xref: /linux/tools/perf/util/evsel.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 } perf_missing_features;
41 
42 static clockid_t clockid;
43 
44 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
45 {
46 	return 0;
47 }
48 
49 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
50 {
51 }
52 
53 static struct {
54 	size_t	size;
55 	int	(*init)(struct perf_evsel *evsel);
56 	void	(*fini)(struct perf_evsel *evsel);
57 } perf_evsel__object = {
58 	.size = sizeof(struct perf_evsel),
59 	.init = perf_evsel__no_extra_init,
60 	.fini = perf_evsel__no_extra_fini,
61 };
62 
63 int perf_evsel__object_config(size_t object_size,
64 			      int (*init)(struct perf_evsel *evsel),
65 			      void (*fini)(struct perf_evsel *evsel))
66 {
67 
68 	if (object_size == 0)
69 		goto set_methods;
70 
71 	if (perf_evsel__object.size > object_size)
72 		return -EINVAL;
73 
74 	perf_evsel__object.size = object_size;
75 
76 set_methods:
77 	if (init != NULL)
78 		perf_evsel__object.init = init;
79 
80 	if (fini != NULL)
81 		perf_evsel__object.fini = fini;
82 
83 	return 0;
84 }
85 
86 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
87 
88 int __perf_evsel__sample_size(u64 sample_type)
89 {
90 	u64 mask = sample_type & PERF_SAMPLE_MASK;
91 	int size = 0;
92 	int i;
93 
94 	for (i = 0; i < 64; i++) {
95 		if (mask & (1ULL << i))
96 			size++;
97 	}
98 
99 	size *= sizeof(u64);
100 
101 	return size;
102 }
103 
104 /**
105  * __perf_evsel__calc_id_pos - calculate id_pos.
106  * @sample_type: sample type
107  *
108  * This function returns the position of the event id (PERF_SAMPLE_ID or
109  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
110  * sample_event.
111  */
112 static int __perf_evsel__calc_id_pos(u64 sample_type)
113 {
114 	int idx = 0;
115 
116 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
117 		return 0;
118 
119 	if (!(sample_type & PERF_SAMPLE_ID))
120 		return -1;
121 
122 	if (sample_type & PERF_SAMPLE_IP)
123 		idx += 1;
124 
125 	if (sample_type & PERF_SAMPLE_TID)
126 		idx += 1;
127 
128 	if (sample_type & PERF_SAMPLE_TIME)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_ADDR)
132 		idx += 1;
133 
134 	return idx;
135 }
136 
137 /**
138  * __perf_evsel__calc_is_pos - calculate is_pos.
139  * @sample_type: sample type
140  *
141  * This function returns the position (counting backwards) of the event id
142  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
143  * sample_id_all is used there is an id sample appended to non-sample events.
144  */
145 static int __perf_evsel__calc_is_pos(u64 sample_type)
146 {
147 	int idx = 1;
148 
149 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
150 		return 1;
151 
152 	if (!(sample_type & PERF_SAMPLE_ID))
153 		return -1;
154 
155 	if (sample_type & PERF_SAMPLE_CPU)
156 		idx += 1;
157 
158 	if (sample_type & PERF_SAMPLE_STREAM_ID)
159 		idx += 1;
160 
161 	return idx;
162 }
163 
164 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
165 {
166 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
167 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
168 }
169 
170 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
171 				  enum perf_event_sample_format bit)
172 {
173 	if (!(evsel->attr.sample_type & bit)) {
174 		evsel->attr.sample_type |= bit;
175 		evsel->sample_size += sizeof(u64);
176 		perf_evsel__calc_id_pos(evsel);
177 	}
178 }
179 
180 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
181 				    enum perf_event_sample_format bit)
182 {
183 	if (evsel->attr.sample_type & bit) {
184 		evsel->attr.sample_type &= ~bit;
185 		evsel->sample_size -= sizeof(u64);
186 		perf_evsel__calc_id_pos(evsel);
187 	}
188 }
189 
190 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
191 			       bool can_sample_identifier)
192 {
193 	if (can_sample_identifier) {
194 		perf_evsel__reset_sample_bit(evsel, ID);
195 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
196 	} else {
197 		perf_evsel__set_sample_bit(evsel, ID);
198 	}
199 	evsel->attr.read_format |= PERF_FORMAT_ID;
200 }
201 
202 void perf_evsel__init(struct perf_evsel *evsel,
203 		      struct perf_event_attr *attr, int idx)
204 {
205 	evsel->idx	   = idx;
206 	evsel->tracking	   = !idx;
207 	evsel->attr	   = *attr;
208 	evsel->leader	   = evsel;
209 	evsel->unit	   = "";
210 	evsel->scale	   = 1.0;
211 	evsel->evlist	   = NULL;
212 	evsel->bpf_fd	   = -1;
213 	INIT_LIST_HEAD(&evsel->node);
214 	INIT_LIST_HEAD(&evsel->config_terms);
215 	perf_evsel__object.init(evsel);
216 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
217 	perf_evsel__calc_id_pos(evsel);
218 	evsel->cmdline_group_boundary = false;
219 }
220 
221 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
222 {
223 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
224 
225 	if (evsel != NULL)
226 		perf_evsel__init(evsel, attr, idx);
227 
228 	if (perf_evsel__is_bpf_output(evsel)) {
229 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231 		evsel->attr.sample_period = 1;
232 	}
233 
234 	return evsel;
235 }
236 
237 /*
238  * Returns pointer with encoded error via <linux/err.h> interface.
239  */
240 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
241 {
242 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 	int err = -ENOMEM;
244 
245 	if (evsel == NULL) {
246 		goto out_err;
247 	} else {
248 		struct perf_event_attr attr = {
249 			.type	       = PERF_TYPE_TRACEPOINT,
250 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
251 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
252 		};
253 
254 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
255 			goto out_free;
256 
257 		evsel->tp_format = trace_event__tp_format(sys, name);
258 		if (IS_ERR(evsel->tp_format)) {
259 			err = PTR_ERR(evsel->tp_format);
260 			goto out_free;
261 		}
262 
263 		event_attr_init(&attr);
264 		attr.config = evsel->tp_format->id;
265 		attr.sample_period = 1;
266 		perf_evsel__init(evsel, &attr, idx);
267 	}
268 
269 	return evsel;
270 
271 out_free:
272 	zfree(&evsel->name);
273 	free(evsel);
274 out_err:
275 	return ERR_PTR(err);
276 }
277 
278 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
279 	"cycles",
280 	"instructions",
281 	"cache-references",
282 	"cache-misses",
283 	"branches",
284 	"branch-misses",
285 	"bus-cycles",
286 	"stalled-cycles-frontend",
287 	"stalled-cycles-backend",
288 	"ref-cycles",
289 };
290 
291 static const char *__perf_evsel__hw_name(u64 config)
292 {
293 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
294 		return perf_evsel__hw_names[config];
295 
296 	return "unknown-hardware";
297 }
298 
299 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301 	int colon = 0, r = 0;
302 	struct perf_event_attr *attr = &evsel->attr;
303 	bool exclude_guest_default = false;
304 
305 #define MOD_PRINT(context, mod)	do {					\
306 		if (!attr->exclude_##context) {				\
307 			if (!colon) colon = ++r;			\
308 			r += scnprintf(bf + r, size - r, "%c", mod);	\
309 		} } while(0)
310 
311 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
312 		MOD_PRINT(kernel, 'k');
313 		MOD_PRINT(user, 'u');
314 		MOD_PRINT(hv, 'h');
315 		exclude_guest_default = true;
316 	}
317 
318 	if (attr->precise_ip) {
319 		if (!colon)
320 			colon = ++r;
321 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
322 		exclude_guest_default = true;
323 	}
324 
325 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
326 		MOD_PRINT(host, 'H');
327 		MOD_PRINT(guest, 'G');
328 	}
329 #undef MOD_PRINT
330 	if (colon)
331 		bf[colon - 1] = ':';
332 	return r;
333 }
334 
335 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
338 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340 
341 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
342 	"cpu-clock",
343 	"task-clock",
344 	"page-faults",
345 	"context-switches",
346 	"cpu-migrations",
347 	"minor-faults",
348 	"major-faults",
349 	"alignment-faults",
350 	"emulation-faults",
351 	"dummy",
352 };
353 
354 static const char *__perf_evsel__sw_name(u64 config)
355 {
356 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
357 		return perf_evsel__sw_names[config];
358 	return "unknown-software";
359 }
360 
361 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
364 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
365 }
366 
367 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
368 {
369 	int r;
370 
371 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
372 
373 	if (type & HW_BREAKPOINT_R)
374 		r += scnprintf(bf + r, size - r, "r");
375 
376 	if (type & HW_BREAKPOINT_W)
377 		r += scnprintf(bf + r, size - r, "w");
378 
379 	if (type & HW_BREAKPOINT_X)
380 		r += scnprintf(bf + r, size - r, "x");
381 
382 	return r;
383 }
384 
385 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 	struct perf_event_attr *attr = &evsel->attr;
388 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
