1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 #include <api/fs/fs.h> 9 #include <errno.h> 10 #include <inttypes.h> 11 #include <poll.h> 12 #include "cpumap.h" 13 #include "util/mmap.h" 14 #include "thread_map.h" 15 #include "target.h" 16 #include "evlist.h" 17 #include "evsel.h" 18 #include "record.h" 19 #include "debug.h" 20 #include "units.h" 21 #include "bpf_counter.h" 22 #include <internal/lib.h> // page_size 23 #include "affinity.h" 24 #include "../perf.h" 25 #include "asm/bug.h" 26 #include "bpf-event.h" 27 #include "util/event.h" 28 #include "util/string2.h" 29 #include "util/perf_api_probe.h" 30 #include "util/evsel_fprintf.h" 31 #include "util/pmu.h" 32 #include "util/sample.h" 33 #include "util/bpf-filter.h" 34 #include "util/stat.h" 35 #include "util/util.h" 36 #include "util/env.h" 37 #include "util/intel-tpebs.h" 38 #include <signal.h> 39 #include <unistd.h> 40 #include <sched.h> 41 #include <stdlib.h> 42 43 #include "parse-events.h" 44 #include <subcmd/parse-options.h> 45 46 #include <fcntl.h> 47 #include <sys/ioctl.h> 48 #include <sys/mman.h> 49 #include <sys/prctl.h> 50 #include <sys/timerfd.h> 51 52 #include <linux/bitops.h> 53 #include <linux/hash.h> 54 #include <linux/log2.h> 55 #include <linux/err.h> 56 #include <linux/string.h> 57 #include <linux/time64.h> 58 #include <linux/zalloc.h> 59 #include <perf/evlist.h> 60 #include <perf/evsel.h> 61 #include <perf/cpumap.h> 62 #include <perf/mmap.h> 63 64 #include <internal/xyarray.h> 65 66 #ifdef LACKS_SIGQUEUE_PROTOTYPE 67 int sigqueue(pid_t pid, int sig, const union sigval value); 68 #endif 69 70 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 71 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 72 73 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus, 74 struct perf_thread_map *threads) 75 { 76 perf_evlist__init(&evlist->core); 77 perf_evlist__set_maps(&evlist->core, cpus, threads); 78 evlist->workload.pid = -1; 79 evlist->bkw_mmap_state = BKW_MMAP_NOTREADY; 80 evlist->ctl_fd.fd = -1; 81 evlist->ctl_fd.ack = -1; 82 evlist->ctl_fd.pos = -1; 83 evlist->nr_br_cntr = -1; 84 } 85 86 struct evlist *evlist__new(void) 87 { 88 struct evlist *evlist = zalloc(sizeof(*evlist)); 89 90 if (evlist != NULL) 91 evlist__init(evlist, NULL, NULL); 92 93 return evlist; 94 } 95 96 struct evlist *evlist__new_default(void) 97 { 98 struct evlist *evlist = evlist__new(); 99 bool can_profile_kernel; 100 int err; 101 102 if (!evlist) 103 return NULL; 104 105 can_profile_kernel = perf_event_paranoid_check(1); 106 err = parse_event(evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu"); 107 if (err) { 108 evlist__delete(evlist); 109 return NULL; 110 } 111 112 if (evlist->core.nr_entries > 1) { 113 struct evsel *evsel; 114 115 evlist__for_each_entry(evlist, evsel) 116 evsel__set_sample_id(evsel, /*can_sample_identifier=*/false); 117 } 118 119 return evlist; 120 } 121 122 struct evlist *evlist__new_dummy(void) 123 { 124 struct evlist *evlist = evlist__new(); 125 126 if (evlist && evlist__add_dummy(evlist)) { 127 evlist__delete(evlist); 128 evlist = NULL; 129 } 130 131 return evlist; 132 } 133 134 /** 135 * evlist__set_id_pos - set the positions of event ids. 136 * @evlist: selected event list 137 * 138 * Events with compatible sample types all have the same id_pos 139 * and is_pos. For convenience, put a copy on evlist. 140 */ 141 void evlist__set_id_pos(struct evlist *evlist) 142 { 143 struct evsel *first = evlist__first(evlist); 144 145 evlist->id_pos = first->id_pos; 146 evlist->is_pos = first->is_pos; 147 } 148 149 static void evlist__update_id_pos(struct evlist *evlist) 150 { 151 struct evsel *evsel; 152 153 evlist__for_each_entry(evlist, evsel) 154 evsel__calc_id_pos(evsel); 155 156 evlist__set_id_pos(evlist); 157 } 158 159 static void evlist__purge(struct evlist *evlist) 160 { 161 struct evsel *pos, *n; 162 163 evlist__for_each_entry_safe(evlist, n, pos) { 164 list_del_init(&pos->core.node); 165 pos->evlist = NULL; 166 evsel__delete(pos); 167 } 168 169 evlist->core.nr_entries = 0; 170 } 171 172 void evlist__exit(struct evlist *evlist) 173 { 174 event_enable_timer__exit(&evlist->eet); 175 zfree(&evlist->mmap); 176 zfree(&evlist->overwrite_mmap); 177 perf_evlist__exit(&evlist->core); 178 } 179 180 void evlist__delete(struct evlist *evlist) 181 { 182 if (evlist == NULL) 183 return; 184 185 tpebs_delete(); 186 evlist__free_stats(evlist); 187 evlist__munmap(evlist); 188 evlist__close(evlist); 189 evlist__purge(evlist); 190 evlist__exit(evlist); 191 free(evlist); 192 } 193 194 void evlist__add(struct evlist *evlist, struct evsel *entry) 195 { 196 perf_evlist__add(&evlist->core, &entry->core); 197 entry->evlist = evlist; 198 entry->tracking = !entry->core.idx; 199 200 if (evlist->core.nr_entries == 1) 201 evlist__set_id_pos(evlist); 202 } 203 204 void evlist__remove(struct evlist *evlist, struct evsel *evsel) 205 { 206 evsel->evlist = NULL; 207 perf_evlist__remove(&evlist->core, &evsel->core); 208 } 209 210 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list) 211 { 212 while (!list_empty(list)) { 213 struct evsel *evsel, *temp, *leader = NULL; 214 215 __evlist__for_each_entry_safe(list, temp, evsel) { 216 list_del_init(&evsel->core.node); 217 evlist__add(evlist, evsel); 218 leader = evsel; 219 break; 220 } 221 222 __evlist__for_each_entry_safe(list, temp, evsel) { 223 if (evsel__has_leader(evsel, leader)) { 224 list_del_init(&evsel->core.node); 225 evlist__add(evlist, evsel); 226 } 227 } 228 } 229 } 230 231 int __evlist__set_tracepoints_handlers(struct evlist *evlist, 232 const struct evsel_str_handler *assocs, size_t nr_assocs) 233 { 234 size_t i; 235 int err; 236 237 for (i = 0; i < nr_assocs; i++) { 238 // Adding a handler for an event not in this evlist, just ignore it. 239 struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name); 240 if (evsel == NULL) 241 continue; 242 243 err = -EEXIST; 244 if (evsel->handler != NULL) 245 goto out; 246 evsel->handler = assocs[i].handler; 247 } 248 249 err = 0; 250 out: 251 return err; 252 } 253 254 static void evlist__set_leader(struct evlist *evlist) 255 { 256 perf_evlist__set_leader(&evlist->core); 257 } 258 259 static struct evsel *evlist__dummy_event(struct evlist *evlist) 260 { 261 struct perf_event_attr attr = { 262 .type = PERF_TYPE_SOFTWARE, 263 .config = PERF_COUNT_SW_DUMMY, 264 .size = sizeof(attr), /* to capture ABI version */ 265 /* Avoid frequency mode for dummy events to avoid associated timers. */ 266 .freq = 0, 267 .sample_period = 1, 268 }; 269 270 return evsel__new_idx(&attr, evlist->core.nr_entries); 271 } 272 273 int evlist__add_dummy(struct evlist *evlist) 274 { 275 struct evsel *evsel = evlist__dummy_event(evlist); 276 277 if (evsel == NULL) 278 return -ENOMEM; 279 280 evlist__add(evlist, evsel); 281 return 0; 282 } 283 284 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide) 285 { 286 struct evsel *evsel = evlist__dummy_event(evlist); 287 288 if (!evsel) 289 return NULL; 290 291 evsel->core.attr.exclude_kernel = 1; 292 evsel->core.attr.exclude_guest = 1; 293 evsel->core.attr.exclude_hv = 1; 294 evsel->core.system_wide = system_wide; 295 evsel->no_aux_samples = true; 296 evsel->name = strdup("dummy:u"); 297 298 evlist__add(evlist, evsel); 299 return evsel; 300 } 301 302 #ifdef HAVE_LIBTRACEEVENT 303 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide) 304 { 305 struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0, 306 /*format=*/true); 307 308 if (IS_ERR(evsel)) 309 return evsel; 310 311 evsel__set_sample_bit(evsel, CPU); 312 evsel__set_sample_bit(evsel, TIME); 313 314 evsel->core.system_wide = system_wide; 315 evsel->no_aux_samples = true; 316 317 evlist__add(evlist, evsel); 318 return evsel; 319 } 320 #endif 321 322 int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) 323 { 324 struct evsel *evsel, *n; 325 LIST_HEAD(head); 326 size_t i; 327 328 for (i = 0; i < nr_attrs; i++) { 329 evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i); 330 if (evsel == NULL) 331 goto out_delete_partial_list; 332 list_add_tail(&evsel->core.node, &head); 333 } 334 335 evlist__splice_list_tail(evlist, &head); 336 337 return 0; 338 339 out_delete_partial_list: 340 __evlist__for_each_entry_safe(&head, n, evsel) 341 evsel__delete(evsel); 342 return -1; 343 } 344 345 int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) 346 { 347 size_t i; 348 349 for (i = 0; i < nr_attrs; i++) 350 event_attr_init(attrs + i); 351 352 return evlist__add_attrs(evlist, attrs, nr_attrs); 353 } 354 355 __weak int