xref: /linux/tools/perf/util/evlist.c (revision e3b2949e3fa2fd8c19cd5fbb0424d38f70a70e9c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 #include <api/fs/fs.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "util/mmap.h"
14 #include "thread_map.h"
15 #include "target.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "record.h"
19 #include "debug.h"
20 #include "units.h"
21 #include "bpf_counter.h"
22 #include <internal/lib.h> // page_size
23 #include "affinity.h"
24 #include "../perf.h"
25 #include "asm/bug.h"
26 #include "bpf-event.h"
27 #include "util/event.h"
28 #include "util/string2.h"
29 #include "util/perf_api_probe.h"
30 #include "util/evsel_fprintf.h"
31 #include "util/pmu.h"
32 #include "util/sample.h"
33 #include "util/bpf-filter.h"
34 #include "util/stat.h"
35 #include "util/util.h"
36 #include "util/env.h"
37 #include "util/intel-tpebs.h"
38 #include <signal.h>
39 #include <unistd.h>
40 #include <sched.h>
41 #include <stdlib.h>
42 
43 #include "parse-events.h"
44 #include <subcmd/parse-options.h>
45 
46 #include <fcntl.h>
47 #include <sys/ioctl.h>
48 #include <sys/mman.h>
49 #include <sys/prctl.h>
50 #include <sys/timerfd.h>
51 #include <sys/wait.h>
52 
53 #include <linux/bitops.h>
54 #include <linux/hash.h>
55 #include <linux/log2.h>
56 #include <linux/err.h>
57 #include <linux/string.h>
58 #include <linux/time64.h>
59 #include <linux/zalloc.h>
60 #include <perf/evlist.h>
61 #include <perf/evsel.h>
62 #include <perf/cpumap.h>
63 #include <perf/mmap.h>
64 
65 #include <internal/xyarray.h>
66 
67 #ifdef LACKS_SIGQUEUE_PROTOTYPE
68 int sigqueue(pid_t pid, int sig, const union sigval value);
69 #endif
70 
71 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
72 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
73 
74 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
75 		  struct perf_thread_map *threads)
76 {
77 	perf_evlist__init(&evlist->core);
78 	perf_evlist__set_maps(&evlist->core, cpus, threads);
79 	evlist->workload.pid = -1;
80 	evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
81 	evlist->ctl_fd.fd = -1;
82 	evlist->ctl_fd.ack = -1;
83 	evlist->ctl_fd.pos = -1;
84 	evlist->nr_br_cntr = -1;
85 }
86 
87 struct evlist *evlist__new(void)
88 {
89 	struct evlist *evlist = zalloc(sizeof(*evlist));
90 
91 	if (evlist != NULL)
92 		evlist__init(evlist, NULL, NULL);
93 
94 	return evlist;
95 }
96 
97 struct evlist *evlist__new_default(void)
98 {
99 	struct evlist *evlist = evlist__new();
100 	bool can_profile_kernel;
101 	int err;
102 
103 	if (!evlist)
104 		return NULL;
105 
106 	can_profile_kernel = perf_event_paranoid_check(1);
107 	err = parse_event(evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu");
108 	if (err) {
109 		evlist__delete(evlist);
110 		return NULL;
111 	}
112 
113 	if (evlist->core.nr_entries > 1) {
114 		struct evsel *evsel;
115 
116 		evlist__for_each_entry(evlist, evsel)
117 			evsel__set_sample_id(evsel, /*can_sample_identifier=*/false);
118 	}
119 
120 	return evlist;
121 }
122 
123 struct evlist *evlist__new_dummy(void)
124 {
125 	struct evlist *evlist = evlist__new();
126 
127 	if (evlist && evlist__add_dummy(evlist)) {
128 		evlist__delete(evlist);
129 		evlist = NULL;
130 	}
131 
132 	return evlist;
133 }
134 
135 /**
136  * evlist__set_id_pos - set the positions of event ids.
137  * @evlist: selected event list
138  *
139  * Events with compatible sample types all have the same id_pos
140  * and is_pos.  For convenience, put a copy on evlist.
141  */
142 void evlist__set_id_pos(struct evlist *evlist)
143 {
144 	struct evsel *first = evlist__first(evlist);
145 
146 	evlist->id_pos = first->id_pos;
147 	evlist->is_pos = first->is_pos;
148 }
149 
150 static void evlist__update_id_pos(struct evlist *evlist)
151 {
152 	struct evsel *evsel;
153 
154 	evlist__for_each_entry(evlist, evsel)
155 		evsel__calc_id_pos(evsel);
156 
157 	evlist__set_id_pos(evlist);
158 }
159 
160 static void evlist__purge(struct evlist *evlist)
161 {
162 	struct evsel *pos, *n;
163 
164 	evlist__for_each_entry_safe(evlist, n, pos) {
165 		list_del_init(&pos->core.node);
166 		pos->evlist = NULL;
167 		evsel__delete(pos);
168 	}
169 
170 	evlist->core.nr_entries = 0;
171 }
172 
173 void evlist__exit(struct evlist *evlist)
174 {
175 	event_enable_timer__exit(&evlist->eet);
176 	zfree(&evlist->mmap);
177 	zfree(&evlist->overwrite_mmap);
178 	perf_evlist__exit(&evlist->core);
179 }
180 
181 void evlist__delete(struct evlist *evlist)
182 {
183 	if (evlist == NULL)
184 		return;
185 
186 	tpebs_delete();
187 	evlist__free_stats(evlist);
188 	evlist__munmap(evlist);
189 	evlist__close(evlist);
190 	evlist__purge(evlist);
191 	evlist__exit(evlist);
192 	free(evlist);
193 }
194 
195 void evlist__add(struct evlist *evlist, struct evsel *entry)
196 {
197 	perf_evlist__add(&evlist->core, &entry->core);
198 	entry->evlist = evlist;
199 	entry->tracking = !entry->core.idx;
200 
201 	if (evlist->core.nr_entries == 1)
202 		evlist__set_id_pos(evlist);
203 }
204 
205 void evlist__remove(struct evlist *evlist, struct evsel *evsel)
206 {
207 	evsel->evlist = NULL;
208 	perf_evlist__remove(&evlist->core, &evsel->core);
209 }
210 
211 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
212 {
213 	while (!list_empty(list)) {
214 		struct evsel *evsel, *temp, *leader = NULL;
215 
216 		__evlist__for_each_entry_safe(list, temp, evsel) {
217 			list_del_init(&evsel->core.node);
218 			evlist__add(evlist, evsel);
219 			leader = evsel;
220 			break;
221 		}
222 
223 		__evlist__for_each_entry_safe(list, temp, evsel) {
224 			if (evsel__has_leader(evsel, leader)) {
225 				list_del_init(&evsel->core.node);
226 				evlist__add(evlist, evsel);
227 			}
228 		}
229 	}
230 }
231 
232 int __evlist__set_tracepoints_handlers(struct evlist *evlist,
233 				       const struct evsel_str_handler *assocs, size_t nr_assocs)
234 {
235 	size_t i;
236 	int err;
237 
238 	for (i = 0; i < nr_assocs; i++) {
239 		// Adding a handler for an event not in this evlist, just ignore it.
240 		struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
241 		if (evsel == NULL)
242 			continue;
243 
244 		err = -EEXIST;
245 		if (evsel->handler != NULL)
246 			goto out;
247 		evsel->handler = assocs[i].handler;
248 	}
249 
250 	err = 0;
251 out:
252 	return err;
253 }
254 
255 static void evlist__set_leader(struct evlist *evlist)
256 {
257 	perf_evlist__set_leader(&evlist->core);
258 }
259 
260 static struct evsel *evlist__dummy_event(struct evlist *evlist)
261 {
262 	struct perf_event_attr attr = {
263 		.type	= PERF_TYPE_SOFTWARE,
264 		.config = PERF_COUNT_SW_DUMMY,
265 		.size	= sizeof(attr), /* to capture ABI version */
266 		/* Avoid frequency mode for dummy events to avoid associated timers. */
267 		.freq = 0,
268 		.sample_period = 1,
269 	};
270 
271 	return evsel__new_idx(&attr, evlist->core.nr_entries);
272 }
273 
274 int evlist__add_dummy(struct evlist *evlist)
275 {
276 	struct evsel *evsel = evlist__dummy_event(evlist);
277 
278 	if (evsel == NULL)
279 		return -ENOMEM;
280 
281 	evlist__add(evlist, evsel);
282 	return 0;
283 }
284 
285 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide)
286 {
287 	struct evsel *evsel = evlist__dummy_event(evlist);
288 
289 	if (!evsel)
290 		return NULL;
291 
292 	evsel->core.attr.exclude_kernel = 1;
293 	evsel->core.attr.exclude_guest = 1;
294 	evsel->core.attr.exclude_hv = 1;
295 	evsel->core.system_wide = system_wide;
296 	evsel->no_aux_samples = true;
297 	evsel->name = strdup("dummy:u");
298 
299 	evlist__add(evlist, evsel);
300 	return evsel;
301 }
302 
303 #ifdef HAVE_LIBTRACEEVENT
304 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide)
305 {
306 	struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0,
307 					       /*format=*/true);
308 
309 	if (IS_ERR(evsel))
310 		return evsel;
311 
312 	evsel__set_sample_bit(evsel, CPU);
313 	evsel__set_sample_bit(evsel, TIME);
314 
315 	evsel->core.system_wide = system_wide;
316 	evsel->no_aux_samples = true;
317 
318 	evlist__add(evlist, evsel);
319 	return evsel;
320 }
321 #endif
322 
323 struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id)
324 {
325 	struct evsel *evsel;
326 
327 	evlist__for_each_entry(evlist, evsel) {
328 		if (evsel->core.attr.type   == PERF_TYPE_TRACEPOINT &&
329 		    (int)evsel->core.attr.config == id)
330 			return evsel;
331 	}
332 
333 	return NULL;
334 }
335 
336 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
337 {
338 	struct evsel *evsel;
339 
340 	evlist__for_each_entry(evlist, evsel) {
341 		if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
342 		    (strcmp(evsel->name, name) == 0))
343 			return evsel;
344 	}
345 
346 	return NULL;
347 }
348 
349 #ifdef HAVE_LIBTRACEEVENT
350 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
351 {
352 	struct evsel *evsel = evsel__newtp(sys, name);
353 
354 	if (IS_ERR(evsel))
355 		return -1;
356 
357 	evsel->handler = handler;
358 	evlist__add(evlist, evsel);
359 	return 0;
360 }
361 #endif
362 
363 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity)
364 {
365 	struct evlist_cpu_iterator itr = {
366 		.container = evlist,
367 		.evsel = NULL,
368 		.cpu_map_idx = 0,
369 		.evlist_cpu_map_idx = 0,
370 		.evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus),
371 		.cpu = (struct perf_cpu){ .cpu = -1},
372 		.affinity = affinity,
373 	};
374 
375 	if (evlist__empty(evlist)) {
376 		/* Ensure the empty list doesn't iterate. */
377 		itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr;
378 	} else {
379 		itr.evsel = evlist__first(evlist);
380 		if (itr.affinity) {
381 			itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0);
382 			affinity__set(itr.affinity, itr.cpu.cpu);
383 			itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu);
384 			/*
385 			 * If this CPU isn't in the evsel's cpu map then advance
386 			 * through the list.