389 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
390 }
391 
392 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
393 				[PERF_EVSEL__MAX_ALIASES] = {
394  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
395  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
396  { "LLC",	"L2",							},
397  { "dTLB",	"d-tlb",	"Data-TLB",				},
398  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
399  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
400  { "node",								},
401 };
402 
403 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
404 				   [PERF_EVSEL__MAX_ALIASES] = {
405  { "load",	"loads",	"read",					},
406  { "store",	"stores",	"write",				},
407  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
408 };
409 
410 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
411 				       [PERF_EVSEL__MAX_ALIASES] = {
412  { "refs",	"Reference",	"ops",		"access",		},
413  { "misses",	"miss",							},
414 };
415 
416 #define C(x)		PERF_COUNT_HW_CACHE_##x
417 #define CACHE_READ	(1 << C(OP_READ))
418 #define CACHE_WRITE	(1 << C(OP_WRITE))
419 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
420 #define COP(x)		(1 << x)
421 
422 /*
423  * cache operartion stat
424  * L1I : Read and prefetch only
425  * ITLB and BPU : Read-only
426  */
427 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
428  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
429  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
430  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
431  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
432  [C(ITLB)]	= (CACHE_READ),
433  [C(BPU)]	= (CACHE_READ),
434  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
435 };
436 
437 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
438 {
439 	if (perf_evsel__hw_cache_stat[type] & COP(op))
440 		return true;	/* valid */
441 	else
442 		return false;	/* invalid */
443 }
444 
445 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
446 					    char *bf, size_t size)
447 {
448 	if (result) {
449 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
450 				 perf_evsel__hw_cache_op[op][0],
451 				 perf_evsel__hw_cache_result[result][0]);
452 	}
453 
454 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
455 			 perf_evsel__hw_cache_op[op][1]);
456 }
457 
458 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
459 {
460 	u8 op, result, type = (config >>  0) & 0xff;
461 	const char *err = "unknown-ext-hardware-cache-type";
462 
463 	if (type > PERF_COUNT_HW_CACHE_MAX)
464 		goto out_err;
465 
466 	op = (config >>  8) & 0xff;
467 	err = "unknown-ext-hardware-cache-op";
468 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
469 		goto out_err;
470 
471 	result = (config >> 16) & 0xff;
472 	err = "unknown-ext-hardware-cache-result";
473 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
474 		goto out_err;
475 
476 	err = "invalid-cache";
477 	if (!perf_evsel__is_cache_op_valid(type, op))
478 		goto out_err;
479 
480 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
481 out_err:
482 	return scnprintf(bf, size, "%s", err);
483 }
484 
485 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
486 {
487 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
488 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
489 }
490 
491 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
492 {
493 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
494 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
495 }
496 
497 const char *perf_evsel__name(struct perf_evsel *evsel)
498 {
499 	char bf[128];
500 
501 	if (evsel->name)
502 		return evsel->name;
503 
504 	switch (evsel->attr.type) {
505 	case PERF_TYPE_RAW:
506 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
507 		break;
508 
509 	case PERF_TYPE_HARDWARE:
510 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
511 		break;
512 
513 	case PERF_TYPE_HW_CACHE:
514 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
515 		break;
516 
517 	case PERF_TYPE_SOFTWARE:
518 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
519 		break;
520 
521 	case PERF_TYPE_TRACEPOINT:
522 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
523 		break;
524 
525 	case PERF_TYPE_BREAKPOINT:
526 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
527 		break;
528 
529 	default:
530 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
531 			  evsel->attr.type);
532 		break;
533 	}
534 
535 	evsel->name = strdup(bf);
536 
537 	return evsel->name ?: "unknown";
538 }
539 
540 const char *perf_evsel__group_name(struct perf_evsel *evsel)
541 {
542 	return evsel->group_name ?: "anon group";
543 }
544 
545 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
546 {
547 	int ret;
548 	struct perf_evsel *pos;
549 	const char *group_name = perf_evsel__group_name(evsel);
550 
551 	ret = scnprintf(buf, size, "%s", group_name);
552 
553 	ret += scnprintf(buf + ret, size - ret, " { %s",
554 			 perf_evsel__name(evsel));
555 
556 	for_each_group_member(pos, evsel)
557 		ret += scnprintf(buf + ret, size - ret, ", %s",
558 				 perf_evsel__name(pos));
559 
560 	ret += scnprintf(buf + ret, size - ret, " }");
561 
562 	return ret;
563 }
564 
565 void perf_evsel__config_callchain(struct perf_evsel *evsel,
566 				  struct record_opts *opts,
567 				  struct callchain_param *param)
568 {
569 	bool function = perf_evsel__is_function_event(evsel);
570 	struct perf_event_attr *attr = &evsel->attr;
571 
572 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
573 
574 	if (param->record_mode == CALLCHAIN_LBR) {
575 		if (!opts->branch_stack) {
576 			if (attr->exclude_user) {
577 				pr_warning("LBR callstack option is only available "
578 					   "to get user callchain information. "
579 					   "Falling back to framepointers.\n");
580 			} else {
581 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
582 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
583 							PERF_SAMPLE_BRANCH_CALL_STACK |
584 							PERF_SAMPLE_BRANCH_NO_CYCLES |
585 							PERF_SAMPLE_BRANCH_NO_FLAGS;
586 			}
587 		} else
588 			 pr_warning("Cannot use LBR callstack with branch stack. "
589 				    "Falling back to framepointers.\n");
590 	}
591 
592 	if (param->record_mode == CALLCHAIN_DWARF) {
593 		if (!function) {
594 			perf_evsel__set_sample_bit(evsel, REGS_USER);
595 			perf_evsel__set_sample_bit(evsel, STACK_USER);
596 			attr->sample_regs_user = PERF_REGS_MASK;
597 			attr->sample_stack_user = param->dump_size;
598 			attr->exclude_callchain_user = 1;
599 		} else {
600 			pr_info("Cannot use DWARF unwind for function trace event,"
601 				" falling back to framepointers.\n");
602 		}
603 	}
604 
605 	if (function) {
606 		pr_info("Disabling user space callchains for function trace event.\n");
607 		attr->exclude_callchain_user = 1;
608 	}
609 }
610 
611 static void
612 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
613 			    struct callchain_param *param)
614 {
615 	struct perf_event_attr *attr = &evsel->attr;
616 
617 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
618 	if (param->record_mode == CALLCHAIN_LBR) {
619 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
620 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
621 					      PERF_SAMPLE_BRANCH_CALL_STACK);
622 	}
623 	if (param->record_mode == CALLCHAIN_DWARF) {
624 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
625 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
626 	}
627 }
628 
629 static void apply_config_terms(struct perf_evsel *evsel,
630 			       struct record_opts *opts)
631 {
632 	struct perf_evsel_config_term *term;
633 	struct list_head *config_terms = &evsel->config_terms;
634 	struct perf_event_attr *attr = &evsel->attr;
635 	struct callchain_param param;
636 	u32 dump_size = 0;
637 	char *callgraph_buf = NULL;
638 
639 	/* callgraph default */
640 	param.record_mode = callchain_param.record_mode;
641 
642 	list_for_each_entry(term, config_terms, list) {
643 		switch (term->type) {
644 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
645 			attr->sample_period = term->val.period;
646 			attr->freq = 0;
647 			break;
648 		case PERF_EVSEL__CONFIG_TERM_FREQ:
649 			attr->sample_freq = term->val.freq;
650 			attr->freq = 1;
651 			break;
652 		case PERF_EVSEL__CONFIG_TERM_TIME:
653 			if (term->val.time)
654 				perf_evsel__set_sample_bit(evsel, TIME);
655 			else
656 				perf_evsel__reset_sample_bit(evsel, TIME);
657 			break;
658 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
659 			callgraph_buf = term->val.callgraph;
660 			break;
661 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
662 			dump_size = term->val.stack_user;
663 			break;
664 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
665 			/*
666 			 * attr->inherit should has already been set by
667 			 * perf_evsel__config. If user explicitly set
668 			 * inherit using config terms, override global
669 			 * opt->no_inherit setting.