arch_evlist__add_default_attrs(struct evlist *evlist, 356 struct perf_event_attr *attrs, 357 size_t nr_attrs) 358 { 359 if (!nr_attrs) 360 return 0; 361 362 return __evlist__add_default_attrs(evlist, attrs, nr_attrs); 363 } 364 365 struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id) 366 { 367 struct evsel *evsel; 368 369 evlist__for_each_entry(evlist, evsel) { 370 if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT && 371 (int)evsel->core.attr.config == id) 372 return evsel; 373 } 374 375 return NULL; 376 } 377 378 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name) 379 { 380 struct evsel *evsel; 381 382 evlist__for_each_entry(evlist, evsel) { 383 if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) && 384 (strcmp(evsel->name, name) == 0)) 385 return evsel; 386 } 387 388 return NULL; 389 } 390 391 #ifdef HAVE_LIBTRACEEVENT 392 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler) 393 { 394 struct evsel *evsel = evsel__newtp(sys, name); 395 396 if (IS_ERR(evsel)) 397 return -1; 398 399 evsel->handler = handler; 400 evlist__add(evlist, evsel); 401 return 0; 402 } 403 #endif 404 405 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity) 406 { 407 struct evlist_cpu_iterator itr = { 408 .container = evlist, 409 .evsel = NULL, 410 .cpu_map_idx = 0, 411 .evlist_cpu_map_idx = 0, 412 .evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus), 413 .cpu = (struct perf_cpu){ .cpu = -1}, 414 .affinity = affinity, 415 }; 416 417 if (evlist__empty(evlist)) { 418 /* Ensure the empty list doesn't iterate. */ 419 itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr; 420 } else { 421 itr.evsel = evlist__first(evlist); 422 if (itr.affinity) { 423 itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0); 424 affinity__set(itr.affinity, itr.cpu.cpu); 425 itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu); 426 /* 427 * If this CPU isn't in the evsel's cpu map then advance 428 * through the list. 429 */ 430 if (itr.cpu_map_idx == -1) 431 evlist_cpu_iterator__next(&itr); 432 } 433 } 434 return itr; 435 } 436 437 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr) 438 { 439 while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) { 440 evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel); 441 evlist_cpu_itr->cpu_map_idx = 442 perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, 443 evlist_cpu_itr->cpu); 444 if (evlist_cpu_itr->cpu_map_idx != -1) 445 return; 446 } 447 evlist_cpu_itr->evlist_cpu_map_idx++; 448 if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) { 449 evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container); 450 evlist_cpu_itr->cpu = 451 perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus, 452 evlist_cpu_itr->evlist_cpu_map_idx); 453 if (evlist_cpu_itr->affinity) 454 affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu); 455 evlist_cpu_itr->cpu_map_idx = 456 perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, 457 evlist_cpu_itr->cpu); 458 /* 459 * If this CPU isn't in the evsel's cpu map then advance through 460 * the list. 461 */ 462 if (evlist_cpu_itr->cpu_map_idx == -1) 463 evlist_cpu_iterator__next(evlist_cpu_itr); 464 } 465 } 466 467 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr) 468 { 469 return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr; 470 } 471 472 static int evsel__strcmp(struct evsel *pos, char *evsel_name) 473 { 474 if (!evsel_name) 475 return 0; 476 if (evsel__is_dummy_event(pos)) 477 return 1; 478 return !evsel__name_is(pos, evsel_name); 479 } 480 481 static int evlist__is_enabled(struct evlist *evlist) 482 { 483 struct evsel *pos; 484 485 evlist__for_each_entry(evlist, pos) { 486 if (!evsel__is_group_leader(pos) || !pos->core.fd) 487 continue; 488 /* If at least one event is enabled, evlist is enabled. */ 489 if (!pos->disabled) 490 return true; 491 } 492 return false; 493 } 494 495 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy) 496 { 497 struct evsel *pos; 498 struct evlist_cpu_iterator evlist_cpu_itr; 499 struct affinity saved_affinity, *affinity = NULL; 500 bool has_imm = false; 501 502 // See explanation in evlist__close() 503 if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 504 if (affinity__setup(&saved_affinity) < 0) 505 return; 506 affinity = &saved_affinity; 507 } 508 509 /* Disable 'immediate' events last */ 510 for (int imm = 0; imm <= 1; imm++) { 511 evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { 512 pos = evlist_cpu_itr.evsel; 513 if (evsel__strcmp(pos, evsel_name)) 514 continue; 515 if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd) 516 continue; 517 if (excl_dummy && evsel__is_dummy_event(pos)) 518 continue; 519 if (pos->immediate) 520 has_imm = true; 521 if (pos->immediate != imm) 522 continue; 523 evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx); 524 } 525 if (!has_imm) 526 break; 527 } 528 529 affinity__cleanup(affinity); 530 evlist__for_each_entry(evlist, pos) { 531 if (evsel__strcmp(pos, evsel_name)) 532 continue; 533 if (!evsel__is_group_leader(pos) || !pos->core.fd) 534 continue; 535 if (excl_dummy && evsel__is_dummy_event(pos)) 536 continue; 537 pos->disabled = true; 538 } 539 540 /* 541 * If we disabled only single event, we need to check 542 * the enabled state of the evlist manually. 543 */ 544 if (evsel_name) 545 evlist->enabled = evlist__is_enabled(evlist); 546 else 547 evlist->enabled = false; 548 } 549 550 void evlist__disable(struct evlist *evlist) 551 { 552 __evlist__disable(evlist, NULL, false); 553 } 554 555 void evlist__disable_non_dummy(struct evlist *evlist) 556 { 557 __evlist__disable(evlist, NULL, true); 558 } 559 560 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name) 561 { 562 __evlist__disable(evlist, evsel_name, false); 563 } 564 565 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy) 566 { 567 struct evsel *pos; 568 struct evlist_cpu_iterator evlist_cpu_itr; 569 struct affinity saved_affinity, *affinity = NULL; 570 571 // See explanation in evlist__close() 572 if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 573 if (affinity__setup(&saved_affinity) < 0) 574 return; 575 affinity = &saved_affinity; 576 } 577 578 evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { 579 pos = evlist_cpu_itr.evsel; 580 if (evsel__strcmp(pos, evsel_name)) 581 continue; 582 if (!evsel__is_group_leader(pos) || !pos->core.fd) 583 continue; 584 if (excl_dummy && evsel__is_dummy_event(pos)) 585 continue; 586 evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx); 587 } 588 affinity__cleanup(affinity); 589 evlist__for_each_entry(evlist, pos) { 590 if (evsel__strcmp(pos, evsel_name)) 591 continue; 592 if (!evsel__is_group_leader(pos) || !pos->core.fd) 593 continue; 594 if (excl_dummy && evsel__is_dummy_event(pos)) 595 continue; 596 pos->disabled = false; 597 } 598 599 /* 600 * Even single event sets the 'enabled' for evlist, 601 * so the toggle can work properly and toggle to 602 * 'disabled' state. 603 */ 604 evlist->enabled = true; 605 } 606 607 void evlist__enable(struct evlist *evlist) 608 { 609 __evlist__enable(evlist, NULL, false); 610 } 611 612 void evlist__enable_non_dummy(struct evlist *evlist) 613 { 614 __evlist__enable(evlist, NULL, true); 615 } 616 617 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name) 618 { 619 __evlist__enable(evlist, evsel_name, false); 620 } 621 622 void evlist__toggle_enable(struct evlist *evlist) 623 { 624 (evlist->enabled ? evlist__disable : evlist__enable)(evlist); 625 } 626 627 int evlist__add_pollfd(struct evlist *evlist, int fd) 628 { 629 return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default); 630 } 631 632 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask) 633 { 634 return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask); 635 } 636 637 #ifdef HAVE_EVENTFD_SUPPORT 638 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd) 639 { 640 return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, 641 fdarray_flag__nonfilterable | 642 fdarray_flag__non_perf_event); 643 } 644 #endif 645 646 int evlist__poll(struct evlist *evlist, int timeout) 647 { 648 return perf_evlist__poll(&evlist->core, timeout); 649 } 650 651 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id) 652 { 653 struct hlist_head *head; 654 struct perf_sample_id *sid; 655 int hash; 656 657 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 658 head = &evlist->core.heads[hash]; 659 660 hlist_for_each_entry(sid, head, node) 661 if (sid->id == id) 662 return sid; 663 664 return NULL; 665 } 666 667 