387 			 */
388 			if (itr.cpu_map_idx == -1)
389 				evlist_cpu_iterator__next(&itr);
390 		}
391 	}
392 	return itr;
393 }
394 
395 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr)
396 {
397 	while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) {
398 		evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel);
399 		evlist_cpu_itr->cpu_map_idx =
400 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
401 					  evlist_cpu_itr->cpu);
402 		if (evlist_cpu_itr->cpu_map_idx != -1)
403 			return;
404 	}
405 	evlist_cpu_itr->evlist_cpu_map_idx++;
406 	if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) {
407 		evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container);
408 		evlist_cpu_itr->cpu =
409 			perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus,
410 					  evlist_cpu_itr->evlist_cpu_map_idx);
411 		if (evlist_cpu_itr->affinity)
412 			affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu);
413 		evlist_cpu_itr->cpu_map_idx =
414 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
415 					  evlist_cpu_itr->cpu);
416 		/*
417 		 * If this CPU isn't in the evsel's cpu map then advance through
418 		 * the list.
419 		 */
420 		if (evlist_cpu_itr->cpu_map_idx == -1)
421 			evlist_cpu_iterator__next(evlist_cpu_itr);
422 	}
423 }
424 
425 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr)
426 {
427 	return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr;
428 }
429 
430 static int evsel__strcmp(struct evsel *pos, char *evsel_name)
431 {
432 	if (!evsel_name)
433 		return 0;
434 	if (evsel__is_dummy_event(pos))
435 		return 1;
436 	return !evsel__name_is(pos, evsel_name);
437 }
438 
439 static int evlist__is_enabled(struct evlist *evlist)
440 {
441 	struct evsel *pos;
442 
443 	evlist__for_each_entry(evlist, pos) {
444 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
445 			continue;
446 		/* If at least one event is enabled, evlist is enabled. */
447 		if (!pos->disabled)
448 			return true;
449 	}
450 	return false;
451 }
452 
453 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
454 {
455 	struct evsel *pos;
456 	struct evlist_cpu_iterator evlist_cpu_itr;
457 	struct affinity saved_affinity, *affinity = NULL;
458 	bool has_imm = false;
459 
460 	// See explanation in evlist__close()
461 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
462 		if (affinity__setup(&saved_affinity) < 0)
463 			return;
464 		affinity = &saved_affinity;
465 	}
466 
467 	/* Disable 'immediate' events last */
468 	for (int imm = 0; imm <= 1; imm++) {
469 		evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
470 			pos = evlist_cpu_itr.evsel;
471 			if (evsel__strcmp(pos, evsel_name))
472 				continue;
473 			if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
474 				continue;
475 			if (excl_dummy && evsel__is_dummy_event(pos))
476 				continue;
477 			if (pos->immediate)
478 				has_imm = true;
479 			if (pos->immediate != imm)
480 				continue;
481 			evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
482 		}
483 		if (!has_imm)
484 			break;
485 	}
486 
487 	affinity__cleanup(affinity);
488 	evlist__for_each_entry(evlist, pos) {
489 		if (evsel__strcmp(pos, evsel_name))
490 			continue;
491 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
492 			continue;
493 		if (excl_dummy && evsel__is_dummy_event(pos))
494 			continue;
495 		pos->disabled = true;
496 	}
497 
498 	/*
499 	 * If we disabled only single event, we need to check
500 	 * the enabled state of the evlist manually.
501 	 */
502 	if (evsel_name)
503 		evlist->enabled = evlist__is_enabled(evlist);
504 	else
505 		evlist->enabled = false;
506 }
507 
508 void evlist__disable(struct evlist *evlist)
509 {
510 	__evlist__disable(evlist, NULL, false);
511 }
512 
513 void evlist__disable_non_dummy(struct evlist *evlist)
514 {
515 	__evlist__disable(evlist, NULL, true);
516 }
517 
518 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
519 {
520 	__evlist__disable(evlist, evsel_name, false);
521 }
522 
523 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
524 {
525 	struct evsel *pos;
526 	struct evlist_cpu_iterator evlist_cpu_itr;
527 	struct affinity saved_affinity, *affinity = NULL;
528 
529 	// See explanation in evlist__close()
530 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
531 		if (affinity__setup(&saved_affinity) < 0)
532 			return;
533 		affinity = &saved_affinity;
534 	}
535 
536 	evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
537 		pos = evlist_cpu_itr.evsel;
538 		if (evsel__strcmp(pos, evsel_name))
539 			continue;
540 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
541 			continue;
542 		if (excl_dummy && evsel__is_dummy_event(pos))
543 			continue;
544 		evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
545 	}
546 	affinity__cleanup(affinity);
547 	evlist__for_each_entry(evlist, pos) {
548 		if (evsel__strcmp(pos, evsel_name))
549 			continue;
550 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
551 			continue;
552 		if (excl_dummy && evsel__is_dummy_event(pos))
553 			continue;
554 		pos->disabled = false;
555 	}
556 
557 	/*
558 	 * Even single event sets the 'enabled' for evlist,
559 	 * so the toggle can work properly and toggle to
560 	 * 'disabled' state.
561 	 */
562 	evlist->enabled = true;
563 }
564 
565 void evlist__enable(struct evlist *evlist)
566 {
567 	__evlist__enable(evlist, NULL, false);
568 }
569 
570 void evlist__enable_non_dummy(struct evlist *evlist)
571 {
572 	__evlist__enable(evlist, NULL, true);
573 }
574 
575 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
576 {
577 	__evlist__enable(evlist, evsel_name, false);
578 }
579 
580 void evlist__toggle_enable(struct evlist *evlist)
581 {
582 	(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
583 }
584 
585 int evlist__add_pollfd(struct evlist *evlist, int fd)
586 {
587 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
588 }
589 
590 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
591 {
592 	return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
593 }
594 
595 #ifdef HAVE_EVENTFD_SUPPORT
596 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
597 {
598 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
599 				       fdarray_flag__nonfilterable |
600 				       fdarray_flag__non_perf_event);
601 }
602 #endif
603 
604 int evlist__poll(struct evlist *evlist, int timeout)
605 {
606 	return perf_evlist__poll(&evlist->core, timeout);
607 }
608 
609 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
610 {
611 	struct hlist_head *head;
612 	struct perf_sample_id *sid;
613 	int hash;
614 
615 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
616 	head = &evlist->core.heads[hash];
617 
618 	hlist_for_each_entry(sid, head, node)
619 		if (sid->id == id)
620 			return sid;
621 
622 	return NULL;
623 }
624 
625 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
626 {
627 	struct perf_sample_id *sid;
628 
629 	if (evlist->core.nr_entries == 1 || !id)
630 		return evlist__first(evlist);
631 
632 	sid = evlist__id2sid(evlist, id);
633 	if (sid)
634 		return container_of(sid->evsel, struct evsel, core);
635 
636 	if (!evlist__sample_id_all(evlist))
637 		return evlist__first(evlist);
638 
639 	return NULL;
640 }
641 
642 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
643 {
644 	struct perf_sample_id *sid;
645 
646 	if (!id)
647 		return NULL;
648 
649 	sid = evlist__id2sid(evlist, id);
650 	if (sid)
651 		return container_of(sid->evsel, struct evsel, core);
652 
653 	return NULL;
654 }
655 
656 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
657 {
658 	const __u64 *array = event->sample.array;
659 	ssize_t n;
660 
661 	n = (event->header.size - sizeof(event->header)) >> 3;
662 
663 	if (event->header.type == PERF_RECORD_SAMPLE) {
664 		if (evlist->id_pos >= n)
665 			return -1;
666 		*id = array[evlist->id_pos];
667 	} else {
668 		if (evlist->is_pos > n)
669 			return -1;
670 		n -= evlist->is_pos;
671 		*id = array[n];
672 	}
673 	return 0;
674 }
675 
676 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
677 {
678 	struct evsel *first = evlist__first(evlist);
679 	struct hlist_head *head;
680 	struct perf_sample_id *sid;
681 	int hash;
682 	u64 id;
683 
684 	if (evlist->core.nr_entries == 1)
685 		return first;
686 
687 	if (!first->core.attr.sample_id_all &&
688 	    event->header.type != PERF_RECORD_SAMPLE)
689 		return first;
690 
691 	if (evlist__event2id(evlist, event, &id))
692 		return NULL;
693 
694 	/* Synthesized events have an id of zero */
695 	if (!id)
696 		return first;
697 
698 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
699 	head = &evlist->core.heads[hash];
700 
701 	hlist_for_each_entry(sid, head, node) {
702 		if (sid->id == id)
703 			return container_of(sid->evsel, struct evsel, core);
704 	}
705 	return NULL;
706 }
707 
708 static int evlist__set_paused(struct evlist *evlist, bool value)
709 {
710 	int i;
711 
712 	if (!evlist->overwrite_mmap)
713 		return 0;
714 
715 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
716 		int fd = evlist->overwrite_mmap[i].core.fd;
717 		int err;
718 
719 		if (fd < 0)
720 			continue;
721 		err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
722 		if (err)
723 			return err;
724 	}
725 	return 0;
726 }
727 
728 static int evlist__pause(struct evlist *evlist)
729 {
730 	return evlist__set_paused(evlist, true);
731 }
732 
733 static int evlist__resume(struct evlist *evlist)
734 {
735 	return evlist__set_paused(evlist, false);
736 }
737 
738 static void evlist__munmap_nofree(struct evlist *evlist)
739 {
740 	int i;
741 
742 	if (evlist->mmap)
743 		for (i = 0; i < evlist->core.nr_mmaps; i++)
744 			perf_mmap__munmap(&evlist->mmap[i].core);
745 
746 	if (evlist->overwrite_mmap)
747 		for (i = 0; i < evlist->core.nr_mmaps; i++)
748 			perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
749 }
750 
751 void evlist__munmap(struct evlist *evlist)
752 {
753 	evlist__munmap_nofree(evlist);
754 	zfree(&evlist->mmap);
755 	zfree(&evlist->overwrite_mmap);
756 }
757 
758 static void perf_mmap__unmap_cb(struct perf_mmap *map)
759 {
760 	struct mmap *m = container_of(map, struct mmap, core);
761 
762 	mmap__munmap(m);
763 }
764 
765 static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
766 				       bool overwrite)
767 {
768 	int i;
769 	struct mmap *map;
770 
771 	map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
772 	if (!map)
773 		return NULL;
774 
775 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
776 		struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
777 
778 		/*
779 		 * When the perf_mmap() call is made we grab one refcount, plus
780 		 * one extra to let perf_mmap__consume() get the last
781 		 * events after all real references (perf_mmap__get()) are
782 		 * dropped.
