1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 32 static struct { 33 bool sample_id_all; 34 bool exclude_guest; 35 bool mmap2; 36 bool cloexec; 37 bool clockid; 38 bool clockid_wrong; 39 bool lbr_flags; 40 } perf_missing_features; 41 42 static clockid_t clockid; 43 44 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 45 { 46 return 0; 47 } 48 49 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 50 { 51 } 52 53 static struct { 54 size_t size; 55 int (*init)(struct perf_evsel *evsel); 56 void (*fini)(struct perf_evsel *evsel); 57 } perf_evsel__object = { 58 .size = sizeof(struct perf_evsel), 59 .init = perf_evsel__no_extra_init, 60 .fini = perf_evsel__no_extra_fini, 61 }; 62 63 int perf_evsel__object_config(size_t object_size, 64 int (*init)(struct perf_evsel *evsel), 65 void (*fini)(struct perf_evsel *evsel)) 66 { 67 68 if (object_size == 0) 69 goto set_methods; 70 71 if (perf_evsel__object.size > object_size) 72 return -EINVAL; 73 74 perf_evsel__object.size = object_size; 75 76 set_methods: 77 if (init != NULL) 78 perf_evsel__object.init = init; 79 80 if (fini != NULL) 81 perf_evsel__object.fini = fini; 82 83 return 0; 84 } 85 86 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 87 88 int __perf_evsel__sample_size(u64 sample_type) 89 { 90 u64 mask = sample_type & PERF_SAMPLE_MASK; 91 int size = 0; 92 int i; 93 94 for (i = 0; i < 64; i++) { 95 if (mask & (1ULL << i)) 96 size++; 97 } 98 99 size *= sizeof(u64); 100 101 return size; 102 } 103 104 /** 105 * __perf_evsel__calc_id_pos - calculate id_pos. 106 * @sample_type: sample type 107 * 108 * This function returns the position of the event id (PERF_SAMPLE_ID or 109 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 110 * sample_event. 111 */ 112 static int __perf_evsel__calc_id_pos(u64 sample_type) 113 { 114 int idx = 0; 115 116 if (sample_type & PERF_SAMPLE_IDENTIFIER) 117 return 0; 118 119 if (!(sample_type & PERF_SAMPLE_ID)) 120 return -1; 121 122 if (sample_type & PERF_SAMPLE_IP) 123 idx += 1; 124 125 if (sample_type & PERF_SAMPLE_TID) 126 idx += 1; 127 128 if (sample_type & PERF_SAMPLE_TIME) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_ADDR) 132 idx += 1; 133 134 return idx; 135 } 136 137 /** 138 * __perf_evsel__calc_is_pos - calculate is_pos. 139 * @sample_type: sample type 140 * 141 * This function returns the position (counting backwards) of the event id 142 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 143 * sample_id_all is used there is an id sample appended to non-sample events. 144 */ 145 static int __perf_evsel__calc_is_pos(u64 sample_type) 146 { 147 int idx = 1; 148 149 if (sample_type & PERF_SAMPLE_IDENTIFIER) 150 return 1; 151 152 if (!(sample_type & PERF_SAMPLE_ID)) 153 return -1; 154 155 if (sample_type & PERF_SAMPLE_CPU) 156 idx += 1; 157 158 if (sample_type & PERF_SAMPLE_STREAM_ID) 159 idx += 1; 160 161 return idx; 162 } 163 164 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 165 { 166 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 167 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 168 } 169 170 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 171 enum perf_event_sample_format bit) 172 { 173 if (!(evsel->attr.sample_type & bit)) { 174 evsel->attr.sample_type |= bit; 175 evsel->sample_size += sizeof(u64); 176 perf_evsel__calc_id_pos(evsel); 177 } 178 } 179 180 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 181 enum perf_event_sample_format bit) 182 { 183 if (evsel->attr.sample_type & bit) { 184 evsel->attr.sample_type &= ~bit; 185 evsel->sample_size -= sizeof(u64); 186 perf_evsel__calc_id_pos(evsel); 187 } 188 } 189 190 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 191 bool can_sample_identifier) 192 { 193 if (can_sample_identifier) { 194 perf_evsel__reset_sample_bit(evsel, ID); 195 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 196 } else { 197 perf_evsel__set_sample_bit(evsel, ID); 198 } 199 evsel->attr.read_format |= PERF_FORMAT_ID; 200 } 201 202 void perf_evsel__init(struct perf_evsel *evsel, 203 struct perf_event_attr *attr, int idx) 204 { 205 evsel->idx = idx; 206 evsel->tracking = !idx; 207 evsel->attr = *attr; 208 evsel->leader = evsel; 209 evsel->unit = ""; 210 evsel->scale = 1.0; 211 evsel->evlist = NULL; 212 evsel->bpf_fd = -1; 213 INIT_LIST_HEAD(&evsel->node); 214 INIT_LIST_HEAD(&evsel->config_terms); 215 perf_evsel__object.init(evsel); 216 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 217 perf_evsel__calc_id_pos(evsel); 218 evsel->cmdline_group_boundary = false; 219 } 220 221 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 222 { 223 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 224 225 if (evsel != NULL) 226 perf_evsel__init(evsel, attr, idx); 227 228 if (perf_evsel__is_bpf_output(evsel)) { 229 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 230 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 231 evsel->attr.sample_period = 1; 232 } 233 234 return evsel; 235 } 236 237 /* 238 * Returns pointer with encoded error via <linux/err.h> interface. 239 */ 240 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 241 { 242 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 243 int err = -ENOMEM; 244 245 if (evsel == NULL) { 246 goto out_err; 247 } else { 248 struct perf_event_attr attr = { 249 .type = PERF_TYPE_TRACEPOINT, 250 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 251 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 252 }; 253 254 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 255 goto out_free; 256 257 evsel->tp_format = trace_event__tp_format(sys, name); 258 if (IS_ERR(evsel->tp_format)) { 259 err = PTR_ERR(evsel->tp_format); 260 goto out_free; 261 } 262 263 event_attr_init(&attr); 264 attr.config = evsel->tp_format->id; 265 attr.sample_period = 1; 266 perf_evsel__init(evsel, &attr, idx); 267 } 268 269 return evsel; 270 271 out_free: 272 zfree(&evsel->name); 273 free(evsel); 274 out_err: 275 return ERR_PTR(err); 276 } 277 278 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 279 "cycles", 280 "instructions", 281 "cache-references", 282 "cache-misses", 283 "branches", 284 "branch-misses", 285 "bus-cycles", 286 "stalled-cycles-frontend", 287 "stalled-cycles-backend", 288 "ref-cycles", 289 }; 290 291 static const char *__perf_evsel__hw_name(u64 config) 292 { 293 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 294 return perf_evsel__hw_names[config]; 295 296 return "unknown-hardware"; 297 } 298 299 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 300 { 301 int colon = 0, r = 0; 302 struct perf_event_attr *attr = &evsel->attr; 303 bool exclude_guest_default = false; 304 305 #define MOD_PRINT(context, mod) do { \ 306 if (!attr->exclude_##context) { \ 307 if (!colon) colon = ++r; \ 308 r += scnprintf(bf + r, size - r, "%c", mod); \ 309 } } while(0) 310 311 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 312 MOD_PRINT(kernel, 'k'); 313 MOD_PRINT(user, 'u'); 314 MOD_PRINT(hv, 'h'); 315 exclude_guest_default = true; 316 } 317 318 if (attr->precise_ip) { 319 if (!colon) 320 colon = ++r; 321 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 322 exclude_guest_default = true; 323 } 324 325 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 326 MOD_PRINT(host, 'H'); 327 MOD_PRINT(guest, 'G'); 328 } 329 #undef MOD_PRINT 330 if (colon) 331 bf[colon - 1] = ':'; 332 return r; 333 } 334 335 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 336 { 337 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 339 } 340 341 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 342 "cpu-clock", 343 "task-clock", 344 "page-faults", 345 "context-switches", 346 "cpu-migrations", 347 "minor-faults", 348 "major-faults", 349 "alignment-faults", 350 "emulation-faults", 351 "dummy", 352 }; 353 354 static const char *__perf_evsel__sw_name(u64 config) 355 { 356 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 357 return perf_evsel__sw_names[config]; 358 return "unknown-software"; 359 } 360 361 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 362 { 363 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 364 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 365 } 366 367 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 368 { 369 int r; 370 371 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 372 373 if (type & HW_BREAKPOINT_R) 374 r += scnprintf(bf + r, size - r, "r"); 375 376 if (type & HW_BREAKPOINT_W) 377 r += scnprintf(bf + r, size - r, "w"); 378 379 if (type & HW_BREAKPOINT_X) 380 r += scnprintf(bf + r, size - r, "x"); 381 382 return r; 383 } 384 385 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 struct perf_event_attr *attr = &evsel->attr; 388 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 389 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 390 } 391 392 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 393 [PERF_EVSEL__MAX_ALIASES] = { 394 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 395 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 396 { "LLC", "L2", }, 397 { "dTLB", "d-tlb", "Data-TLB", }, 398 { "iTLB", "i-tlb", "Instruction-TLB", }, 399 { "branch", "branches", "bpu", "btb", "bpc", }, 400 { "node", }, 401 }; 402 403 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 404 [PERF_EVSEL__MAX_ALIASES] = { 405 { "load", "loads", "read", }, 406 { "store", "stores", "write", }, 407 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 408 }; 409 410 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 411 [PERF_EVSEL__MAX_ALIASES] = { 412 { "refs", "Reference", "ops", "access", }, 413 { "misses", "miss", }, 414 }; 415 416 #define C(x) PERF_COUNT_HW_CACHE_##x 417 #define CACHE_READ (1 << C(OP_READ)) 418 #define CACHE_WRITE (1 << C(OP_WRITE)) 419 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 420 #define COP(x) (1 << x) 421 422 /* 423 * cache operartion stat 424 * L1I : Read and prefetch only 425 * ITLB and BPU : Read-only 426 */ 427 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 428 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 429 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 430 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 431 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 432 [C(ITLB)] = (CACHE_READ), 433 [C(BPU)] = (CACHE_READ), 434 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 435 }; 436 437 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 438 { 439 if (perf_evsel__hw_cache_stat[type] & COP(op)) 440 return true; /* valid */ 441 else 442 return false; /* invalid */ 443 } 444 445 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 446 char *bf, size_t size) 447 { 448 if (result) { 449 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 450 perf_evsel__hw_cache_op[op][0], 451 perf_evsel__hw_cache_result[result][0]); 452 } 453 454 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 455 perf_evsel__hw_cache_op[op][1]); 456 } 457 458 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 459 { 460 u8 op, result, type = (config >> 0) & 0xff; 461 const char *err = "unknown-ext-hardware-cache-type"; 462 463 if (type > PERF_COUNT_HW_CACHE_MAX) 464 goto out_err; 465 466 op = (config >> 8) & 0xff; 467 err = "unknown-ext-hardware-cache-op"; 468 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 469 goto out_err; 470 471 result = (config >> 16) & 0xff; 472 err = "unknown-ext-hardware-cache-result"; 473 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 474 goto out_err; 475 476 err = "invalid-cache"; 477 if (!perf_evsel__is_cache_op_valid(type, op)) 478 goto out_err; 479 480 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 481 out_err: 482 return scnprintf(bf, size, "%s", err); 483 } 484 485 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 486 { 487 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 488 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 489 } 490 491 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 492 { 493 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 494 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 495 } 496 497 const char *perf_evsel__name(struct perf_evsel *evsel) 498 { 499 char bf[128]; 500 501 if (evsel->name) 502 return evsel->name; 503 504 switch (evsel->attr.type) { 505 case PERF_TYPE_RAW: 506 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 507 break; 508 509 case PERF_TYPE_HARDWARE: 510 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 511 break; 512 513 case PERF_TYPE_HW_CACHE: 514 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 515 break; 516 517 case PERF_TYPE_SOFTWARE: 518 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 519 break; 520 521 case PERF_TYPE_TRACEPOINT: 522 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 523 break; 524 525 case PERF_TYPE_BREAKPOINT: 526 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 527 break; 528 529 default: 530 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 531 evsel->attr.type); 532 break; 533 } 534 535 evsel->name = strdup(bf); 536 537 return evsel->name ?: "unknown"; 538 } 539 540 const char *perf_evsel__group_name(struct perf_evsel *evsel) 541 { 542 return evsel->group_name ?: "anon group"; 543 } 544 545 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 546 { 547 int ret; 548 struct perf_evsel *pos; 549 const char *group_name = perf_evsel__group_name(evsel); 550 551 ret = scnprintf(buf, size, "%s", group_name); 552 553 ret += scnprintf(buf + ret, size - ret, " { %s", 554 perf_evsel__name(evsel)); 555 556 for_each_group_member(pos, evsel) 557 ret += scnprintf(buf + ret, size - ret, ", %s", 558 perf_evsel__name(pos)); 559 560 ret += scnprintf(buf + ret, size - ret, " }"); 561 562 return ret; 563 } 564 565 void perf_evsel__config_callchain(struct perf_evsel *evsel, 566 struct record_opts *opts, 567 struct callchain_param *param) 568 { 569 bool function = perf_evsel__is_function_event(evsel); 570 struct perf_event_attr *attr = &evsel->attr; 571 572 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 573 574 if (param->record_mode == CALLCHAIN_LBR) { 575 if (!opts->branch_stack) { 576 if (attr->exclude_user) { 577 pr_warning("LBR callstack option is only available " 578 "to get user callchain information. " 579 "Falling back to framepointers.\n"); 580 } else { 581 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 582 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 583 PERF_SAMPLE_BRANCH_CALL_STACK | 584 PERF_SAMPLE_BRANCH_NO_CYCLES | 585 PERF_SAMPLE_BRANCH_NO_FLAGS; 586 } 587 } else 588 pr_warning("Cannot use LBR callstack with branch stack. " 589 "Falling back to framepointers.\n"); 590 } 591 592 if (param->record_mode == CALLCHAIN_DWARF) { 593 if (!function) { 594 perf_evsel__set_sample_bit(evsel, REGS_USER); 595 perf_evsel__set_sample_bit(evsel, STACK_USER); 596 attr->sample_regs_user = PERF_REGS_MASK; 597 attr->sample_stack_user = param->dump_size; 598 attr->exclude_callchain_user = 1; 599 } else { 600 pr_info("Cannot use DWARF unwind for function trace event," 601 " falling back to framepointers.\n"); 602 } 603 } 604 605 if (function) { 606 pr_info("Disabling user space callchains for function trace event.