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id) 668 { 669 struct perf_sample_id *sid; 670 671 if (evlist->core.nr_entries == 1 || !id) 672 return evlist__first(evlist); 673 674 sid = evlist__id2sid(evlist, id); 675 if (sid) 676 return container_of(sid->evsel, struct evsel, core); 677 678 if (!evlist__sample_id_all(evlist)) 679 return evlist__first(evlist); 680 681 return NULL; 682 } 683 684 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id) 685 { 686 struct perf_sample_id *sid; 687 688 if (!id) 689 return NULL; 690 691 sid = evlist__id2sid(evlist, id); 692 if (sid) 693 return container_of(sid->evsel, struct evsel, core); 694 695 return NULL; 696 } 697 698 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id) 699 { 700 const __u64 *array = event->sample.array; 701 ssize_t n; 702 703 n = (event->header.size - sizeof(event->header)) >> 3; 704 705 if (event->header.type == PERF_RECORD_SAMPLE) { 706 if (evlist->id_pos >= n) 707 return -1; 708 *id = array[evlist->id_pos]; 709 } else { 710 if (evlist->is_pos > n) 711 return -1; 712 n -= evlist->is_pos; 713 *id = array[n]; 714 } 715 return 0; 716 } 717 718 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event) 719 { 720 struct evsel *first = evlist__first(evlist); 721 struct hlist_head *head; 722 struct perf_sample_id *sid; 723 int hash; 724 u64 id; 725 726 if (evlist->core.nr_entries == 1) 727 return first; 728 729 if (!first->core.attr.sample_id_all && 730 event->header.type != PERF_RECORD_SAMPLE) 731 return first; 732 733 if (evlist__event2id(evlist, event, &id)) 734 return NULL; 735 736 /* Synthesized events have an id of zero */ 737 if (!id) 738 return first; 739 740 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 741 head = &evlist->core.heads[hash]; 742 743 hlist_for_each_entry(sid, head, node) { 744 if (sid->id == id) 745 return container_of(sid->evsel, struct evsel, core); 746 } 747 return NULL; 748 } 749 750 static int evlist__set_paused(struct evlist *evlist, bool value) 751 { 752 int i; 753 754 if (!evlist->overwrite_mmap) 755 return 0; 756 757 for (i = 0; i < evlist->core.nr_mmaps; i++) { 758 int fd = evlist->overwrite_mmap[i].core.fd; 759 int err; 760 761 if (fd < 0) 762 continue; 763 err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0); 764 if (err) 765 return err; 766 } 767 return 0; 768 } 769 770 static int evlist__pause(struct evlist *evlist) 771 { 772 return evlist__set_paused(evlist, true); 773 } 774 775 static int evlist__resume(struct evlist *evlist) 776 { 777 return evlist__set_paused(evlist, false); 778 } 779 780 static void evlist__munmap_nofree(struct evlist *evlist) 781 { 782 int i; 783 784 if (evlist->mmap) 785 for (i = 0; i < evlist->core.nr_mmaps; i++) 786 perf_mmap__munmap(&evlist->mmap[i].core); 787 788 if (evlist->overwrite_mmap) 789 for (i = 0; i < evlist->core.nr_mmaps; i++) 790 perf_mmap__munmap(&evlist->overwrite_mmap[i].core); 791 } 792 793 void evlist__munmap(struct evlist *evlist) 794 { 795 evlist__munmap_nofree(evlist); 796 zfree(&evlist->mmap); 797 zfree(&evlist->overwrite_mmap); 798 } 799 800 static void perf_mmap__unmap_cb(struct perf_mmap *map) 801 { 802 struct mmap *m = container_of(map, struct mmap, core); 803 804 mmap__munmap(m); 805 } 806 807 static struct mmap *evlist__alloc_mmap(struct evlist *evlist, 808 bool overwrite) 809 { 810 int i; 811 struct mmap *map; 812 813 map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap)); 814 if (!map) 815 return NULL; 816 817 for (i = 0; i < evlist->core.nr_mmaps; i++) { 818 struct perf_mmap *prev = i ? &map[i - 1].core : NULL; 819 820 /* 821 * When the perf_mmap() call is made we grab one refcount, plus 822 * one extra to let perf_mmap__consume() get the last 823 * events after all real references (perf_mmap__get()) are 824 * dropped. 825 * 826 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and 827 * thus does perf_mmap__get() on it. 828 */ 829 perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb); 830 } 831 832 return map; 833 } 834 835 static void 836 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist, 837 struct perf_evsel *_evsel, 838 struct perf_mmap_param *_mp, 839 int idx) 840 { 841 struct evlist *evlist = container_of(_evlist, struct evlist, core); 842 struct mmap_params *mp = container_of(_mp, struct mmap_params, core); 843 struct evsel *evsel = container_of(_evsel, struct evsel, core); 844 845 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx); 846 } 847 848 static struct perf_mmap* 849 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx) 850 { 851 struct evlist *evlist = container_of(_evlist, struct evlist, core); 852 struct mmap *maps; 853 854 maps = overwrite ? evlist->overwrite_mmap : evlist->mmap; 855 856 if (!maps) { 857 maps = evlist__alloc_mmap(evlist, overwrite); 858 if (!maps) 859 return NULL; 860 861 if (overwrite) { 862 evlist->overwrite_mmap = maps; 863 if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY) 864 evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING); 865 } else { 866 evlist->mmap = maps; 867 } 868 } 869 870 return &maps[idx].core; 871 } 872 873 static int 874 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp, 875 int output, struct perf_cpu cpu) 876 { 877 struct mmap *map = container_of(_map, struct mmap, core); 878 struct mmap_params *mp = container_of(_mp, struct mmap_params, core); 879 880 return mmap__mmap(map, mp, output, cpu); 881 } 882 883 unsigned long perf_event_mlock_kb_in_pages(void) 884 { 885 unsigned long pages; 886 int max; 887 888 if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) { 889 /* 890 * Pick a once upon a time good value, i.e. things look 891 * strange since we can't read a sysctl value, but lets not 892 * die yet... 893 */ 894 max = 512; 895 } else { 896 max -= (page_size / 1024); 897 } 898 899 pages = (max * 1024) / page_size; 900 if (!is_power_of_2(pages)) 901 pages = rounddown_pow_of_two(pages); 902 903 return pages; 904 } 905 906 size_t evlist__mmap_size(unsigned long pages) 907 { 908 if (pages == UINT_MAX) 909 pages = perf_event_mlock_kb_in_pages(); 910 else if (!is_power_of_2(pages)) 911 return 0; 912 913 return (pages + 1) * page_size; 914 } 915 916 static long parse_pages_arg(const char *str, unsigned long min, 917 unsigned long max) 918 { 919 unsigned long pages, val; 920 static struct parse_tag tags[] = { 921 { .tag = 'B', .mult = 1 }, 922 { .tag = 'K', .mult = 1 << 10 }, 923 { .tag = 'M', .mult = 1 << 20 }, 924 { .tag = 'G', .mult = 1 << 30 }, 925 { .tag = 0 }, 926 }; 927 928 if (str == NULL) 929 return -EINVAL; 930 931 val = parse_tag_value(str, tags); 932 if (val != (unsigned long) -1) { 933 /* we got file size value */ 934 pages = PERF_ALIGN(val, page_size) / page_size; 935 } else { 936 /* we got pages count value */ 937 char *eptr; 938 pages = strtoul(str, &eptr, 10); 939 if (*eptr != '\0') 940 return -EINVAL; 941 } 942 943 if (pages == 0 && min == 0) { 944 /* leave number of pages at 0 */ 945 } else if (!is_power_of_2(pages)) { 946 char buf[100]; 947 948 /* round pages up to next power of 2 */ 949 pages = roundup_pow_of_two(pages); 950 if (!pages) 951 return -EINVAL; 952 953 unit_number__scnprintf(buf, sizeof(buf), pages * page_size); 954 pr_info("rounding mmap pages size to %s (%lu pages)\n", 955 buf, pages); 956 } 957 958 if (pages > max) 959 return -EINVAL; 960 961 return pages; 962 } 963 964 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str) 965 { 966 unsigned long max = UINT_MAX; 967 long pages; 968 969 if (max > SIZE_MAX / page_size) 970 max = SIZE_MAX / page_size; 971 972 pages = parse_pages_arg(str, 1, max); 973 if (pages < 0) { 974 pr_err("Invalid argument for --mmap_pages/-m\n"); 975 return -1; 976 } 977 978 *mmap_pages = pages; 979 return 0; 980 } 981 982 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) 983 { 984 return __evlist__parse_mmap_pages(opt->value, str); 985 } 986 987 /** 988 * evlist__mmap_ex - Create mmaps to receive events. 989 * @evlist: list of events 990 * @pages: map length in pages 991 * @overwrite: overwrite older events? 992 * @auxtrace_pages - auxtrace map length in pages 993 * @auxtrace_overwrite - overwrite older auxtrace data? 994 * 995 * If @overwrite is %false the user needs to signal event consumption using 996 * perf_mmap__write_tail(). Using evlist__mmap_read() does this 997 * automatically. 998 * 999 * Similarly, if @auxtrace_overwrite is %false the user needs to signal data 1000 * consumption using auxtrace_mmap__write_tail(). 1001 * 1002 * Return: %0 on success, negative error code otherwise. 