783 		 *
784 		 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
785 		 * thus does perf_mmap__get() on it.
786 		 */
787 		perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
788 	}
789 
790 	return map;
791 }
792 
793 static void
794 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
795 			 struct perf_evsel *_evsel,
796 			 struct perf_mmap_param *_mp,
797 			 int idx)
798 {
799 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
800 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
801 	struct evsel *evsel = container_of(_evsel, struct evsel, core);
802 
803 	auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx);
804 }
805 
806 static struct perf_mmap*
807 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
808 {
809 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
810 	struct mmap *maps;
811 
812 	maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
813 
814 	if (!maps) {
815 		maps = evlist__alloc_mmap(evlist, overwrite);
816 		if (!maps)
817 			return NULL;
818 
819 		if (overwrite) {
820 			evlist->overwrite_mmap = maps;
821 			if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
822 				evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
823 		} else {
824 			evlist->mmap = maps;
825 		}
826 	}
827 
828 	return &maps[idx].core;
829 }
830 
831 static int
832 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
833 			  int output, struct perf_cpu cpu)
834 {
835 	struct mmap *map = container_of(_map, struct mmap, core);
836 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
837 
838 	return mmap__mmap(map, mp, output, cpu);
839 }
840 
841 unsigned long perf_event_mlock_kb_in_pages(void)
842 {
843 	unsigned long pages;
844 	int max;
845 
846 	if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
847 		/*
848 		 * Pick a once upon a time good value, i.e. things look
849 		 * strange since we can't read a sysctl value, but lets not
850 		 * die yet...
851 		 */
852 		max = 512;
853 	} else {
854 		max -= (page_size / 1024);
855 	}
856 
857 	pages = (max * 1024) / page_size;
858 	if (!is_power_of_2(pages))
859 		pages = rounddown_pow_of_two(pages);
860 
861 	return pages;
862 }
863 
864 size_t evlist__mmap_size(unsigned long pages)
865 {
866 	if (pages == UINT_MAX)
867 		pages = perf_event_mlock_kb_in_pages();
868 	else if (!is_power_of_2(pages))
869 		return 0;
870 
871 	return (pages + 1) * page_size;
872 }
873 
874 static long parse_pages_arg(const char *str, unsigned long min,
875 			    unsigned long max)
876 {
877 	unsigned long pages, val;
878 	static struct parse_tag tags[] = {
879 		{ .tag  = 'B', .mult = 1       },
880 		{ .tag  = 'K', .mult = 1 << 10 },
881 		{ .tag  = 'M', .mult = 1 << 20 },
882 		{ .tag  = 'G', .mult = 1 << 30 },
883 		{ .tag  = 0 },
884 	};
885 
886 	if (str == NULL)
887 		return -EINVAL;
888 
889 	val = parse_tag_value(str, tags);
890 	if (val != (unsigned long) -1) {
891 		/* we got file size value */
892 		pages = PERF_ALIGN(val, page_size) / page_size;
893 	} else {
894 		/* we got pages count value */
895 		char *eptr;
896 		pages = strtoul(str, &eptr, 10);
897 		if (*eptr != '\0')
898 			return -EINVAL;
899 	}
900 
901 	if (pages == 0 && min == 0) {
902 		/* leave number of pages at 0 */
903 	} else if (!is_power_of_2(pages)) {
904 		char buf[100];
905 
906 		/* round pages up to next power of 2 */
907 		pages = roundup_pow_of_two(pages);
908 		if (!pages)
909 			return -EINVAL;
910 
911 		unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
912 		pr_info("rounding mmap pages size to %s (%lu pages)\n",
913 			buf, pages);
914 	}
915 
916 	if (pages > max)
917 		return -EINVAL;
918 
919 	return pages;
920 }
921 
922 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
923 {
924 	unsigned long max = UINT_MAX;
925 	long pages;
926 
927 	if (max > SIZE_MAX / page_size)
928 		max = SIZE_MAX / page_size;
929 
930 	pages = parse_pages_arg(str, 1, max);
931 	if (pages < 0) {
932 		pr_err("Invalid argument for --mmap_pages/-m\n");
933 		return -1;
934 	}
935 
936 	*mmap_pages = pages;
937 	return 0;
938 }
939 
940 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
941 {
942 	return __evlist__parse_mmap_pages(opt->value, str);
943 }
944 
945 /**
946  * evlist__mmap_ex - Create mmaps to receive events.
947  * @evlist: list of events
948  * @pages: map length in pages
949  * @overwrite: overwrite older events?
950  * @auxtrace_pages - auxtrace map length in pages
951  * @auxtrace_overwrite - overwrite older auxtrace data?
952  *
953  * If @overwrite is %false the user needs to signal event consumption using
954  * perf_mmap__write_tail().  Using evlist__mmap_read() does this
955  * automatically.
956  *
957  * Similarly, if @auxtrace_overwrite is %false the user needs to signal data
958  * consumption using auxtrace_mmap__write_tail().
959  *
960  * Return: %0 on success, negative error code otherwise.
961  */
962 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
963 			 unsigned int auxtrace_pages,
964 			 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
965 			 int comp_level)
966 {
967 	/*
968 	 * Delay setting mp.prot: set it before calling perf_mmap__mmap.
969 	 * Its value is decided by evsel's write_backward.
970 	 * So &mp should not be passed through const pointer.
971 	 */
972 	struct mmap_params mp = {
973 		.nr_cblocks	= nr_cblocks,
974 		.affinity	= affinity,
975 		.flush		= flush,
976 		.comp_level	= comp_level
977 	};
978 	struct perf_evlist_mmap_ops ops = {
979 		.idx  = perf_evlist__mmap_cb_idx,
980 		.get  = perf_evlist__mmap_cb_get,
981 		.mmap = perf_evlist__mmap_cb_mmap,
982 	};
983 
984 	evlist->core.mmap_len = evlist__mmap_size(pages);
985 	pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
986 
987 	auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
988 				   auxtrace_pages, auxtrace_overwrite);
989 
990 	return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
991 }
992 
993 int evlist__mmap(struct evlist *evlist, unsigned int pages)
994 {
995 	return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
996 }
997 
998 int evlist__create_maps(struct evlist *evlist, struct target *target)
999 {
1000 	bool all_threads = (target->per_thread && target->system_wide);
1001 	struct perf_cpu_map *cpus;
1002 	struct perf_thread_map *threads;
1003 
1004 	/*
1005 	 * If specify '-a' and '--per-thread' to perf record, perf record
1006 	 * will override '--per-thread'. target->per_thread = false and
1007 	 * target->system_wide = true.
1008 	 *
1009 	 * If specify '--per-thread' only to perf record,
1010 	 * target->per_thread = true and target->system_wide = false.
1011 	 *
1012 	 * So target->per_thread && target->system_wide is false.
1013 	 * For perf record, thread_map__new_str doesn't call
1014 	 * thread_map__new_all_cpus. That will keep perf record's
1015 	 * current behavior.
1016 	 *
1017 	 * For perf stat, it allows the case that target->per_thread and
1018 	 * target->system_wide are all true. It means to collect system-wide
1019 	 * per-thread data. thread_map__new_str will call
1020 	 * thread_map__new_all_cpus to enumerate all threads.