670 			 */
671 			attr->inherit = term->val.inherit ? 1 : 0;
672 			break;
673 		default:
674 			break;
675 		}
676 	}
677 
678 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
679 	if ((callgraph_buf != NULL) || (dump_size > 0)) {
680 
681 		/* parse callgraph parameters */
682 		if (callgraph_buf != NULL) {
683 			if (!strcmp(callgraph_buf, "no")) {
684 				param.enabled = false;
685 				param.record_mode = CALLCHAIN_NONE;
686 			} else {
687 				param.enabled = true;
688 				if (parse_callchain_record(callgraph_buf, &param)) {
689 					pr_err("per-event callgraph setting for %s failed. "
690 					       "Apply callgraph global setting for it\n",
691 					       evsel->name);
692 					return;
693 				}
694 			}
695 		}
696 		if (dump_size > 0) {
697 			dump_size = round_up(dump_size, sizeof(u64));
698 			param.dump_size = dump_size;
699 		}
700 
701 		/* If global callgraph set, clear it */
702 		if (callchain_param.enabled)
703 			perf_evsel__reset_callgraph(evsel, &callchain_param);
704 
705 		/* set perf-event callgraph */
706 		if (param.enabled)
707 			perf_evsel__config_callchain(evsel, opts, &param);
708 	}
709 }
710 
711 /*
712  * The enable_on_exec/disabled value strategy:
713  *
714  *  1) For any type of traced program:
715  *    - all independent events and group leaders are disabled
716  *    - all group members are enabled
717  *
718  *     Group members are ruled by group leaders. They need to
719  *     be enabled, because the group scheduling relies on that.
720  *
721  *  2) For traced programs executed by perf:
722  *     - all independent events and group leaders have
723  *       enable_on_exec set
724  *     - we don't specifically enable or disable any event during
725  *       the record command
726  *
727  *     Independent events and group leaders are initially disabled
728  *     and get enabled by exec. Group members are ruled by group
729  *     leaders as stated in 1).
730  *
731  *  3) For traced programs attached by perf (pid/tid):
732  *     - we specifically enable or disable all events during
733  *       the record command
734  *
735  *     When attaching events to already running traced we
736  *     enable/disable events specifically, as there's no
737  *     initial traced exec call.
738  */
739 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
740 			struct callchain_param *callchain)
741 {
742 	struct perf_evsel *leader = evsel->leader;
743 	struct perf_event_attr *attr = &evsel->attr;
744 	int track = evsel->tracking;
745 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
746 
747 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
748 	attr->inherit	    = !opts->no_inherit;
749 
750 	perf_evsel__set_sample_bit(evsel, IP);
751 	perf_evsel__set_sample_bit(evsel, TID);
752 
753 	if (evsel->sample_read) {
754 		perf_evsel__set_sample_bit(evsel, READ);
755 
756 		/*
757 		 * We need ID even in case of single event, because
758 		 * PERF_SAMPLE_READ process ID specific data.
759 		 */
760 		perf_evsel__set_sample_id(evsel, false);
761 
762 		/*
763 		 * Apply group format only if we belong to group
764 		 * with more than one members.
765 		 */
766 		if (leader->nr_members > 1) {
767 			attr->read_format |= PERF_FORMAT_GROUP;
768 			attr->inherit = 0;
769 		}
770 	}
771 
772 	/*
773 	 * We default some events to have a default interval. But keep
774 	 * it a weak assumption overridable by the user.
775 	 */
776 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
777 				     opts->user_interval != ULLONG_MAX)) {
778 		if (opts->freq) {
779 			perf_evsel__set_sample_bit(evsel, PERIOD);
780 			attr->freq		= 1;
781 			attr->sample_freq	= opts->freq;
782 		} else {
783 			attr->sample_period = opts->default_interval;
784 		}
785 	}
786 
787 	/*
788 	 * Disable sampling for all group members other
789 	 * than leader in case leader 'leads' the sampling.
790 	 */
791 	if ((leader != evsel) && leader->sample_read) {
792 		attr->sample_freq   = 0;
793 		attr->sample_period = 0;
794 	}
795 
796 	if (opts->no_samples)
797 		attr->sample_freq = 0;
798 
799 	if (opts->inherit_stat)
800 		attr->inherit_stat = 1;
801 
802 	if (opts->sample_address) {
803 		perf_evsel__set_sample_bit(evsel, ADDR);
804 		attr->mmap_data = track;
805 	}
806 
807 	/*
808 	 * We don't allow user space callchains for  function trace
809 	 * event, due to issues with page faults while tracing page
810 	 * fault handler and its overall trickiness nature.
811 	 */
812 	if (perf_evsel__is_function_event(evsel))
813 		evsel->attr.exclude_callchain_user = 1;
814 
815 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
816 		perf_evsel__config_callchain(evsel, opts, callchain);
817 
818 	if (opts->sample_intr_regs) {
819 		attr->sample_regs_intr = opts->sample_intr_regs;
820 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
821 	}
822 
823 	if (target__has_cpu(&opts->target))
824 		perf_evsel__set_sample_bit(evsel, CPU);
825 
826 	if (opts->period)
827 		perf_evsel__set_sample_bit(evsel, PERIOD);
828 
829 	/*
830 	 * When the user explicitly disabled time don't force it here.
831 	 */
832 	if (opts->sample_time &&
833 	    (!perf_missing_features.sample_id_all &&
834 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
835 	     opts->sample_time_set)))
836 		perf_evsel__set_sample_bit(evsel, TIME);
837 
838 	if (opts->raw_samples && !evsel->no_aux_samples) {
839 		perf_evsel__set_sample_bit(evsel, TIME);
840 		perf_evsel__set_sample_bit(evsel, RAW);
841 		perf_evsel__set_sample_bit(evsel, CPU);
842 	}
843 
844 	if (opts->sample_address)
845 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
846 
847 	if (opts->no_buffering) {
848 		attr->watermark = 0;
849 		attr->wakeup_events = 1;
850 	}
851 	if (opts->branch_stack && !evsel->no_aux_samples) {
852 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
853 		attr->branch_sample_type = opts->branch_stack;
854 	}
855 
856 	if (opts->sample_weight)
857 		perf_evsel__set_sample_bit(evsel, WEIGHT);
858 
859 	attr->task  = track;
860 	attr->mmap  = track;
861 	attr->mmap2 = track && !perf_missing_features.mmap2;
862 	attr->comm  = track;
863 
864 	if (opts->record_switch_events)
865 		attr->context_switch = track;
866 
867 	if (opts->sample_transaction)
868 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
869 
870 	if (opts->running_time) {
871 		evsel->attr.read_format |=
872 			PERF_FORMAT_TOTAL_TIME_ENABLED |
873 			PERF_FORMAT_TOTAL_TIME_RUNNING;
874 	}
875 
876 	/*
877 	 * XXX see the function comment above
878 	 *
879 	 * Disabling only independent events or group leaders,
880 	 * keeping group members enabled.
881 	 */
882 	if (perf_evsel__is_group_leader(evsel))
883 		attr->disabled = 1;
884 
885 	/*
886 	 * Setting enable_on_exec for independent events and
887 	 * group leaders for traced executed by perf.
888 	 */
889 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
890 		!opts->initial_delay)
891 		attr->enable_on_exec = 1;
892 
893 	if (evsel->immediate) {
894 		attr->disabled = 0;
895 		attr->enable_on_exec = 0;
896 	}
897 
898 	clockid = opts->clockid;
899 	if (opts->use_clockid) {
900 		attr->use_clockid = 1;
901 		attr->clockid = opts->clockid;
902 	}
903 
904 	if (evsel->precise_max)
905 		perf_event_attr__set_max_precise_ip(attr);
906 
907 	if (opts->all_user) {
908 		attr->exclude_kernel = 1;
909 		attr->exclude_user   = 0;
910 	}
911 
912 	if (opts->all_kernel) {
913 		attr->exclude_kernel = 0;
914 		attr->exclude_user   = 1;
915 	}
916 
917 	/*
918 	 * Apply event specific term settings,
919 	 * it overloads any global configuration.