1003 */ 1004 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages, 1005 unsigned int auxtrace_pages, 1006 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush, 1007 int comp_level) 1008 { 1009 /* 1010 * Delay setting mp.prot: set it before calling perf_mmap__mmap. 1011 * Its value is decided by evsel's write_backward. 1012 * So &mp should not be passed through const pointer. 1013 */ 1014 struct mmap_params mp = { 1015 .nr_cblocks = nr_cblocks, 1016 .affinity = affinity, 1017 .flush = flush, 1018 .comp_level = comp_level 1019 }; 1020 struct perf_evlist_mmap_ops ops = { 1021 .idx = perf_evlist__mmap_cb_idx, 1022 .get = perf_evlist__mmap_cb_get, 1023 .mmap = perf_evlist__mmap_cb_mmap, 1024 }; 1025 1026 evlist->core.mmap_len = evlist__mmap_size(pages); 1027 pr_debug("mmap size %zuB\n", evlist->core.mmap_len); 1028 1029 auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len, 1030 auxtrace_pages, auxtrace_overwrite); 1031 1032 return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core); 1033 } 1034 1035 int evlist__mmap(struct evlist *evlist, unsigned int pages) 1036 { 1037 return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0); 1038 } 1039 1040 int evlist__create_maps(struct evlist *evlist, struct target *target) 1041 { 1042 bool all_threads = (target->per_thread && target->system_wide); 1043 struct perf_cpu_map *cpus; 1044 struct perf_thread_map *threads; 1045 1046 /* 1047 * If specify '-a' and '--per-thread' to perf record, perf record 1048 * will override '--per-thread'. target->per_thread = false and 1049 * target->system_wide = true. 1050 * 1051 * If specify '--per-thread' only to perf record, 1052 * target->per_thread = true and target->system_wide = false. 1053 * 1054 * So target->per_thread && target->system_wide is false. 1055 * For perf record, thread_map__new_str doesn't call 1056 * thread_map__new_all_cpus. That will keep perf record's 1057 * current behavior. 1058 * 1059 * For perf stat, it allows the case that target->per_thread and 1060 * target->system_wide are all true. It means to collect system-wide 1061 * per-thread data. thread_map__new_str will call 1062 * thread_map__new_all_cpus to enumerate all threads. 1063 */ 1064 threads = thread_map__new_str(target->pid, target->tid, target->uid, 1065 all_threads); 1066 1067 if (!threads) 1068 return -1; 1069 1070 if (target__uses_dummy_map(target) && !evlist__has_bpf_output(evlist)) 1071 cpus = perf_cpu_map__new_any_cpu(); 1072 else 1073 cpus = perf_cpu_map__new(target->cpu_list); 1074 1075 if (!cpus) 1076 goto out_delete_threads; 1077 1078 evlist->core.has_user_cpus = !!target->cpu_list; 1079 1080 perf_evlist__set_maps(&evlist->core, cpus, threads); 1081 1082 /* as evlist now has references, put count here */ 1083 perf_cpu_map__put(cpus); 1084 perf_thread_map__put(threads); 1085 1086 return 0; 1087 1088 out_delete_threads: 1089 perf_thread_map__put(threads); 1090 return -1; 1091 } 1092 1093 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel, 1094 struct target *target) 1095 { 1096 struct evsel *evsel; 1097 int err = 0; 1098 1099 evlist__for_each_entry(evlist, evsel) { 1100 /* 1101 * filters only work for tracepoint event, which doesn't have cpu limit. 1102 * So evlist and evsel should always be same. 1103 */ 1104 if (evsel->filter) { 1105 err = perf_evsel__apply_filter(&evsel->core, evsel->filter); 1106 if (err) { 1107 *err_evsel = evsel; 1108 break; 1109 } 1110 } 1111 1112 /* 1113 * non-tracepoint events can have BPF filters. 1114 */ 1115 if (!list_empty(&evsel->bpf_filters)) { 1116 err = perf_bpf_filter__prepare(evsel, target); 1117 if (err) { 1118 *err_evsel = evsel; 1119 break; 1120 } 1121 } 1122 } 1123 1124 return err; 1125 } 1126 1127 int evlist__set_tp_filter(struct evlist *evlist, const char *filter) 1128 { 1129 struct evsel *evsel; 1130 int err = 0; 1131 1132 if (filter == NULL) 1133 return -1; 1134 1135 evlist__for_each_entry(evlist, evsel) { 1136 if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) 1137 continue; 1138 1139 err = evsel__set_filter(evsel, filter); 1140 if (err) 1141 break; 1142 } 1143 1144 return err; 1145 } 1146 1147 int evlist__append_tp_filter(struct evlist *evlist, const char *filter) 1148 { 1149 struct evsel *evsel; 1150 int err = 0; 1151 1152 if (filter == NULL) 1153 return -1; 1154 1155 evlist__for_each_entry(evlist, evsel) { 1156 if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) 1157 continue; 1158 1159 err = evsel__append_tp_filter(evsel, filter); 1160 if (err) 1161 break; 1162 } 1163 1164 return err; 1165 } 1166 1167 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids) 1168 { 1169 char *filter; 1170 size_t i; 1171 1172 for (i = 0; i < npids; ++i) { 1173 if (i == 0) { 1174 if (asprintf(&filter, "common_pid != %d", pids[i]) < 0) 1175 return NULL; 1176 } else { 1177 char *tmp; 1178 1179 if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0) 1180 goto out_free; 1181 1182 free(filter); 1183 filter = tmp; 1184 } 1185 } 1186 1187 return filter; 1188 out_free: 1189 free(filter); 1190 return NULL; 1191 } 1192 1193 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) 1194 { 1195 char *filter = asprintf__tp_filter_pids(npids, pids); 1196 int ret = evlist__set_tp_filter(evlist, filter); 1197 1198 free(filter); 1199 return ret; 1200 } 1201 1202 int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid) 1203 { 1204 return evlist__set_tp_filter_pids(evlist, 1, &pid); 1205 } 1206 1207 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) 1208 { 1209 char *filter = asprintf__tp_filter_pids(npids, pids); 1210 int ret = evlist__append_tp_filter(evlist, filter); 1211 1212 free(filter); 1213 return ret; 1214 } 1215 1216 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid) 1217 { 1218 return evlist__append_tp_filter_pids(evlist, 1, &pid); 1219 } 1220 1221 bool evlist__valid_sample_type(struct evlist *evlist) 1222 { 1223 struct evsel *pos; 1224 1225 if (evlist->core.nr_entries == 1) 1226 return true; 1227 1228 if (evlist->id_pos < 0 || evlist->is_pos < 0) 1229 return false; 1230 1231 evlist__for_each_entry(evlist, pos) { 1232 if (pos->id_pos != evlist->id_pos || 1233 pos->is_pos != evlist->is_pos) 1234 return false; 1235 } 1236 1237 return true; 1238 } 1239 1240 u64 __evlist__combined_sample_type(struct evlist *evlist) 1241 { 1242 struct evsel *evsel; 1243 1244 if (evlist->combined_sample_type) 1245 return evlist->combined_sample_type; 1246 1247 evlist__for_each_entry(evlist, evsel) 1248 evlist->combined_sample_type |= evsel->core.attr.sample_type; 1249 1250 return evlist->combined_sample_type; 1251 } 1252 1253 u64 evlist__combined_sample_type(struct evlist *evlist) 1254 { 1255 evlist->combined_sample_type = 0; 1256 return __evlist__combined_sample_type(evlist); 1257 } 1258 1259 u64 evlist__combined_branch_type(struct evlist *evlist) 1260 { 1261 struct evsel *evsel; 1262 u64 branch_type = 0; 1263 1264 evlist__for_each_entry(evlist, evsel) 1265 branch_type |= evsel->core.attr.branch_sample_type; 1266 return branch_type; 1267 } 1268 1269 static struct evsel * 1270 evlist__find_dup_event_from_prev(struct evlist *evlist, struct evsel *event) 1271 { 1272 struct evsel *pos; 1273 1274 evlist__for_each_entry(evlist, pos) { 1275 if (event == pos) 1276 break; 1277 if ((pos->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) && 1278 !strcmp(pos->name, event->name)) 1279 return pos; 1280 } 1281 return NULL; 1282 } 1283 1284 #define MAX_NR_ABBR_NAME (26 * 11) 1285 1286 /* 1287 * The abbr name is from A to Z9. If the number of event 1288 * which requires the branch counter > MAX_NR_ABBR_NAME, 1289 * return NA. 1290 */ 1291 static void evlist__new_abbr_name(char *name) 1292 { 1293 static int idx; 1294 int i = idx / 26; 1295 1296 if (idx >= MAX_NR_ABBR_NAME) { 1297 name[0] = 'N'; 1298 name[1] = 'A'; 1299 name[2] = '\0'; 1300 return; 1301 } 1302 1303 name[0] = 'A' + (idx % 26); 1304 1305 if (!i) 1306 name[1] = '\0'; 1307 else { 1308 name[1] = '0' + i - 1; 1309 name[2] = '\0'; 1310 } 1311 1312 idx++; 1313 } 1314 1315 void evlist__update_br_cntr(struct evlist *evlist) 1316 { 1317 struct evsel *evsel, *dup; 1318 int i = 0; 1319 1320 evlist__for_each_entry(evlist, evsel) { 1321 if (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) { 1322 evsel->br_cntr_idx = i++; 1323 evsel__leader(evsel)->br_cntr_nr++; 1324 1325 dup = evlist__find_dup_event_from_prev(evlist, evsel); 1326 if (dup) 1327 memcpy(evsel->abbr_name, dup->abbr_name, 3 * sizeof(char)); 1328 else 1329 evlist__new_abbr_name(evsel->abbr_name); 1330 } 1331 } 1332 evlist->nr_br_cntr = i; 1333 } 1334 1335 bool evlist__valid_read_format(struct evlist *evlist) 1336 { 1337 struct evsel *first = evlist__first(evlist), *pos = first; 1338 u64 read_format = first->core.attr.read_format; 1339 u64 sample_type = first->core.attr.sample_type; 1340 1341 evlist__for_each_entry(evlist, pos) { 1342 if (read_format != pos->core.attr.read_format) { 1343 pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n", 1344 read_format, (u64)pos->core.attr.read_format); 1345 } 1346 } 1347 1348 /* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */ 1349 if ((sample_type & PERF_SAMPLE_READ) && 1350 !