1021 	 */
1022 	threads = thread_map__new_str(target->pid, target->tid, target->uid,
1023 				      all_threads);
1024 
1025 	if (!threads)
1026 		return -1;
1027 
1028 	if (target__uses_dummy_map(target) && !evlist__has_bpf_output(evlist))
1029 		cpus = perf_cpu_map__new_any_cpu();
1030 	else
1031 		cpus = perf_cpu_map__new(target->cpu_list);
1032 
1033 	if (!cpus)
1034 		goto out_delete_threads;
1035 
1036 	evlist->core.has_user_cpus = !!target->cpu_list;
1037 
1038 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1039 
1040 	/* as evlist now has references, put count here */
1041 	perf_cpu_map__put(cpus);
1042 	perf_thread_map__put(threads);
1043 
1044 	return 0;
1045 
1046 out_delete_threads:
1047 	perf_thread_map__put(threads);
1048 	return -1;
1049 }
1050 
1051 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel,
1052 			  struct target *target)
1053 {
1054 	struct evsel *evsel;
1055 	int err = 0;
1056 
1057 	evlist__for_each_entry(evlist, evsel) {
1058 		/*
1059 		 * filters only work for tracepoint event, which doesn't have cpu limit.
1060 		 * So evlist and evsel should always be same.
1061 		 */
1062 		if (evsel->filter) {
1063 			err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
1064 			if (err) {
1065 				*err_evsel = evsel;
1066 				break;
1067 			}
1068 		}
1069 
1070 		/*
1071 		 * non-tracepoint events can have BPF filters.
1072 		 */
1073 		if (!list_empty(&evsel->bpf_filters)) {
1074 			err = perf_bpf_filter__prepare(evsel, target);
1075 			if (err) {
1076 				*err_evsel = evsel;
1077 				break;
1078 			}
1079 		}
1080 	}
1081 
1082 	return err;
1083 }
1084 
1085 int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
1086 {
1087 	struct evsel *evsel;
1088 	int err = 0;
1089 
1090 	if (filter == NULL)
1091 		return -1;
1092 
1093 	evlist__for_each_entry(evlist, evsel) {
1094 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1095 			continue;
1096 
1097 		err = evsel__set_filter(evsel, filter);
1098 		if (err)
1099 			break;
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
1106 {
1107 	struct evsel *evsel;
1108 	int err = 0;
1109 
1110 	if (filter == NULL)
1111 		return -1;
1112 
1113 	evlist__for_each_entry(evlist, evsel) {
1114 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1115 			continue;
1116 
1117 		err = evsel__append_tp_filter(evsel, filter);
1118 		if (err)
1119 			break;
1120 	}
1121 
1122 	return err;
1123 }
1124 
1125 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
1126 {
1127 	char *filter;
1128 	size_t i;
1129 
1130 	for (i = 0; i < npids; ++i) {
1131 		if (i == 0) {
1132 			if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
1133 				return NULL;
1134 		} else {
1135 			char *tmp;
1136 
1137 			if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
1138 				goto out_free;
1139 
1140 			free(filter);
1141 			filter = tmp;
1142 		}
1143 	}
1144 
1145 	return filter;
1146 out_free:
1147 	free(filter);
1148 	return NULL;
1149 }
1150 
1151 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1152 {
1153 	char *filter = asprintf__tp_filter_pids(npids, pids);
1154 	int ret = evlist__set_tp_filter(evlist, filter);
1155 
1156 	free(filter);
1157 	return ret;
1158 }
1159 
1160 int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid)
1161 {
1162 	return evlist__set_tp_filter_pids(evlist, 1, &pid);
1163 }
1164 
1165 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1166 {
1167 	char *filter = asprintf__tp_filter_pids(npids, pids);
1168 	int ret = evlist__append_tp_filter(evlist, filter);
1169 
1170 	free(filter);
1171 	return ret;
1172 }
1173 
1174 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
1175 {
1176 	return evlist__append_tp_filter_pids(evlist, 1, &pid);
1177 }
1178 
1179 bool evlist__valid_sample_type(struct evlist *evlist)
1180 {
1181 	struct evsel *pos;
1182 
1183 	if (evlist->core.nr_entries == 1)
1184 		return true;
1185 
1186 	if (evlist->id_pos < 0 || evlist->is_pos < 0)
1187 		return false;
1188 
1189 	evlist__for_each_entry(evlist, pos) {
1190 		if (pos->id_pos != evlist->id_pos ||
1191 		    pos->is_pos != evlist->is_pos)
1192 			return false;
1193 	}
1194 
1195 	return true;
1196 }
1197 
1198 u64 __evlist__combined_sample_type(struct evlist *evlist)
1199 {
1200 	struct evsel *evsel;
1201 
1202 	if (evlist->combined_sample_type)
1203 		return evlist->combined_sample_type;
1204 
1205 	evlist__for_each_entry(evlist, evsel)
1206 		evlist->combined_sample_type |= evsel->core.attr.sample_type;
1207 
1208 	return evlist->combined_sample_type;
1209 }
1210 
1211 u64 evlist__combined_sample_type(struct evlist *evlist)
1212 {
1213 	evlist->combined_sample_type = 0;
1214 	return __evlist__combined_sample_type(evlist);
1215 }
1216 
1217 u64 evlist__combined_branch_type(struct evlist *evlist)
1218 {
1219 	struct evsel *evsel;
1220 	u64 branch_type = 0;
1221 
1222 	evlist__for_each_entry(evlist, evsel)
1223 		branch_type |= evsel->core.attr.branch_sample_type;
1224 	return branch_type;
1225 }
1226 
1227 static struct evsel *
1228 evlist__find_dup_event_from_prev(struct evlist *evlist, struct evsel *event)
1229 {
1230 	struct evsel *pos;
1231 
1232 	evlist__for_each_entry(evlist, pos) {
1233 		if (event == pos)
1234 			break;
1235 		if ((pos->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) &&
1236 		    !strcmp(pos->name, event->name))
1237 			return pos;
1238 	}
1239 	return NULL;
1240 }
1241 
1242 #define MAX_NR_ABBR_NAME	(26 * 11)
1243 
1244 /*
1245  * The abbr name is from A to Z9. If the number of event
1246  * which requires the branch counter > MAX_NR_ABBR_NAME,
1247  * return NA.
1248  */
1249 static void evlist__new_abbr_name(char *name)
1250 {
1251 	static int idx;
1252 	int i = idx / 26;
1253 
1254 	if (idx >= MAX_NR_ABBR_NAME) {
1255 		name[0] = 'N';
1256 		name[1] = 'A';
1257 		name[2] = '\0';
1258 		return;
1259 	}
1260 
1261 	name[0] = 'A' + (idx % 26);
1262 
1263 	if (!i)
1264 		name[1] = '\0';
1265 	else {
1266 		name[1] = '0' + i - 1;
1267 		name[2] = '\0';
1268 	}
1269 
1270 	idx++;
1271 }
1272 
1273 void evlist__update_br_cntr(struct evlist *evlist)
1274 {
1275 	struct evsel *evsel, *dup;
1276 	int i = 0;
1277 
1278 	evlist__for_each_entry(evlist, evsel) {
1279 		if (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) {
1280 			evsel->br_cntr_idx = i++;
1281 			evsel__leader(evsel)->br_cntr_nr++;
1282 
1283 			dup = evlist__find_dup_event_from_prev(evlist, evsel);
1284 			if (dup)
1285 				memcpy(evsel->abbr_name, dup->abbr_name, 3 * sizeof(char));
1286 			else
1287 				evlist__new_abbr_name(evsel->abbr_name);
1288 		}
1289 	}
1290 	evlist->nr_br_cntr = i;
1291 }
1292 
1293 bool evlist__valid_read_format(struct evlist *evlist)
1294 {
1295 	struct evsel *first = evlist__first(evlist), *pos = first;
1296 	u64 read_format = first->core.attr.read_format;
1297 	u64 sample_type = first->core.attr.sample_type;
1298 
1299 	evlist__for_each_entry(evlist, pos) {
1300 		if (read_format != pos->core.attr.read_format) {
1301 			pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
1302 				 read_format, (u64)pos->core.attr.read_format);
1303 		}
1304 	}
1305 
1306 	/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
1307 	if ((sample_type & PERF_SAMPLE_READ) &&
1308 	    !(read_format & PERF_FORMAT_ID)) {
1309 		return false;
1310 	}
1311 
1312 	return true;
1313 }
1314 
1315 u16 evlist__id_hdr_size(struct evlist *evlist)
1316 {
1317 	struct evsel *first = evlist__first(evlist);
1318 
1319 	return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0;
1320 }
1321 
1322 bool evlist__valid_sample_id_all(struct evlist *evlist)
1323 {
1324 	struct evsel *first = evlist__first(evlist), *pos = first;
1325 
1326 	evlist__for_each_entry_continue(evlist, pos) {
1327 		if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
1328 			return false;
1329 	}
1330 
1331 	return true;
1332 }
1333 
1334 bool evlist__sample_id_all(struct evlist *evlist)
1335 {
1336 	struct evsel *first = evlist__first(evlist);
1337 	return first->core.attr.sample_id_all;
1338 }
1339 
1340 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
1341 {
1342 	evlist->selected = evsel;
1343 }
1344 
1345 void evlist__close(struct evlist *evlist)
1346 {
1347 	struct evsel *evsel;
1348 	struct evlist_cpu_iterator evlist_cpu_itr;
1349 	struct affinity affinity;
1350 
1351 	/*
1352 	 * With perf record core.user_requested_cpus is usually NULL.
1353 	 * Use the old method to handle this for now.
