xref: /linux/tools/perf/util/evlist.c (revision ab38e84ba9a80581e055408e0f8c0158998fa4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 #include <api/fs/fs.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "util/mmap.h"
14 #include "thread_map.h"
15 #include "target.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "record.h"
19 #include "debug.h"
20 #include "units.h"
21 #include "bpf_counter.h"
22 #include <internal/lib.h> // page_size
23 #include "affinity.h"
24 #include "../perf.h"
25 #include "asm/bug.h"
26 #include "bpf-event.h"
27 #include "util/event.h"
28 #include "util/string2.h"
29 #include "util/perf_api_probe.h"
30 #include "util/evsel_fprintf.h"
31 #include "util/pmu.h"
32 #include "util/sample.h"
33 #include "util/bpf-filter.h"
34 #include "util/stat.h"
35 #include "util/util.h"
36 #include "util/env.h"
37 #include "util/intel-tpebs.h"
38 #include "util/strbuf.h"
39 #include <signal.h>
40 #include <unistd.h>
41 #include <sched.h>
42 #include <stdlib.h>
43 
44 #include "parse-events.h"
45 #include <subcmd/parse-options.h>
46 
47 #include <fcntl.h>
48 #include <sys/ioctl.h>
49 #include <sys/mman.h>
50 #include <sys/prctl.h>
51 #include <sys/timerfd.h>
52 #include <sys/wait.h>
53 
54 #include <linux/bitops.h>
55 #include <linux/hash.h>
56 #include <linux/log2.h>
57 #include <linux/err.h>
58 #include <linux/string.h>
59 #include <linux/time64.h>
60 #include <linux/zalloc.h>
61 #include <perf/evlist.h>
62 #include <perf/evsel.h>
63 #include <perf/cpumap.h>
64 #include <perf/mmap.h>
65 
66 #include <internal/xyarray.h>
67 
68 #ifdef LACKS_SIGQUEUE_PROTOTYPE
69 int sigqueue(pid_t pid, int sig, const union sigval value);
70 #endif
71 
72 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
73 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
74 
75 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
76 		  struct perf_thread_map *threads)
77 {
78 	perf_evlist__init(&evlist->core);
79 	perf_evlist__set_maps(&evlist->core, cpus, threads);
80 	evlist->workload.pid = -1;
81 	evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
82 	evlist->ctl_fd.fd = -1;
83 	evlist->ctl_fd.ack = -1;
84 	evlist->ctl_fd.pos = -1;
85 	evlist->nr_br_cntr = -1;
86 }
87 
88 struct evlist *evlist__new(void)
89 {
90 	struct evlist *evlist = zalloc(sizeof(*evlist));
91 
92 	if (evlist != NULL)
93 		evlist__init(evlist, NULL, NULL);
94 
95 	return evlist;
96 }
97 
98 struct evlist *evlist__new_default(void)
99 {
100 	struct evlist *evlist = evlist__new();
101 	bool can_profile_kernel;
102 	int err;
103 
104 	if (!evlist)
105 		return NULL;
106 
107 	can_profile_kernel = perf_event_paranoid_check(1);
108 	err = parse_event(evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu");
109 	if (err) {
110 		evlist__delete(evlist);
111 		return NULL;
112 	}
113 
114 	if (evlist->core.nr_entries > 1) {
115 		struct evsel *evsel;
116 
117 		evlist__for_each_entry(evlist, evsel)
118 			evsel__set_sample_id(evsel, /*can_sample_identifier=*/false);
119 	}
120 
121 	return evlist;
122 }
123 
124 struct evlist *evlist__new_dummy(void)
125 {
126 	struct evlist *evlist = evlist__new();
127 
128 	if (evlist && evlist__add_dummy(evlist)) {
129 		evlist__delete(evlist);
130 		evlist = NULL;
131 	}
132 
133 	return evlist;
134 }
135 
136 /**
137  * evlist__set_id_pos - set the positions of event ids.
138  * @evlist: selected event list
139  *
140  * Events with compatible sample types all have the same id_pos
141  * and is_pos.  For convenience, put a copy on evlist.
142  */
143 void evlist__set_id_pos(struct evlist *evlist)
144 {
145 	struct evsel *first = evlist__first(evlist);
146 
147 	evlist->id_pos = first->id_pos;
148 	evlist->is_pos = first->is_pos;
149 }
150 
151 static void evlist__update_id_pos(struct evlist *evlist)
152 {
153 	struct evsel *evsel;
154 
155 	evlist__for_each_entry(evlist, evsel)
156 		evsel__calc_id_pos(evsel);
157 
158 	evlist__set_id_pos(evlist);
159 }
160 
161 static void evlist__purge(struct evlist *evlist)
162 {
163 	struct evsel *pos, *n;
164 
165 	evlist__for_each_entry_safe(evlist, n, pos) {
166 		list_del_init(&pos->core.node);
167 		pos->evlist = NULL;
168 		evsel__delete(pos);
169 	}
170 
171 	evlist->core.nr_entries = 0;
172 }
173 
174 void evlist__exit(struct evlist *evlist)
175 {
176 	event_enable_timer__exit(&evlist->eet);
177 	zfree(&evlist->mmap);
178 	zfree(&evlist->overwrite_mmap);
179 	perf_evlist__exit(&evlist->core);
180 }
181 
182 void evlist__delete(struct evlist *evlist)
183 {
184 	if (evlist == NULL)
185 		return;
186 
187 	evlist__free_stats(evlist);
188 	evlist__munmap(evlist);
189 	evlist__close(evlist);
190 	evlist__purge(evlist);
191 	evlist__exit(evlist);
192 	free(evlist);
193 }
194 
195 void evlist__add(struct evlist *evlist, struct evsel *entry)
196 {
197 	perf_evlist__add(&evlist->core, &entry->core);
198 	entry->evlist = evlist;
199 	entry->tracking = !entry->core.idx;
200 
201 	if (evlist->core.nr_entries == 1)
202 		evlist__set_id_pos(evlist);
203 }
204 
205 void evlist__remove(struct evlist *evlist, struct evsel *evsel)
206 {
207 	evsel->evlist = NULL;
208 	perf_evlist__remove(&evlist->core, &evsel->core);
209 }
210 
211 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
212 {
213 	while (!list_empty(list)) {
214 		struct evsel *evsel, *temp, *leader = NULL;
215 
216 		__evlist__for_each_entry_safe(list, temp, evsel) {
217 			list_del_init(&evsel->core.node);
218 			evlist__add(evlist, evsel);
219 			leader = evsel;
220 			break;
221 		}
222 
223 		__evlist__for_each_entry_safe(list, temp, evsel) {
224 			if (evsel__has_leader(evsel, leader)) {
225 				list_del_init(&evsel->core.node);
226 				evlist__add(evlist, evsel);
227 			}
228 		}
229 	}
230 }
231 
232 int __evlist__set_tracepoints_handlers(struct evlist *evlist,
233 				       const struct evsel_str_handler *assocs, size_t nr_assocs)
234 {
235 	size_t i;
236 	int err;
237 
238 	for (i = 0; i < nr_assocs; i++) {
239 		// Adding a handler for an event not in this evlist, just ignore it.
240 		struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
241 		if (evsel == NULL)
242 			continue;
243 
244 		err = -EEXIST;
245 		if (evsel->handler != NULL)
246 			goto out;
247 		evsel->handler = assocs[i].handler;
248 	}
249 
250 	err = 0;
251 out:
252 	return err;
253 }
254 
255 static void evlist__set_leader(struct evlist *evlist)
256 {
257 	perf_evlist__set_leader(&evlist->core);
258 }
259 
260 static struct evsel *evlist__dummy_event(struct evlist *evlist)
261 {
262 	struct perf_event_attr attr = {
263 		.type	= PERF_TYPE_SOFTWARE,
264 		.config = PERF_COUNT_SW_DUMMY,
265 		.size	= sizeof(attr), /* to capture ABI version */
266 		/* Avoid frequency mode for dummy events to avoid associated timers. */
267 		.freq = 0,
268 		.sample_period = 1,
269 	};
270 
271 	return evsel__new_idx(&attr, evlist->core.nr_entries);
272 }
273 
274 int evlist__add_dummy(struct evlist *evlist)
275 {
276 	struct evsel *evsel = evlist__dummy_event(evlist);
277 
278 	if (evsel == NULL)
279 		return -ENOMEM;
280 
281 	evlist__add(evlist, evsel);
282 	return 0;
283 }
284 
285 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide)
286 {
287 	struct evsel *evsel = evlist__dummy_event(evlist);
288 
289 	if (!evsel)
290 		return NULL;
291 
292 	evsel->core.attr.exclude_kernel = 1;
293 	evsel->core.attr.exclude_guest = 1;
294 	evsel->core.attr.exclude_hv = 1;
295 	evsel->core.system_wide = system_wide;
296 	evsel->no_aux_samples = true;
297 	evsel->name = strdup("dummy:u");
298 
299 	evlist__add(evlist, evsel);
300 	return evsel;
301 }
302 
303 #ifdef HAVE_LIBTRACEEVENT
304 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide)
305 {
306 	struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0,
307 					       /*format=*/true);
308 
309 	if (IS_ERR(evsel))
310 		return evsel;
311 
312 	evsel__set_sample_bit(evsel, CPU);
313 	evsel__set_sample_bit(evsel, TIME);
314 
315 	evsel->core.system_wide = system_wide;
316 	evsel->no_aux_samples = true;
317 
318 	evlist__add(evlist, evsel);
319 	return evsel;
320 }
321 #endif
322 
323 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
324 {
325 	struct evsel *evsel;
326 
327 	evlist__for_each_entry(evlist, evsel) {
328 		if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
329 		    (strcmp(evsel->name, name) == 0))
330 			return evsel;
331 	}
332 
333 	return NULL;
334 }
335 
336 #ifdef HAVE_LIBTRACEEVENT
337 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
338 {
339 	struct evsel *evsel = evsel__newtp(sys, name);
340 
341 	if (IS_ERR(evsel))
342 		return -1;
343 
344 	evsel->handler = handler;
345 	evlist__add(evlist, evsel);
346 	return 0;
347 }
348 #endif
349 
350 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity)
351 {
352 	struct evlist_cpu_iterator itr = {
353 		.container = evlist,
354 		.evsel = NULL,
355 		.cpu_map_idx = 0,
356 		.evlist_cpu_map_idx = 0,
357 		.evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus),
358 		.cpu = (struct perf_cpu){ .cpu = -1},
359 		.affinity = affinity,
360 	};
361 
362 	if (evlist__empty(evlist)) {
363 		/* Ensure the empty list doesn't iterate. */
364 		itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr;
365 	} else {
366 		itr.evsel = evlist__first(evlist);
367 		if (itr.affinity) {
368 			itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0);
369 			affinity__set(itr.affinity, itr.cpu.cpu);
370 			itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu);
371 			/*
372 			 * If this CPU isn't in the evsel's cpu map then advance
373 			 * through the list.