(read_format & PERF_FORMAT_ID)) { 1351 return false; 1352 } 1353 1354 return true; 1355 } 1356 1357 u16 evlist__id_hdr_size(struct evlist *evlist) 1358 { 1359 struct evsel *first = evlist__first(evlist); 1360 1361 return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0; 1362 } 1363 1364 bool evlist__valid_sample_id_all(struct evlist *evlist) 1365 { 1366 struct evsel *first = evlist__first(evlist), *pos = first; 1367 1368 evlist__for_each_entry_continue(evlist, pos) { 1369 if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all) 1370 return false; 1371 } 1372 1373 return true; 1374 } 1375 1376 bool evlist__sample_id_all(struct evlist *evlist) 1377 { 1378 struct evsel *first = evlist__first(evlist); 1379 return first->core.attr.sample_id_all; 1380 } 1381 1382 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel) 1383 { 1384 evlist->selected = evsel; 1385 } 1386 1387 void evlist__close(struct evlist *evlist) 1388 { 1389 struct evsel *evsel; 1390 struct evlist_cpu_iterator evlist_cpu_itr; 1391 struct affinity affinity; 1392 1393 /* 1394 * With perf record core.user_requested_cpus is usually NULL. 1395 * Use the old method to handle this for now. 1396 */ 1397 if (!evlist->core.user_requested_cpus || 1398 cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 1399 evlist__for_each_entry_reverse(evlist, evsel) 1400 evsel__close(evsel); 1401 return; 1402 } 1403 1404 if (affinity__setup(&affinity) < 0) 1405 return; 1406 1407 evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) { 1408 perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core, 1409 evlist_cpu_itr.cpu_map_idx); 1410 } 1411 1412 affinity__cleanup(&affinity); 1413 evlist__for_each_entry_reverse(evlist, evsel) { 1414 perf_evsel__free_fd(&evsel->core); 1415 perf_evsel__free_id(&evsel->core); 1416 } 1417 perf_evlist__reset_id_hash(&evlist->core); 1418 } 1419 1420 static int evlist__create_syswide_maps(struct evlist *evlist) 1421 { 1422 struct perf_cpu_map *cpus; 1423 struct perf_thread_map *threads; 1424 1425 /* 1426 * Try reading /sys/devices/system/cpu/online to get 1427 * an all cpus map. 1428 * 1429 * FIXME: -ENOMEM is the best we can do here, the cpu_map 1430 * code needs an overhaul to properly forward the 1431 * error, and we may not want to do that fallback to a 1432 * default cpu identity map :-\ 1433 */ 1434 cpus = perf_cpu_map__new_online_cpus(); 1435 if (!cpus) 1436 goto out; 1437 1438 threads = perf_thread_map__new_dummy(); 1439 if (!threads) 1440 goto out_put; 1441 1442 perf_evlist__set_maps(&evlist->core, cpus, threads); 1443 1444 perf_thread_map__put(threads); 1445 out_put: 1446 perf_cpu_map__put(cpus); 1447 out: 1448 return -ENOMEM; 1449 } 1450 1451 int evlist__open(struct evlist *evlist) 1452 { 1453 struct evsel *evsel; 1454 int err; 1455 1456 /* 1457 * Default: one fd per CPU, all threads, aka systemwide 1458 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL 1459 */ 1460 if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) { 1461 err = evlist__create_syswide_maps(evlist); 1462 if (err < 0) 1463 goto out_err; 1464 } 1465 1466 evlist__update_id_pos(evlist); 1467 1468 evlist__for_each_entry(evlist, evsel) { 1469 err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads); 1470 if (err < 0) 1471 goto out_err; 1472 } 1473 1474 return 0; 1475 out_err: 1476 evlist__close(evlist); 1477 errno = -err; 1478 return err; 1479 } 1480 1481 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[], 1482 bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) 1483 { 1484 int child_ready_pipe[2], go_pipe[2]; 1485 char bf; 1486 1487 if (pipe(child_ready_pipe) < 0) { 1488 perror("failed to create 'ready' pipe"); 1489 return -1; 1490 } 1491 1492 if (pipe(go_pipe) < 0) { 1493 perror("failed to create 'go' pipe"); 1494 goto out_close_ready_pipe; 1495 } 1496 1497 evlist->workload.pid = fork(); 1498 if (evlist->workload.pid < 0) { 1499 perror("failed to fork"); 1500 goto out_close_pipes; 1501 } 1502 1503 if (!evlist->workload.pid) { 1504 int ret; 1505 1506 if (pipe_output) 1507 dup2(2, 1); 1508 1509 signal(SIGTERM, SIG_DFL); 1510 1511 close(child_ready_pipe[0]); 1512 close(go_pipe[1]); 1513 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); 1514 1515 /* 1516 * Change the name of this process not to confuse --exclude-perf users 1517 * that sees 'perf' in the window up to the execvp() and thinks that 1518 * perf samples are not being excluded. 1519 */ 1520 prctl(PR_SET_NAME, "perf-exec"); 1521 1522 /* 1523 * Tell the parent we're ready to go 1524 */ 1525 close(child_ready_pipe[1]); 1526 1527 /* 1528 * Wait until the parent tells us to go. 1529 */ 1530 ret = read(go_pipe[0], &bf, 1); 1531 /* 1532 * The parent will ask for the execvp() to be performed by 1533 * writing exactly one byte, in workload.cork_fd, usually via 1534 * evlist__start_workload(). 1535 * 1536 * For cancelling the workload without actually running it, 1537 * the parent will just close workload.cork_fd, without writing 1538 * anything, i.e. read will return zero and we just exit() 1539 * here. 1540 */ 1541 if (ret != 1) { 1542 if (ret == -1) 1543 perror("unable to read pipe"); 1544 exit(ret); 1545 } 1546 1547 execvp(argv[0], (char **)argv); 1548 1549 if (exec_error) { 1550 union sigval val; 1551 1552 val.sival_int = errno; 1553 if (sigqueue(getppid(), SIGUSR1, val)) 1554 perror(argv[0]); 1555 } else 1556 perror(argv[0]); 1557 exit(-1); 1558 } 1559 1560 if (exec_error) { 1561 struct sigaction act = { 1562 .sa_flags = SA_SIGINFO, 1563 .sa_sigaction = exec_error, 1564 }; 1565 sigaction(SIGUSR1, &act, NULL); 1566 } 1567 1568 if (target__none(target)) { 1569 if (evlist->core.threads == NULL) { 1570 fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n", 1571 __func__, __LINE__); 1572 goto out_close_pipes; 1573 } 1574 perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid); 1575 } 1576 1577 close(child_ready_pipe[1]); 1578 close(go_pipe[0]); 1579 /* 1580 * wait for child to settle 1581 */ 1582 if (read(child_ready_pipe[0], &bf, 1) == -1) { 1583 perror("unable to read pipe"); 1584 goto out_close_pipes; 1585 } 1586 1587 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); 1588 evlist->workload.cork_fd = go_pipe[1]; 1589 close(child_ready_pipe[0]); 1590 return 0; 1591 1592 out_close_pipes: 1593 close(go_pipe[0]); 1594 close(go_pipe[1]); 1595 out_close_ready_pipe: 1596 close(child_ready_pipe[0]); 1597 close(child_ready_pipe[1]); 1598 return -1; 1599 } 1600 1601 int evlist__start_workload(struct evlist *evlist) 1602 { 1603 if (evlist->workload.cork_fd > 0) { 1604 char bf = 0; 1605 int ret; 1606 /* 1607 * Remove the cork, let it rip! 1608 */ 1609 ret = write(evlist->workload.cork_fd, &bf, 1); 1610 if (ret < 0) 1611 perror("unable to write to pipe"); 1612 1613 close(evlist->workload.cork_fd); 1614 return ret; 1615 } 1616 1617 return 0; 1618 } 1619 1620 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample) 1621 { 1622 struct evsel *evsel = evlist__event2evsel(evlist, event); 1623 int ret; 1624 1625 if (!evsel) 1626 return -EFAULT; 1627 ret = evsel__parse_sample(evsel, event, sample); 1628 if (ret) 1629 return ret; 1630 if (perf_guest && sample->id) { 1631 struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id); 1632 1633 if (sid) { 1634 sample->machine_pid = sid->machine_pid; 1635 sample->vcpu = sid->vcpu.cpu; 1636 } 1637 } 1638 return 0; 1639 } 1640 1641 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp) 1642 { 1643 struct evsel *evsel = evlist__event2evsel(evlist, event); 1644 1645 if (!evsel) 1646 return -EFAULT; 1647 return evsel__parse_sample_timestamp(evsel, event, timestamp); 1648 } 1649 1650 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size) 1651 { 1652 int printed, value; 1653 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1654 1655 switch (err) { 1656 case EACCES: 1657 case EPERM: 1658 printed = scnprintf(buf, size, 1659 "Error:\t%s.