1354 	 */
1355 	if (!evlist->core.user_requested_cpus ||
1356 	    cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
1357 		evlist__for_each_entry_reverse(evlist, evsel)
1358 			evsel__close(evsel);
1359 		return;
1360 	}
1361 
1362 	if (affinity__setup(&affinity) < 0)
1363 		return;
1364 
1365 	evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) {
1366 		perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core,
1367 				      evlist_cpu_itr.cpu_map_idx);
1368 	}
1369 
1370 	affinity__cleanup(&affinity);
1371 	evlist__for_each_entry_reverse(evlist, evsel) {
1372 		perf_evsel__free_fd(&evsel->core);
1373 		perf_evsel__free_id(&evsel->core);
1374 	}
1375 	perf_evlist__reset_id_hash(&evlist->core);
1376 }
1377 
1378 static int evlist__create_syswide_maps(struct evlist *evlist)
1379 {
1380 	struct perf_cpu_map *cpus;
1381 	struct perf_thread_map *threads;
1382 
1383 	/*
1384 	 * Try reading /sys/devices/system/cpu/online to get
1385 	 * an all cpus map.
1386 	 *
1387 	 * FIXME: -ENOMEM is the best we can do here, the cpu_map
1388 	 * code needs an overhaul to properly forward the
1389 	 * error, and we may not want to do that fallback to a
1390 	 * default cpu identity map :-\
1391 	 */
1392 	cpus = perf_cpu_map__new_online_cpus();
1393 	if (!cpus)
1394 		goto out;
1395 
1396 	threads = perf_thread_map__new_dummy();
1397 	if (!threads)
1398 		goto out_put;
1399 
1400 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1401 
1402 	perf_thread_map__put(threads);
1403 out_put:
1404 	perf_cpu_map__put(cpus);
1405 out:
1406 	return -ENOMEM;
1407 }
1408 
1409 int evlist__open(struct evlist *evlist)
1410 {
1411 	struct evsel *evsel;
1412 	int err;
1413 
1414 	/*
1415 	 * Default: one fd per CPU, all threads, aka systemwide
1416 	 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
1417 	 */
1418 	if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) {
1419 		err = evlist__create_syswide_maps(evlist);
1420 		if (err < 0)
1421 			goto out_err;
1422 	}
1423 
1424 	evlist__update_id_pos(evlist);
1425 
1426 	evlist__for_each_entry(evlist, evsel) {
1427 		err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
1428 		if (err < 0)
1429 			goto out_err;
1430 	}
1431 
1432 	return 0;
1433 out_err:
1434 	evlist__close(evlist);
1435 	errno = -err;
1436 	return err;
1437 }
1438 
1439 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
1440 			     bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1441 {
1442 	int child_ready_pipe[2], go_pipe[2];
1443 	char bf;
1444 
1445 	evlist->workload.cork_fd = -1;
1446 
1447 	if (pipe(child_ready_pipe) < 0) {
1448 		perror("failed to create 'ready' pipe");
1449 		return -1;
1450 	}
1451 
1452 	if (pipe(go_pipe) < 0) {
1453 		perror("failed to create 'go' pipe");
1454 		goto out_close_ready_pipe;
1455 	}
1456 
1457 	evlist->workload.pid = fork();
1458 	if (evlist->workload.pid < 0) {
1459 		perror("failed to fork");
1460 		goto out_close_pipes;
1461 	}
1462 
1463 	if (!evlist->workload.pid) {
1464 		int ret;
1465 
1466 		if (pipe_output)
1467 			dup2(2, 1);
1468 
1469 		signal(SIGTERM, SIG_DFL);
1470 
1471 		close(child_ready_pipe[0]);
1472 		close(go_pipe[1]);
1473 		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1474 
1475 		/*
1476 		 * Change the name of this process not to confuse --exclude-perf users
1477 		 * that sees 'perf' in the window up to the execvp() and thinks that
1478 		 * perf samples are not being excluded.
1479 		 */
1480 		prctl(PR_SET_NAME, "perf-exec");
1481 
1482 		/*
1483 		 * Tell the parent we're ready to go
1484 		 */
1485 		close(child_ready_pipe[1]);
1486 
1487 		/*
1488 		 * Wait until the parent tells us to go.
1489 		 */
1490 		ret = read(go_pipe[0], &bf, 1);
1491 		/*
1492 		 * The parent will ask for the execvp() to be performed by
1493 		 * writing exactly one byte, in workload.cork_fd, usually via
1494 		 * evlist__start_workload().
1495 		 *
1496 		 * For cancelling the workload without actually running it,
1497 		 * the parent will just close workload.cork_fd, without writing
1498 		 * anything, i.e. read will return zero and we just exit()
1499 		 * here (See evlist__cancel_workload()).
1500 		 */
1501 		if (ret != 1) {
1502 			if (ret == -1)
1503 				perror("unable to read pipe");
1504 			exit(ret);
1505 		}
1506 
1507 		execvp(argv[0], (char **)argv);
1508 
1509 		if (exec_error) {
1510 			union sigval val;
1511 
1512 			val.sival_int = errno;
1513 			if (sigqueue(getppid(), SIGUSR1, val))
1514 				perror(argv[0]);
1515 		} else
1516 			perror(argv[0]);
1517 		exit(-1);
1518 	}
1519 
1520 	if (exec_error) {
1521 		struct sigaction act = {
1522 			.sa_flags     = SA_SIGINFO,
1523 			.sa_sigaction = exec_error,
1524 		};
1525 		sigaction(SIGUSR1, &act, NULL);
1526 	}
1527 
1528 	if (target__none(target)) {
1529 		if (evlist->core.threads == NULL) {
1530 			fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
1531 				__func__, __LINE__);
1532 			goto out_close_pipes;
1533 		}
1534 		perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
1535 	}
1536 
1537 	close(child_ready_pipe[1]);
1538 	close(go_pipe[0]);
1539 	/*
1540 	 * wait for child to settle
1541 	 */
1542 	if (read(child_ready_pipe[0], &bf, 1) == -1) {
1543 		perror("unable to read pipe");
1544 		goto out_close_pipes;
1545 	}
1546 
1547 	fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1548 	evlist->workload.cork_fd = go_pipe[1];
1549 	close(child_ready_pipe[0]);
1550 	return 0;
1551 
1552 out_close_pipes:
1553 	close(go_pipe[0]);
1554 	close(go_pipe[1]);
1555 out_close_ready_pipe:
1556 	close(child_ready_pipe[0]);
1557 	close(child_ready_pipe[1]);
1558 	return -1;
1559 }
1560 
1561 int evlist__start_workload(struct evlist *evlist)
1562 {
1563 	if (evlist->workload.cork_fd >= 0) {
1564 		char bf = 0;
1565 		int ret;
1566 		/*
1567 		 * Remove the cork, let it rip!
1568 		 */
1569 		ret = write(evlist->workload.cork_fd, &bf, 1);
1570 		if (ret < 0)
1571 			perror("unable to write to pipe");
1572 
1573 		close(evlist->workload.cork_fd);
1574 		evlist->workload.cork_fd = -1;
1575 		return ret;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 void evlist__cancel_workload(struct evlist *evlist)
1582 {
1583 	int status;
1584 
1585 	if (evlist->workload.cork_fd >= 0) {
1586 		close(evlist->workload.cork_fd);
1587 		evlist->workload.cork_fd = -1;
1588 		waitpid(evlist->workload.pid, &status, WNOHANG);
1589 	}
1590 }
1591 
1592 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1593 {
1594 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1595 	int ret;
1596 
1597 	if (!evsel)
1598 		return -EFAULT;
1599 	ret = evsel__parse_sample(evsel, event, sample);
1600 	if (ret)
1601 		return ret;
1602 	if (perf_guest && sample->id) {
1603 		struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id);
1604 
1605 		if (sid) {
1606 			sample->machine_pid = sid->machine_pid;
1607 			sample->vcpu = sid->vcpu.cpu;
1608 		}
1609 	}
1610 	return 0;
1611 }
1612 
1613 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
1614 {
1615 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1616 
1617 	if (!evsel)
1618 		return -EFAULT;
1619 	return evsel__parse_sample_timestamp(evsel, event, timestamp);
1620 }
1621 
1622 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
1623 {
1624 	int printed, value;
1625 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1626 
1627 	switch (err) {
1628 	case EACCES:
1629 	case EPERM:
1630 		printed = scnprintf(buf, size,
1631 				    "Error:\t%s.\n"
1632 				    "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1633 
1634 		value = perf_event_paranoid();
1635 
1636 		printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1637 
1638 		if (value >= 2) {