920 	 */
921 	apply_config_terms(evsel, opts);
922 }
923 
924 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
925 {
926 	int cpu, thread;
927 
928 	if (evsel->system_wide)
929 		nthreads = 1;
930 
931 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
932 
933 	if (evsel->fd) {
934 		for (cpu = 0; cpu < ncpus; cpu++) {
935 			for (thread = 0; thread < nthreads; thread++) {
936 				FD(evsel, cpu, thread) = -1;
937 			}
938 		}
939 	}
940 
941 	return evsel->fd != NULL ? 0 : -ENOMEM;
942 }
943 
944 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
945 			  int ioc,  void *arg)
946 {
947 	int cpu, thread;
948 
949 	if (evsel->system_wide)
950 		nthreads = 1;
951 
952 	for (cpu = 0; cpu < ncpus; cpu++) {
953 		for (thread = 0; thread < nthreads; thread++) {
954 			int fd = FD(evsel, cpu, thread),
955 			    err = ioctl(fd, ioc, arg);
956 
957 			if (err)
958 				return err;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
966 			     const char *filter)
967 {
968 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
969 				     PERF_EVENT_IOC_SET_FILTER,
970 				     (void *)filter);
971 }
972 
973 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
974 {
975 	char *new_filter = strdup(filter);
976 
977 	if (new_filter != NULL) {
978 		free(evsel->filter);
979 		evsel->filter = new_filter;
980 		return 0;
981 	}
982 
983 	return -1;
984 }
985 
986 int perf_evsel__append_filter(struct perf_evsel *evsel,
987 			      const char *op, const char *filter)
988 {
989 	char *new_filter;
990 
991 	if (evsel->filter == NULL)
992 		return perf_evsel__set_filter(evsel, filter);
993 
994 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
995 		free(evsel->filter);
996 		evsel->filter = new_filter;
997 		return 0;
998 	}
999 
1000 	return -1;
1001 }
1002 
1003 int perf_evsel__enable(struct perf_evsel *evsel)
1004 {
1005 	int nthreads = thread_map__nr(evsel->threads);
1006 	int ncpus = cpu_map__nr(evsel->cpus);
1007 
1008 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1009 				     PERF_EVENT_IOC_ENABLE,
1010 				     0);
1011 }
1012 
1013 int perf_evsel__disable(struct perf_evsel *evsel)
1014 {
1015 	int nthreads = thread_map__nr(evsel->threads);
1016 	int ncpus = cpu_map__nr(evsel->cpus);
1017 
1018 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1019 				     PERF_EVENT_IOC_DISABLE,
1020 				     0);
1021 }
1022 
1023 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1024 {
1025 	if (ncpus == 0 || nthreads == 0)
1026 		return 0;
1027 
1028 	if (evsel->system_wide)
1029 		nthreads = 1;
1030 
1031 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1032 	if (evsel->sample_id == NULL)
1033 		return -ENOMEM;
1034 
1035 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1036 	if (evsel->id == NULL) {
1037 		xyarray__delete(evsel->sample_id);
1038 		evsel->sample_id = NULL;
1039 		return -ENOMEM;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1046 {
1047 	xyarray__delete(evsel->fd);
1048 	evsel->fd = NULL;
1049 }
1050 
1051 static void perf_evsel__free_id(struct perf_evsel *evsel)
1052 {
1053 	xyarray__delete(evsel->sample_id);
1054 	evsel->sample_id = NULL;
1055 	zfree(&evsel->id);
1056 }
1057 
1058 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1059 {
1060 	struct perf_evsel_config_term *term, *h;
1061 
1062 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1063 		list_del(&term->list);
1064 		free(term);
1065 	}
1066 }
1067 
1068 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1069 {
1070 	int cpu, thread;
1071 
1072 	if (evsel->system_wide)
1073 		nthreads = 1;
1074 
1075 	for (cpu = 0; cpu < ncpus; cpu++)
1076 		for (thread = 0; thread < nthreads; ++thread) {
1077 			close(FD(evsel, cpu, thread));
1078 			FD(evsel, cpu, thread) = -1;
1079 		}
1080 }
1081 
1082 void perf_evsel__exit(struct perf_evsel *evsel)
1083 {
1084 	assert(list_empty(&evsel->node));
1085 	assert(evsel->evlist == NULL);
1086 	perf_evsel__free_fd(evsel);
1087 	perf_evsel__free_id(evsel);
1088 	perf_evsel__free_config_terms(evsel);
1089 	close_cgroup(evsel->cgrp);
1090 	cpu_map__put(evsel->cpus);
1091 	cpu_map__put(evsel->own_cpus);
1092 	thread_map__put(evsel->threads);
1093 	zfree(&evsel->group_name);
1094 	zfree(&evsel->name);
1095 	perf_evsel__object.fini(evsel);
1096 }
1097 
1098 void perf_evsel__delete(struct perf_evsel *evsel)
1099 {
1100 	perf_evsel__exit(evsel);
1101 	free(evsel);
1102 }
1103 
1104 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1105 				struct perf_counts_values *count)
1106 {
1107 	struct perf_counts_values tmp;
1108 
1109 	if (!evsel->prev_raw_counts)
1110 		return;
1111 
1112 	if (cpu == -1) {
1113 		tmp = evsel->prev_raw_counts->aggr;
1114 		evsel->prev_raw_counts->aggr = *count;
1115 	} else {
1116 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1117 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1118 	}
1119 
1120 	count->val = count->val - tmp.val;
1121 	count->ena = count->ena - tmp.ena;
1122 	count->run = count->run - tmp.run;
1123 }
1124 
1125 void perf_counts_values__scale(struct perf_counts_values *count,
1126 			       bool scale, s8 *pscaled)
1127 {
1128 	s8 scaled = 0;
1129 
1130 	if (scale) {
1131 		if (count->run == 0) {
1132 			scaled = -1;
1133 			count->val = 0;
1134 		} else if (count->run < count->ena) {
1135 			scaled = 1;
1136 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1137 		}
1138 	} else
1139 		count->ena = count->run = 0;
1140 
1141 	if (pscaled)
1142 		*pscaled = scaled;
1143 }
1144 
1145 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1146 		     struct perf_counts_values *count)
1147 {
1148 	memset(count, 0, sizeof(*count));
1149 
1150 	if (FD(evsel, cpu, thread) < 0)
1151 		return -EINVAL;
1152 
1153 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1154 		return -errno;
1155 
1156 	return 0;
1157 }
1158 
1159 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1160 			      int cpu, int thread, bool scale)
1161 {
1162 	struct perf_counts_values count;
1163 	size_t nv = scale ? 3 : 1;
1164 
1165 	if (FD(evsel, cpu, thread) < 0)
1166 		return -EINVAL;
1167 
1168 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1169 		return -ENOMEM;
1170 
1171 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1172 		return -errno;
1173 
1174 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1175 	perf_counts_values__scale(&count, scale, NULL);
1176 	*perf_counts(evsel->counts, cpu, thread) = count;
1177 	return 0;
1178 }
1179 
1180 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1181 {
1182 	struct perf_evsel *leader = evsel->leader;
1183 	int fd;
1184 
1185 	if (perf_evsel__is_group_leader(evsel))
1186 		return -1;
1187 
1188 	/*
1189 	 * Leader must be already processed/open,
1190 	 * if not it's a bug.