\n" 1660 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); 1661 1662 value = perf_event_paranoid(); 1663 1664 printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); 1665 1666 if (value >= 2) { 1667 printed += scnprintf(buf + printed, size - printed, 1668 "For your workloads it needs to be <= 1\nHint:\t"); 1669 } 1670 printed += scnprintf(buf + printed, size - printed, 1671 "For system wide tracing it needs to be set to -1.\n"); 1672 1673 printed += scnprintf(buf + printed, size - printed, 1674 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" 1675 "Hint:\tThe current value is %d.", value); 1676 break; 1677 case EINVAL: { 1678 struct evsel *first = evlist__first(evlist); 1679 int max_freq; 1680 1681 if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0) 1682 goto out_default; 1683 1684 if (first->core.attr.sample_freq < (u64)max_freq) 1685 goto out_default; 1686 1687 printed = scnprintf(buf, size, 1688 "Error:\t%s.\n" 1689 "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n" 1690 "Hint:\tThe current value is %d and %" PRIu64 " is being requested.", 1691 emsg, max_freq, first->core.attr.sample_freq); 1692 break; 1693 } 1694 default: 1695 out_default: 1696 scnprintf(buf, size, "%s", emsg); 1697 break; 1698 } 1699 1700 return 0; 1701 } 1702 1703 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size) 1704 { 1705 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1706 int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0; 1707 1708 switch (err) { 1709 case EPERM: 1710 sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user); 1711 printed += scnprintf(buf + printed, size - printed, 1712 "Error:\t%s.\n" 1713 "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n" 1714 "Hint:\tTried using %zd kB.\n", 1715 emsg, pages_max_per_user, pages_attempted); 1716 1717 if (pages_attempted >= pages_max_per_user) { 1718 printed += scnprintf(buf + printed, size - printed, 1719 "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n", 1720 pages_max_per_user + pages_attempted); 1721 } 1722 1723 printed += scnprintf(buf + printed, size - printed, 1724 "Hint:\tTry using a smaller -m/--mmap-pages value."); 1725 break; 1726 default: 1727 scnprintf(buf, size, "%s", emsg); 1728 break; 1729 } 1730 1731 return 0; 1732 } 1733 1734 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel) 1735 { 1736 struct evsel *evsel, *n; 1737 LIST_HEAD(move); 1738 1739 if (move_evsel == evlist__first(evlist)) 1740 return; 1741 1742 evlist__for_each_entry_safe(evlist, n, evsel) { 1743 if (evsel__leader(evsel) == evsel__leader(move_evsel)) 1744 list_move_tail(&evsel->core.node, &move); 1745 } 1746 1747 list_splice(&move, &evlist->core.entries); 1748 } 1749 1750 struct evsel *evlist__get_tracking_event(struct evlist *evlist) 1751 { 1752 struct evsel *evsel; 1753 1754 evlist__for_each_entry(evlist, evsel) { 1755 if (evsel->tracking) 1756 return evsel; 1757 } 1758 1759 return evlist__first(evlist); 1760 } 1761 1762 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel) 1763 { 1764 struct evsel *evsel; 1765 1766 if (tracking_evsel->tracking) 1767 return; 1768 1769 evlist__for_each_entry(evlist, evsel) { 1770 if (evsel != tracking_evsel) 1771 evsel->tracking = false; 1772 } 1773 1774 tracking_evsel->tracking = true; 1775 } 1776 1777 struct evsel *evlist__findnew_tracking_event(struct evlist *evlist, bool system_wide) 1778 { 1779 struct evsel *evsel; 1780 1781 evsel = evlist__get_tracking_event(evlist); 1782 if (!evsel__is_dummy_event(evsel)) { 1783 evsel = evlist__add_aux_dummy(evlist, system_wide); 1784 if (!evsel) 1785 return NULL; 1786 1787 evlist__set_tracking_event(evlist, evsel); 1788 } else if (system_wide) { 1789 perf_evlist__go_system_wide(&evlist->core, &evsel->core); 1790 } 1791 1792 return evsel; 1793 } 1794 1795 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str) 1796 { 1797 struct evsel *evsel; 1798 1799 evlist__for_each_entry(evlist, evsel) { 1800 if (!evsel->name) 1801 continue; 1802 if (evsel__name_is(evsel, str)) 1803 return evsel; 1804 } 1805 1806 return NULL; 1807 } 1808 1809 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state) 1810 { 1811 enum bkw_mmap_state old_state = evlist->bkw_mmap_state; 1812 enum action { 1813 NONE, 1814 PAUSE, 1815 RESUME, 1816 } action = NONE; 1817 1818 if (!evlist->overwrite_mmap) 1819 return; 1820 1821 switch (old_state) { 1822 case BKW_MMAP_NOTREADY: { 1823 if (state != BKW_MMAP_RUNNING) 1824 goto state_err; 1825 break; 1826 } 1827 case BKW_MMAP_RUNNING: { 1828 if (state != BKW_MMAP_DATA_PENDING) 1829 goto state_err; 1830 action = PAUSE; 1831 break; 1832 } 1833 case BKW_MMAP_DATA_PENDING: { 1834 if (state != BKW_MMAP_EMPTY) 1835 goto state_err; 1836 break; 1837 } 1838 case BKW_MMAP_EMPTY: { 1839 if (state != BKW_MMAP_RUNNING) 1840 goto state_err; 1841 action = RESUME; 1842 break; 1843 } 1844 default: 1845 WARN_ONCE(1, "Shouldn't get there\n"); 1846 } 1847 1848 evlist->bkw_mmap_state = state; 1849 1850 switch (action) { 1851 case PAUSE: 1852 evlist__pause(evlist); 1853 break; 1854 case RESUME: 1855 evlist__resume(evlist); 1856 break; 1857 case NONE: 1858 default: 1859 break; 1860 } 1861 1862 state_err: 1863 return; 1864 } 1865 1866 bool evlist__exclude_kernel(struct evlist *evlist) 1867 { 1868 struct evsel *evsel; 1869 1870 evlist__for_each_entry(evlist, evsel) { 1871 if (!evsel->core.attr.exclude_kernel) 1872 return false; 1873 } 1874 1875 return true; 1876 } 1877 1878 /* 1879 * Events in data file are not collect in groups, but we still want 1880 * the group display. Set the artificial group and set the leader's 1881 * forced_leader flag to notify the display code. 1882 */ 1883 void evlist__force_leader(struct evlist *evlist) 1884 { 1885 if (evlist__nr_groups(evlist) == 0) { 1886 struct evsel *leader = evlist__first(evlist); 1887 1888 evlist__set_leader(evlist); 1889 leader->forced_leader = true; 1890 } 1891 } 1892 1893 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close) 1894 { 1895 struct evsel *c2, *leader; 1896 bool is_open = true; 1897 1898 leader = evsel__leader(evsel); 1899 1900 pr_debug("Weak group for %s/%d failed\n", 1901 leader->name, leader->core.nr_members); 1902 1903 /* 1904 * for_each_group_member doesn't work here because it doesn't 1905 * include the first entry. 1906 */ 1907 evlist__for_each_entry(evsel_list, c2) { 1908 if (c2 == evsel) 1909 is_open = false; 1910 if (evsel__has_leader(c2, leader)) { 1911 if (is_open && close) 1912 perf_evsel__close(&c2->core); 1913 /* 1914 * We want to close all members of the group and reopen 1915 * them. Some events, like Intel topdown, require being 1916 * in a group and so keep these in the group. 1917 */ 1918 evsel__remove_from_group(c2, leader); 1919 1920 /* 1921 * Set this for all former members of the group 1922 * to indicate they get reopened. 1923 */ 1924 c2->reset_group = true; 1925 } 1926 } 1927 /* Reset the leader count if all entries were removed. */ 1928 if (leader->core.nr_members == 1) 1929 leader->core.nr_members = 0; 1930 return leader; 1931 } 1932 1933 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) 1934 { 1935 char *s, *p; 1936 int ret = 0, fd; 1937 1938 if (strncmp(str, "fifo:", 5)) 1939 return -EINVAL; 1940 1941 str += 5; 1942 if (!*str || *str == ',') 1943 return -EINVAL; 1944 1945 s = strdup(str); 1946 if (!s) 1947 return -ENOMEM; 1948 1949 p = strchr(s, ','); 1950 if (p) 1951 *p = '\0'; 1952 1953 /* 1954 * O_RDWR avoids POLLHUPs which is necessary to allow the other 1955 * end of a FIFO to be repeatedly opened and closed. 