374 			 */
375 			if (itr.cpu_map_idx == -1)
376 				evlist_cpu_iterator__next(&itr);
377 		}
378 	}
379 	return itr;
380 }
381 
382 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr)
383 {
384 	while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) {
385 		evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel);
386 		evlist_cpu_itr->cpu_map_idx =
387 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
388 					  evlist_cpu_itr->cpu);
389 		if (evlist_cpu_itr->cpu_map_idx != -1)
390 			return;
391 	}
392 	evlist_cpu_itr->evlist_cpu_map_idx++;
393 	if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) {
394 		evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container);
395 		evlist_cpu_itr->cpu =
396 			perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus,
397 					  evlist_cpu_itr->evlist_cpu_map_idx);
398 		if (evlist_cpu_itr->affinity)
399 			affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu);
400 		evlist_cpu_itr->cpu_map_idx =
401 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
402 					  evlist_cpu_itr->cpu);
403 		/*
404 		 * If this CPU isn't in the evsel's cpu map then advance through
405 		 * the list.
406 		 */
407 		if (evlist_cpu_itr->cpu_map_idx == -1)
408 			evlist_cpu_iterator__next(evlist_cpu_itr);
409 	}
410 }
411 
412 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr)
413 {
414 	return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr;
415 }
416 
417 static int evsel__strcmp(struct evsel *pos, char *evsel_name)
418 {
419 	if (!evsel_name)
420 		return 0;
421 	if (evsel__is_dummy_event(pos))
422 		return 1;
423 	return !evsel__name_is(pos, evsel_name);
424 }
425 
426 static int evlist__is_enabled(struct evlist *evlist)
427 {
428 	struct evsel *pos;
429 
430 	evlist__for_each_entry(evlist, pos) {
431 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
432 			continue;
433 		/* If at least one event is enabled, evlist is enabled. */
434 		if (!pos->disabled)
435 			return true;
436 	}
437 	return false;
438 }
439 
440 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
441 {
442 	struct evsel *pos;
443 	struct evlist_cpu_iterator evlist_cpu_itr;
444 	struct affinity saved_affinity, *affinity = NULL;
445 	bool has_imm = false;
446 
447 	// See explanation in evlist__close()
448 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
449 		if (affinity__setup(&saved_affinity) < 0)
450 			return;
451 		affinity = &saved_affinity;
452 	}
453 
454 	/* Disable 'immediate' events last */
455 	for (int imm = 0; imm <= 1; imm++) {
456 		evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
457 			pos = evlist_cpu_itr.evsel;
458 			if (evsel__strcmp(pos, evsel_name))
459 				continue;
460 			if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
461 				continue;
462 			if (excl_dummy && evsel__is_dummy_event(pos))
463 				continue;
464 			if (pos->immediate)
465 				has_imm = true;
466 			if (pos->immediate != imm)
467 				continue;
468 			evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
469 		}
470 		if (!has_imm)
471 			break;
472 	}
473 
474 	affinity__cleanup(affinity);
475 	evlist__for_each_entry(evlist, pos) {
476 		if (evsel__strcmp(pos, evsel_name))
477 			continue;
478 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
479 			continue;
480 		if (excl_dummy && evsel__is_dummy_event(pos))
481 			continue;
482 		pos->disabled = true;
483 	}
484 
485 	/*
486 	 * If we disabled only single event, we need to check
487 	 * the enabled state of the evlist manually.
488 	 */
489 	if (evsel_name)
490 		evlist->enabled = evlist__is_enabled(evlist);
491 	else
492 		evlist->enabled = false;
493 }
494 
495 void evlist__disable(struct evlist *evlist)
496 {
497 	__evlist__disable(evlist, NULL, false);
498 }
499 
500 void evlist__disable_non_dummy(struct evlist *evlist)
501 {
502 	__evlist__disable(evlist, NULL, true);
503 }
504 
505 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
506 {
507 	__evlist__disable(evlist, evsel_name, false);
508 }
509 
510 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
511 {
512 	struct evsel *pos;
513 	struct evlist_cpu_iterator evlist_cpu_itr;
514 	struct affinity saved_affinity, *affinity = NULL;
515 
516 	// See explanation in evlist__close()
517 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
518 		if (affinity__setup(&saved_affinity) < 0)
519 			return;
520 		affinity = &saved_affinity;
521 	}
522 
523 	evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
524 		pos = evlist_cpu_itr.evsel;
525 		if (evsel__strcmp(pos, evsel_name))
526 			continue;
527 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
528 			continue;
529 		if (excl_dummy && evsel__is_dummy_event(pos))
530 			continue;
531 		evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
532 	}
533 	affinity__cleanup(affinity);
534 	evlist__for_each_entry(evlist, pos) {
535 		if (evsel__strcmp(pos, evsel_name))
536 			continue;
537 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
538 			continue;
539 		if (excl_dummy && evsel__is_dummy_event(pos))
540 			continue;
541 		pos->disabled = false;
542 	}
543 
544 	/*
545 	 * Even single event sets the 'enabled' for evlist,
546 	 * so the toggle can work properly and toggle to
547 	 * 'disabled' state.