1639 			printed += scnprintf(buf + printed, size - printed,
1640 					     "For your workloads it needs to be <= 1\nHint:\t");
1641 		}
1642 		printed += scnprintf(buf + printed, size - printed,
1643 				     "For system wide tracing it needs to be set to -1.\n");
1644 
1645 		printed += scnprintf(buf + printed, size - printed,
1646 				    "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1647 				    "Hint:\tThe current value is %d.", value);
1648 		break;
1649 	case EINVAL: {
1650 		struct evsel *first = evlist__first(evlist);
1651 		int max_freq;
1652 
1653 		if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
1654 			goto out_default;
1655 
1656 		if (first->core.attr.sample_freq < (u64)max_freq)
1657 			goto out_default;
1658 
1659 		printed = scnprintf(buf, size,
1660 				    "Error:\t%s.\n"
1661 				    "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
1662 				    "Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
1663 				    emsg, max_freq, first->core.attr.sample_freq);
1664 		break;
1665 	}
1666 	default:
1667 out_default:
1668 		scnprintf(buf, size, "%s", emsg);
1669 		break;
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
1676 {
1677 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1678 	int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
1679 
1680 	switch (err) {
1681 	case EPERM:
1682 		sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
1683 		printed += scnprintf(buf + printed, size - printed,
1684 				     "Error:\t%s.\n"
1685 				     "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
1686 				     "Hint:\tTried using %zd kB.\n",
1687 				     emsg, pages_max_per_user, pages_attempted);
1688 
1689 		if (pages_attempted >= pages_max_per_user) {
1690 			printed += scnprintf(buf + printed, size - printed,
1691 					     "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
1692 					     pages_max_per_user + pages_attempted);
1693 		}
1694 
1695 		printed += scnprintf(buf + printed, size - printed,
1696 				     "Hint:\tTry using a smaller -m/--mmap-pages value.");
1697 		break;
1698 	default:
1699 		scnprintf(buf, size, "%s", emsg);
1700 		break;
1701 	}
1702 
1703 	return 0;
1704 }
1705 
1706 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
1707 {
1708 	struct evsel *evsel, *n;
1709 	LIST_HEAD(move);
1710 
1711 	if (move_evsel == evlist__first(evlist))
1712 		return;
1713 
1714 	evlist__for_each_entry_safe(evlist, n, evsel) {
1715 		if (evsel__leader(evsel) == evsel__leader(move_evsel))
1716 			list_move_tail(&evsel->core.node, &move);
1717 	}
1718 
1719 	list_splice(&move, &evlist->core.entries);
1720 }
1721 
1722 struct evsel *evlist__get_tracking_event(struct evlist *evlist)
1723 {
1724 	struct evsel *evsel;
1725 
1726 	evlist__for_each_entry(evlist, evsel) {
1727 		if (evsel->tracking)
1728 			return evsel;
1729 	}
1730 
1731 	return evlist__first(evlist);
1732 }
1733 
1734 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
1735 {
1736 	struct evsel *evsel;
1737 
1738 	if (tracking_evsel->tracking)
1739 		return;
1740 
1741 	evlist__for_each_entry(evlist, evsel) {
1742 		if (evsel != tracking_evsel)
1743 			evsel->tracking = false;
1744 	}
1745 
1746 	tracking_evsel->tracking = true;
1747 }
1748 
1749 struct evsel *evlist__findnew_tracking_event(struct evlist *evlist, bool system_wide)
1750 {
1751 	struct evsel *evsel;
1752 
1753 	evsel = evlist__get_tracking_event(evlist);
1754 	if (!evsel__is_dummy_event(evsel)) {
1755 		evsel = evlist__add_aux_dummy(evlist, system_wide);
1756 		if (!evsel)
1757 			return NULL;
1758 
1759 		evlist__set_tracking_event(evlist, evsel);
1760 	} else if (system_wide) {
1761 		perf_evlist__go_system_wide(&evlist->core, &evsel->core);
1762 	}
1763 
1764 	return evsel;
1765 }
1766 
1767 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
1768 {
1769 	struct evsel *evsel;
1770 
1771 	evlist__for_each_entry(evlist, evsel) {
1772 		if (!evsel->name)
1773 			continue;
1774 		if (evsel__name_is(evsel, str))
1775 			return evsel;
1776 	}
1777 
1778 	return NULL;
1779 }
1780 
1781 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
1782 {
1783 	enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
1784 	enum action {
1785 		NONE,
1786 		PAUSE,
1787 		RESUME,
1788 	} action = NONE;
1789 
1790 	if (!evlist->overwrite_mmap)
1791 		return;
1792 
1793 	switch (old_state) {
1794 	case BKW_MMAP_NOTREADY: {
1795 		if (state != BKW_MMAP_RUNNING)
1796 			goto state_err;
1797 		break;
1798 	}
1799 	case BKW_MMAP_RUNNING: {
1800 		if (state != BKW_MMAP_DATA_PENDING)
1801 			goto state_err;
1802 		action = PAUSE;
1803 		break;
1804 	}
1805 	case BKW_MMAP_DATA_PENDING: {
1806 		if (state != BKW_MMAP_EMPTY)
1807 			goto state_err;
1808 		break;
1809 	}
1810 	case BKW_MMAP_EMPTY: {
1811 		if (state != BKW_MMAP_RUNNING)
1812 			goto state_err;
1813 		action = RESUME;
1814 		break;
1815 	}
1816 	default:
1817 		WARN_ONCE(1, "Shouldn't get there\n");
1818 	}
1819 
1820 	evlist->bkw_mmap_state = state;
1821 
1822 	switch (action) {
1823 	case PAUSE:
1824 		evlist__pause(evlist);
1825 		break;
1826 	case RESUME:
1827 		evlist__resume(evlist);
1828 		break;
1829 	case NONE:
1830 	default:
1831 		break;
1832 	}
1833 
1834 state_err:
1835 	return;
1836 }
1837 
1838 bool evlist__exclude_kernel(struct evlist *evlist)
1839 {
1840 	struct evsel *evsel;
1841 
1842 	evlist__for_each_entry(evlist, evsel) {
1843 		if (!evsel->core.attr.exclude_kernel)
1844 			return false;
1845 	}
1846 
1847 	return true;
1848 }
1849 
1850 /*
1851  * Events in data file are not collect in groups, but we still want
1852  * the group display. Set the artificial group and set the leader's
1853  * forced_leader flag to notify the display code.
1854  */
1855 void evlist__force_leader(struct evlist *evlist)
1856 {
1857 	if (evlist__nr_groups(evlist) == 0) {
1858 		struct evsel *leader = evlist__first(evlist);
1859 
1860 		evlist__set_leader(evlist);
1861 		leader->forced_leader = true;
1862 	}
1863 }
1864 
1865 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
1866 {
1867 	struct evsel *c2, *leader;
1868 	bool is_open = true;
1869 
1870 	leader = evsel__leader(evsel);
1871 
1872 	pr_debug("Weak group for %s/%d failed\n",
1873 			leader->name, leader->core.nr_members);
1874 
1875 	/*
1876 	 * for_each_group_member doesn't work here because it doesn't
1877 	 * include the first entry.
1878 	 */
1879 	evlist__for_each_entry(evsel_list, c2) {
1880 		if (c2 == evsel)
1881 			is_open = false;
1882 		if (evsel__has_leader(c2, leader)) {
1883 			if (is_open && close)
1884 				perf_evsel__close(&c2->core);
1885 			/*
1886 			 * We want to close all members of the group and reopen
1887 			 * them. Some events, like Intel topdown, require being
1888 			 * in a group and so keep these in the group.
1889 			 */
1890 			evsel__remove_from_group(c2, leader);
1891 
1892 			/*
1893 			 * Set this for all former members of the group
1894 			 * to indicate they get reopened.
1895 			 */
1896 			c2->reset_group = true;
1897 		}
1898 	}
1899 	/* Reset the leader count if all entries were removed. */
1900 	if (leader->core.nr_members == 1)
1901 		leader->core.nr_members = 0;
1902 	return leader;
1903 }
1904 
1905 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1906 {
1907 	char *s, *p;
1908 	int ret = 0, fd;
1909 
1910 	if (strncmp(str, "fifo:", 5))
1911 		return -EINVAL;
1912 
1913 	str += 5;
1914 	if (!*str || *str == ',')
1915 		return -EINVAL;
1916 
1917 	s = strdup(str);
1918 	if (!s)
1919 		return -ENOMEM;
1920 
1921 	p = strchr(s, ',');
1922 	if (p)
1923 		*p = '\0';
1924 
1925 	/*
1926 	 * O_RDWR avoids POLLHUPs which is necessary to allow the other
1927 	 * end of a FIFO to be repeatedly opened and closed.