1191 	 */
1192 	BUG_ON(!leader->fd);
1193 
1194 	fd = FD(leader, cpu, thread);
1195 	BUG_ON(fd == -1);
1196 
1197 	return fd;
1198 }
1199 
1200 struct bit_names {
1201 	int bit;
1202 	const char *name;
1203 };
1204 
1205 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1206 {
1207 	bool first_bit = true;
1208 	int i = 0;
1209 
1210 	do {
1211 		if (value & bits[i].bit) {
1212 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1213 			first_bit = false;
1214 		}
1215 	} while (bits[++i].name != NULL);
1216 }
1217 
1218 static void __p_sample_type(char *buf, size_t size, u64 value)
1219 {
1220 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1221 	struct bit_names bits[] = {
1222 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1223 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1224 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1225 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1226 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1227 		bit_name(WEIGHT),
1228 		{ .name = NULL, }
1229 	};
1230 #undef bit_name
1231 	__p_bits(buf, size, value, bits);
1232 }
1233 
1234 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1235 {
1236 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1237 	struct bit_names bits[] = {
1238 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1239 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1240 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1241 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1242 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1243 		{ .name = NULL, }
1244 	};
1245 #undef bit_name
1246 	__p_bits(buf, size, value, bits);
1247 }
1248 
1249 static void __p_read_format(char *buf, size_t size, u64 value)
1250 {
1251 #define bit_name(n) { PERF_FORMAT_##n, #n }
1252 	struct bit_names bits[] = {
1253 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1254 		bit_name(ID), bit_name(GROUP),
1255 		{ .name = NULL, }
1256 	};
1257 #undef bit_name
1258 	__p_bits(buf, size, value, bits);
1259 }
1260 
1261 #define BUF_SIZE		1024
1262 
1263 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1264 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1265 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1266 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1267 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1268 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1269 
1270 #define PRINT_ATTRn(_n, _f, _p)				\
1271 do {							\
1272 	if (attr->_f) {					\
1273 		_p(attr->_f);				\
1274 		ret += attr__fprintf(fp, _n, buf, priv);\
1275 	}						\
1276 } while (0)
1277 
1278 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1279 
1280 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1281 			     attr__fprintf_f attr__fprintf, void *priv)
1282 {
1283 	char buf[BUF_SIZE];
1284 	int ret = 0;
1285 
1286 	PRINT_ATTRf(type, p_unsigned);
1287 	PRINT_ATTRf(size, p_unsigned);
1288 	PRINT_ATTRf(config, p_hex);
1289 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1290 	PRINT_ATTRf(sample_type, p_sample_type);
1291 	PRINT_ATTRf(read_format, p_read_format);
1292 
1293 	PRINT_ATTRf(disabled, p_unsigned);
1294 	PRINT_ATTRf(inherit, p_unsigned);
1295 	PRINT_ATTRf(pinned, p_unsigned);
1296 	PRINT_ATTRf(exclusive, p_unsigned);
1297 	PRINT_ATTRf(exclude_user, p_unsigned);
1298 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1299 	PRINT_ATTRf(exclude_hv, p_unsigned);
1300 	PRINT_ATTRf(exclude_idle, p_unsigned);
1301 	PRINT_ATTRf(mmap, p_unsigned);
1302 	PRINT_ATTRf(comm, p_unsigned);
1303 	PRINT_ATTRf(freq, p_unsigned);
1304 	PRINT_ATTRf(inherit_stat, p_unsigned);
1305 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1306 	PRINT_ATTRf(task, p_unsigned);
1307 	PRINT_ATTRf(watermark, p_unsigned);
1308 	PRINT_ATTRf(precise_ip, p_unsigned);
1309 	PRINT_ATTRf(mmap_data, p_unsigned);
1310 	PRINT_ATTRf(sample_id_all, p_unsigned);
1311 	PRINT_ATTRf(exclude_host, p_unsigned);
1312 	PRINT_ATTRf(exclude_guest, p_unsigned);
1313 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1314 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1315 	PRINT_ATTRf(mmap2, p_unsigned);
1316 	PRINT_ATTRf(comm_exec, p_unsigned);
1317 	PRINT_ATTRf(use_clockid, p_unsigned);
1318 	PRINT_ATTRf(context_switch, p_unsigned);
1319 	PRINT_ATTRf(write_backward, p_unsigned);
1320 
1321 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1322 	PRINT_ATTRf(bp_type, p_unsigned);
1323 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1324 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1325 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1326 	PRINT_ATTRf(sample_regs_user, p_hex);
1327 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1328 	PRINT_ATTRf(clockid, p_signed);
1329 	PRINT_ATTRf(sample_regs_intr, p_hex);
1330 	PRINT_ATTRf(aux_watermark, p_unsigned);
1331 
1332 	return ret;
1333 }
1334 
1335 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1336 				void *priv __attribute__((unused)))
1337 {
1338 	return fprintf(fp, "  %-32s %s\n", name, val);
1339 }
1340 
1341 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1342 			      struct thread_map *threads)
1343 {
1344 	int cpu, thread, nthreads;
1345 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1346 	int pid = -1, err;
1347 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1348 
1349 	if (evsel->system_wide)
1350 		nthreads = 1;
1351 	else
1352 		nthreads = threads->nr;
1353 
1354 	if (evsel->fd == NULL &&
1355 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1356 		return -ENOMEM;
1357 
1358 	if (evsel->cgrp) {
1359 		flags |= PERF_FLAG_PID_CGROUP;
1360 		pid = evsel->cgrp->fd;
1361 	}
1362 
1363 fallback_missing_features:
1364 	if (perf_missing_features.clockid_wrong)
1365 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1366 	if (perf_missing_features.clockid) {
1367 		evsel->attr.use_clockid = 0;
1368 		evsel->attr.clockid = 0;
1369 	}
1370 	if (perf_missing_features.cloexec)
1371 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1372 	if (perf_missing_features.mmap2)
1373 		evsel->attr.mmap2 = 0;
1374 	if (perf_missing_features.exclude_guest)
1375 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1376 	if (perf_missing_features.lbr_flags)
1377 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1378 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1379 retry_sample_id:
1380 	if (perf_missing_features.sample_id_all)
1381 		evsel->attr.sample_id_all = 0;
1382 
1383 	if (verbose >= 2) {
1384 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1385 		fprintf(stderr, "perf_event_attr:\n");
1386 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1387 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1388 	}
1389 
1390 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1391 
1392 		for (thread = 0; thread < nthreads; thread++) {
1393 			int group_fd;
1394 
1395 			if (!evsel->cgrp && !evsel->system_wide)
1396 				pid = thread_map__pid(threads, thread);
1397 
1398 			group_fd = get_group_fd(evsel, cpu, thread);
1399 retry_open:
1400 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1401 				  pid, cpus->map[cpu], group_fd, flags);
1402 
1403 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1404 								     pid,
1405 								     cpus->map[cpu],
1406 								     group_fd, flags);
1407 			if (FD(evsel, cpu, thread) < 0) {
1408 				err = -errno;
1409 				pr_debug2("sys_perf_event_open failed, error %d\n",
1410 					  err);
1411 				goto try_fallback;
1412 			}
1413 
1414 			if (evsel->bpf_fd >= 0) {
1415 				int evt_fd = FD(evsel, cpu, thread);
1416 				int bpf_fd = evsel->bpf_fd;
1417 
1418 				err = ioctl(evt_fd,
1419 					    PERF_EVENT_IOC_SET_BPF,
1420 					    bpf_fd);
1421 				if (err && errno != EEXIST) {
1422 					pr_err("failed to attach bpf fd %d: %s\n",
1423 					       bpf_fd, strerror(errno));
1424 					err = -EINVAL;
1425 					goto out_close;
1426 				}
1427 			}
1428 
1429 			set_rlimit = NO_CHANGE;
1430 
1431 			/*
1432 			 * If we succeeded but had to kill clockid, fail and
1433 			 * have perf_evsel__open_strerror() print us a nice
1434 			 * error.
1435 			 */
1436 			if (perf_missing_features.clockid ||
1437 			    perf_missing_features.clockid_wrong) {
1438 				err = -EINVAL;
1439 				goto out_close;
1440 			}
1441 		}
1442 	}
1443 
1444 	return 0;
1445 
1446 try_fallback:
1447 	/*
1448 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1449 	 * of them try to increase the limits.
1450 	 */
1451 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1452 		struct rlimit l;
1453 		int old_errno = errno;
1454 
1455 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1456 			if (set_rlimit == NO_CHANGE)
1457 				l.rlim_cur = l.rlim_max;
1458 			else {
1459 				l.rlim_cur = l.rlim_max + 1000;
1460 				l.rlim_max = l.rlim_cur;
1461 			}
1462 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1463 				set_rlimit++;
1464 				errno = old_errno;
1465 				goto retry_open;
1466 			}
1467 		}
1468 		errno = old_errno;
1469 	}
1470 
1471 	if (err != -EINVAL || cpu > 0 || thread > 0)
1472 		goto out_close;
1473 
1474 	/*
1475 	 * Must probe features in the order they were added to the
1476 	 * perf_event_attr interface.