548 	 */
549 	evlist->enabled = true;
550 }
551 
552 void evlist__enable(struct evlist *evlist)
553 {
554 	__evlist__enable(evlist, NULL, false);
555 }
556 
557 void evlist__enable_non_dummy(struct evlist *evlist)
558 {
559 	__evlist__enable(evlist, NULL, true);
560 }
561 
562 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
563 {
564 	__evlist__enable(evlist, evsel_name, false);
565 }
566 
567 void evlist__toggle_enable(struct evlist *evlist)
568 {
569 	(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
570 }
571 
572 int evlist__add_pollfd(struct evlist *evlist, int fd)
573 {
574 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
575 }
576 
577 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
578 {
579 	return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
580 }
581 
582 #ifdef HAVE_EVENTFD_SUPPORT
583 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
584 {
585 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
586 				       fdarray_flag__nonfilterable |
587 				       fdarray_flag__non_perf_event);
588 }
589 #endif
590 
591 int evlist__poll(struct evlist *evlist, int timeout)
592 {
593 	return perf_evlist__poll(&evlist->core, timeout);
594 }
595 
596 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
597 {
598 	struct hlist_head *head;
599 	struct perf_sample_id *sid;
600 	int hash;
601 
602 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
603 	head = &evlist->core.heads[hash];
604 
605 	hlist_for_each_entry(sid, head, node)
606 		if (sid->id == id)
607 			return sid;
608 
609 	return NULL;
610 }
611 
612 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
613 {
614 	struct perf_sample_id *sid;
615 
616 	if (evlist->core.nr_entries == 1 || !id)
617 		return evlist__first(evlist);
618 
619 	sid = evlist__id2sid(evlist, id);
620 	if (sid)
621 		return container_of(sid->evsel, struct evsel, core);
622 
623 	if (!evlist__sample_id_all(evlist))
624 		return evlist__first(evlist);
625 
626 	return NULL;
627 }
628 
629 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
630 {
631 	struct perf_sample_id *sid;
632 
633 	if (!id)
634 		return NULL;
635 
636 	sid = evlist__id2sid(evlist, id);
637 	if (sid)
638 		return container_of(sid->evsel, struct evsel, core);
639 
640 	return NULL;
641 }
642 
643 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
644 {
645 	const __u64 *array = event->sample.array;
646 	ssize_t n;
647 
648 	n = (event->header.size - sizeof(event->header)) >> 3;
649 
650 	if (event->header.type == PERF_RECORD_SAMPLE) {
651 		if (evlist->id_pos >= n)
652 			return -1;
653 		*id = array[evlist->id_pos];
654 	} else {
655 		if (evlist->is_pos > n)
656 			return -1;
657 		n -= evlist->is_pos;
658 		*id = array[n];
659 	}
660 	return 0;
661 }
662 
663 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
664 {
665 	struct evsel *first = evlist__first(evlist);
666 	struct hlist_head *head;
667 	struct perf_sample_id *sid;
668 	int hash;
669 	u64 id;
670 
671 	if (evlist->core.nr_entries == 1)
672 		return first;
673 
674 	if (!first->core.attr.sample_id_all &&
675 	    event->header.type != PERF_RECORD_SAMPLE)
676 		return first;
677 
678 	if (evlist__event2id(evlist, event, &id))
679 		return NULL;
680 
681 	/* Synthesized events have an id of zero */
682 	if (!id)
683 		return first;
684 
685 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
686 	head = &evlist->core.heads[hash];
687 
688 	hlist_for_each_entry(sid, head, node) {
689 		if (sid->id == id)
690 			return container_of(sid->evsel, struct evsel, core);
691 	}
692 	return NULL;
693 }
694 
695 static int evlist__set_paused(struct evlist *evlist, bool value)
696 {
697 	int i;
698 
699 	if (!evlist->overwrite_mmap)
700 		return 0;
701 
702 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
703 		int fd = evlist->overwrite_mmap[i].core.fd;
704 		int err;
705 
706 		if (fd < 0)
707 			continue;
708 		err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
709 		if (err)
710 			return err;
711 	}
712 	return 0;
713 }
714 
715 static int evlist__pause(struct evlist *evlist)
716 {
717 	return evlist__set_paused(evlist, true);
718 }
719 
720 static int evlist__resume(struct evlist *evlist)
721 {
722 	return evlist__set_paused(evlist, false);
723 }
724 
725 static void evlist__munmap_nofree(struct evlist *evlist)
726 {
727 	int i;
728 
729 	if (evlist->mmap)
730 		for (i = 0; i < evlist->core.nr_mmaps; i++)
731 			perf_mmap__munmap(&evlist->mmap[i].core);
732 
733 	if (evlist->overwrite_mmap)
734 		for (i = 0; i < evlist->core.nr_mmaps; i++)
735 			perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
736 }
737 
738 void evlist__munmap(struct evlist *evlist)
739 {
740 	evlist__munmap_nofree(evlist);
741 	zfree(&evlist->mmap);
742 	zfree(&evlist->overwrite_mmap);
743 }
744 
745 static void perf_mmap__unmap_cb(struct perf_mmap *map)
746 {
747 	struct mmap *m = container_of(map, struct mmap, core);
748 
749 	mmap__munmap(m);
750 }
751 
752 static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
753 				       bool overwrite)
754 {
755 	int i;
756 	struct mmap *map;
757 
758 	map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
759 	if (!map)
760 		return NULL;
761 
762 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
763 		struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
764 
765 		/*
766 		 * When the perf_mmap() call is made we grab one refcount, plus
767 		 * one extra to let perf_mmap__consume() get the last
768 		 * events after all real references (perf_mmap__get()) are
769 		 * dropped.
770 		 *
771 		 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
772 		 * thus does perf_mmap__get() on it.
773 		 */
774 		perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
775 	}
776 
777 	return map;
778 }
779 
780 static void
781 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
782 			 struct perf_evsel *_evsel,
783 			 struct perf_mmap_param *_mp,
784 			 int idx)
785 {
786 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
787 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
788 	struct evsel *evsel = container_of(_evsel, struct evsel, core);
789 
790 	auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx);
791 }
792 
793 static struct perf_mmap*
794 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
795 {
796 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
797 	struct mmap *maps;
798 
799 	maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
800 
801 	if (!maps) {
802 		maps = evlist__alloc_mmap(evlist, overwrite);
803 		if (!maps)
804 			return NULL;
805 
806 		if (overwrite) {
807 			evlist->overwrite_mmap = maps;
808 			if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
809 				evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
810 		} else {
811 			evlist->mmap = maps;
812 		}
813 	}
814 
815 	return &maps[idx].core;
816 }
817 
818 static int
819 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
820 			  int output, struct perf_cpu cpu)
821 {
822 	struct mmap *map = container_of(_map, struct mmap, core);
823 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
824 
825 	return mmap__mmap(map, mp, output, cpu);
826 }
827 
828 unsigned long perf_event_mlock_kb_in_pages(void)
829 {
830 	unsigned long pages;
831 	int max;
832 
833 	if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
834 		/*
835 		 * Pick a once upon a time good value, i.e. things look
836 		 * strange since we can't read a sysctl value, but lets not
837 		 * die yet...
838 		 */
839 		max = 512;
840 	} else {
841 		max -= (page_size / 1024);
842 	}
843 
844 	pages = (max * 1024) / page_size;
845 	if (!is_power_of_2(pages))
846 		pages = rounddown_pow_of_two(pages);
847 
848 	return pages;
849 }
850 
851 size_t evlist__mmap_size(unsigned long pages)
852 {
853 	if (pages == UINT_MAX)
854 		pages = perf_event_mlock_kb_in_pages();
855 	else if (!is_power_of_2(pages))
856 		return 0;
857 
858 	return (pages + 1) * page_size;
859 }
860 
861 static long parse_pages_arg(const char *str, unsigned long min,
862 			    unsigned long max)
863 {
864 	unsigned long pages, val;
865 	static struct parse_tag tags[] = {
866 		{ .tag  = 'B', .mult = 1       },
867 		{ .tag  = 'K', .mult = 1 << 10 },
868 		{ .tag  = 'M', .mult = 1 << 20 },
869 		{ .tag  = 'G', .mult = 1 << 30 },
870 		{ .tag  = 0 },
871 	};
872 
873 	if (str == NULL)
874 		return -EINVAL;
875 
876 	val = parse_tag_value(str, tags);
877 	if (val != (unsigned long) -1) {
878 		/* we got file size value */
879 		pages = PERF_ALIGN(val, page_size) / page_size;
880 	} else {
881 		/* we got pages count value */
882 		char *eptr;
883 		pages = strtoul(str, &eptr, 10);
884 		if (*eptr != '\0')
885 			return -EINVAL;
886 	}
887 
888 	if (pages == 0 && min == 0) {
889 		/* leave number of pages at 0 */
890 	} else if (!is_power_of_2(pages)) {
891 		char buf[100];
892 
893 		/* round pages up to next power of 2 */
894 		pages = roundup_pow_of_two(pages);
895 		if (!pages)
896 			return -EINVAL;
897 
898 		unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
899 		pr_info("rounding mmap pages size to %s (%lu pages)\n",
900 			buf, pages);
901 	}
902 
903 	if (pages > max)
904 		return -EINVAL;
905 
906 	return pages;
907 }
908 
909 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
910 {
911 	unsigned long max = UINT_MAX;
912 	long pages;
913 
914 	if (max > SIZE_MAX / page_size)
915 		max = SIZE_MAX / page_size;
916 
917 	pages = parse_pages_arg(str, 1, max);
918 	if (pages < 0) {
919 		pr_err("Invalid argument for --mmap_pages/-m\n");
920 		return -1;
921 	}
922 
923 	*mmap_pages = pages;
924 	return 0;
925 }
926 
927 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
928 {
929 	return __evlist__parse_mmap_pages(opt->value, str);
930 }
931 
932 /**
933  * evlist__mmap_ex - Create mmaps to receive events.
934  * @evlist: list of events
935  * @pages: map length in pages
936  * @overwrite: overwrite older events?
937  * @auxtrace_pages - auxtrace map length in pages
938  * @auxtrace_overwrite - overwrite older auxtrace data?
939  *
940  * If @overwrite is %false the user needs to signal event consumption using
941  * perf_mmap__write_tail().  Using evlist__mmap_read() does this
942  * automatically.
943  *
944  * Similarly, if @auxtrace_overwrite is %false the user needs to signal data
945  * consumption using auxtrace_mmap__write_tail().
946  *
947  * Return: %0 on success, negative error code otherwise.
948  */
949 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
950 			 unsigned int auxtrace_pages,
951 			 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
952 			 int comp_level)
953 {
954 	/*
955 	 * Delay setting mp.prot: set it before calling perf_mmap__mmap.
956 	 * Its value is decided by evsel's write_backward.
957 	 * So &mp should not be passed through const pointer.