\n"); 607 attr->exclude_callchain_user = 1; 608 } 609 } 610 611 static void 612 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 613 struct callchain_param *param) 614 { 615 struct perf_event_attr *attr = &evsel->attr; 616 617 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 618 if (param->record_mode == CALLCHAIN_LBR) { 619 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 620 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 621 PERF_SAMPLE_BRANCH_CALL_STACK); 622 } 623 if (param->record_mode == CALLCHAIN_DWARF) { 624 perf_evsel__reset_sample_bit(evsel, REGS_USER); 625 perf_evsel__reset_sample_bit(evsel, STACK_USER); 626 } 627 } 628 629 static void apply_config_terms(struct perf_evsel *evsel, 630 struct record_opts *opts) 631 { 632 struct perf_evsel_config_term *term; 633 struct list_head *config_terms = &evsel->config_terms; 634 struct perf_event_attr *attr = &evsel->attr; 635 struct callchain_param param; 636 u32 dump_size = 0; 637 char *callgraph_buf = NULL; 638 639 /* callgraph default */ 640 param.record_mode = callchain_param.record_mode; 641 642 list_for_each_entry(term, config_terms, list) { 643 switch (term->type) { 644 case PERF_EVSEL__CONFIG_TERM_PERIOD: 645 attr->sample_period = term->val.period; 646 attr->freq = 0; 647 break; 648 case PERF_EVSEL__CONFIG_TERM_FREQ: 649 attr->sample_freq = term->val.freq; 650 attr->freq = 1; 651 break; 652 case PERF_EVSEL__CONFIG_TERM_TIME: 653 if (term->val.time) 654 perf_evsel__set_sample_bit(evsel, TIME); 655 else 656 perf_evsel__reset_sample_bit(evsel, TIME); 657 break; 658 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 659 callgraph_buf = term->val.callgraph; 660 break; 661 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 662 dump_size = term->val.stack_user; 663 break; 664 case PERF_EVSEL__CONFIG_TERM_INHERIT: 665 /* 666 * attr->inherit should has already been set by 667 * perf_evsel__config. If user explicitly set 668 * inherit using config terms, override global 669 * opt->no_inherit setting. 670 */ 671 attr->inherit = term->val.inherit ? 1 : 0; 672 break; 673 default: 674 break; 675 } 676 } 677 678 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 679 if ((callgraph_buf != NULL) || (dump_size > 0)) { 680 681 /* parse callgraph parameters */ 682 if (callgraph_buf != NULL) { 683 if (!strcmp(callgraph_buf, "no")) { 684 param.enabled = false; 685 param.record_mode = CALLCHAIN_NONE; 686 } else { 687 param.enabled = true; 688 if (parse_callchain_record(callgraph_buf, ¶m)) { 689 pr_err("per-event callgraph setting for %s failed. " 690 "Apply callgraph global setting for it\n", 691 evsel->name); 692 return; 693 } 694 } 695 } 696 if (dump_size > 0) { 697 dump_size = round_up(dump_size, sizeof(u64)); 698 param.dump_size = dump_size; 699 } 700 701 /* If global callgraph set, clear it */ 702 if (callchain_param.enabled) 703 perf_evsel__reset_callgraph(evsel, &callchain_param); 704 705 /* set perf-event callgraph */ 706 if (param.enabled) 707 perf_evsel__config_callchain(evsel, opts, ¶m); 708 } 709 } 710 711 /* 712 * The enable_on_exec/disabled value strategy: 713 * 714 * 1) For any type of traced program: 715 * - all independent events and group leaders are disabled 716 * - all group members are enabled 717 * 718 * Group members are ruled by group leaders. They need to 719 * be enabled, because the group scheduling relies on that. 720 * 721 * 2) For traced programs executed by perf: 722 * - all independent events and group leaders have 723 * enable_on_exec set 724 * - we don't specifically enable or disable any event during 725 * the record command 726 * 727 * Independent events and group leaders are initially disabled 728 * and get enabled by exec. Group members are ruled by group 729 * leaders as stated in 1). 730 * 731 * 3) For traced programs attached by perf (pid/tid): 732 * - we specifically enable or disable all events during 733 * the record command 734 * 735 * When attaching events to already running traced we 736 * enable/disable events specifically, as there's no 737 * initial traced exec call. 738 */ 739 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 740 struct callchain_param *callchain) 741 { 742 struct perf_evsel *leader = evsel->leader; 743 struct perf_event_attr *attr = &evsel->attr; 744 int track = evsel->tracking; 745 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 746 747 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 748 attr->inherit = !opts->no_inherit; 749 750 perf_evsel__set_sample_bit(evsel, IP); 751 perf_evsel__set_sample_bit(evsel, TID); 752 753 if (evsel->sample_read) { 754 perf_evsel__set_sample_bit(evsel, READ); 755 756 /* 757 * We need ID even in case of single event, because 758 * PERF_SAMPLE_READ process ID specific data. 759 */ 760 perf_evsel__set_sample_id(evsel, false); 761 762 /* 763 * Apply group format only if we belong to group 764 * with more than one members. 765 */ 766 if (leader->nr_members > 1) { 767 attr->read_format |= PERF_FORMAT_GROUP; 768 attr->inherit = 0; 769 } 770 } 771 772 /* 773 * We default some events to have a default interval. But keep 774 * it a weak assumption overridable by the user. 775 */ 776 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 777 opts->user_interval != ULLONG_MAX)) { 778 if (opts->freq) { 779 perf_evsel__set_sample_bit(evsel, PERIOD); 780 attr->freq = 1; 781 attr->sample_freq = opts->freq; 782 } else { 783 attr->sample_period = opts->default_interval; 784 } 785 } 786 787 /* 788 * Disable sampling for all group members other 789 * than leader in case leader 'leads' the sampling. 790 */ 791 if ((leader != evsel) && leader->sample_read) { 792 attr->sample_freq = 0; 793 attr->sample_period = 0; 794 } 795 796 if (opts->no_samples) 797 attr->sample_freq = 0; 798 799 if (opts->inherit_stat) 800 attr->inherit_stat = 1; 801 802 if (opts->sample_address) { 803 perf_evsel__set_sample_bit(evsel, ADDR); 804 attr->mmap_data = track; 805 } 806 807 /* 808 * We don't allow user space callchains for function trace 809 * event, due to issues with page faults while tracing page 810 * fault handler and its overall trickiness nature. 811 */ 812 if (perf_evsel__is_function_event(evsel)) 813 evsel->attr.exclude_callchain_user = 1; 814 815 if (callchain && callchain->enabled && !evsel->no_aux_samples) 816 perf_evsel__config_callchain(evsel, opts, callchain); 817 818 if (opts->sample_intr_regs) { 819 attr->sample_regs_intr = opts->sample_intr_regs; 820 perf_evsel__set_sample_bit(evsel, REGS_INTR); 821 } 822 823 if (target__has_cpu(&opts->target)) 824 perf_evsel__set_sample_bit(evsel, CPU); 825 826 if (opts->period) 827 perf_evsel__set_sample_bit(evsel, PERIOD); 828 829 /* 830 * When the user explicitly disabled time don't force it here. 831 */ 832 if (opts->sample_time && 833 (!perf_missing_features.sample_id_all && 834 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 835 opts->sample_time_set))) 836 perf_evsel__set_sample_bit(evsel, TIME); 837 838 if (opts->raw_samples && !evsel->no_aux_samples) { 839 perf_evsel__set_sample_bit(evsel, TIME); 840 perf_evsel__set_sample_bit(evsel, RAW); 841 perf_evsel__set_sample_bit(evsel, CPU); 842 } 843 844 if (opts->sample_address) 845 perf_evsel__set_sample_bit(evsel, DATA_SRC); 846 847 if (opts->no_buffering) { 848 attr->watermark = 0; 849 attr->wakeup_events = 1; 850 } 851 if (opts->branch_stack && !evsel->no_aux_samples) { 852 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 853 attr->branch_sample_type = opts->branch_stack; 854 } 855 856 if (opts->sample_weight) 857 perf_evsel__set_sample_bit(evsel, WEIGHT); 858 859 attr->task = track; 860 attr->mmap = track; 861 attr->mmap2 = track && !perf_missing_features.mmap2; 862 attr->comm = track; 863 864 if (opts->record_switch_events) 865 attr->context_switch = track; 866 867 if (opts->sample_transaction) 868 perf_evsel__set_sample_bit(evsel, TRANSACTION); 869 870 if (opts->running_time) { 871 evsel->attr.read_format |= 872 PERF_FORMAT_TOTAL_TIME_ENABLED | 873 PERF_FORMAT_TOTAL_TIME_RUNNING; 874 } 875 876 /* 877 * XXX see the function comment above 878 * 879 * Disabling only independent events or group leaders, 880 * keeping group members enabled. 881 */ 882 if (perf_evsel__is_group_leader(evsel)) 883 attr->disabled = 1; 884 885 /* 886 * Setting enable_on_exec for independent events and 887 * group leaders for traced executed by perf. 888 */ 889 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 890 !opts->initial_delay) 891 attr->enable_on_exec = 1; 892 893 if (evsel->immediate) { 894 attr->disabled = 0; 895 attr->enable_on_exec = 0; 896 } 897 898 clockid = opts->clockid; 899 if (opts->use_clockid) { 900 attr->use_clockid = 1; 901 attr->clockid = opts->clockid; 902 } 903 904 if (evsel->precise_max) 905 perf_event_attr__set_max_precise_ip(attr); 906 907 if (opts->all_user) { 908 attr->exclude_kernel = 1; 909 attr->exclude_user = 0; 910 } 911 912 if (opts->all_kernel) { 913 attr->exclude_kernel = 0; 914 attr->exclude_user = 1; 915 } 916 917 /* 918 * Apply event specific term settings, 919 * it overloads any global configuration. 