1928 	 */
1929 	fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1930 	if (fd < 0) {
1931 		pr_err("Failed to open '%s'\n", s);
1932 		ret = -errno;
1933 		goto out_free;
1934 	}
1935 	*ctl_fd = fd;
1936 	*ctl_fd_close = true;
1937 
1938 	if (p && *++p) {
1939 		/* O_RDWR | O_NONBLOCK means the other end need not be open */
1940 		fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1941 		if (fd < 0) {
1942 			pr_err("Failed to open '%s'\n", p);
1943 			ret = -errno;
1944 			goto out_free;
1945 		}
1946 		*ctl_fd_ack = fd;
1947 	}
1948 
1949 out_free:
1950 	free(s);
1951 	return ret;
1952 }
1953 
1954 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1955 {
1956 	char *comma = NULL, *endptr = NULL;
1957 
1958 	*ctl_fd_close = false;
1959 
1960 	if (strncmp(str, "fd:", 3))
1961 		return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
1962 
1963 	*ctl_fd = strtoul(&str[3], &endptr, 0);
1964 	if (endptr == &str[3])
1965 		return -EINVAL;
1966 
1967 	comma = strchr(str, ',');
1968 	if (comma) {
1969 		if (endptr != comma)
1970 			return -EINVAL;
1971 
1972 		*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
1973 		if (endptr == comma + 1 || *endptr != '\0')
1974 			return -EINVAL;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
1981 {
1982 	if (*ctl_fd_close) {
1983 		*ctl_fd_close = false;
1984 		close(ctl_fd);
1985 		if (ctl_fd_ack >= 0)
1986 			close(ctl_fd_ack);
1987 	}
1988 }
1989 
1990 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
1991 {
1992 	if (fd == -1) {
1993 		pr_debug("Control descriptor is not initialized\n");
1994 		return 0;
1995 	}
1996 
1997 	evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
1998 						     fdarray_flag__nonfilterable |
1999 						     fdarray_flag__non_perf_event);
2000 	if (evlist->ctl_fd.pos < 0) {
2001 		evlist->ctl_fd.pos = -1;
2002 		pr_err("Failed to add ctl fd entry: %m\n");
2003 		return -1;
2004 	}
2005 
2006 	evlist->ctl_fd.fd = fd;
2007 	evlist->ctl_fd.ack = ack;
2008 
2009 	return 0;
2010 }
2011 
2012 bool evlist__ctlfd_initialized(struct evlist *evlist)
2013 {
2014 	return evlist->ctl_fd.pos >= 0;
2015 }
2016 
2017 int evlist__finalize_ctlfd(struct evlist *evlist)
2018 {
2019 	struct pollfd *entries = evlist->core.pollfd.entries;
2020 
2021 	if (!evlist__ctlfd_initialized(evlist))
2022 		return 0;
2023 
2024 	entries[evlist->ctl_fd.pos].fd = -1;
2025 	entries[evlist->ctl_fd.pos].events = 0;
2026 	entries[evlist->ctl_fd.pos].revents = 0;
2027 
2028 	evlist->ctl_fd.pos = -1;
2029 	evlist->ctl_fd.ack = -1;
2030 	evlist->ctl_fd.fd = -1;
2031 
2032 	return 0;
2033 }
2034 
2035 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
2036 			      char *cmd_data, size_t data_size)
2037 {
2038 	int err;
2039 	char c;
2040 	size_t bytes_read = 0;
2041 
2042 	*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
2043 	memset(cmd_data, 0, data_size);
2044 	data_size--;
2045 
2046 	do {
2047 		err = read(evlist->ctl_fd.fd, &c, 1);
2048 		if (err > 0) {
2049 			if (c == '\n' || c == '\0')
2050 				break;
2051 			cmd_data[bytes_read++] = c;
2052 			if (bytes_read == data_size)
2053 				break;
2054 			continue;
2055 		} else if (err == -1) {
2056 			if (errno == EINTR)
2057 				continue;
2058 			if (errno == EAGAIN || errno == EWOULDBLOCK)
2059 				err = 0;
2060 			else
2061 				pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
2062 		}
2063 		break;
2064 	} while (1);
2065 
2066 	pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
2067 		 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
2068 
2069 	if (bytes_read > 0) {
2070 		if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
2071 			     (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
2072 			*cmd = EVLIST_CTL_CMD_ENABLE;
2073 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
2074 				    (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
2075 			*cmd = EVLIST_CTL_CMD_DISABLE;
2076 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
2077 				    (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
2078 			*cmd = EVLIST_CTL_CMD_SNAPSHOT;
2079 			pr_debug("is snapshot\n");
2080 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
2081 				    (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
2082 			*cmd = EVLIST_CTL_CMD_EVLIST;
2083 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
2084 				    (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
2085 			*cmd = EVLIST_CTL_CMD_STOP;
2086 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
2087 				    (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
2088 			*cmd = EVLIST_CTL_CMD_PING;
2089 		}
2090 	}
2091 
2092 	return bytes_read ? (int)bytes_read : err;
2093 }
2094 
2095 int evlist__ctlfd_ack(struct evlist *evlist)
2096 {
2097 	int err;
2098 
2099 	if (evlist->ctl_fd.ack == -1)
2100 		return 0;
2101 
2102 	err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
2103 		    sizeof(EVLIST_CTL_CMD_ACK_TAG));
2104 	if (err == -1)
2105 		pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
2106 
2107 	return err;
2108 }
2109 
2110 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
2111 {
2112 	char *data = cmd_data + cmd_size;
2113 
2114 	/* no argument */
2115 	if (!*data)
2116 		return 0;
2117 
2118 	/* there's argument */
2119 	if (*data == ' ') {
2120 		*arg = data + 1;
2121 		return 1;
2122 	}
2123 
2124 	/* malformed */
2125 	return -1;
2126 }
2127 
2128 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
2129 {
2130 	struct evsel *evsel;
2131 	char *name;
2132 	int err;
2133 
2134 	err = get_cmd_arg(cmd_data,
2135 			  enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
2136 				   sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
2137 			  &name);
2138 	if (err < 0) {
2139 		pr_info("failed: wrong command\n");
2140 		return -1;
2141 	}
2142 
2143 	if (err) {
2144 		evsel = evlist__find_evsel_by_str(evlist, name);
2145 		if (evsel) {
2146 			if (enable)
2147 				evlist__enable_evsel(evlist, name);
2148 			else
2149 				evlist__disable_evsel(evlist, name);
2150 			pr_info("Event %s %s\n", evsel->name,
2151 				enable ? "enabled" : "disabled");
2152 		} else {
2153 			pr_info("failed: can't find '%s' event\n", name);
2154 		}
2155 	} else {
2156 		if (enable) {
2157 			evlist__enable(evlist);
2158 			pr_info(EVLIST_ENABLED_MSG);
2159 		} else {
2160 			evlist__disable(evlist);
2161 			pr_info(EVLIST_DISABLED_MSG);
2162 		}
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
2169 {
2170 	struct perf_attr_details details = { .verbose = false, };
2171 	struct evsel *evsel;
2172 	char *arg;
2173 	int err;
2174 
2175 	err = get_cmd_arg(cmd_data,
2176 			  sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
2177 			  &arg);
2178 	if (err < 0) {
2179 		pr_info("failed: wrong command\n");
2180 		return -1;
2181 	}
2182 
2183 	if (err) {
2184 		if (!strcmp(arg, "-v")) {
2185 			details.verbose = true;
2186 		} else if (!strcmp(arg, "-g")) {
2187 			details.event_group = true;
2188 		} else if (!strcmp(arg, "-F")) {
2189 			details.freq = true;
2190 		} else {
2191 			pr_info("failed: wrong command\n");
2192 			return -1;
2193 		}
2194 	}
2195 
2196 	evlist__for_each_entry(evlist, evsel)
2197 		evsel__fprintf(evsel, &details, stderr);
2198 
2199 	return 0;
2200 }
2201 
2202 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
2203 {
2204 	int err = 0;
2205 	char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
2206 	int ctlfd_pos = evlist->ctl_fd.pos;
2207 	struct pollfd *entries = evlist->core.pollfd.entries;
2208 
2209 	if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
2210 		return 0;
2211 
2212 	if (entries[ctlfd_pos].revents & POLLIN) {
2213 		err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
2214 					 EVLIST_CTL_CMD_MAX_LEN);
2215 		if (err > 0) {
2216 			switch (*cmd) {
2217 			case EVLIST_CTL_CMD_ENABLE:
2218 			case EVLIST_CTL_CMD_DISABLE:
2219 				err = evlist__ctlfd_enable(evlist, cmd_data,
2220 							   *cmd == EVLIST_CTL_CMD_ENABLE);
2221 				break;
2222 			case EVLIST_CTL_CMD_EVLIST:
2223 				err = evlist__ctlfd_list(evlist, cmd_data);
2224 				break;
2225 			case EVLIST_CTL_CMD_SNAPSHOT:
2226 			case EVLIST_CTL_CMD_STOP:
2227 			case EVLIST_CTL_CMD_PING:
2228 				break;
2229 			case EVLIST_CTL_CMD_ACK:
2230 			case EVLIST_CTL_CMD_UNSUPPORTED:
2231 			default:
2232 				pr_debug("ctlfd: unsupported %d\n", *cmd);
2233 				break;
2234 			}
2235 			if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
2236 			      *cmd == EVLIST_CTL_CMD_SNAPSHOT))
2237 				evlist__ctlfd_ack(evlist);
2238 		}
2239 	}
2240 
2241 	if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
2242 		evlist__finalize_ctlfd(evlist);
2243 	else
2244 		entries[ctlfd_pos].revents = 0;
2245 
2246 	return err;
2247 }
2248 
2249 /**
2250  * struct event_enable_time - perf record -D/--delay single time range.
2251  * @start: start of time range to enable events in milliseconds
2252  * @end: end of time range to enable events in milliseconds
2253  *
2254  * N.B. this structure is also accessed as an array of int.
2255  */
2256 struct event_enable_time {
2257 	int	start;
2258 	int	end;
2259 };
2260 
2261 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first)
2262 {
2263 	const char *fmt = first ? "%u - %u %n" : " , %u - %u %n";
2264 	int ret, start, end, n;
2265 
2266 	ret = sscanf(str, fmt, &start, &end, &n);
2267 	if (ret != 2 || end <= start)
2268 		return -EINVAL;
2269 	if (range) {
2270 		range->start = start;
2271 		range->end = end;
2272 	}
2273 	return n;
2274 }
2275 
2276 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range)
2277 {
2278 	int incr = !!range;
2279 	bool first = true;
2280 	ssize_t ret, cnt;
2281 
2282 	for (cnt = 0; *str; cnt++) {
2283 		ret = parse_event_enable_time(str, range, first);
2284 		if (ret < 0)
2285 			return ret;
2286 		/* Check no overlap */
2287 		if (!first && range && range->start <= range[-1].end)
2288 			return -EINVAL;
2289 		str += ret;
2290 		range += incr;
2291 		first = false;
2292 	}
2293 	return cnt;
2294 }
2295 
2296 /**
2297  * struct event_enable_timer - control structure for perf record -D/--delay.
2298  * @evlist: event list
2299  * @times: time ranges that events are enabled (N.B. this is also accessed as an
2300  *         array of int)
2301  * @times_cnt: number of time ranges
2302  * @timerfd: timer file descriptor
2303  * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray)
2304  * @times_step: current position in (int *)@times)[],
2305  *              refer event_enable_timer__process()
2306  *
2307  * Note, this structure is only used when there are time ranges, not when there
2308  * is only an initial delay.