958 	 */
959 	struct mmap_params mp = {
960 		.nr_cblocks	= nr_cblocks,
961 		.affinity	= affinity,
962 		.flush		= flush,
963 		.comp_level	= comp_level
964 	};
965 	struct perf_evlist_mmap_ops ops = {
966 		.idx  = perf_evlist__mmap_cb_idx,
967 		.get  = perf_evlist__mmap_cb_get,
968 		.mmap = perf_evlist__mmap_cb_mmap,
969 	};
970 
971 	evlist->core.mmap_len = evlist__mmap_size(pages);
972 	pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
973 
974 	auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
975 				   auxtrace_pages, auxtrace_overwrite);
976 
977 	return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
978 }
979 
980 int evlist__mmap(struct evlist *evlist, unsigned int pages)
981 {
982 	return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
983 }
984 
985 int evlist__create_maps(struct evlist *evlist, struct target *target)
986 {
987 	bool all_threads = (target->per_thread && target->system_wide);
988 	struct perf_cpu_map *cpus;
989 	struct perf_thread_map *threads;
990 
991 	/*
992 	 * If specify '-a' and '--per-thread' to perf record, perf record
993 	 * will override '--per-thread'. target->per_thread = false and
994 	 * target->system_wide = true.
995 	 *
996 	 * If specify '--per-thread' only to perf record,
997 	 * target->per_thread = true and target->system_wide = false.
998 	 *
999 	 * So target->per_thread && target->system_wide is false.
1000 	 * For perf record, thread_map__new_str doesn't call
1001 	 * thread_map__new_all_cpus. That will keep perf record's
1002 	 * current behavior.
1003 	 *
1004 	 * For perf stat, it allows the case that target->per_thread and
1005 	 * target->system_wide are all true. It means to collect system-wide
1006 	 * per-thread data. thread_map__new_str will call
1007 	 * thread_map__new_all_cpus to enumerate all threads.
1008 	 */
1009 	threads = thread_map__new_str(target->pid, target->tid, all_threads);
1010 
1011 	if (!threads)
1012 		return -1;
1013 
1014 	if (target__uses_dummy_map(target) && !evlist__has_bpf_output(evlist))
1015 		cpus = perf_cpu_map__new_any_cpu();
1016 	else
1017 		cpus = perf_cpu_map__new(target->cpu_list);
1018 
1019 	if (!cpus)
1020 		goto out_delete_threads;
1021 
1022 	evlist->core.has_user_cpus = !!target->cpu_list;
1023 
1024 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1025 
1026 	/* as evlist now has references, put count here */
1027 	perf_cpu_map__put(cpus);
1028 	perf_thread_map__put(threads);
1029 
1030 	return 0;
1031 
1032 out_delete_threads:
1033 	perf_thread_map__put(threads);
1034 	return -1;
1035 }
1036 
1037 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel,
1038 			  struct target *target)
1039 {
1040 	struct evsel *evsel;
1041 	int err = 0;
1042 
1043 	evlist__for_each_entry(evlist, evsel) {
1044 		/*
1045 		 * filters only work for tracepoint event, which doesn't have cpu limit.
1046 		 * So evlist and evsel should always be same.
1047 		 */
1048 		if (evsel->filter) {
1049 			err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
1050 			if (err) {
1051 				*err_evsel = evsel;
1052 				break;
1053 			}
1054 		}
1055 
1056 		/*
1057 		 * non-tracepoint events can have BPF filters.
1058 		 */
1059 		if (!list_empty(&evsel->bpf_filters)) {
1060 			err = perf_bpf_filter__prepare(evsel, target);
1061 			if (err) {
1062 				*err_evsel = evsel;
1063 				break;
1064 			}
1065 		}
1066 	}
1067 
1068 	return err;
1069 }
1070 
1071 int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
1072 {
1073 	struct evsel *evsel;
1074 	int err = 0;
1075 
1076 	if (filter == NULL)
1077 		return -1;
1078 
1079 	evlist__for_each_entry(evlist, evsel) {
1080 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1081 			continue;
1082 
1083 		err = evsel__set_filter(evsel, filter);
1084 		if (err)
1085 			break;
1086 	}
1087 
1088 	return err;
1089 }
1090 
1091 int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
1092 {
1093 	struct evsel *evsel;
1094 	int err = 0;
1095 
1096 	if (filter == NULL)
1097 		return -1;
1098 
1099 	evlist__for_each_entry(evlist, evsel) {
1100 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1101 			continue;
1102 
1103 		err = evsel__append_tp_filter(evsel, filter);
1104 		if (err)
1105 			break;
1106 	}
1107 
1108 	return err;
1109 }
1110 
1111 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
1112 {
1113 	char *filter;
1114 	size_t i;
1115 
1116 	for (i = 0; i < npids; ++i) {
1117 		if (i == 0) {
1118 			if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
1119 				return NULL;
1120 		} else {
1121 			char *tmp;
1122 
1123 			if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
1124 				goto out_free;
1125 
1126 			free(filter);
1127 			filter = tmp;
1128 		}
1129 	}
1130 
1131 	return filter;
1132 out_free:
1133 	free(filter);
1134 	return NULL;
1135 }
1136 
1137 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1138 {
1139 	char *filter = asprintf__tp_filter_pids(npids, pids);
1140 	int ret = evlist__set_tp_filter(evlist, filter);
1141 
1142 	free(filter);
1143 	return ret;
1144 }
1145 
1146 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1147 {
1148 	char *filter = asprintf__tp_filter_pids(npids, pids);
1149 	int ret = evlist__append_tp_filter(evlist, filter);
1150 
1151 	free(filter);
1152 	return ret;
1153 }
1154 
1155 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
1156 {
1157 	return evlist__append_tp_filter_pids(evlist, 1, &pid);
1158 }
1159 
1160 bool evlist__valid_sample_type(struct evlist *evlist)
1161 {
1162 	struct evsel *pos;
1163 
1164 	if (evlist->core.nr_entries == 1)
1165 		return true;
1166 
1167 	if (evlist->id_pos < 0 || evlist->is_pos < 0)
1168 		return false;
1169 
1170 	evlist__for_each_entry(evlist, pos) {
1171 		if (pos->id_pos != evlist->id_pos ||
1172 		    pos->is_pos != evlist->is_pos)
1173 			return false;
1174 	}
1175 
1176 	return true;
1177 }
1178 
1179 u64 __evlist__combined_sample_type(struct evlist *evlist)
1180 {
1181 	struct evsel *evsel;
1182 
1183 	if (evlist->combined_sample_type)
1184 		return evlist->combined_sample_type;
1185 
1186 	evlist__for_each_entry(evlist, evsel)
1187 		evlist->combined_sample_type |= evsel->core.attr.sample_type;
1188 
1189 	return evlist->combined_sample_type;
1190 }
1191 
1192 u64 evlist__combined_sample_type(struct evlist *evlist)
1193 {
1194 	evlist->combined_sample_type = 0;
1195 	return __evlist__combined_sample_type(evlist);
1196 }
1197 
1198 u64 evlist__combined_branch_type(struct evlist *evlist)
1199 {
1200 	struct evsel *evsel;
1201 	u64 branch_type = 0;
1202 
1203 	evlist__for_each_entry(evlist, evsel)
1204 		branch_type |= evsel->core.attr.branch_sample_type;
1205 	return branch_type;
1206 }
1207 
1208 static struct evsel *
1209 evlist__find_dup_event_from_prev(struct evlist *evlist, struct evsel *event)
1210 {
1211 	struct evsel *pos;
1212 
1213 	evlist__for_each_entry(evlist, pos) {
1214 		if (event == pos)
1215 			break;
1216 		if ((pos->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) &&
1217 		    !strcmp(pos->name, event->name))
1218 			return pos;
1219 	}
1220 	return NULL;
1221 }
1222 
1223 #define MAX_NR_ABBR_NAME	(26 * 11)
1224 
1225 /*
1226  * The abbr name is from A to Z9. If the number of event
1227  * which requires the branch counter > MAX_NR_ABBR_NAME,
1228  * return NA.