920 */ 921 apply_config_terms(evsel, opts); 922 } 923 924 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 925 { 926 int cpu, thread; 927 928 if (evsel->system_wide) 929 nthreads = 1; 930 931 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 932 933 if (evsel->fd) { 934 for (cpu = 0; cpu < ncpus; cpu++) { 935 for (thread = 0; thread < nthreads; thread++) { 936 FD(evsel, cpu, thread) = -1; 937 } 938 } 939 } 940 941 return evsel->fd != NULL ? 0 : -ENOMEM; 942 } 943 944 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 945 int ioc, void *arg) 946 { 947 int cpu, thread; 948 949 if (evsel->system_wide) 950 nthreads = 1; 951 952 for (cpu = 0; cpu < ncpus; cpu++) { 953 for (thread = 0; thread < nthreads; thread++) { 954 int fd = FD(evsel, cpu, thread), 955 err = ioctl(fd, ioc, arg); 956 957 if (err) 958 return err; 959 } 960 } 961 962 return 0; 963 } 964 965 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 966 const char *filter) 967 { 968 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 969 PERF_EVENT_IOC_SET_FILTER, 970 (void *)filter); 971 } 972 973 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 974 { 975 char *new_filter = strdup(filter); 976 977 if (new_filter != NULL) { 978 free(evsel->filter); 979 evsel->filter = new_filter; 980 return 0; 981 } 982 983 return -1; 984 } 985 986 int perf_evsel__append_filter(struct perf_evsel *evsel, 987 const char *op, const char *filter) 988 { 989 char *new_filter; 990 991 if (evsel->filter == NULL) 992 return perf_evsel__set_filter(evsel, filter); 993 994 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 995 free(evsel->filter); 996 evsel->filter = new_filter; 997 return 0; 998 } 999 1000 return -1; 1001 } 1002 1003 int perf_evsel__enable(struct perf_evsel *evsel) 1004 { 1005 int nthreads = thread_map__nr(evsel->threads); 1006 int ncpus = cpu_map__nr(evsel->cpus); 1007 1008 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1009 PERF_EVENT_IOC_ENABLE, 1010 0); 1011 } 1012 1013 int perf_evsel__disable(struct perf_evsel *evsel) 1014 { 1015 int nthreads = thread_map__nr(evsel->threads); 1016 int ncpus = cpu_map__nr(evsel->cpus); 1017 1018 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1019 PERF_EVENT_IOC_DISABLE, 1020 0); 1021 } 1022 1023 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1024 { 1025 if (ncpus == 0 || nthreads == 0) 1026 return 0; 1027 1028 if (evsel->system_wide) 1029 nthreads = 1; 1030 1031 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1032 if (evsel->sample_id == NULL) 1033 return -ENOMEM; 1034 1035 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1036 if (evsel->id == NULL) { 1037 xyarray__delete(evsel->sample_id); 1038 evsel->sample_id = NULL; 1039 return -ENOMEM; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1046 { 1047 xyarray__delete(evsel->fd); 1048 evsel->fd = NULL; 1049 } 1050 1051 static void perf_evsel__free_id(struct perf_evsel *evsel) 1052 { 1053 xyarray__delete(evsel->sample_id); 1054 evsel->sample_id = NULL; 1055 zfree(&evsel->id); 1056 } 1057 1058 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1059 { 1060 struct perf_evsel_config_term *term, *h; 1061 1062 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1063 list_del(&term->list); 1064 free(term); 1065 } 1066 } 1067 1068 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1069 { 1070 int cpu, thread; 1071 1072 if (evsel->system_wide) 1073 nthreads = 1; 1074 1075 for (cpu = 0; cpu < ncpus; cpu++) 1076 for (thread = 0; thread < nthreads; ++thread) { 1077 close(FD(evsel, cpu, thread)); 1078 FD(evsel, cpu, thread) = -1; 1079 } 1080 } 1081 1082 void perf_evsel__exit(struct perf_evsel *evsel) 1083 { 1084 assert(list_empty(&evsel->node)); 1085 assert(evsel->evlist == NULL); 1086 perf_evsel__free_fd(evsel); 1087 perf_evsel__free_id(evsel); 1088 perf_evsel__free_config_terms(evsel); 1089 close_cgroup(evsel->cgrp); 1090 cpu_map__put(evsel->cpus); 1091 cpu_map__put(evsel->own_cpus); 1092 thread_map__put(evsel->threads); 1093 zfree(&evsel->group_name); 1094 zfree(&evsel->name); 1095 perf_evsel__object.fini(evsel); 1096 } 1097 1098 void perf_evsel__delete(struct perf_evsel *evsel) 1099 { 1100 perf_evsel__exit(evsel); 1101 free(evsel); 1102 } 1103 1104 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1105 struct perf_counts_values *count) 1106 { 1107 struct perf_counts_values tmp; 1108 1109 if (!evsel->prev_raw_counts) 1110 return; 1111 1112 if (cpu == -1) { 1113 tmp = evsel->prev_raw_counts->aggr; 1114 evsel->prev_raw_counts->aggr = *count; 1115 } else { 1116 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1117 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1118 } 1119 1120 count->val = count->val - tmp.val; 1121 count->ena = count->ena - tmp.ena; 1122 count->run = count->run - tmp.run; 1123 } 1124 1125 void perf_counts_values__scale(struct perf_counts_values *count, 1126 bool scale, s8 *pscaled) 1127 { 1128 s8 scaled = 0; 1129 1130 if (scale) { 1131 if (count->run == 0) { 1132 scaled = -1; 1133 count->val = 0; 1134 } else if (count->run < count->ena) { 1135 scaled = 1; 1136 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1137 } 1138 } else 1139 count->ena = count->run = 0; 1140 1141 if (pscaled) 1142 *pscaled = scaled; 1143 } 1144 1145 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1146 struct perf_counts_values *count) 1147 { 1148 memset(count, 0, sizeof(*count)); 1149 1150 if (FD(evsel, cpu, thread) < 0) 1151 return -EINVAL; 1152 1153 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1154 return -errno; 1155 1156 return 0; 1157 } 1158 1159 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1160 int cpu, int thread, bool scale) 1161 { 1162 struct perf_counts_values count; 1163 size_t nv = scale ? 3 : 1; 1164 1165 if (FD(evsel, cpu, thread) < 0) 1166 return -EINVAL; 1167 1168 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1169 return -ENOMEM; 1170 1171 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1172 return -errno; 1173 1174 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1175 perf_counts_values__scale(&count, scale, NULL); 1176 *perf_counts(evsel->counts, cpu, thread) = count; 1177 return 0; 1178 } 1179 1180 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1181 { 1182 struct perf_evsel *leader = evsel->leader; 1183 int fd; 1184 1185 if (perf_evsel__is_group_leader(evsel)) 1186 return -1; 1187 1188 /* 1189 * Leader must be already processed/open, 1190 * if not it's a bug. 1191 */ 1192 BUG_ON(!leader->fd); 1193 1194 fd = FD(leader, cpu, thread); 1195 BUG_ON(fd == -1); 1196 1197 return fd; 1198 } 1199 1200 struct bit_names { 1201 int bit; 1202 const char *name; 1203 }; 1204 1205 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1206 { 1207 bool first_bit = true; 1208 int i = 0; 1209 1210 do { 1211 if (value & bits[i].bit) { 1212 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1213 first_bit = false; 1214 } 1215 } while (bits[++i].name != NULL); 1216 } 1217 1218 static void __p_sample_type(char *buf, size_t size, u64 value) 1219 { 1220 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1221 struct bit_names bits[] = { 1222 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1223 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1224 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1225 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1226 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1227 bit_name(WEIGHT), 1228 { .name = NULL, } 1229 }; 1230 #undef bit_name 1231 __p_bits(buf, size, value, bits); 1232 } 1233 1234 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1235 { 1236 