2309  */
2310 struct event_enable_timer {
2311 	struct evlist *evlist;
2312 	struct event_enable_time *times;
2313 	size_t	times_cnt;
2314 	int	timerfd;
2315 	int	pollfd_pos;
2316 	size_t	times_step;
2317 };
2318 
2319 static int str_to_delay(const char *str)
2320 {
2321 	char *endptr;
2322 	long d;
2323 
2324 	d = strtol(str, &endptr, 10);
2325 	if (*endptr || d > INT_MAX || d < -1)
2326 		return 0;
2327 	return d;
2328 }
2329 
2330 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts,
2331 				    const char *str, int unset)
2332 {
2333 	enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event;
2334 	struct event_enable_timer *eet;
2335 	ssize_t times_cnt;
2336 	ssize_t ret;
2337 	int err;
2338 
2339 	if (unset)
2340 		return 0;
2341 
2342 	opts->target.initial_delay = str_to_delay(str);
2343 	if (opts->target.initial_delay)
2344 		return 0;
2345 
2346 	ret = parse_event_enable_times(str, NULL);
2347 	if (ret < 0)
2348 		return ret;
2349 
2350 	times_cnt = ret;
2351 	if (times_cnt == 0)
2352 		return -EINVAL;
2353 
2354 	eet = zalloc(sizeof(*eet));
2355 	if (!eet)
2356 		return -ENOMEM;
2357 
2358 	eet->times = calloc(times_cnt, sizeof(*eet->times));
2359 	if (!eet->times) {
2360 		err = -ENOMEM;
2361 		goto free_eet;
2362 	}
2363 
2364 	if (parse_event_enable_times(str, eet->times) != times_cnt) {
2365 		err = -EINVAL;
2366 		goto free_eet_times;
2367 	}
2368 
2369 	eet->times_cnt = times_cnt;
2370 
2371 	eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
2372 	if (eet->timerfd == -1) {
2373 		err = -errno;
2374 		pr_err("timerfd_create failed: %s\n", strerror(errno));
2375 		goto free_eet_times;
2376 	}
2377 
2378 	eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags);
2379 	if (eet->pollfd_pos < 0) {
2380 		err = eet->pollfd_pos;
2381 		goto close_timerfd;
2382 	}
2383 
2384 	eet->evlist = evlist;
2385 	evlist->eet = eet;
2386 	opts->target.initial_delay = eet->times[0].start;
2387 
2388 	return 0;
2389 
2390 close_timerfd:
2391 	close(eet->timerfd);
2392 free_eet_times:
2393 	zfree(&eet->times);
2394 free_eet:
2395 	free(eet);
2396 	return err;
2397 }
2398 
2399 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms)
2400 {
2401 	struct itimerspec its = {
2402 		.it_value.tv_sec = ms / MSEC_PER_SEC,
2403 		.it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC,
2404 	};
2405 	int err = 0;
2406 
2407 	if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) {
2408 		err = -errno;
2409 		pr_err("timerfd_settime failed: %s\n", strerror(errno));
2410 	}
2411 	return err;
2412 }
2413 
2414 int event_enable_timer__start(struct event_enable_timer *eet)
2415 {
2416 	int ms;
2417 
2418 	if (!eet)
2419 		return 0;
2420 
2421 	ms = eet->times[0].end - eet->times[0].start;
2422 	eet->times_step = 1;
2423 
2424 	return event_enable_timer__set_timer(eet, ms);
2425 }
2426 
2427 int event_enable_timer__process(struct event_enable_timer *eet)
2428 {
2429 	struct pollfd *entries;
2430 	short revents;
2431 
2432 	if (!eet)
2433 		return 0;
2434 
2435 	entries = eet->evlist->core.pollfd.entries;
2436 	revents = entries[eet->pollfd_pos].revents;
2437 	entries[eet->pollfd_pos].revents = 0;
2438 
2439 	if (revents & POLLIN) {
2440 		size_t step = eet->times_step;
2441 		size_t pos = step / 2;
2442 
2443 		if (step & 1) {
2444 			evlist__disable_non_dummy(eet->evlist);
2445 			pr_info(EVLIST_DISABLED_MSG);
2446 			if (pos >= eet->times_cnt - 1) {
2447 				/* Disarm timer */
2448 				event_enable_timer__set_timer(eet, 0);
2449 				return 1; /* Stop */
2450 			}
2451 		} else {
2452 			evlist__enable_non_dummy(eet->evlist);
2453 			pr_info(EVLIST_ENABLED_MSG);
2454 		}
2455 
2456 		step += 1;
2457 		pos = step / 2;
2458 
2459 		if (pos < eet->times_cnt) {
2460 			int *times = (int *)eet->times; /* Accessing 'times' as array of int */
2461 			int ms = times[step] - times[step - 1];
2462 
2463 			eet->times_step = step;
2464 			return event_enable_timer__set_timer(eet, ms);
2465 		}
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 void event_enable_timer__exit(struct event_enable_timer **ep)
2472 {
2473 	if (!ep || !*ep)
2474 		return;
2475 	zfree(&(*ep)->times);
2476 	zfree(ep);
2477 }
2478 
2479 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
2480 {
2481 	struct evsel *evsel;
2482 
2483 	evlist__for_each_entry(evlist, evsel) {
2484 		if (evsel->core.idx == idx)
2485 			return evsel;
2486 	}
2487 	return NULL;
2488 }
2489 
2490 int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf)
2491 {
2492 	struct evsel *evsel;
2493 	int printed = 0;
2494 
2495 	evlist__for_each_entry(evlist, evsel) {
2496 		if (evsel__is_dummy_event(evsel))
2497 			continue;
2498 		if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) {
2499 			printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel));
2500 		} else {
2501 			printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : "");
2502 			break;
2503 		}
2504 	}
2505 
2506 	return printed;
2507 }
2508 
2509 void evlist__check_mem_load_aux(struct evlist *evlist)
2510 {
2511 	struct evsel *leader, *evsel, *pos;
2512 
2513 	/*
2514 	 * For some platforms, the 'mem-loads' event is required to use
2515 	 * together with 'mem-loads-aux' within a group and 'mem-loads-aux'
2516 	 * must be the group leader. Now we disable this group before reporting
2517 	 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
2518 	 * any valid memory load information.
2519 	 */
2520 	evlist__for_each_entry(evlist, evsel) {
2521 		leader = evsel__leader(evsel);
2522 		if (leader == evsel)
2523 			continue;
2524 
2525 		if (leader->name && strstr(leader->name, "mem-loads-aux")) {
2526 			for_each_group_evsel(pos, leader) {
2527 				evsel__set_leader(pos, pos);
2528 				pos->core.nr_members = 0;
2529 			}
2530 		}
2531 	}
2532 }
2533 
2534 /**
2535  * evlist__warn_user_requested_cpus() - Check each evsel against requested CPUs
2536  *     and warn if the user CPU list is inapplicable for the event's PMU's
2537  *     CPUs. Not core PMUs list a CPU in sysfs, but this may be overwritten by a
2538  *     user requested CPU and so any online CPU is applicable. Core PMUs handle
2539  *     events on the CPUs in their list and otherwise the event isn't supported.
2540  * @evlist: The list of events being checked.
2541  * @cpu_list: The user provided list of CPUs.
2542  */
2543 void evlist__warn_user_requested_cpus(struct evlist *evlist, const char *cpu_list)
2544 {
2545 	struct perf_cpu_map *user_requested_cpus;
2546 	struct evsel *pos;
2547 
2548 	if (!cpu_list)
2549 		return;
2550 
2551 	user_requested_cpus = perf_cpu_map__new(cpu_list);
2552 	if (!user_requested_cpus)
2553 		return;
2554 
2555 	evlist__for_each_entry(evlist, pos) {
2556 		struct perf_cpu_map *intersect, *to_test;
2557 		const struct perf_pmu *pmu = evsel__find_pmu(pos);
2558 
2559 		to_test = pmu && pmu->is_core ? pmu->cpus : cpu_map__online();
2560 		intersect = perf_cpu_map__intersect(to_test, user_requested_cpus);
2561 		if (!perf_cpu_map__equal(intersect, user_requested_cpus)) {
2562 			char buf[128];
2563 
2564 			cpu_map__snprint(to_test, buf, sizeof(buf));
2565 			pr_warning("WARNING: A requested CPU in '%s' is not supported by PMU '%s' (CPUs %s) for event '%s'\n",
2566 				cpu_list, pmu ? pmu->name : "cpu", buf, evsel__name(pos));
2567 		}
2568 		perf_cpu_map__put(intersect);
2569 	}
2570 	perf_cpu_map__put(user_requested_cpus);
2571 }
2572 
2573 void evlist__uniquify_name(struct evlist *evlist)
2574 {
2575 	char *new_name, empty_attributes[2] = ":", *attributes;
2576 	struct evsel *pos;
2577 
2578 	if (perf_pmus__num_core_pmus() == 1)
2579 		return;
2580 
2581 	evlist__for_each_entry(evlist, pos) {
2582 		if (!evsel__is_hybrid(pos))
2583 			continue;
2584 
2585 		if (strchr(pos->name, '/'))
2586 			continue;
2587 
2588 		attributes = strchr(pos->name, ':');
2589 		if (attributes)
2590 			*attributes = '\0';
2591 		else
2592 			attributes = empty_attributes;
2593 
2594 		if (asprintf(&new_name, "%s/%s/%s", pos->pmu ? pos->pmu->name : "",
2595 			     pos->name, attributes + 1)) {
2596 			free(pos->name);
2597 			pos->name = new_name;
2598 		} else {
2599 			*attributes = ':';
2600 		}
2601 	}
2602 }
2603 
2604 bool evlist__has_bpf_output(struct evlist *evlist)
2605 {
2606 	struct evsel *evsel;
2607 
2608 	evlist__for_each_entry(evlist, evsel) {
2609 		if (evsel__is_bpf_output(evsel))
2610 			return true;
2611 	}
2612 
2613 	return false;
2614 }
2615