1477 	 */
1478 	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1479 		perf_missing_features.clockid_wrong = true;
1480 		goto fallback_missing_features;
1481 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1482 		perf_missing_features.clockid = true;
1483 		goto fallback_missing_features;
1484 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1485 		perf_missing_features.cloexec = true;
1486 		goto fallback_missing_features;
1487 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1488 		perf_missing_features.mmap2 = true;
1489 		goto fallback_missing_features;
1490 	} else if (!perf_missing_features.exclude_guest &&
1491 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1492 		perf_missing_features.exclude_guest = true;
1493 		goto fallback_missing_features;
1494 	} else if (!perf_missing_features.sample_id_all) {
1495 		perf_missing_features.sample_id_all = true;
1496 		goto retry_sample_id;
1497 	} else if (!perf_missing_features.lbr_flags &&
1498 			(evsel->attr.branch_sample_type &
1499 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1500 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1501 		perf_missing_features.lbr_flags = true;
1502 		goto fallback_missing_features;
1503 	}
1504 
1505 out_close:
1506 	do {
1507 		while (--thread >= 0) {
1508 			close(FD(evsel, cpu, thread));
1509 			FD(evsel, cpu, thread) = -1;
1510 		}
1511 		thread = nthreads;
1512 	} while (--cpu >= 0);
1513 	return err;
1514 }
1515 
1516 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1517 {
1518 	if (evsel->fd == NULL)
1519 		return;
1520 
1521 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1522 	perf_evsel__free_fd(evsel);
1523 }
1524 
1525 static struct {
1526 	struct cpu_map map;
1527 	int cpus[1];
1528 } empty_cpu_map = {
1529 	.map.nr	= 1,
1530 	.cpus	= { -1, },
1531 };
1532 
1533 static struct {
1534 	struct thread_map map;
1535 	int threads[1];
1536 } empty_thread_map = {
1537 	.map.nr	 = 1,
1538 	.threads = { -1, },
1539 };
1540 
1541 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1542 		     struct thread_map *threads)
1543 {
1544 	if (cpus == NULL) {
1545 		/* Work around old compiler warnings about strict aliasing */
1546 		cpus = &empty_cpu_map.map;
1547 	}
1548 
1549 	if (threads == NULL)
1550 		threads = &empty_thread_map.map;
1551 
1552 	return __perf_evsel__open(evsel, cpus, threads);
1553 }
1554 
1555 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1556 			     struct cpu_map *cpus)
1557 {
1558 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1559 }
1560 
1561 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1562 				struct thread_map *threads)
1563 {
1564 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1565 }
1566 
1567 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1568 				       const union perf_event *event,
1569 				       struct perf_sample *sample)
1570 {
1571 	u64 type = evsel->attr.sample_type;
1572 	const u64 *array = event->sample.array;
1573 	bool swapped = evsel->needs_swap;
1574 	union u64_swap u;
1575 
1576 	array += ((event->header.size -
1577 		   sizeof(event->header)) / sizeof(u64)) - 1;
1578 
1579 	if (type & PERF_SAMPLE_IDENTIFIER) {
1580 		sample->id = *array;
1581 		array--;
1582 	}
1583 
1584 	if (type & PERF_SAMPLE_CPU) {
1585 		u.val64 = *array;
1586 		if (swapped) {
1587 			/* undo swap of u64, then swap on individual u32s */
1588 			u.val64 = bswap_64(u.val64);
1589 			u.val32[0] = bswap_32(u.val32[0]);
1590 		}
1591 
1592 		sample->cpu = u.val32[0];
1593 		array--;
1594 	}
1595 
1596 	if (type & PERF_SAMPLE_STREAM_ID) {
1597 		sample->stream_id = *array;
1598 		array--;
1599 	}
1600 
1601 	if (type & PERF_SAMPLE_ID) {
1602 		sample->id = *array;
1603 		array--;
1604 	}
1605 
1606 	if (type & PERF_SAMPLE_TIME) {
1607 		sample->time = *array;
1608 		array--;
1609 	}
1610 
1611 	if (type & PERF_SAMPLE_TID) {
1612 		u.val64 = *array;
1613 		if (swapped) {
1614 			/* undo swap of u64, then swap on individual u32s */
1615 			u.val64 = bswap_64(u.val64);
1616 			u.val32[0] = bswap_32(u.val32[0]);
1617 			u.val32[1] = bswap_32(u.val32[1]);
1618 		}
1619 
1620 		sample->pid = u.val32[0];
1621 		sample->tid = u.val32[1];
1622 		array--;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1629 			    u64 size)
1630 {
1631 	return size > max_size || offset + size > endp;
1632 }
1633 
1634 #define OVERFLOW_CHECK(offset, size, max_size)				\
1635 	do {								\
1636 		if (overflow(endp, (max_size), (offset), (size)))	\
1637 			return -EFAULT;					\
1638 	} while (0)
1639 
1640 #define OVERFLOW_CHECK_u64(offset) \
1641 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1642 
1643 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1644 			     struct perf_sample *data)
1645 {
1646 	u64 type = evsel->attr.sample_type;
1647 	bool swapped = evsel->needs_swap;
1648 	const u64 *array;
1649 	u16 max_size = event->header.size;
1650 	const void *endp = (void *)event + max_size;
1651 	u64 sz;
1652 
1653 	/*
1654 	 * used for cross-endian analysis. See git commit 65014ab3
1655 	 * for why this goofiness is needed.
1656 	 */
1657 	union u64_swap u;
1658 
1659 	memset(data, 0, sizeof(*data));
1660 	data->cpu = data->pid = data->tid = -1;
1661 	data->stream_id = data->id = data->time = -1ULL;
1662 	data->period = evsel->attr.sample_period;
1663 	data->weight = 0;
1664 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1665 
1666 	if (event->header.type != PERF_RECORD_SAMPLE) {
1667 		if (!evsel->attr.sample_id_all)
1668 			return 0;
1669 		return perf_evsel__parse_id_sample(evsel, event, data);
1670 	}
1671 
1672 	array = event->sample.array;
1673 
1674 	/*
1675 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1676 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1677 	 * check the format does not go past the end of the event.
1678 	 */
1679 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1680 		return -EFAULT;
1681 
1682 	data->id = -1ULL;
1683 	if (type & PERF_SAMPLE_IDENTIFIER) {
1684 		data->id = *array;
1685 		array++;
1686 	}
1687 
1688 	if (type & PERF_SAMPLE_IP) {
1689 		data->ip = *array;
1690 		array++;
1691 	}
1692 
1693 	if (type & PERF_SAMPLE_TID) {
1694 		u.val64 = *array;
1695 		if (swapped) {
1696 			/* undo swap of u64, then swap on individual u32s */
1697 			u.val64 = bswap_64(u.val64);
1698 			u.val32[0] = bswap_32(u.val32[0]);
1699 			u.val32[1] = bswap_32(u.val32[1]);
1700 		}
1701 
1702 		data->pid = u.val32[0];
1703 		data->tid = u.val32[1];
1704 		array++;
1705 	}
1706 
1707 	if (type & PERF_SAMPLE_TIME) {
1708 		data->time = *array;
1709 		array++;
1710 	}
1711 
1712 	data->addr = 0;
1713 	if (type & PERF_SAMPLE_ADDR) {
1714 		data->addr = *array;
1715 		array++;
1716 	}
1717 
1718 	if (type & PERF_SAMPLE_ID) {
1719 		data->id = *array;
1720 		array++;
1721 	}
1722 
1723 	if (type & PERF_SAMPLE_STREAM_ID) {
1724 		data->stream_id = *array;
1725 		array++;
1726 	}
1727 
1728 	if (type & PERF_SAMPLE_CPU) {
1729 
1730 		u.val64 = *array;
1731 		if (swapped) {
1732 			/* undo swap of u64, then swap on individual u32s */
1733 			u.val64 = bswap_64(u.val64);
1734 			u.val32[0] = bswap_32(u.val32[0]);
1735 		}
1736 
1737 		data->cpu = u.val32[0];
1738 		array++;
1739 	}
1740 
1741 	if (type & PERF_SAMPLE_PERIOD) {
1742 		data->period = *array;
1743 		array++;
1744 	}
1745 
1746 	if (type & PERF_SAMPLE_READ) {
1747 		u64 read_format = evsel->attr.read_format;
1748 
1749 		OVERFLOW_CHECK_u64(array);
1750 		if (read_format & PERF_FORMAT_GROUP)
1751 			data->read.group.nr = *array;
1752 		else
1753 			data->read.one.value = *array;
1754 
1755 		array++;
1756 