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1237 struct bit_names bits[] = { 1238 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1239 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1240 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1241 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1242 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1243 { .name = NULL, } 1244 }; 1245 #undef bit_name 1246 __p_bits(buf, size, value, bits); 1247 } 1248 1249 static void __p_read_format(char *buf, size_t size, u64 value) 1250 { 1251 #define bit_name(n) { PERF_FORMAT_##n, #n } 1252 struct bit_names bits[] = { 1253 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1254 bit_name(ID), bit_name(GROUP), 1255 { .name = NULL, } 1256 }; 1257 #undef bit_name 1258 __p_bits(buf, size, value, bits); 1259 } 1260 1261 #define BUF_SIZE 1024 1262 1263 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1264 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1265 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1266 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1267 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1268 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1269 1270 #define PRINT_ATTRn(_n, _f, _p) \ 1271 do { \ 1272 if (attr->_f) { \ 1273 _p(attr->_f); \ 1274 ret += attr__fprintf(fp, _n, buf, priv);\ 1275 } \ 1276 } while (0) 1277 1278 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1279 1280 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1281 attr__fprintf_f attr__fprintf, void *priv) 1282 { 1283 char buf[BUF_SIZE]; 1284 int ret = 0; 1285 1286 PRINT_ATTRf(type, p_unsigned); 1287 PRINT_ATTRf(size, p_unsigned); 1288 PRINT_ATTRf(config, p_hex); 1289 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1290 PRINT_ATTRf(sample_type, p_sample_type); 1291 PRINT_ATTRf(read_format, p_read_format); 1292 1293 PRINT_ATTRf(disabled, p_unsigned); 1294 PRINT_ATTRf(inherit, p_unsigned); 1295 PRINT_ATTRf(pinned, p_unsigned); 1296 PRINT_ATTRf(exclusive, p_unsigned); 1297 PRINT_ATTRf(exclude_user, p_unsigned); 1298 PRINT_ATTRf(exclude_kernel, p_unsigned); 1299 PRINT_ATTRf(exclude_hv, p_unsigned); 1300 PRINT_ATTRf(exclude_idle, p_unsigned); 1301 PRINT_ATTRf(mmap, p_unsigned); 1302 PRINT_ATTRf(comm, p_unsigned); 1303 PRINT_ATTRf(freq, p_unsigned); 1304 PRINT_ATTRf(inherit_stat, p_unsigned); 1305 PRINT_ATTRf(enable_on_exec, p_unsigned); 1306 PRINT_ATTRf(task, p_unsigned); 1307 PRINT_ATTRf(watermark, p_unsigned); 1308 PRINT_ATTRf(precise_ip, p_unsigned); 1309 PRINT_ATTRf(mmap_data, p_unsigned); 1310 PRINT_ATTRf(sample_id_all, p_unsigned); 1311 PRINT_ATTRf(exclude_host, p_unsigned); 1312 PRINT_ATTRf(exclude_guest, p_unsigned); 1313 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1314 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1315 PRINT_ATTRf(mmap2, p_unsigned); 1316 PRINT_ATTRf(comm_exec, p_unsigned); 1317 PRINT_ATTRf(use_clockid, p_unsigned); 1318 PRINT_ATTRf(context_switch, p_unsigned); 1319 PRINT_ATTRf(write_backward, p_unsigned); 1320 1321 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1322 PRINT_ATTRf(bp_type, p_unsigned); 1323 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1324 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1325 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1326 PRINT_ATTRf(sample_regs_user, p_hex); 1327 PRINT_ATTRf(sample_stack_user, p_unsigned); 1328 PRINT_ATTRf(clockid, p_signed); 1329 PRINT_ATTRf(sample_regs_intr, p_hex); 1330 PRINT_ATTRf(aux_watermark, p_unsigned); 1331 1332 return ret; 1333 } 1334 1335 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1336 void *priv __attribute__((unused))) 1337 { 1338 return fprintf(fp, " %-32s %s\n", name, val); 1339 } 1340 1341 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1342 struct thread_map *threads) 1343 { 1344 int cpu, thread, nthreads; 1345 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1346 int pid = -1, err; 1347 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1348 1349 if (evsel->system_wide) 1350 nthreads = 1; 1351 else 1352 nthreads = threads->nr; 1353 1354 if (evsel->fd == NULL && 1355 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1356 return -ENOMEM; 1357 1358 if (evsel->cgrp) { 1359 flags |= PERF_FLAG_PID_CGROUP; 1360 pid = evsel->cgrp->fd; 1361 } 1362 1363 fallback_missing_features: 1364 if (perf_missing_features.clockid_wrong) 1365 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1366 if (perf_missing_features.clockid) { 1367 evsel->attr.use_clockid = 0; 1368 evsel->attr.clockid = 0; 1369 } 1370 if (perf_missing_features.cloexec) 1371 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1372 if (perf_missing_features.mmap2) 1373 evsel->attr.mmap2 = 0; 1374 if (perf_missing_features.exclude_guest) 1375 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1376 if (perf_missing_features.lbr_flags) 1377 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1378 PERF_SAMPLE_BRANCH_NO_CYCLES); 1379 retry_sample_id: 1380 if (perf_missing_features.sample_id_all) 1381 evsel->attr.sample_id_all = 0; 1382 1383 if (verbose >= 2) { 1384 fprintf(stderr, "%.60s\n", graph_dotted_line); 1385 fprintf(stderr, "perf_event_attr:\n"); 1386 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1387 fprintf(stderr, "%.60s\n", graph_dotted_line); 1388 } 1389 1390 for (cpu = 0; cpu < cpus->nr; cpu++) { 1391 1392 for (thread = 0; thread < nthreads; thread++) { 1393 int group_fd; 1394 1395 if (!evsel->cgrp && !evsel->system_wide) 1396 pid = thread_map__pid(threads, thread); 1397 1398 group_fd = get_group_fd(evsel, cpu, thread); 1399 retry_open: 1400 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1401 pid, cpus->map[cpu], group_fd, flags); 1402 1403 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1404 pid, 1405 cpus->map[cpu], 1406 group_fd, flags); 1407 if (FD(evsel, cpu, thread) < 0) { 1408 err = -errno; 1409 pr_debug2("sys_perf_event_open failed, error %d\n", 1410 err); 1411 goto try_fallback; 1412 } 1413 1414 if (evsel->bpf_fd >= 0) { 1415 int evt_fd = FD(evsel, cpu, thread); 1416 int bpf_fd = evsel->bpf_fd; 1417 1418 err = ioctl(evt_fd, 1419 PERF_EVENT_IOC_SET_BPF, 1420 bpf_fd); 1421 if (err && errno != EEXIST) { 1422 pr_err("failed to attach bpf fd %d: %s\n", 1423 bpf_fd, strerror(errno)); 1424 err = -EINVAL; 1425 goto out_close; 1426 } 1427 } 1428 1429 set_rlimit = NO_CHANGE; 1430 1431 /* 1432 * If we succeeded but had to kill clockid, fail and 1433 * have perf_evsel__open_strerror() print us a nice 1434 * error. 1435 */ 1436 if (perf_missing_features.clockid || 1437 perf_missing_features.clockid_wrong) { 1438 err = -EINVAL; 1439 goto out_close; 1440 } 1441 } 1442 } 1443 1444 return 0; 1445 1446 try_fallback: 1447 /* 1448 * perf stat needs between 5 and 22 fds per CPU. When we run out 1449 * of them try to increase the limits. 1450 */ 1451 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1452 struct rlimit l; 1453 int old_errno = errno; 1454 1455 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1456 if (set_rlimit == NO_CHANGE) 1457 l.rlim_cur = l.rlim_max; 1458 else { 1459 l.rlim_cur = l.rlim_max + 1000; 1460 l.rlim_max = l.rlim_cur; 1461 } 1462 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1463 set_rlimit++; 1464 errno = old_errno; 1465 goto retry_open; 1466 } 1467 } 1468 errno = old_errno; 1469 } 1470 1471 if (err != -EINVAL || cpu > 0 || thread > 0) 1472 goto out_close; 1473 1474 /* 1475 * Must probe features in the order they were added to the 1476 * perf_event_attr interface. 