1229  */
1230 static void evlist__new_abbr_name(char *name)
1231 {
1232 	static int idx;
1233 	int i = idx / 26;
1234 
1235 	if (idx >= MAX_NR_ABBR_NAME) {
1236 		name[0] = 'N';
1237 		name[1] = 'A';
1238 		name[2] = '\0';
1239 		return;
1240 	}
1241 
1242 	name[0] = 'A' + (idx % 26);
1243 
1244 	if (!i)
1245 		name[1] = '\0';
1246 	else {
1247 		name[1] = '0' + i - 1;
1248 		name[2] = '\0';
1249 	}
1250 
1251 	idx++;
1252 }
1253 
1254 void evlist__update_br_cntr(struct evlist *evlist)
1255 {
1256 	struct evsel *evsel, *dup;
1257 	int i = 0;
1258 
1259 	evlist__for_each_entry(evlist, evsel) {
1260 		if (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS) {
1261 			evsel->br_cntr_idx = i++;
1262 			evsel__leader(evsel)->br_cntr_nr++;
1263 
1264 			dup = evlist__find_dup_event_from_prev(evlist, evsel);
1265 			if (dup)
1266 				memcpy(evsel->abbr_name, dup->abbr_name, 3 * sizeof(char));
1267 			else
1268 				evlist__new_abbr_name(evsel->abbr_name);
1269 		}
1270 	}
1271 	evlist->nr_br_cntr = i;
1272 }
1273 
1274 bool evlist__valid_read_format(struct evlist *evlist)
1275 {
1276 	struct evsel *first = evlist__first(evlist), *pos = first;
1277 	u64 read_format = first->core.attr.read_format;
1278 	u64 sample_type = first->core.attr.sample_type;
1279 
1280 	evlist__for_each_entry(evlist, pos) {
1281 		if (read_format != pos->core.attr.read_format) {
1282 			pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
1283 				 read_format, (u64)pos->core.attr.read_format);
1284 		}
1285 	}
1286 
1287 	/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
1288 	if ((sample_type & PERF_SAMPLE_READ) &&
1289 	    !(read_format & PERF_FORMAT_ID)) {
1290 		return false;
1291 	}
1292 
1293 	return true;
1294 }
1295 
1296 u16 evlist__id_hdr_size(struct evlist *evlist)
1297 {
1298 	struct evsel *first = evlist__first(evlist);
1299 
1300 	return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0;
1301 }
1302 
1303 bool evlist__valid_sample_id_all(struct evlist *evlist)
1304 {
1305 	struct evsel *first = evlist__first(evlist), *pos = first;
1306 
1307 	evlist__for_each_entry_continue(evlist, pos) {
1308 		if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
1309 			return false;
1310 	}
1311 
1312 	return true;
1313 }
1314 
1315 bool evlist__sample_id_all(struct evlist *evlist)
1316 {
1317 	struct evsel *first = evlist__first(evlist);
1318 	return first->core.attr.sample_id_all;
1319 }
1320 
1321 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
1322 {
1323 	evlist->selected = evsel;
1324 }
1325 
1326 void evlist__close(struct evlist *evlist)
1327 {
1328 	struct evsel *evsel;
1329 	struct evlist_cpu_iterator evlist_cpu_itr;
1330 	struct affinity affinity;
1331 
1332 	/*
1333 	 * With perf record core.user_requested_cpus is usually NULL.
1334 	 * Use the old method to handle this for now.
1335 	 */
1336 	if (!evlist->core.user_requested_cpus ||
1337 	    cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
1338 		evlist__for_each_entry_reverse(evlist, evsel)
1339 			evsel__close(evsel);
1340 		return;
1341 	}
1342 
1343 	if (affinity__setup(&affinity) < 0)
1344 		return;
1345 
1346 	evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) {
1347 		perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core,
1348 				      evlist_cpu_itr.cpu_map_idx);
1349 	}
1350 
1351 	affinity__cleanup(&affinity);
1352 	evlist__for_each_entry_reverse(evlist, evsel) {
1353 		perf_evsel__free_fd(&evsel->core);
1354 		perf_evsel__free_id(&evsel->core);
1355 	}
1356 	perf_evlist__reset_id_hash(&evlist->core);
1357 }
1358 
1359 static int evlist__create_syswide_maps(struct evlist *evlist)
1360 {
1361 	struct perf_cpu_map *cpus;
1362 	struct perf_thread_map *threads;
1363 
1364 	/*
1365 	 * Try reading /sys/devices/system/cpu/online to get
1366 	 * an all cpus map.
1367 	 *
1368 	 * FIXME: -ENOMEM is the best we can do here, the cpu_map
1369 	 * code needs an overhaul to properly forward the
1370 	 * error, and we may not want to do that fallback to a
1371 	 * default cpu identity map :-\
1372 	 */
1373 	cpus = perf_cpu_map__new_online_cpus();
1374 	if (!cpus)
1375 		return -ENOMEM;
1376 
1377 	threads = perf_thread_map__new_dummy();
1378 	if (!threads) {
1379 		perf_cpu_map__put(cpus);
1380 		return -ENOMEM;
1381 	}
1382 
1383 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1384 	perf_thread_map__put(threads);
1385 	perf_cpu_map__put(cpus);
1386 	return 0;
1387 }
1388 
1389 int evlist__open(struct evlist *evlist)
1390 {
1391 	struct evsel *evsel;
1392 	int err;
1393 
1394 	/*
1395 	 * Default: one fd per CPU, all threads, aka systemwide
1396 	 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
1397 	 */
1398 	if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) {
1399 		err = evlist__create_syswide_maps(evlist);
1400 		if (err < 0)
1401 			goto out_err;
1402 	}
1403 
1404 	evlist__update_id_pos(evlist);
1405 
1406 	evlist__for_each_entry(evlist, evsel) {
1407 		err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
1408 		if (err < 0)
1409 			goto out_err;
1410 	}
1411 
1412 	return 0;
1413 out_err:
1414 	evlist__close(evlist);
1415 	errno = -err;
1416 	return err;
1417 }
1418 
1419 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
1420 			     bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1421 {
1422 	int child_ready_pipe[2], go_pipe[2];
1423 	char bf;
1424 
1425 	evlist->workload.cork_fd = -1;
1426 
1427 	if (pipe(child_ready_pipe) < 0) {
1428 		perror("failed to create 'ready' pipe");
1429 		return -1;
1430 	}
1431 
1432 	if (pipe(go_pipe) < 0) {
1433 		perror("failed to create 'go' pipe");
1434 		goto out_close_ready_pipe;
1435 	}
1436 
1437 	evlist->workload.pid = fork();
1438 	if (evlist->workload.pid < 0) {
1439 		perror("failed to fork");
1440 		goto out_close_pipes;
1441 	}
1442 
1443 	if (!evlist->workload.pid) {
1444 		int ret;
1445 
1446 		if (pipe_output)
1447 			dup2(2, 1);
1448 
1449 		signal(SIGTERM, SIG_DFL);
1450 
1451 		close(child_ready_pipe[0]);
1452 		close(go_pipe[1]);
1453 		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1454 
1455 		/*
1456 		 * Change the name of this process not to confuse --exclude-perf users
1457 		 * that sees 'perf' in the window up to the execvp() and thinks that
1458 		 * perf samples are not being excluded.
1459 		 */
1460 		prctl(PR_SET_NAME, "perf-exec");
1461 
1462 		/*
1463 		 * Tell the parent we're ready to go
1464 		 */
1465 		close(child_ready_pipe[1]);
1466 
1467 		/*
1468 		 * Wait until the parent tells us to go.
1469 		 */
1470 		ret = read(go_pipe[0], &bf, 1);
1471 		/*
1472 		 * The parent will ask for the execvp() to be performed by
1473 		 * writing exactly one byte, in workload.cork_fd, usually via
1474 		 * evlist__start_workload().
1475 		 *
1476 		 * For cancelling the workload without actually running it,
1477 		 * the parent will just close workload.cork_fd, without writing
1478 		 * anything, i.e. read will return zero and we just exit()
1479 		 * here (See evlist__cancel_workload()).
1480 		 */
1481 		if (ret != 1) {
1482 			if (ret == -1)
1483 				perror("unable to read pipe");
1484 			exit(ret);
1485 		}
1486 
1487 		execvp(argv[0], (char **)argv);
1488 
1489 		if (exec_error) {
1490 			union sigval val;
1491 
1492 			val.sival_int = errno;
1493 			if (sigqueue(getppid(), SIGUSR1, val))
1494 				perror(argv[0]);
1495 		} else
1496 			perror(argv[0]);
1497 		exit(-1);
1498 	}
1499 
1500 	if (exec_error) {
1501 		struct sigaction act = {
1502 			.sa_flags     = SA_SIGINFO,
1503 			.sa_sigaction = exec_error,
1504 		};
1505 		sigaction(SIGUSR1, &act, NULL);
1506 	}
1507 
1508 	if (target__none(target)) {
1509 		if (evlist->core.threads == NULL) {
1510 			fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
1511 				__func__, __LINE__);
1512 			goto out_close_pipes;
1513 		}
1514 		perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
1515 	}
1516 
1517 	close(child_ready_pipe[1]);
1518 	close(go_pipe[0]);
1519 	/*
1520 	 * wait for child to settle
1521 	 */
1522 	if (read(child_ready_pipe[0], &bf, 1) == -1) {
1523 		perror("unable to read pipe");
1524 		goto out_close_pipes;
1525 	}
1526 
1527 	fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1528 	evlist->workload.cork_fd = go_pipe[1];
1529 	close(child_ready_pipe[0]);
1530 	return 0;
1531 
1532 out_close_pipes:
1533 	close(go_pipe[0]);
1534 	close(go_pipe[1]);
1535 out_close_ready_pipe:
1536 	close(child_ready_pipe[0]);
1537 	close(child_ready_pipe[1]);
1538 	return -1;
1539 }
1540 
1541 int evlist__start_workload(struct evlist *evlist)
1542 {
1543 	if (evlist->workload.cork_fd >= 0) {
1544 		char bf = 0;
1545 		int ret;
1546 		/*
1547 		 * Remove the cork, let it rip!