1757 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1758 			OVERFLOW_CHECK_u64(array);
1759 			data->read.time_enabled = *array;
1760 			array++;
1761 		}
1762 
1763 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1764 			OVERFLOW_CHECK_u64(array);
1765 			data->read.time_running = *array;
1766 			array++;
1767 		}
1768 
1769 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1770 		if (read_format & PERF_FORMAT_GROUP) {
1771 			const u64 max_group_nr = UINT64_MAX /
1772 					sizeof(struct sample_read_value);
1773 
1774 			if (data->read.group.nr > max_group_nr)
1775 				return -EFAULT;
1776 			sz = data->read.group.nr *
1777 			     sizeof(struct sample_read_value);
1778 			OVERFLOW_CHECK(array, sz, max_size);
1779 			data->read.group.values =
1780 					(struct sample_read_value *)array;
1781 			array = (void *)array + sz;
1782 		} else {
1783 			OVERFLOW_CHECK_u64(array);
1784 			data->read.one.id = *array;
1785 			array++;
1786 		}
1787 	}
1788 
1789 	if (type & PERF_SAMPLE_CALLCHAIN) {
1790 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1791 
1792 		OVERFLOW_CHECK_u64(array);
1793 		data->callchain = (struct ip_callchain *)array++;
1794 		if (data->callchain->nr > max_callchain_nr)
1795 			return -EFAULT;
1796 		sz = data->callchain->nr * sizeof(u64);
1797 		OVERFLOW_CHECK(array, sz, max_size);
1798 		array = (void *)array + sz;
1799 	}
1800 
1801 	if (type & PERF_SAMPLE_RAW) {
1802 		OVERFLOW_CHECK_u64(array);
1803 		u.val64 = *array;
1804 		if (WARN_ONCE(swapped,
1805 			      "Endianness of raw data not corrected!\n")) {
1806 			/* undo swap of u64, then swap on individual u32s */
1807 			u.val64 = bswap_64(u.val64);
1808 			u.val32[0] = bswap_32(u.val32[0]);
1809 			u.val32[1] = bswap_32(u.val32[1]);
1810 		}
1811 		data->raw_size = u.val32[0];
1812 		array = (void *)array + sizeof(u32);
1813 
1814 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1815 		data->raw_data = (void *)array;
1816 		array = (void *)array + data->raw_size;
1817 	}
1818 
1819 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1820 		const u64 max_branch_nr = UINT64_MAX /
1821 					  sizeof(struct branch_entry);
1822 
1823 		OVERFLOW_CHECK_u64(array);
1824 		data->branch_stack = (struct branch_stack *)array++;
1825 
1826 		if (data->branch_stack->nr > max_branch_nr)
1827 			return -EFAULT;
1828 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1829 		OVERFLOW_CHECK(array, sz, max_size);
1830 		array = (void *)array + sz;
1831 	}
1832 
1833 	if (type & PERF_SAMPLE_REGS_USER) {
1834 		OVERFLOW_CHECK_u64(array);
1835 		data->user_regs.abi = *array;
1836 		array++;
1837 
1838 		if (data->user_regs.abi) {
1839 			u64 mask = evsel->attr.sample_regs_user;
1840 
1841 			sz = hweight_long(mask) * sizeof(u64);
1842 			OVERFLOW_CHECK(array, sz, max_size);
1843 			data->user_regs.mask = mask;
1844 			data->user_regs.regs = (u64 *)array;
1845 			array = (void *)array + sz;
1846 		}
1847 	}
1848 
1849 	if (type & PERF_SAMPLE_STACK_USER) {
1850 		OVERFLOW_CHECK_u64(array);
1851 		sz = *array++;
1852 
1853 		data->user_stack.offset = ((char *)(array - 1)
1854 					  - (char *) event);
1855 
1856 		if (!sz) {
1857 			data->user_stack.size = 0;
1858 		} else {
1859 			OVERFLOW_CHECK(array, sz, max_size);
1860 			data->user_stack.data = (char *)array;
1861 			array = (void *)array + sz;
1862 			OVERFLOW_CHECK_u64(array);
1863 			data->user_stack.size = *array++;
1864 			if (WARN_ONCE(data->user_stack.size > sz,
1865 				      "user stack dump failure\n"))
1866 				return -EFAULT;
1867 		}
1868 	}
1869 
1870 	data->weight = 0;
1871 	if (type & PERF_SAMPLE_WEIGHT) {
1872 		OVERFLOW_CHECK_u64(array);
1873 		data->weight = *array;
1874 		array++;
1875 	}
1876 
1877 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1878 	if (type & PERF_SAMPLE_DATA_SRC) {
1879 		OVERFLOW_CHECK_u64(array);
1880 		data->data_src = *array;
1881 		array++;
1882 	}
1883 
1884 	data->transaction = 0;
1885 	if (type & PERF_SAMPLE_TRANSACTION) {
1886 		OVERFLOW_CHECK_u64(array);
1887 		data->transaction = *array;
1888 		array++;
1889 	}
1890 
1891 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1892 	if (type & PERF_SAMPLE_REGS_INTR) {
1893 		OVERFLOW_CHECK_u64(array);
1894 		data->intr_regs.abi = *array;
1895 		array++;
1896 
1897 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1898 			u64 mask = evsel->attr.sample_regs_intr;
1899 
1900 			sz = hweight_long(mask) * sizeof(u64);
1901 			OVERFLOW_CHECK(array, sz, max_size);
1902 			data->intr_regs.mask = mask;
1903 			data->intr_regs.regs = (u64 *)array;
1904 			array = (void *)array + sz;
1905 		}
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1912 				     u64 read_format)
1913 {
1914 	size_t sz, result = sizeof(struct sample_event);
1915 
1916 	if (type & PERF_SAMPLE_IDENTIFIER)
1917 		result += sizeof(u64);
1918 
1919 	if (type & PERF_SAMPLE_IP)
1920 		result += sizeof(u64);
1921 
1922 	if (type & PERF_SAMPLE_TID)
1923 		result += sizeof(u64);
1924 
1925 	if (type & PERF_SAMPLE_TIME)
1926 		result += sizeof(u64);
1927 
1928 	if (type & PERF_SAMPLE_ADDR)
1929 		result += sizeof(u64);
1930 
1931 	if (type & PERF_SAMPLE_ID)
1932 		result += sizeof(u64);
1933 
1934 	if (type & PERF_SAMPLE_STREAM_ID)
1935 		result += sizeof(u64);
1936 
1937 	if (type & PERF_SAMPLE_CPU)
1938 		result += sizeof(u64);
1939 
1940 	if (type & PERF_SAMPLE_PERIOD)
1941 		result += sizeof(u64);
1942 
1943 	if (type & PERF_SAMPLE_READ) {
1944 		result += sizeof(u64);
1945 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1946 			result += sizeof(u64);
1947 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1948 			result += sizeof(u64);
1949 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1950 		if (read_format & PERF_FORMAT_GROUP) {
1951 			sz = sample->read.group.nr *
1952 			     sizeof(struct sample_read_value);
1953 			result += sz;
1954 		} else {
1955 			result += sizeof(u64);
1956 		}
1957 	}
1958 
1959 	if (type & PERF_SAMPLE_CALLCHAIN) {
1960 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1961 		result += sz;
1962 	}
1963 
1964 	if (type & PERF_SAMPLE_RAW) {
1965 		result += sizeof(u32);
1966 		result += sample->raw_size;
1967 	}
1968 
1969 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1970 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1971 		sz += sizeof(u64);
1972 		result += sz;
1973 	}
1974 
1975 	if (type & PERF_SAMPLE_REGS_USER) {
1976 		if (sample->user_regs.abi) {
1977 			result += sizeof(u64);
1978 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1979 			result += sz;
1980 		} else {
1981 			result += sizeof(u64);
1982 		}
1983 	}
1984 
1985 	if (type & PERF_SAMPLE_STACK_USER) {
1986 		sz = sample->user_stack.size;
1987 		result += sizeof(u64);
1988 		if (sz) {
1989 			result += sz;
1990 			result += sizeof(u64);
1991 		}
1992 	}
1993 
1994 	if (type & PERF_SAMPLE_WEIGHT)
1995 		result += sizeof(u64);
1996 
1997 	if (type & PERF_SAMPLE_DATA_SRC)
1998 		result += sizeof(u64);
1999 
2000 	if (type & PERF_SAMPLE_TRANSACTION)
2001 		result += sizeof(u64);
2002 
2003 	if (type & PERF_SAMPLE_REGS_INTR) {
2004 		if (sample->intr_regs.abi) {
2005 			result += sizeof(u64);
2006 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2007 			result += sz;
2008 		} else {
2009 			result += sizeof(u64);
2010 		}
2011 	}
2012 
2013 	return result;
2014 }
2015 
2016 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2017 				  u64 read_format,
2018 				  const struct perf_sample *sample,
2019 				  bool swapped)
2020 {
2021 	u64 *array;
2022 	size_t sz;
2023 	/*
2024 	 * used for cross-endian analysis. See git commit 65014ab3
2025 	 * for why this goofiness is needed.