1477 */ 1478 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1479 perf_missing_features.clockid_wrong = true; 1480 goto fallback_missing_features; 1481 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1482 perf_missing_features.clockid = true; 1483 goto fallback_missing_features; 1484 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1485 perf_missing_features.cloexec = true; 1486 goto fallback_missing_features; 1487 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1488 perf_missing_features.mmap2 = true; 1489 goto fallback_missing_features; 1490 } else if (!perf_missing_features.exclude_guest && 1491 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1492 perf_missing_features.exclude_guest = true; 1493 goto fallback_missing_features; 1494 } else if (!perf_missing_features.sample_id_all) { 1495 perf_missing_features.sample_id_all = true; 1496 goto retry_sample_id; 1497 } else if (!perf_missing_features.lbr_flags && 1498 (evsel->attr.branch_sample_type & 1499 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1500 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1501 perf_missing_features.lbr_flags = true; 1502 goto fallback_missing_features; 1503 } 1504 1505 out_close: 1506 do { 1507 while (--thread >= 0) { 1508 close(FD(evsel, cpu, thread)); 1509 FD(evsel, cpu, thread) = -1; 1510 } 1511 thread = nthreads; 1512 } while (--cpu >= 0); 1513 return err; 1514 } 1515 1516 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1517 { 1518 if (evsel->fd == NULL) 1519 return; 1520 1521 perf_evsel__close_fd(evsel, ncpus, nthreads); 1522 perf_evsel__free_fd(evsel); 1523 } 1524 1525 static struct { 1526 struct cpu_map map; 1527 int cpus[1]; 1528 } empty_cpu_map = { 1529 .map.nr = 1, 1530 .cpus = { -1, }, 1531 }; 1532 1533 static struct { 1534 struct thread_map map; 1535 int threads[1]; 1536 } empty_thread_map = { 1537 .map.nr = 1, 1538 .threads = { -1, }, 1539 }; 1540 1541 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1542 struct thread_map *threads) 1543 { 1544 if (cpus == NULL) { 1545 /* Work around old compiler warnings about strict aliasing */ 1546 cpus = &empty_cpu_map.map; 1547 } 1548 1549 if (threads == NULL) 1550 threads = &empty_thread_map.map; 1551 1552 return __perf_evsel__open(evsel, cpus, threads); 1553 } 1554 1555 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1556 struct cpu_map *cpus) 1557 { 1558 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1559 } 1560 1561 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1562 struct thread_map *threads) 1563 { 1564 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1565 } 1566 1567 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1568 const union perf_event *event, 1569 struct perf_sample *sample) 1570 { 1571 u64 type = evsel->attr.sample_type; 1572 const u64 *array = event->sample.array; 1573 bool swapped = evsel->needs_swap; 1574 union u64_swap u; 1575 1576 array += ((event->header.size - 1577 sizeof(event->header)) / sizeof(u64)) - 1; 1578 1579 if (type & PERF_SAMPLE_IDENTIFIER) { 1580 sample->id = *array; 1581 array--; 1582 } 1583 1584 if (type & PERF_SAMPLE_CPU) { 1585 u.val64 = *array; 1586 if (swapped) { 1587 /* undo swap of u64, then swap on individual u32s */ 1588 u.val64 = bswap_64(u.val64); 1589 u.val32[0] = bswap_32(u.val32[0]); 1590 } 1591 1592 sample->cpu = u.val32[0]; 1593 array--; 1594 } 1595 1596 if (type & PERF_SAMPLE_STREAM_ID) { 1597 sample->stream_id = *array; 1598 array--; 1599 } 1600 1601 if (type & PERF_SAMPLE_ID) { 1602 sample->id = *array; 1603 array--; 1604 } 1605 1606 if (type & PERF_SAMPLE_TIME) { 1607 sample->time = *array; 1608 array--; 1609 } 1610 1611 if (type & PERF_SAMPLE_TID) { 1612 u.val64 = *array; 1613 if (swapped) { 1614 /* undo swap of u64, then swap on individual u32s */ 1615 u.val64 = bswap_64(u.val64); 1616 u.val32[0] = bswap_32(u.val32[0]); 1617 u.val32[1] = bswap_32(u.val32[1]); 1618 } 1619 1620 sample->pid = u.val32[0]; 1621 sample->tid = u.val32[1]; 1622 array--; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1629 u64 size) 1630 { 1631 return size > max_size || offset + size > endp; 1632 } 1633 1634 #define OVERFLOW_CHECK(offset, size, max_size) \ 1635 do { \ 1636 if (overflow(endp, (max_size), (offset), (size))) \ 1637 return -EFAULT; \ 1638 } while (0) 1639 1640 #define OVERFLOW_CHECK_u64(offset) \ 1641 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1642 1643 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1644 struct perf_sample *data) 1645 { 1646 u64 type = evsel->attr.sample_type; 1647 bool swapped = evsel->needs_swap; 1648 const u64 *array; 1649 u16 max_size = event->header.size; 1650 const void *endp = (void *)event + max_size; 1651 u64 sz; 1652 1653 /* 1654 * used for cross-endian analysis. See git commit 65014ab3 1655 * for why this goofiness is needed. 1656 */ 1657 union u64_swap u; 1658 1659 memset(data, 0, sizeof(*data)); 1660 data->cpu = data->pid = data->tid = -1; 1661 data->stream_id = data->id = data->time = -1ULL; 1662 data->period = evsel->attr.sample_period; 1663 data->weight = 0; 1664 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1665 1666 if (event->header.type != PERF_RECORD_SAMPLE) { 1667 if (!evsel->attr.sample_id_all) 1668 return 0; 1669 return perf_evsel__parse_id_sample(evsel, event, data); 1670 } 1671 1672 array = event->sample.array; 1673 1674 /* 1675 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1676 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1677 * check the format does not go past the end of the event. 1678 */ 1679 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1680 return -EFAULT; 1681 1682 data->id = -1ULL; 1683 if (type & PERF_SAMPLE_IDENTIFIER) { 1684 data->id = *array; 1685 array++; 1686 } 1687 1688 if (type & PERF_SAMPLE_IP) { 1689 data->ip = *array; 1690 array++; 1691 } 1692 1693 if (type & PERF_SAMPLE_TID) { 1694 u.val64 = *array; 1695 if (swapped) { 1696 /* undo swap of u64, then swap on individual u32s */ 1697 u.val64 = bswap_64(u.val64); 1698 u.val32[0] = bswap_32(u.val32[0]); 1699 u.val32[1] = bswap_32(u.val32[1]); 1700 } 1701 1702 data->pid = u.val32[0]; 1703 data->tid = u.val32[1]; 1704 array++; 1705 } 1706 1707 if (type & PERF_SAMPLE_TIME) { 1708 data->time = *array; 1709 array++; 1710 } 1711 1712 data->addr = 0; 1713 if (type & PERF_SAMPLE_ADDR) { 1714 data->addr = *array; 1715 array++; 1716 } 1717 1718 if (type & PERF_SAMPLE_ID) { 1719 data->id = *array; 1720 array++; 1721 } 1722 1723 if (type & PERF_SAMPLE_STREAM_ID) { 1724 data->stream_id = *array; 1725 array++; 1726 } 1727 1728 if (type & PERF_SAMPLE_CPU) { 1729 1730 u.val64 = *array; 1731 if (swapped) { 1732 /* undo swap of u64, then swap on individual u32s */ 1733 u.val64 = bswap_64(u.val64); 1734 u.val32[0] = bswap_32(u.val32[0]); 1735 } 1736 1737 data->cpu = u.val32[0]; 1738 array++; 1739 } 1740 1741 if (type & PERF_SAMPLE_PERIOD) { 1742 data->period = *array; 1743 array++; 1744 } 1745 1746 if (type & PERF_SAMPLE_READ) { 1747 u64 read_format = evsel->attr.read_format; 1748 1749 OVERFLOW_CHECK_u64(array); 1750 if (read_format & PERF_FORMAT_GROUP) 1751 data->read.group.nr = *array; 1752 else 1753 data->read.one.value = *array; 1754 1755 array++; 1756 1757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1758 OVERFLOW_CHECK_u64(array); 1759 data->read.time_enabled = *array; 1760 array++; 1761 } 1762 1763 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1764 OVERFLOW_CHECK_u64(array); 1765 data->read.time_running = *array; 1766 array++; 1767 } 1768 1769 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1770 if (read_format & PERF_FORMAT_GROUP) { 1771 const u64 max_group_nr = UINT64_MAX / 1772 sizeof(struct sample_read_value); 1773 1774 if (data->read.group.nr > max_group_nr) 1775 return -EFAULT; 1776 sz = data->read.group.nr * 1777 sizeof(struct sample_read_value); 1778 OVERFLOW_CHECK(array, sz, max_size); 1779 data->read.group.values = 1780 (struct sample_read_value *)array; 1781 array = (void *)array + sz; 1782 } else { 1783 OVERFLOW_CHECK_u64(array); 1784 data->read.one.id = *array; 1785 array++; 1786 } 1787 } 1788 1789 if (type & PERF_SAMPLE_CALLCHAIN) { 1790 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1791 1792 OVERFLOW_CHECK_u64(array); 1793 data->callchain = (struct ip_callchain *)array++; 1794 if (data->callchain->nr > max_callchain_nr) 1795 return -EFAULT; 1796 sz = data->callchain->nr * sizeof(u64); 1797 OVERFLOW_CHECK(array, sz, max_size); 1798 array = (void *)array + sz; 1799 } 1800 1801 if (type & PERF_SAMPLE_RAW) { 1802 OVERFLOW_CHECK_u64(array); 1803 u.val64 = *array; 1804 if (WARN_ONCE(swapped, 1805 "Endianness of raw data not corrected!