1956 */ 1957 fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC); 1958 if (fd < 0) { 1959 pr_err("Failed to open '%s'\n", s); 1960 ret = -errno; 1961 goto out_free; 1962 } 1963 *ctl_fd = fd; 1964 *ctl_fd_close = true; 1965 1966 if (p && *++p) { 1967 /* O_RDWR | O_NONBLOCK means the other end need not be open */ 1968 fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC); 1969 if (fd < 0) { 1970 pr_err("Failed to open '%s'\n", p); 1971 ret = -errno; 1972 goto out_free; 1973 } 1974 *ctl_fd_ack = fd; 1975 } 1976 1977 out_free: 1978 free(s); 1979 return ret; 1980 } 1981 1982 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) 1983 { 1984 char *comma = NULL, *endptr = NULL; 1985 1986 *ctl_fd_close = false; 1987 1988 if (strncmp(str, "fd:", 3)) 1989 return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close); 1990 1991 *ctl_fd = strtoul(&str[3], &endptr, 0); 1992 if (endptr == &str[3]) 1993 return -EINVAL; 1994 1995 comma = strchr(str, ','); 1996 if (comma) { 1997 if (endptr != comma) 1998 return -EINVAL; 1999 2000 *ctl_fd_ack = strtoul(comma + 1, &endptr, 0); 2001 if (endptr == comma + 1 || *endptr != '\0') 2002 return -EINVAL; 2003 } 2004 2005 return 0; 2006 } 2007 2008 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close) 2009 { 2010 if (*ctl_fd_close) { 2011 *ctl_fd_close = false; 2012 close(ctl_fd); 2013 if (ctl_fd_ack >= 0) 2014 close(ctl_fd_ack); 2015 } 2016 } 2017 2018 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack) 2019 { 2020 if (fd == -1) { 2021 pr_debug("Control descriptor is not initialized\n"); 2022 return 0; 2023 } 2024 2025 evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, 2026 fdarray_flag__nonfilterable | 2027 fdarray_flag__non_perf_event); 2028 if (evlist->ctl_fd.pos < 0) { 2029 evlist->ctl_fd.pos = -1; 2030 pr_err("Failed to add ctl fd entry: %m\n"); 2031 return -1; 2032 } 2033 2034 evlist->ctl_fd.fd = fd; 2035 evlist->ctl_fd.ack = ack; 2036 2037 return 0; 2038 } 2039 2040 bool evlist__ctlfd_initialized(struct evlist *evlist) 2041 { 2042 return evlist->ctl_fd.pos >= 0; 2043 } 2044 2045 int evlist__finalize_ctlfd(struct evlist *evlist) 2046 { 2047 struct pollfd *entries = evlist->core.pollfd.entries; 2048 2049 if (!evlist__ctlfd_initialized(evlist)) 2050 return 0; 2051 2052 entries[evlist->ctl_fd.pos].fd = -1; 2053 entries[evlist->ctl_fd.pos].events = 0; 2054 entries[evlist->ctl_fd.pos].revents = 0; 2055 2056 evlist->ctl_fd.pos = -1; 2057 evlist->ctl_fd.ack = -1; 2058 evlist->ctl_fd.fd = -1; 2059 2060 return 0; 2061 } 2062 2063 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd, 2064 char *cmd_data, size_t data_size) 2065 { 2066 int err; 2067 char c; 2068 size_t bytes_read = 0; 2069 2070 *cmd = EVLIST_CTL_CMD_UNSUPPORTED; 2071 memset(cmd_data, 0, data_size); 2072 data_size--; 2073 2074 do { 2075 err = read(evlist->ctl_fd.fd, &c, 1); 2076 if (err > 0) { 2077 if (c == '\n' || c == '\0') 2078 break; 2079 cmd_data[bytes_read++] = c; 2080 if (bytes_read == data_size) 2081 break; 2082 continue; 2083 } else if (err == -1) { 2084 if (errno == EINTR) 2085 continue; 2086 if (errno == EAGAIN || errno == EWOULDBLOCK) 2087 err = 0; 2088 else 2089 pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd); 2090 } 2091 break; 2092 } while (1); 2093 2094 pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data, 2095 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0"); 2096 2097 if (bytes_read > 0) { 2098 if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG, 2099 (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) { 2100 *cmd = EVLIST_CTL_CMD_ENABLE; 2101 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG, 2102 (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) { 2103 *cmd = EVLIST_CTL_CMD_DISABLE; 2104 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG, 2105 (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) { 2106 *cmd = EVLIST_CTL_CMD_SNAPSHOT; 2107 pr_debug("is snapshot\n"); 2108 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG, 2109 (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) { 2110 *cmd = EVLIST_CTL_CMD_EVLIST; 2111 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG, 2112 (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) { 2113 *cmd = EVLIST_CTL_CMD_STOP; 2114 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG, 2115 (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) { 2116 *cmd = EVLIST_CTL_CMD_PING; 2117 } 2118 } 2119 2120 return bytes_read ? (int)bytes_read : err; 2121 } 2122 2123 int evlist__ctlfd_ack(struct evlist *evlist) 2124 { 2125 int err; 2126 2127 if (evlist->ctl_fd.ack == -1) 2128 return 0; 2129 2130 err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG, 2131 sizeof(EVLIST_CTL_CMD_ACK_TAG)); 2132 if (err == -1) 2133 pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack); 2134 2135 return err; 2136 } 2137 2138 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg) 2139 { 2140 char *data = cmd_data + cmd_size; 2141 2142 /* no argument */ 2143 if (!*data) 2144 return 0; 2145 2146 /* there's argument */ 2147 if (*data == ' ') { 2148 *arg = data + 1; 2149 return 1; 2150 } 2151 2152 /* malformed */ 2153 return -1; 2154 } 2155 2156 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable) 2157 { 2158 struct evsel *evsel; 2159 char *name; 2160 int err; 2161 2162 err = get_cmd_arg(cmd_data, 2163 enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 : 2164 sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1, 2165 &name); 2166 if (err < 0) { 2167 pr_info("failed: wrong command\n"); 2168 return -1; 2169 } 2170 2171 if (err) { 2172 evsel = evlist__find_evsel_by_str(evlist, name); 2173 if (evsel) { 2174 if (enable) 2175 evlist__enable_evsel(evlist, name); 2176 else 2177 evlist__disable_evsel(evlist, name); 2178 pr_info("Event %s %s\n", evsel->name, 2179 enable ? "enabled" : "disabled"); 2180 } else { 2181 pr_info("failed: can't find '%s' event\n", name); 2182 } 2183 } else { 2184 if (enable) { 2185 evlist__enable(evlist); 2186 pr_info(EVLIST_ENABLED_MSG); 2187 } else { 2188 evlist__disable(evlist); 2189 pr_info(EVLIST_DISABLED_MSG); 2190 } 2191 } 2192 2193 return 0; 2194 } 2195 2196 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data) 2197 { 2198 struct perf_attr_details details = { .verbose = false, }; 2199 struct evsel *evsel; 2200 char *arg; 2201 int err; 2202 2203 err = get_cmd_arg(cmd_data, 2204 sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1, 2205 &arg); 2206 if (err < 0) { 2207 pr_info("failed: wrong command\n"); 2208 return -1; 2209 } 2210 2211 if (err) { 2212 if (!strcmp(arg, "-v")) { 2213 details.verbose = true; 2214 } else if (!strcmp(arg, "-g")) { 2215 details.event_group = true; 2216 } else if (!strcmp(arg, "-F")) { 2217 details.freq = true; 2218 } else { 2219 pr_info("failed: wrong command\n"); 2220 return -1; 2221 } 2222 } 2223 2224 evlist__for_each_entry(evlist, evsel) 2225 evsel__fprintf(evsel, &details, stderr); 2226 2227 return 0; 2228 } 2229 2230 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd) 2231 { 2232 int err = 0; 2233 char cmd_data[EVLIST_CTL_CMD_MAX_LEN]; 2234 int ctlfd_pos = evlist->ctl_fd.pos; 2235 struct pollfd *entries = evlist->core.pollfd.entries; 2236 2237 if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents) 2238 return 0; 2239 2240 if (entries[ctlfd_pos].revents & POLLIN) { 2241 err = evlist__ctlfd_recv(evlist, cmd, cmd_data, 2242 EVLIST_CTL_CMD_MAX_LEN); 2243 if (err > 0) { 2244 switch (*cmd) { 2245 case EVLIST_CTL_CMD_ENABLE: 2246 case EVLIST_CTL_CMD_DISABLE: 2247 err = evlist__ctlfd_enable(evlist, cmd_data, 2248 *cmd == EVLIST_CTL_CMD_ENABLE); 2249 break; 2250 case EVLIST_CTL_CMD_EVLIST: 2251 err = evlist__ctlfd_list(evlist, cmd_data); 2252 break; 2253 case EVLIST_CTL_CMD_SNAPSHOT: 2254 case EVLIST_CTL_CMD_STOP: 2255 case EVLIST_CTL_CMD_PING: 2256 break; 2257 case EVLIST_CTL_CMD_ACK: 2258 case EVLIST_CTL_CMD_UNSUPPORTED: 2259 default: 2260 pr_debug("ctlfd: unsupported %d\n", *cmd); 2261 break; 2262 } 2263 if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED || 2264 *cmd == EVLIST_CTL_CMD_SNAPSHOT)) 2265 evlist__ctlfd_ack(evlist); 2266 } 2267 } 2268 2269 if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR)) 2270 evlist__finalize_ctlfd(evlist); 2271 else 2272 entries[ctlfd_pos].revents = 0; 2273 2274 return err; 2275 } 2276 2277 /** 2278 * struct event_enable_time - perf record -D/--delay single time range. 2279 * @start: start of time range to enable events in milliseconds 2280 * @end: end of time range to enable events in milliseconds 2281 * 2282 * N.B. this structure is also accessed as an array of int. 2283 */ 2284 struct event_enable_time { 2285 int start; 2286 int end; 2287 }; 2288 2289 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first) 2290 { 2291 const char *fmt = first ? "%u - %u %n" : " , %u - %u %n"; 2292 int ret, start, end, n; 2293 2294 ret = sscanf(str, fmt, &start, &end, &n); 2295 if (ret != 2 || end <= start) 2296 return -EINVAL; 2297 if (range) { 2298 range->start = start; 2299 range->end = end; 2300 } 2301 return n; 2302 } 2303 2304 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range) 2305 { 2306 int incr = !!range; 2307 bool first = true; 2308 ssize_t ret, cnt; 2309 2310 for (cnt = 0; *str; cnt++) { 2311 ret = parse_event_enable_time(str, range, first); 2312 if (ret < 0) 2313 return ret; 2314 /* Check no overlap */ 2315 if (!first && range && range->start <= range[-1].end) 2316 return -EINVAL; 2317 str += ret; 2318 range += incr; 2319 first = false; 2320 } 2321 return cnt; 2322 } 2323 2324 /** 2325 * struct event_enable_timer - control structure for perf record -D/--delay. 