2026 	 */
2027 	union u64_swap u;
2028 
2029 	array = event->sample.array;
2030 
2031 	if (type & PERF_SAMPLE_IDENTIFIER) {
2032 		*array = sample->id;
2033 		array++;
2034 	}
2035 
2036 	if (type & PERF_SAMPLE_IP) {
2037 		*array = sample->ip;
2038 		array++;
2039 	}
2040 
2041 	if (type & PERF_SAMPLE_TID) {
2042 		u.val32[0] = sample->pid;
2043 		u.val32[1] = sample->tid;
2044 		if (swapped) {
2045 			/*
2046 			 * Inverse of what is done in perf_evsel__parse_sample
2047 			 */
2048 			u.val32[0] = bswap_32(u.val32[0]);
2049 			u.val32[1] = bswap_32(u.val32[1]);
2050 			u.val64 = bswap_64(u.val64);
2051 		}
2052 
2053 		*array = u.val64;
2054 		array++;
2055 	}
2056 
2057 	if (type & PERF_SAMPLE_TIME) {
2058 		*array = sample->time;
2059 		array++;
2060 	}
2061 
2062 	if (type & PERF_SAMPLE_ADDR) {
2063 		*array = sample->addr;
2064 		array++;
2065 	}
2066 
2067 	if (type & PERF_SAMPLE_ID) {
2068 		*array = sample->id;
2069 		array++;
2070 	}
2071 
2072 	if (type & PERF_SAMPLE_STREAM_ID) {
2073 		*array = sample->stream_id;
2074 		array++;
2075 	}
2076 
2077 	if (type & PERF_SAMPLE_CPU) {
2078 		u.val32[0] = sample->cpu;
2079 		if (swapped) {
2080 			/*
2081 			 * Inverse of what is done in perf_evsel__parse_sample
2082 			 */
2083 			u.val32[0] = bswap_32(u.val32[0]);
2084 			u.val64 = bswap_64(u.val64);
2085 		}
2086 		*array = u.val64;
2087 		array++;
2088 	}
2089 
2090 	if (type & PERF_SAMPLE_PERIOD) {
2091 		*array = sample->period;
2092 		array++;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_READ) {
2096 		if (read_format & PERF_FORMAT_GROUP)
2097 			*array = sample->read.group.nr;
2098 		else
2099 			*array = sample->read.one.value;
2100 		array++;
2101 
2102 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2103 			*array = sample->read.time_enabled;
2104 			array++;
2105 		}
2106 
2107 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2108 			*array = sample->read.time_running;
2109 			array++;
2110 		}
2111 
2112 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2113 		if (read_format & PERF_FORMAT_GROUP) {
2114 			sz = sample->read.group.nr *
2115 			     sizeof(struct sample_read_value);
2116 			memcpy(array, sample->read.group.values, sz);
2117 			array = (void *)array + sz;
2118 		} else {
2119 			*array = sample->read.one.id;
2120 			array++;
2121 		}
2122 	}
2123 
2124 	if (type & PERF_SAMPLE_CALLCHAIN) {
2125 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2126 		memcpy(array, sample->callchain, sz);
2127 		array = (void *)array + sz;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_RAW) {
2131 		u.val32[0] = sample->raw_size;
2132 		if (WARN_ONCE(swapped,
2133 			      "Endianness of raw data not corrected!\n")) {
2134 			/*
2135 			 * Inverse of what is done in perf_evsel__parse_sample
2136 			 */
2137 			u.val32[0] = bswap_32(u.val32[0]);
2138 			u.val32[1] = bswap_32(u.val32[1]);
2139 			u.val64 = bswap_64(u.val64);
2140 		}
2141 		*array = u.val64;
2142 		array = (void *)array + sizeof(u32);
2143 
2144 		memcpy(array, sample->raw_data, sample->raw_size);
2145 		array = (void *)array + sample->raw_size;
2146 	}
2147 
2148 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2149 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2150 		sz += sizeof(u64);
2151 		memcpy(array, sample->branch_stack, sz);
2152 		array = (void *)array + sz;
2153 	}
2154 
2155 	if (type & PERF_SAMPLE_REGS_USER) {
2156 		if (sample->user_regs.abi) {
2157 			*array++ = sample->user_regs.abi;
2158 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2159 			memcpy(array, sample->user_regs.regs, sz);
2160 			array = (void *)array + sz;
2161 		} else {
2162 			*array++ = 0;
2163 		}
2164 	}
2165 
2166 	if (type & PERF_SAMPLE_STACK_USER) {
2167 		sz = sample->user_stack.size;
2168 		*array++ = sz;
2169 		if (sz) {
2170 			memcpy(array, sample->user_stack.data, sz);
2171 			array = (void *)array + sz;
2172 			*array++ = sz;
2173 		}
2174 	}
2175 
2176 	if (type & PERF_SAMPLE_WEIGHT) {
2177 		*array = sample->weight;
2178 		array++;
2179 	}
2180 
2181 	if (type & PERF_SAMPLE_DATA_SRC) {
2182 		*array = sample->data_src;
2183 		array++;
2184 	}
2185 
2186 	if (type & PERF_SAMPLE_TRANSACTION) {
2187 		*array = sample->transaction;
2188 		array++;
2189 	}
2190 
2191 	if (type & PERF_SAMPLE_REGS_INTR) {
2192 		if (sample->intr_regs.abi) {
2193 			*array++ = sample->intr_regs.abi;
2194 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2195 			memcpy(array, sample->intr_regs.regs, sz);
2196 			array = (void *)array + sz;
2197 		} else {
2198 			*array++ = 0;
2199 		}
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2206 {
2207 	return pevent_find_field(evsel->tp_format, name);
2208 }
2209 
2210 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2211 			 const char *name)
2212 {
2213 	struct format_field *field = perf_evsel__field(evsel, name);
2214 	int offset;
2215 
2216 	if (!field)
2217 		return NULL;
2218 
2219 	offset = field->offset;
2220 
2221 	if (field->flags & FIELD_IS_DYNAMIC) {
2222 		offset = *(int *)(sample->raw_data + field->offset);
2223 		offset &= 0xffff;
2224 	}
2225 
2226 	return sample->raw_data + offset;
2227 }
2228 
2229 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2230 		       const char *name)
2231 {
2232 	struct format_field *field = perf_evsel__field(evsel, name);
2233 	void *ptr;
2234 	u64 value;
2235 
2236 	if (!field)
2237 		return 0;
2238 
2239 	ptr = sample->raw_data + field->offset;
2240 
2241 	switch (field->size) {
2242 	case 1:
2243 		return *(u8 *)ptr;
2244 	case 2:
2245 		value = *(u16 *)ptr;
2246 		break;
2247 	case 4:
2248 		value = *(u32 *)ptr;
2249 		break;
2250 	case 8:
2251 		memcpy(&value, ptr, sizeof(u64));
2252 		break;
2253 	default:
2254 		return 0;
2255 	}
2256 
2257 	if (!evsel->needs_swap)
2258 		return value;
2259 
2260 	switch (field->size) {
2261 	case 2:
2262 		return bswap_16(value);
2263 	case 4:
2264 		return bswap_32(value);
2265 	case 8:
2266 		return bswap_64(value);
2267 	default:
2268 		return 0;
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2275 			  char *msg, size_t msgsize)
2276 {
2277 	int paranoid;
2278 
2279 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2280 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2281 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2282 		/*
2283 		 * If it's cycles then fall back to hrtimer based
2284 		 * cpu-clock-tick sw counter, which is always available even if
2285 		 * no PMU support.
2286 		 *
2287 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2288 		 * b0a873e).
2289 		 */
2290 		scnprintf(msg, msgsize, "%s",
2291 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2292 
2293 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2294 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2295 
2296 		zfree(&evsel->name);
2297 		return true;
2298 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2299 		   (paranoid = perf_event_paranoid()) > 1) {
2300 		const char *name = perf_evsel__name(evsel);
2301 		char *new_name;
2302 
2303 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2304 			return false;
2305 
2306 		if (evsel->name)
2307 			free(evsel->name);
2308 		evsel->name = new_name;
2309 		scnprintf(msg, msgsize,
2310 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2311 		evsel->attr.exclude_kernel = 1;
2312 
2313 		return true;
2314 	}
2315 
2316 	return false;
2317 }
2318 
2319 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2320 			      int err, char *msg, size_t size)
2321 {
2322 	char sbuf[STRERR_BUFSIZE];
2323 
2324 	switch (err) {
2325 	case EPERM:
2326 	case EACCES:
2327 		return scnprintf(msg, size,
2328 		 "You may not have permission to collect %sstats.\n\n"
2329 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2330 		 "which controls use of the performance events system by\n"
2331 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2332 		 "The current value is %d:\n\n"
2333 		 "  -1: Allow use of (almost) all events by all users\n"
2334 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2335 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2336 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2337 				 target->system_wide ? "system-wide " : "",
2338 				 perf_event_paranoid());
2339 	case ENOENT:
2340 		return scnprintf(msg, size, "The %s event is not supported.",
2341 				 perf_evsel__name(evsel));
2342 	case EMFILE:
2343 		return scnprintf(msg, size, "%s",
2344 			 "Too many events are opened.\n"
2345 			 "Probably the maximum number of open file descriptors has been reached.\n"
2346 			 "Hint: Try again after reducing the number of events.\n"
2347 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2348 	case ENOMEM:
2349 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2350 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2351 			return scnprintf(msg, size,
2352 					 "Not enough memory to setup event with callchain.\n"
2353 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2354 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2355 		break;
2356 	case ENODEV:
2357 		if (target->cpu_list)
2358 			return scnprintf(msg, size, "%s",
2359 	 "No such device - did you specify an out-of-range profile CPU?");
2360 		break;
2361 	case EOPNOTSUPP:
2362 		if (evsel->attr.precise_ip)
2363 			return scnprintf(msg, size, "%s",
2364 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2365 #if defined(__i386__) || defined(__x86_64__)
2366 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2367 			return scnprintf(msg, size, "%s",
2368 	"No hardware sampling interrupt available.\n"
2369 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2370 #endif
2371 		break;
2372 	case EBUSY:
2373 		if (find_process("oprofiled"))
2374 			return scnprintf(msg, size,
2375 	"The PMU counters are busy/taken by another profiler.\n"
2376 	"We found oprofile daemon running, please stop it and try again.");
2377 		break;
2378 	case EINVAL:
2379 		if (perf_missing_features.clockid)
2380 			return scnprintf(msg, size, "clockid feature not supported.");
2381 		if (perf_missing_features.clockid_wrong)
2382 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2383 		break;
2384 	default:
2385 		break;
2386 	}
2387 
2388 	return scnprintf(msg, size,
2389 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2390 	"/bin/dmesg may provide additional information.\n"
2391 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2392 			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2393 			 perf_evsel__name(evsel));
2394 }
2395