\n")) { 1806 /* undo swap of u64, then swap on individual u32s */ 1807 u.val64 = bswap_64(u.val64); 1808 u.val32[0] = bswap_32(u.val32[0]); 1809 u.val32[1] = bswap_32(u.val32[1]); 1810 } 1811 data->raw_size = u.val32[0]; 1812 array = (void *)array + sizeof(u32); 1813 1814 OVERFLOW_CHECK(array, data->raw_size, max_size); 1815 data->raw_data = (void *)array; 1816 array = (void *)array + data->raw_size; 1817 } 1818 1819 if (type & PERF_SAMPLE_BRANCH_STACK) { 1820 const u64 max_branch_nr = UINT64_MAX / 1821 sizeof(struct branch_entry); 1822 1823 OVERFLOW_CHECK_u64(array); 1824 data->branch_stack = (struct branch_stack *)array++; 1825 1826 if (data->branch_stack->nr > max_branch_nr) 1827 return -EFAULT; 1828 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1829 OVERFLOW_CHECK(array, sz, max_size); 1830 array = (void *)array + sz; 1831 } 1832 1833 if (type & PERF_SAMPLE_REGS_USER) { 1834 OVERFLOW_CHECK_u64(array); 1835 data->user_regs.abi = *array; 1836 array++; 1837 1838 if (data->user_regs.abi) { 1839 u64 mask = evsel->attr.sample_regs_user; 1840 1841 sz = hweight_long(mask) * sizeof(u64); 1842 OVERFLOW_CHECK(array, sz, max_size); 1843 data->user_regs.mask = mask; 1844 data->user_regs.regs = (u64 *)array; 1845 array = (void *)array + sz; 1846 } 1847 } 1848 1849 if (type & PERF_SAMPLE_STACK_USER) { 1850 OVERFLOW_CHECK_u64(array); 1851 sz = *array++; 1852 1853 data->user_stack.offset = ((char *)(array - 1) 1854 - (char *) event); 1855 1856 if (!sz) { 1857 data->user_stack.size = 0; 1858 } else { 1859 OVERFLOW_CHECK(array, sz, max_size); 1860 data->user_stack.data = (char *)array; 1861 array = (void *)array + sz; 1862 OVERFLOW_CHECK_u64(array); 1863 data->user_stack.size = *array++; 1864 if (WARN_ONCE(data->user_stack.size > sz, 1865 "user stack dump failure\n")) 1866 return -EFAULT; 1867 } 1868 } 1869 1870 data->weight = 0; 1871 if (type & PERF_SAMPLE_WEIGHT) { 1872 OVERFLOW_CHECK_u64(array); 1873 data->weight = *array; 1874 array++; 1875 } 1876 1877 data->data_src = PERF_MEM_DATA_SRC_NONE; 1878 if (type & PERF_SAMPLE_DATA_SRC) { 1879 OVERFLOW_CHECK_u64(array); 1880 data->data_src = *array; 1881 array++; 1882 } 1883 1884 data->transaction = 0; 1885 if (type & PERF_SAMPLE_TRANSACTION) { 1886 OVERFLOW_CHECK_u64(array); 1887 data->transaction = *array; 1888 array++; 1889 } 1890 1891 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1892 if (type & PERF_SAMPLE_REGS_INTR) { 1893 OVERFLOW_CHECK_u64(array); 1894 data->intr_regs.abi = *array; 1895 array++; 1896 1897 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1898 u64 mask = evsel->attr.sample_regs_intr; 1899 1900 sz = hweight_long(mask) * sizeof(u64); 1901 OVERFLOW_CHECK(array, sz, max_size); 1902 data->intr_regs.mask = mask; 1903 data->intr_regs.regs = (u64 *)array; 1904 array = (void *)array + sz; 1905 } 1906 } 1907 1908 return 0; 1909 } 1910 1911 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1912 u64 read_format) 1913 { 1914 size_t sz, result = sizeof(struct sample_event); 1915 1916 if (type & PERF_SAMPLE_IDENTIFIER) 1917 result += sizeof(u64); 1918 1919 if (type & PERF_SAMPLE_IP) 1920 result += sizeof(u64); 1921 1922 if (type & PERF_SAMPLE_TID) 1923 result += sizeof(u64); 1924 1925 if (type & PERF_SAMPLE_TIME) 1926 result += sizeof(u64); 1927 1928 if (type & PERF_SAMPLE_ADDR) 1929 result += sizeof(u64); 1930 1931 if (type & PERF_SAMPLE_ID) 1932 result += sizeof(u64); 1933 1934 if (type & PERF_SAMPLE_STREAM_ID) 1935 result += sizeof(u64); 1936 1937 if (type & PERF_SAMPLE_CPU) 1938 result += sizeof(u64); 1939 1940 if (type & PERF_SAMPLE_PERIOD) 1941 result += sizeof(u64); 1942 1943 if (type & PERF_SAMPLE_READ) { 1944 result += sizeof(u64); 1945 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1946 result += sizeof(u64); 1947 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1948 result += sizeof(u64); 1949 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1950 if (read_format & PERF_FORMAT_GROUP) { 1951 sz = sample->read.group.nr * 1952 sizeof(struct sample_read_value); 1953 result += sz; 1954 } else { 1955 result += sizeof(u64); 1956 } 1957 } 1958 1959 if (type & PERF_SAMPLE_CALLCHAIN) { 1960 sz = (sample->callchain->nr + 1) * sizeof(u64); 1961 result += sz; 1962 } 1963 1964 if (type & PERF_SAMPLE_RAW) { 1965 result += sizeof(u32); 1966 result += sample->raw_size; 1967 } 1968 1969 if (type & PERF_SAMPLE_BRANCH_STACK) { 1970 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1971 sz += sizeof(u64); 1972 result += sz; 1973 } 1974 1975 if (type & PERF_SAMPLE_REGS_USER) { 1976 if (sample->user_regs.abi) { 1977 result += sizeof(u64); 1978 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1979 result += sz; 1980 } else { 1981 result += sizeof(u64); 1982 } 1983 } 1984 1985 if (type & PERF_SAMPLE_STACK_USER) { 1986 sz = sample->user_stack.size; 1987 result += sizeof(u64); 1988 if (sz) { 1989 result += sz; 1990 result += sizeof(u64); 1991 } 1992 } 1993 1994 if (type & PERF_SAMPLE_WEIGHT) 1995 result += sizeof(u64); 1996 1997 if (type & PERF_SAMPLE_DATA_SRC) 1998 result += sizeof(u64); 1999 2000 if (type & PERF_SAMPLE_TRANSACTION) 2001 result += sizeof(u64); 2002 2003 if (type & PERF_SAMPLE_REGS_INTR) { 2004 if (sample->intr_regs.abi) { 2005 result += sizeof(u64); 2006 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2007 result += sz; 2008 } else { 2009 result += sizeof(u64); 2010 } 2011 } 2012 2013 return result; 2014 } 2015 2016 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2017 u64 read_format, 2018 const struct perf_sample *sample, 2019 bool swapped) 2020 { 2021 u64 *array; 2022 size_t sz; 2023 /* 2024 * used for cross-endian analysis. See git commit 65014ab3 2025 * for why this goofiness is needed. 2026 */ 2027 union u64_swap u; 2028 2029 array = event->sample.array; 2030 2031 if (type & PERF_SAMPLE_IDENTIFIER) { 2032 *array = sample->id; 2033 array++; 2034 } 2035 2036 if (type & PERF_SAMPLE_IP) { 2037 *array = sample->ip; 2038 array++; 2039 } 2040 2041 if (type & PERF_SAMPLE_TID) { 2042 u.val32[0] = sample->pid; 2043 u.val32[1] = sample->tid; 2044 if (swapped) { 2045 /* 2046 * Inverse of what is done in perf_evsel__parse_sample 2047 */ 2048 u.val32[0] = bswap_32(u.val32[0]); 2049 u.val32[1] = bswap_32(u.val32[1]); 2050 u.val64 = bswap_64(u.val64); 2051 } 2052 2053 *array = u.val64; 2054 array++; 2055 } 2056 2057 if (type & PERF_SAMPLE_TIME) { 2058 *array = sample->time; 2059 array++; 2060 } 2061 2062 if (type & PERF_SAMPLE_ADDR) { 2063 *array = sample->addr; 2064 array++; 2065 } 2066 2067 if (type & PERF_SAMPLE_ID) { 2068 *array = sample->id; 2069 array++; 2070 } 2071 2072 if (type & PERF_SAMPLE_STREAM_ID) { 2073 *array = sample->stream_id; 2074 array++; 2075 } 2076 2077 if (type & PERF_SAMPLE_CPU) { 2078 u.val32[0] = sample->cpu; 2079 if (swapped) { 2080 /* 2081 * Inverse of what is done in perf_evsel__parse_sample 2082 */ 2083 u.val32[0] = bswap_32(u.val32[0]); 2084 u.val64 = bswap_64(u.val64); 2085 } 2086 *array = u.val64; 2087 array++; 2088 } 2089 2090 if (type & PERF_SAMPLE_PERIOD) { 2091 *array = sample->period; 2092 array++; 2093 } 2094 2095 if (type & PERF_SAMPLE_READ) { 2096 if (read_format & PERF_FORMAT_GROUP) 2097 *array = sample->read.group.nr; 2098 else 2099 *array = sample->read.one.value; 2100 array++; 2101 2102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2103 *array = sample->read.time_enabled; 2104 array++; 2105 } 2106 2107 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2108 *array = sample->read.time_running; 2109 array++; 2110 } 2111 2112 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2113 if (read_format & PERF_FORMAT_GROUP) { 2114 sz = sample->read.group.nr * 2115 sizeof(struct sample_read_value); 2116 memcpy(array, sample->read.group.values, sz); 2117 array = (void *)array + sz; 2118 } else { 2119 *array = sample->read.one.id; 2120 array++; 2121 } 2122 } 2123 2124 if (type & PERF_SAMPLE_CALLCHAIN) { 2125 sz = (sample->callchain->nr + 1) * sizeof(u64); 2126 memcpy(array, sample->callchain, sz); 2127 array = (void *)array + sz; 2128 } 2129 2130 if (type & PERF_SAMPLE_RAW) { 2131 u.val32[0] = sample->raw_size; 2132 if (WARN_ONCE(swapped, 2133 "Endianness of raw data not corrected!