2326 * @evlist: event list 2327 * @times: time ranges that events are enabled (N.B. this is also accessed as an 2328 * array of int) 2329 * @times_cnt: number of time ranges 2330 * @timerfd: timer file descriptor 2331 * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray) 2332 * @times_step: current position in (int *)@times)[], 2333 * refer event_enable_timer__process() 2334 * 2335 * Note, this structure is only used when there are time ranges, not when there 2336 * is only an initial delay. 2337 */ 2338 struct event_enable_timer { 2339 struct evlist *evlist; 2340 struct event_enable_time *times; 2341 size_t times_cnt; 2342 int timerfd; 2343 int pollfd_pos; 2344 size_t times_step; 2345 }; 2346 2347 static int str_to_delay(const char *str) 2348 { 2349 char *endptr; 2350 long d; 2351 2352 d = strtol(str, &endptr, 10); 2353 if (*endptr || d > INT_MAX || d < -1) 2354 return 0; 2355 return d; 2356 } 2357 2358 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts, 2359 const char *str, int unset) 2360 { 2361 enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event; 2362 struct event_enable_timer *eet; 2363 ssize_t times_cnt; 2364 ssize_t ret; 2365 int err; 2366 2367 if (unset) 2368 return 0; 2369 2370 opts->target.initial_delay = str_to_delay(str); 2371 if (opts->target.initial_delay) 2372 return 0; 2373 2374 ret = parse_event_enable_times(str, NULL); 2375 if (ret < 0) 2376 return ret; 2377 2378 times_cnt = ret; 2379 if (times_cnt == 0) 2380 return -EINVAL; 2381 2382 eet = zalloc(sizeof(*eet)); 2383 if (!eet) 2384 return -ENOMEM; 2385 2386 eet->times = calloc(times_cnt, sizeof(*eet->times)); 2387 if (!eet->times) { 2388 err = -ENOMEM; 2389 goto free_eet; 2390 } 2391 2392 if (parse_event_enable_times(str, eet->times) != times_cnt) { 2393 err = -EINVAL; 2394 goto free_eet_times; 2395 } 2396 2397 eet->times_cnt = times_cnt; 2398 2399 eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC); 2400 if (eet->timerfd == -1) { 2401 err = -errno; 2402 pr_err("timerfd_create failed: %s\n", strerror(errno)); 2403 goto free_eet_times; 2404 } 2405 2406 eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags); 2407 if (eet->pollfd_pos < 0) { 2408 err = eet->pollfd_pos; 2409 goto close_timerfd; 2410 } 2411 2412 eet->evlist = evlist; 2413 evlist->eet = eet; 2414 opts->target.initial_delay = eet->times[0].start; 2415 2416 return 0; 2417 2418 close_timerfd: 2419 close(eet->timerfd); 2420 free_eet_times: 2421 zfree(&eet->times); 2422 free_eet: 2423 free(eet); 2424 return err; 2425 } 2426 2427 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms) 2428 { 2429 struct itimerspec its = { 2430 .it_value.tv_sec = ms / MSEC_PER_SEC, 2431 .it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC, 2432 }; 2433 int err = 0; 2434 2435 if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) { 2436 err = -errno; 2437 pr_err("timerfd_settime failed: %s\n", strerror(errno)); 2438 } 2439 return err; 2440 } 2441 2442 int event_enable_timer__start(struct event_enable_timer *eet) 2443 { 2444 int ms; 2445 2446 if (!eet) 2447 return 0; 2448 2449 ms = eet->times[0].end - eet->times[0].start; 2450 eet->times_step = 1; 2451 2452 return event_enable_timer__set_timer(eet, ms); 2453 } 2454 2455 int event_enable_timer__process(struct event_enable_timer *eet) 2456 { 2457 struct pollfd *entries; 2458 short revents; 2459 2460 if (!eet) 2461 return 0; 2462 2463 entries = eet->evlist->core.pollfd.entries; 2464 revents = entries[eet->pollfd_pos].revents; 2465 entries[eet->pollfd_pos].revents = 0; 2466 2467 if (revents & POLLIN) { 2468 size_t step = eet->times_step; 2469 size_t pos = step / 2; 2470 2471 if (step & 1) { 2472 evlist__disable_non_dummy(eet->evlist); 2473 pr_info(EVLIST_DISABLED_MSG); 2474 if (pos >= eet->times_cnt - 1) { 2475 /* Disarm timer */ 2476 event_enable_timer__set_timer(eet, 0); 2477 return 1; /* Stop */ 2478 } 2479 } else { 2480 evlist__enable_non_dummy(eet->evlist); 2481 pr_info(EVLIST_ENABLED_MSG); 2482 } 2483 2484 step += 1; 2485 pos = step / 2; 2486 2487 if (pos < eet->times_cnt) { 2488 int *times = (int *)eet->times; /* Accessing 'times' as array of int */ 2489 int ms = times[step] - times[step - 1]; 2490 2491 eet->times_step = step; 2492 return event_enable_timer__set_timer(eet, ms); 2493 } 2494 } 2495 2496 return 0; 2497 } 2498 2499 void event_enable_timer__exit(struct event_enable_timer **ep) 2500 { 2501 if (!ep || !*ep) 2502 return; 2503 zfree(&(*ep)->times); 2504 zfree(ep); 2505 } 2506 2507 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx) 2508 { 2509 struct evsel *evsel; 2510 2511 evlist__for_each_entry(evlist, evsel) { 2512 if (evsel->core.idx == idx) 2513 return evsel; 2514 } 2515 return NULL; 2516 } 2517 2518 int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf) 2519 { 2520 struct evsel *evsel; 2521 int printed = 0; 2522 2523 evlist__for_each_entry(evlist, evsel) { 2524 if (evsel__is_dummy_event(evsel)) 2525 continue; 2526 if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) { 2527 printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel)); 2528 } else { 2529 printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : ""); 2530 break; 2531 } 2532 } 2533 2534 return printed; 2535 } 2536 2537 void evlist__check_mem_load_aux(struct evlist *evlist) 2538 { 2539 struct evsel *leader, *evsel, *pos; 2540 2541 /* 2542 * For some platforms, the 'mem-loads' event is required to use 2543 * together with 'mem-loads-aux' within a group and 'mem-loads-aux' 2544 * must be the group leader. Now we disable this group before reporting 2545 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry 2546 * any valid memory load information. 2547 */ 2548 evlist__for_each_entry(evlist, evsel) { 2549 leader = evsel__leader(evsel); 2550 if (leader == evsel) 2551 continue; 2552 2553 if (leader->name && strstr(leader->name, "mem-loads-aux")) { 2554 for_each_group_evsel(pos, leader) { 2555 evsel__set_leader(pos, pos); 2556 pos->core.nr_members = 0; 2557 } 2558 } 2559 } 2560 } 2561 2562 /** 2563 * evlist__warn_user_requested_cpus() - Check each evsel against requested CPUs 2564 * and warn if the user CPU list is inapplicable for the event's PMU's 2565 * CPUs. Not core PMUs list a CPU in sysfs, but this may be overwritten by a 2566 * user requested CPU and so any online CPU is applicable. Core PMUs handle 2567 * events on the CPUs in their list and otherwise the event isn't supported. 2568 * @evlist: The list of events being checked. 2569 * @cpu_list: The user provided list of CPUs. 2570 */ 2571 void evlist__warn_user_requested_cpus(struct evlist *evlist, const char *cpu_list) 2572 { 2573 struct perf_cpu_map *user_requested_cpus; 2574 struct evsel *pos; 2575 2576 if (!cpu_list) 2577 return; 2578 2579 user_requested_cpus = perf_cpu_map__new(cpu_list); 2580 if (!user_requested_cpus) 2581 return; 2582 2583 evlist__for_each_entry(evlist, pos) { 2584 struct perf_cpu_map *intersect, *to_test; 2585 const struct perf_pmu *pmu = evsel__find_pmu(pos); 2586 2587 to_test = pmu && pmu->is_core ? pmu->cpus : cpu_map__online(); 2588 intersect = perf_cpu_map__intersect(to_test, user_requested_cpus); 2589 if (!perf_cpu_map__equal(intersect, user_requested_cpus)) { 2590 char buf[128]; 2591 2592 cpu_map__snprint(to_test, buf, sizeof(buf)); 2593 pr_warning("WARNING: A requested CPU in '%s' is not supported by PMU '%s' (CPUs %s) for event '%s'\n", 2594 cpu_list, pmu ? pmu->name : "cpu", buf, evsel__name(pos)); 2595 } 2596 perf_cpu_map__put(intersect); 2597 } 2598 perf_cpu_map__put(user_requested_cpus); 2599 } 2600 2601 void evlist__uniquify_name(struct evlist *evlist) 2602 { 2603 char *new_name, empty_attributes[2] = ":", *attributes; 2604 struct evsel *pos; 2605 2606 if (perf_pmus__num_core_pmus() == 1) 2607 return; 2608 2609 evlist__for_each_entry(evlist, pos) { 2610 if (!evsel__is_hybrid(pos)) 2611 continue; 2612 2613 if (strchr(pos->name, '/')) 2614 continue; 2615 2616 attributes = strchr(pos->name, ':'); 2617 if (attributes) 2618 *attributes = '\0'; 2619 else 2620 attributes = empty_attributes; 2621 2622 if (asprintf(&new_name, "%s/%s/%s", pos->pmu_name, pos->name, attributes + 1)) { 2623 free(pos->name); 2624 pos->name = new_name; 2625 } else { 2626 *attributes = ':'; 2627 } 2628 } 2629 } 2630 2631 bool evlist__has_bpf_output(struct evlist *evlist) 2632 { 2633 struct evsel *evsel; 2634 2635 evlist__for_each_entry(evlist, evsel) { 2636 if (evsel__is_bpf_output(evsel)) 2637 return true; 2638 } 2639 2640 return false; 2641 } 2642