1548 		 */
1549 		ret = write(evlist->workload.cork_fd, &bf, 1);
1550 		if (ret < 0)
1551 			perror("unable to write to pipe");
1552 
1553 		close(evlist->workload.cork_fd);
1554 		evlist->workload.cork_fd = -1;
1555 		return ret;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 void evlist__cancel_workload(struct evlist *evlist)
1562 {
1563 	int status;
1564 
1565 	if (evlist->workload.cork_fd >= 0) {
1566 		close(evlist->workload.cork_fd);
1567 		evlist->workload.cork_fd = -1;
1568 		waitpid(evlist->workload.pid, &status, WNOHANG);
1569 	}
1570 }
1571 
1572 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1573 {
1574 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1575 	int ret;
1576 
1577 	if (!evsel)
1578 		return -EFAULT;
1579 	ret = evsel__parse_sample(evsel, event, sample);
1580 	if (ret)
1581 		return ret;
1582 	if (perf_guest && sample->id) {
1583 		struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id);
1584 
1585 		if (sid) {
1586 			sample->machine_pid = sid->machine_pid;
1587 			sample->vcpu = sid->vcpu.cpu;
1588 		}
1589 	}
1590 	return 0;
1591 }
1592 
1593 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
1594 {
1595 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1596 
1597 	if (!evsel)
1598 		return -EFAULT;
1599 	return evsel__parse_sample_timestamp(evsel, event, timestamp);
1600 }
1601 
1602 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
1603 {
1604 	int printed, value;
1605 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1606 
1607 	switch (err) {
1608 	case EACCES:
1609 	case EPERM:
1610 		printed = scnprintf(buf, size,
1611 				    "Error:\t%s.\n"
1612 				    "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1613 
1614 		value = perf_event_paranoid();
1615 
1616 		printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1617 
1618 		if (value >= 2) {
1619 			printed += scnprintf(buf + printed, size - printed,
1620 					     "For your workloads it needs to be <= 1\nHint:\t");
1621 		}
1622 		printed += scnprintf(buf + printed, size - printed,
1623 				     "For system wide tracing it needs to be set to -1.\n");
1624 
1625 		printed += scnprintf(buf + printed, size - printed,
1626 				    "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1627 				    "Hint:\tThe current value is %d.", value);
1628 		break;
1629 	case EINVAL: {
1630 		struct evsel *first = evlist__first(evlist);
1631 		int max_freq;
1632 
1633 		if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
1634 			goto out_default;
1635 
1636 		if (first->core.attr.sample_freq < (u64)max_freq)
1637 			goto out_default;
1638 
1639 		printed = scnprintf(buf, size,
1640 				    "Error:\t%s.\n"
1641 				    "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
1642 				    "Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
1643 				    emsg, max_freq, first->core.attr.sample_freq);
1644 		break;
1645 	}
1646 	default:
1647 out_default:
1648 		scnprintf(buf, size, "%s", emsg);
1649 		break;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
1656 {
1657 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1658 	int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
1659 
1660 	switch (err) {
1661 	case EPERM:
1662 		sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
1663 		printed += scnprintf(buf + printed, size - printed,
1664 				     "Error:\t%s.\n"
1665 				     "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
1666 				     "Hint:\tTried using %zd kB.\n",
1667 				     emsg, pages_max_per_user, pages_attempted);
1668 
1669 		if (pages_attempted >= pages_max_per_user) {
1670 			printed += scnprintf(buf + printed, size - printed,
1671 					     "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
1672 					     pages_max_per_user + pages_attempted);
1673 		}
1674 
1675 		printed += scnprintf(buf + printed, size - printed,
1676 				     "Hint:\tTry using a smaller -m/--mmap-pages value.");
1677 		break;
1678 	default:
1679 		scnprintf(buf, size, "%s", emsg);
1680 		break;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
1687 {
1688 	struct evsel *evsel, *n;
1689 	LIST_HEAD(move);
1690 
1691 	if (move_evsel == evlist__first(evlist))
1692 		return;
1693 
1694 	evlist__for_each_entry_safe(evlist, n, evsel) {
1695 		if (evsel__leader(evsel) == evsel__leader(move_evsel))
1696 			list_move_tail(&evsel->core.node, &move);
1697 	}
1698 
1699 	list_splice(&move, &evlist->core.entries);
1700 }
1701 
1702 struct evsel *evlist__get_tracking_event(struct evlist *evlist)
1703 {
1704 	struct evsel *evsel;
1705 
1706 	evlist__for_each_entry(evlist, evsel) {
1707 		if (evsel->tracking)
1708 			return evsel;
1709 	}
1710 
1711 	return evlist__first(evlist);
1712 }
1713 
1714 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
1715 {
1716 	struct evsel *evsel;
1717 
1718 	if (tracking_evsel->tracking)
1719 		return;
1720 
1721 	evlist__for_each_entry(evlist, evsel) {
1722 		if (evsel != tracking_evsel)
1723 			evsel->tracking = false;
1724 	}
1725 
1726 	tracking_evsel->tracking = true;
1727 }
1728 
1729 struct evsel *evlist__findnew_tracking_event(struct evlist *evlist, bool system_wide)
1730 {
1731 	struct evsel *evsel;
1732 
1733 	evsel = evlist__get_tracking_event(evlist);
1734 	if (!evsel__is_dummy_event(evsel)) {
1735 		evsel = evlist__add_aux_dummy(evlist, system_wide);
1736 		if (!evsel)
1737 			return NULL;
1738 
1739 		evlist__set_tracking_event(evlist, evsel);
1740 	} else if (system_wide) {
1741 		perf_evlist__go_system_wide(&evlist->core, &evsel->core);
1742 	}
1743 
1744 	return evsel;
1745 }
1746 
1747 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
1748 {
1749 	struct evsel *evsel;
1750 
1751 	evlist__for_each_entry(evlist, evsel) {
1752 		if (!evsel->name)
1753 			continue;
1754 		if (evsel__name_is(evsel, str))
1755 			return evsel;
1756 	}
1757 
1758 	return NULL;
1759 }
1760 
1761 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
1762 {
1763 	enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
1764 	enum action {
1765 		NONE,
1766 		PAUSE,
1767 		RESUME,
1768 	} action = NONE;
1769 
1770 	if (!evlist->overwrite_mmap)
1771 		return;
1772 
1773 	switch (old_state) {
1774 	case BKW_MMAP_NOTREADY: {
1775 		if (state != BKW_MMAP_RUNNING)
1776 			goto state_err;
1777 		break;
1778 	}
1779 	case BKW_MMAP_RUNNING: {
1780 		if (state != BKW_MMAP_DATA_PENDING)
1781 			goto state_err;
1782 		action = PAUSE;
1783 		break;
1784 	}
1785 	case BKW_MMAP_DATA_PENDING: {
1786 		if (state != BKW_MMAP_EMPTY)
1787 			goto state_err;
1788 		break;
1789 	}
1790 	case BKW_MMAP_EMPTY: {
1791 		if (state != BKW_MMAP_RUNNING)
1792 			goto state_err;
1793 		action = RESUME;
1794 		break;
1795 	}
1796 	default:
1797 		WARN_ONCE(1, "Shouldn't get there\n");
1798 	}
1799 
1800 	evlist->bkw_mmap_state = state;
1801 
1802 	switch (action) {
1803 	case PAUSE:
1804 		evlist__pause(evlist);
1805 		break;
1806 	case RESUME:
1807 		evlist__resume(evlist);
1808 		break;
1809 	case NONE:
1810 	default:
1811 		break;
1812 	}
1813 
1814 state_err:
1815 	return;
1816 }
1817 
1818 bool evlist__exclude_kernel(struct evlist *evlist)
1819 {
1820 	struct evsel *evsel;
1821 
1822 	evlist__for_each_entry(evlist, evsel) {
1823 		if (!evsel->core.attr.exclude_kernel)
1824 			return false;
1825 	}
1826 
1827 	return true;
1828 }
1829 
1830 /*
1831  * Events in data file are not collect in groups, but we still want
1832  * the group display. Set the artificial group and set the leader's
1833  * forced_leader flag to notify the display code.
1834  */
1835 void evlist__force_leader(struct evlist *evlist)
1836 {
1837 	if (evlist__nr_groups(evlist) == 0) {
1838 		struct evsel *leader = evlist__first(evlist);
1839 
1840 		evlist__set_leader(evlist);
1841 		leader->forced_leader = true;
1842 	}
1843 }
1844 
1845 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
1846 {
1847 	struct evsel *c2, *leader;
1848 	bool is_open = true;
1849 
1850 	leader = evsel__leader(evsel);
1851 
1852 	pr_debug("Weak group for %s/%d failed\n",
1853 			leader->name, leader->core.nr_members);
1854 
1855 	/*
1856 	 * for_each_group_member doesn't work here because it doesn't
1857 	 * include the first entry.
1858 	 */
1859 	evlist__for_each_entry(evsel_list, c2) {
1860 		if (c2 == evsel)
1861 			is_open = false;
1862 		if (evsel__has_leader(c2, leader)) {
1863 			if (is_open && close)
1864 				perf_evsel__close(&c2->core);
1865 			/*
1866 			 * We want to close all members of the group and reopen
1867 			 * them. Some events, like Intel topdown, require being
1868 			 * in a group and so keep these in the group.
1869 			 */
1870 			evsel__remove_from_group(c2, leader);
1871 
1872 			/*
1873 			 * Set this for all former members of the group
1874 			 * to indicate they get reopened.