\n")) { 2134 /* 2135 * Inverse of what is done in perf_evsel__parse_sample 2136 */ 2137 u.val32[0] = bswap_32(u.val32[0]); 2138 u.val32[1] = bswap_32(u.val32[1]); 2139 u.val64 = bswap_64(u.val64); 2140 } 2141 *array = u.val64; 2142 array = (void *)array + sizeof(u32); 2143 2144 memcpy(array, sample->raw_data, sample->raw_size); 2145 array = (void *)array + sample->raw_size; 2146 } 2147 2148 if (type & PERF_SAMPLE_BRANCH_STACK) { 2149 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2150 sz += sizeof(u64); 2151 memcpy(array, sample->branch_stack, sz); 2152 array = (void *)array + sz; 2153 } 2154 2155 if (type & PERF_SAMPLE_REGS_USER) { 2156 if (sample->user_regs.abi) { 2157 *array++ = sample->user_regs.abi; 2158 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2159 memcpy(array, sample->user_regs.regs, sz); 2160 array = (void *)array + sz; 2161 } else { 2162 *array++ = 0; 2163 } 2164 } 2165 2166 if (type & PERF_SAMPLE_STACK_USER) { 2167 sz = sample->user_stack.size; 2168 *array++ = sz; 2169 if (sz) { 2170 memcpy(array, sample->user_stack.data, sz); 2171 array = (void *)array + sz; 2172 *array++ = sz; 2173 } 2174 } 2175 2176 if (type & PERF_SAMPLE_WEIGHT) { 2177 *array = sample->weight; 2178 array++; 2179 } 2180 2181 if (type & PERF_SAMPLE_DATA_SRC) { 2182 *array = sample->data_src; 2183 array++; 2184 } 2185 2186 if (type & PERF_SAMPLE_TRANSACTION) { 2187 *array = sample->transaction; 2188 array++; 2189 } 2190 2191 if (type & PERF_SAMPLE_REGS_INTR) { 2192 if (sample->intr_regs.abi) { 2193 *array++ = sample->intr_regs.abi; 2194 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2195 memcpy(array, sample->intr_regs.regs, sz); 2196 array = (void *)array + sz; 2197 } else { 2198 *array++ = 0; 2199 } 2200 } 2201 2202 return 0; 2203 } 2204 2205 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2206 { 2207 return pevent_find_field(evsel->tp_format, name); 2208 } 2209 2210 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2211 const char *name) 2212 { 2213 struct format_field *field = perf_evsel__field(evsel, name); 2214 int offset; 2215 2216 if (!field) 2217 return NULL; 2218 2219 offset = field->offset; 2220 2221 if (field->flags & FIELD_IS_DYNAMIC) { 2222 offset = *(int *)(sample->raw_data + field->offset); 2223 offset &= 0xffff; 2224 } 2225 2226 return sample->raw_data + offset; 2227 } 2228 2229 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2230 const char *name) 2231 { 2232 struct format_field *field = perf_evsel__field(evsel, name); 2233 void *ptr; 2234 u64 value; 2235 2236 if (!field) 2237 return 0; 2238 2239 ptr = sample->raw_data + field->offset; 2240 2241 switch (field->size) { 2242 case 1: 2243 return *(u8 *)ptr; 2244 case 2: 2245 value = *(u16 *)ptr; 2246 break; 2247 case 4: 2248 value = *(u32 *)ptr; 2249 break; 2250 case 8: 2251 memcpy(&value, ptr, sizeof(u64)); 2252 break; 2253 default: 2254 return 0; 2255 } 2256 2257 if (!evsel->needs_swap) 2258 return value; 2259 2260 switch (field->size) { 2261 case 2: 2262 return bswap_16(value); 2263 case 4: 2264 return bswap_32(value); 2265 case 8: 2266 return bswap_64(value); 2267 default: 2268 return 0; 2269 } 2270 2271 return 0; 2272 } 2273 2274 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2275 char *msg, size_t msgsize) 2276 { 2277 int paranoid; 2278 2279 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2280 evsel->attr.type == PERF_TYPE_HARDWARE && 2281 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2282 /* 2283 * If it's cycles then fall back to hrtimer based 2284 * cpu-clock-tick sw counter, which is always available even if 2285 * no PMU support. 2286 * 2287 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2288 * b0a873e). 2289 */ 2290 scnprintf(msg, msgsize, "%s", 2291 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2292 2293 evsel->attr.type = PERF_TYPE_SOFTWARE; 2294 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2295 2296 zfree(&evsel->name); 2297 return true; 2298 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2299 (paranoid = perf_event_paranoid()) > 1) { 2300 const char *name = perf_evsel__name(evsel); 2301 char *new_name; 2302 2303 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2304 return false; 2305 2306 if (evsel->name) 2307 free(evsel->name); 2308 evsel->name = new_name; 2309 scnprintf(msg, msgsize, 2310 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2311 evsel->attr.exclude_kernel = 1; 2312 2313 return true; 2314 } 2315 2316 return false; 2317 } 2318 2319 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2320 int err, char *msg, size_t size) 2321 { 2322 char sbuf[STRERR_BUFSIZE]; 2323 2324 switch (err) { 2325 case EPERM: 2326 case EACCES: 2327 return scnprintf(msg, size, 2328 "You may not have permission to collect %sstats.\n\n" 2329 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2330 "which controls use of the performance events system by\n" 2331 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2332 "The current value is %d:\n\n" 2333 " -1: Allow use of (almost) all events by all users\n" 2334 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2335 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2336 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN", 2337 target->system_wide ? "system-wide " : "", 2338 perf_event_paranoid()); 2339 case ENOENT: 2340 return scnprintf(msg, size, "The %s event is not supported.", 2341 perf_evsel__name(evsel)); 2342 case EMFILE: 2343 return scnprintf(msg, size, "%s", 2344 "Too many events are opened.\n" 2345 "Probably the maximum number of open file descriptors has been reached.\n" 2346 "Hint: Try again after reducing the number of events.\n" 2347 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2348 case ENOMEM: 2349 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2350 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2351 return scnprintf(msg, size, 2352 "Not enough memory to setup event with callchain.\n" 2353 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2354 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2355 break; 2356 case ENODEV: 2357 if (target->cpu_list) 2358 return scnprintf(msg, size, "%s", 2359 "No such device - did you specify an out-of-range profile CPU?"); 2360 break; 2361 case EOPNOTSUPP: 2362 if (evsel->attr.precise_ip) 2363 return scnprintf(msg, size, "%s", 2364 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2365 #if defined(__i386__) || defined(__x86_64__) 2366 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2367 return scnprintf(msg, size, "%s", 2368 "No hardware sampling interrupt available.\n" 2369 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2370 #endif 2371 break; 2372 case EBUSY: 2373 if (find_process("oprofiled")) 2374 return scnprintf(msg, size, 2375 "The PMU counters are busy/taken by another profiler.\n" 2376 "We found oprofile daemon running, please stop it and try again."); 2377 break; 2378 case EINVAL: 2379 if (perf_missing_features.clockid) 2380 return scnprintf(msg, size, "clockid feature not supported."); 2381 if (perf_missing_features.clockid_wrong) 2382 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2383 break; 2384 default: 2385 break; 2386 } 2387 2388 return scnprintf(msg, size, 2389 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2390 "/bin/dmesg may provide additional information.\n" 2391 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2392 err, strerror_r(err, sbuf, sizeof(sbuf)), 2393 perf_evsel__name(evsel)); 2394 } 2395