787 !strcmp("..", d->d_name)) 2788 continue; 2789 2790 scnprintf(path, sizeof(path), "%s/%s/comm", 2791 procfs__mountpoint(), d->d_name); 2792 2793 if (filename__read_str(path, &data, &size)) 2794 continue; 2795 2796 ret = strncmp(name, data, len); 2797 free(data); 2798 } 2799 2800 closedir(dir); 2801 return ret ? false : true; 2802 } 2803 2804 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2805 int err, char *msg, size_t size) 2806 { 2807 char sbuf[STRERR_BUFSIZE]; 2808 int printed = 0; 2809 2810 switch (err) { 2811 case EPERM: 2812 case EACCES: 2813 if (err == EPERM) 2814 printed = scnprintf(msg, size, 2815 "No permission to enable %s event.\n\n", 2816 perf_evsel__name(evsel)); 2817 2818 return scnprintf(msg + printed, size - printed, 2819 "You may not have permission to collect %sstats.\n\n" 2820 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2821 "which controls use of the performance events system by\n" 2822 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2823 "The current value is %d:\n\n" 2824 " -1: Allow use of (almost) all events by all users\n" 2825 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2826 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2827 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2828 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2829 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2830 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2831 " kernel.perf_event_paranoid = -1\n" , 2832 target->system_wide ? "system-wide " : "", 2833 perf_event_paranoid()); 2834 case ENOENT: 2835 return scnprintf(msg, size, "The %s event is not supported.", 2836 perf_evsel__name(evsel)); 2837 case EMFILE: 2838 return scnprintf(msg, size, "%s", 2839 "Too many events are opened.\n" 2840 "Probably the maximum number of open file descriptors has been reached.\n" 2841 "Hint: Try again after reducing the number of events.\n" 2842 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2843 case ENOMEM: 2844 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2845 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2846 return scnprintf(msg, size, 2847 "Not enough memory to setup event with callchain.\n" 2848 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2849 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2850 break; 2851 case ENODEV: 2852 if (target->cpu_list) 2853 return scnprintf(msg, size, "%s", 2854 "No such device - did you specify an out-of-range profile CPU?"); 2855 break; 2856 case EOPNOTSUPP: 2857 if (evsel->attr.sample_period != 0) 2858 return scnprintf(msg, size, 2859 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2860 perf_evsel__name(evsel)); 2861 if (evsel->attr.precise_ip) 2862 return scnprintf(msg, size, "%s", 2863 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2864 #if defined(__i386__) || defined(__x86_64__) 2865 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2866 return scnprintf(msg, size, "%s", 2867 "No hardware sampling interrupt available.\n" 2868 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2869 #endif 2870 break; 2871 case EBUSY: 2872 if (find_process("oprofiled")) 2873 return scnprintf(msg, size, 2874 "The PMU counters are busy/taken by another profiler.\n" 2875 "We found oprofile daemon running, please stop it and try again."); 2876 break; 2877 case EINVAL: 2878 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2879 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2880 if (perf_missing_features.clockid) 2881 return scnprintf(msg, size, "clockid feature not supported."); 2882 if (perf_missing_features.clockid_wrong) 2883 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2884 break; 2885 default: 2886 break; 2887 } 2888 2889 return scnprintf(msg, size, 2890 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2891 "/bin/dmesg may provide additional information.\n" 2892 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2893 err, str_error_r(err, sbuf, sizeof(sbuf)), 2894 perf_evsel__name(evsel)); 2895 } 2896 2897 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2898 { 2899 if (evsel && evsel->evlist) 2900 return evsel->evlist->env; 2901 return NULL; 2902 } 2903