1875 			 */
1876 			c2->reset_group = true;
1877 		}
1878 	}
1879 	/* Reset the leader count if all entries were removed. */
1880 	if (leader->core.nr_members == 1)
1881 		leader->core.nr_members = 0;
1882 	return leader;
1883 }
1884 
1885 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1886 {
1887 	char *s, *p;
1888 	int ret = 0, fd;
1889 
1890 	if (strncmp(str, "fifo:", 5))
1891 		return -EINVAL;
1892 
1893 	str += 5;
1894 	if (!*str || *str == ',')
1895 		return -EINVAL;
1896 
1897 	s = strdup(str);
1898 	if (!s)
1899 		return -ENOMEM;
1900 
1901 	p = strchr(s, ',');
1902 	if (p)
1903 		*p = '\0';
1904 
1905 	/*
1906 	 * O_RDWR avoids POLLHUPs which is necessary to allow the other
1907 	 * end of a FIFO to be repeatedly opened and closed.
1908 	 */
1909 	fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1910 	if (fd < 0) {
1911 		pr_err("Failed to open '%s'\n", s);
1912 		ret = -errno;
1913 		goto out_free;
1914 	}
1915 	*ctl_fd = fd;
1916 	*ctl_fd_close = true;
1917 
1918 	if (p && *++p) {
1919 		/* O_RDWR | O_NONBLOCK means the other end need not be open */
1920 		fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1921 		if (fd < 0) {
1922 			pr_err("Failed to open '%s'\n", p);
1923 			ret = -errno;
1924 			goto out_free;
1925 		}
1926 		*ctl_fd_ack = fd;
1927 	}
1928 
1929 out_free:
1930 	free(s);
1931 	return ret;
1932 }
1933 
1934 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1935 {
1936 	char *comma = NULL, *endptr = NULL;
1937 
1938 	*ctl_fd_close = false;
1939 
1940 	if (strncmp(str, "fd:", 3))
1941 		return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
1942 
1943 	*ctl_fd = strtoul(&str[3], &endptr, 0);
1944 	if (endptr == &str[3])
1945 		return -EINVAL;
1946 
1947 	comma = strchr(str, ',');
1948 	if (comma) {
1949 		if (endptr != comma)
1950 			return -EINVAL;
1951 
1952 		*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
1953 		if (endptr == comma + 1 || *endptr != '\0')
1954 			return -EINVAL;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
1961 {
1962 	if (*ctl_fd_close) {
1963 		*ctl_fd_close = false;
1964 		close(ctl_fd);
1965 		if (ctl_fd_ack >= 0)
1966 			close(ctl_fd_ack);
1967 	}
1968 }
1969 
1970 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
1971 {
1972 	if (fd == -1) {
1973 		pr_debug("Control descriptor is not initialized\n");
1974 		return 0;
1975 	}
1976 
1977 	evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
1978 						     fdarray_flag__nonfilterable |
1979 						     fdarray_flag__non_perf_event);
1980 	if (evlist->ctl_fd.pos < 0) {
1981 		evlist->ctl_fd.pos = -1;
1982 		pr_err("Failed to add ctl fd entry: %m\n");
1983 		return -1;
1984 	}
1985 
1986 	evlist->ctl_fd.fd = fd;
1987 	evlist->ctl_fd.ack = ack;
1988 
1989 	return 0;
1990 }
1991 
1992 bool evlist__ctlfd_initialized(struct evlist *evlist)
1993 {
1994 	return evlist->ctl_fd.pos >= 0;
1995 }
1996 
1997 int evlist__finalize_ctlfd(struct evlist *evlist)
1998 {
1999 	struct pollfd *entries = evlist->core.pollfd.entries;
2000 
2001 	if (!evlist__ctlfd_initialized(evlist))
2002 		return 0;
2003 
2004 	entries[evlist->ctl_fd.pos].fd = -1;
2005 	entries[evlist->ctl_fd.pos].events = 0;
2006 	entries[evlist->ctl_fd.pos].revents = 0;
2007 
2008 	evlist->ctl_fd.pos = -1;
2009 	evlist->ctl_fd.ack = -1;
2010 	evlist->ctl_fd.fd = -1;
2011 
2012 	return 0;
2013 }
2014 
2015 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
2016 			      char *cmd_data, size_t data_size)
2017 {
2018 	int err;
2019 	char c;
2020 	size_t bytes_read = 0;
2021 
2022 	*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
2023 	memset(cmd_data, 0, data_size);
2024 	data_size--;
2025 
2026 	do {
2027 		err = read(evlist->ctl_fd.fd, &c, 1);
2028 		if (err > 0) {
2029 			if (c == '\n' || c == '\0')
2030 				break;
2031 			cmd_data[bytes_read++] = c;
2032 			if (bytes_read == data_size)
2033 				break;
2034 			continue;
2035 		} else if (err == -1) {
2036 			if (errno == EINTR)
2037 				continue;
2038 			if (errno == EAGAIN || errno == EWOULDBLOCK)
2039 				err = 0;
2040 			else
2041 				pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
2042 		}
2043 		break;
2044 	} while (1);
2045 
2046 	pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
2047 		 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
2048 
2049 	if (bytes_read > 0) {
2050 		if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
2051 			     (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
2052 			*cmd = EVLIST_CTL_CMD_ENABLE;
2053 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
2054 				    (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
2055 			*cmd = EVLIST_CTL_CMD_DISABLE;
2056 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
2057 				    (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
2058 			*cmd = EVLIST_CTL_CMD_SNAPSHOT;
2059 			pr_debug("is snapshot\n");
2060 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
2061 				    (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
2062 			*cmd = EVLIST_CTL_CMD_EVLIST;
2063 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
2064 				    (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
2065 			*cmd = EVLIST_CTL_CMD_STOP;
2066 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
2067 				    (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
2068 			*cmd = EVLIST_CTL_CMD_PING;
2069 		}
2070 	}
2071 
2072 	return bytes_read ? (int)bytes_read : err;
2073 }
2074 
2075 int evlist__ctlfd_ack(struct evlist *evlist)
2076 {
2077 	int err;
2078 
2079 	if (evlist->ctl_fd.ack == -1)
2080 		return 0;
2081 
2082 	err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
2083 		    sizeof(EVLIST_CTL_CMD_ACK_TAG));
2084 	if (err == -1)
2085 		pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
2086 
2087 	return err;
2088 }
2089 
2090 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
2091 {
2092 	char *data = cmd_data + cmd_size;
2093 
2094 	/* no argument */
2095 	if (!*data)
2096 		return 0;
2097 
2098 	/* there's argument */
2099 	if (*data == ' ') {
2100 		*arg = data + 1;
2101 		return 1;
2102 	}
2103 
2104 	/* malformed */
2105 	return -1;
2106 }
2107 
2108 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
2109 {
2110 	struct evsel *evsel;
2111 	char *name;
2112 	int err;
2113 
2114 	err = get_cmd_arg(cmd_data,
2115 			  enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
2116 				   sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
2117 			  &name);
2118 	if (err < 0) {
2119 		pr_info("failed: wrong command\n");
2120 		return -1;
2121 	}
2122 
2123 	if (err) {
2124 		evsel = evlist__find_evsel_by_str(evlist, name);
2125 		if (evsel) {
2126 			if (enable)
2127 				evlist__enable_evsel(evlist, name);
2128 			else
2129 				evlist__disable_evsel(evlist, name);
2130 			pr_info("Event %s %s\n", evsel->name,
2131 				enable ? "enabled" : "disabled");
2132 		} else {
2133 			pr_info("failed: can't find '%s' event\n", name);
2134 		}
2135 	} else {
2136 		if (enable) {
2137 			evlist__enable(evlist);
2138 			pr_info(EVLIST_ENABLED_MSG);
2139 		} else {
2140 			evlist__disable(evlist);
2141 			pr_info(EVLIST_DISABLED_MSG);
2142 		}
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
2149 {
2150 	struct perf_attr_details details = { .verbose = false, };
2151 	struct evsel *evsel;
2152 	char *arg;
2153 	int err;
2154 
2155 	err = get_cmd_arg(cmd_data,
2156 			  sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
2157 			  &arg);
2158 	if (err < 0) {
2159 		pr_info("failed: wrong command\n");
2160 		return -1;
2161 	}
2162 
2163 	if (err) {
2164 		if (!strcmp(arg, "-v")) {
2165 			details.verbose = true;
2166 		} else if (!strcmp(arg, "-g")) {
2167 			details.event_group = true;
2168 		} else if (!strcmp(arg, "-F")) {
2169 			details.freq = true;
2170 		} else {
2171 			pr_info("failed: wrong command\n");
2172 			return -1;
2173 		}
2174 	}
2175 
2176 	evlist__for_each_entry(evlist, evsel)
2177 		evsel__fprintf(evsel, &details, stderr);
2178 
2179 	return 0;
2180 }
2181 
2182 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
2183 {
2184 	int err = 0;
2185 	char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
2186 	int ctlfd_pos = evlist->ctl_fd.pos;
2187 	struct pollfd *entries = evlist->core.pollfd.entries;
2188 
2189 	if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
2190 		return 0;
2191 
2192 	if (entries[ctlfd_pos].revents & POLLIN) {
2193 		err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
2194 					 EVLIST_CTL_CMD_MAX_LEN);
2195 		if (err > 0) {
2196 			switch (*cmd) {
2197 			case EVLIST_CTL_CMD_ENABLE:
2198 			case EVLIST_CTL_CMD_DISABLE:
2199 				err = evlist__ctlfd_enable(evlist, cmd_data,
2200 							   *cmd == EVLIST_CTL_CMD_ENABLE);
2201 				break;
2202 			case EVLIST_CTL_CMD_EVLIST:
2203 				err = evlist__ctlfd_list(evlist, cmd_data);
2204 				break;
2205 			case EVLIST_CTL_CMD_SNAPSHOT:
2206 			case EVLIST_CTL_CMD_STOP:
2207 			case EVLIST_CTL_CMD_PING:
2208 				break;
2209 			case EVLIST_CTL_CMD_ACK:
2210 			case EVLIST_CTL_CMD_UNSUPPORTED:
2211 			default:
2212 				pr_debug("ctlfd: unsupported %d\n", *cmd);
2213 				break;
2214 			}
2215 			if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
2216 			      *cmd == EVLIST_CTL_CMD_SNAPSHOT))
2217 				evlist__ctlfd_ack(evlist);
2218 		}
2219 	}
2220 
2221 	if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
2222 		evlist__finalize_ctlfd(evlist);
2223 	else
2224 		entries[ctlfd_pos].revents = 0;
2225 
2226 	return err;
2227 }
2228 
2229 /**
2230  * struct event_enable_time - perf record -D/--delay single time range.
2231  * @start: start of time range to enable events in milliseconds
2232  * @end: end of time range to enable events in milliseconds
2233  *
2234  * N.B. this structure is also accessed as an array of int.
2235  */
2236 struct event_enable_time {
2237 	int	start;
2238 	int	end;
2239 };
2240 
2241 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first)
2242 {
2243 	const char *fmt = first ? "%u - %u %n" : " , %u - %u %n";
2244 	int ret, start, end, n;
2245 
2246 	ret = sscanf(str, fmt, &start, &end, &n);
2247 	if (ret != 2 || end <= start)
2248 		return -EINVAL;
2249 	if (range) {
2250 		range->start = start;
2251 		range->end = end;
2252 	}
2253 	return n;
2254 }
2255 
2256 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range)
2257 {
2258 	int incr = !!range;
2259 	bool first = true;
2260 	ssize_t ret, cnt;
2261 
2262 	for (cnt = 0; *str; cnt++) {
2263 		ret = parse_event_enable_time(str, range, first);
2264 		if (ret < 0)
2265 			return ret;
2266 		/* Check no overlap */
2267 		if (!first && range && range->start <= range[-1].end)
2268 			return -EINVAL;
2269 		str += ret;
2270 		range += incr;
2271 		first = false;
2272 	}
2273 	return cnt;
2274 }
2275 
2276 /**
2277  * struct event_enable_timer - control structure for perf record -D/--delay.
2278  * @evlist: event list
2279  * @times: time ranges that events are enabled (N.B. this is also accessed as an
2280  *         array of int)
2281  * @times_cnt: number of time ranges
2282  * @timerfd: timer file descriptor
2283  * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray)
2284  * @times_step: current position in (int *)@times)[],
2285  *              refer event_enable_timer__process()
2286  *
2287  * Note, this structure is only used when there are time ranges, not when there
2288  * is only an initial delay.
2289  */
2290 struct event_enable_timer {
2291 	struct evlist *evlist;
2292 	struct event_enable_time *times;
2293 	size_t	times_cnt;
2294 	int	timerfd;
2295 	int	pollfd_pos;
2296 	size_t	times_step;
2297 };
2298 
2299 static int str_to_delay(const char *str)
2300 {
2301 	char *endptr;
2302 	long d;
2303 
2304 	d = strtol(str, &endptr, 10);
2305 	if (*endptr || d > INT_MAX || d < -1)
2306 		return 0;
2307 	return d;
2308 }
2309 
2310 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts,
2311 				    const char *str, int unset)
2312 {
2313 	enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event;
2314 	struct event_enable_timer *eet;
2315 	ssize_t times_cnt;
2316 	ssize_t ret;
2317 	int err;
2318 
2319 	if (unset)
2320 		return 0;
2321 
2322 	opts->target.initial_delay = str_to_delay(str);
2323 	if (opts->target.initial_delay)
2324 		return 0;
2325 
2326 	ret = parse_event_enable_times(str, NULL);
2327 	if (ret < 0)
2328 		return ret;
2329 
2330 	times_cnt = ret;
2331 	if (times_cnt == 0)
2332 		return -EINVAL;
2333 
2334 	eet = zalloc(sizeof(*eet));
2335 	if (!eet)
2336 		return -ENOMEM;
2337 
2338 	eet->times = calloc(times_cnt, sizeof(*eet->times));
2339 	if (!eet->times) {
2340 		err = -ENOMEM;
2341 		goto free_eet;
2342 	}
2343 
2344 	if (parse_event_enable_times(str, eet->times) != times_cnt) {
2345 		err = -EINVAL;
2346 		goto free_eet_times;
2347 	}
2348 
2349 	eet->times_cnt = times_cnt;
2350 
2351 	eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
2352 	if (eet->timerfd == -1) {
2353 		err = -errno;
2354 		pr_err("timerfd_create failed: %s\n", strerror(errno));
2355 		goto free_eet_times;
2356 	}
2357 
2358 	eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags);
2359 	if (eet->pollfd_pos < 0) {
2360 		err = eet->pollfd_pos;
2361 		goto close_timerfd;
2362 	}
2363 
2364 	eet->evlist = evlist;
2365 	evlist->eet = eet;
2366 	opts->target.initial_delay = eet->times[0].start;
2367 
2368 	return 0;
2369 
2370 close_timerfd:
2371 	close(eet->timerfd);
2372 free_eet_times:
2373 	zfree(&eet->times);
2374 free_eet:
2375 	free(eet);
2376 	return err;
2377 }
2378 
2379 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms)
2380 {
2381 	struct itimerspec its = {
2382 		.it_value.tv_sec = ms / MSEC_PER_SEC,
2383 		.it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC,
2384 	};
2385 	int err = 0;
2386 
2387 	if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) {
2388 		err = -errno;
2389 		pr_err("timerfd_settime failed: %s\n", strerror(errno));
2390 	}
2391 	return err;
2392 }
2393 
2394 int event_enable_timer__start(struct event_enable_timer *eet)
2395 {
2396 	int ms;
2397 
2398 	if (!eet)
2399 		return 0;
2400 
2401 	ms = eet->times[0].end - eet->times[0].start;
2402 	eet->times_step = 1;
2403 
2404 	return event_enable_timer__set_timer(eet, ms);
2405 }
2406 
2407 int event_enable_timer__process(struct event_enable_timer *eet)
2408 {
2409 	struct pollfd *entries;
2410 	short revents;
2411 
2412 	if (!eet)
2413 		return 0;
2414 
2415 	entries = eet->evlist->core.pollfd.entries;
2416 	revents = entries[eet->pollfd_pos].revents;
2417 	entries[eet->pollfd_pos].revents = 0;
2418 
2419 	if (revents & POLLIN) {
2420 		size_t step = eet->times_step;
2421 		size_t pos = step / 2;
2422 
2423 		if (step & 1) {
2424 			evlist__disable_non_dummy(eet->evlist);
2425 			pr_info(EVLIST_DISABLED_MSG);
2426 			if (pos >= eet->times_cnt - 1) {
2427 				/* Disarm timer */
2428 				event_enable_timer__set_timer(eet, 0);
2429 				return 1; /* Stop */
2430 			}
2431 		} else {
2432 			evlist__enable_non_dummy(eet->evlist);
2433 			pr_info(EVLIST_ENABLED_MSG);
2434 		}
2435 
2436 		step += 1;
2437 		pos = step / 2;
2438 
2439 		if (pos < eet->times_cnt) {
2440 			int *times = (int *)eet->times; /* Accessing 'times' as array of int */
2441 			int ms = times[step] - times[step - 1];
2442 
2443 			eet->times_step = step;
2444 			return event_enable_timer__set_timer(eet, ms);
2445 		}
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 void event_enable_timer__exit(struct event_enable_timer **ep)
2452 {
2453 	if (!ep || !*ep)
2454 		return;
2455 	zfree(&(*ep)->times);
2456 	zfree(ep);
2457 }
2458 
2459 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
2460 {
2461 	struct evsel *evsel;
2462 
2463 	evlist__for_each_entry(evlist, evsel) {
2464 		if (evsel->core.idx == idx)
2465 			return evsel;
2466 	}
2467 	return NULL;
2468 }
2469 
2470 void evlist__format_evsels(struct evlist *evlist, struct strbuf *sb, size_t max_length)
2471 {
2472 	struct evsel *evsel, *leader = NULL;
2473 	bool first = true;
2474 
2475 	evlist__for_each_entry(evlist, evsel) {
2476 		struct evsel *new_leader = evsel__leader(evsel);
2477 
2478 		if (evsel__is_dummy_event(evsel))
2479 			continue;
2480 
2481 		if (leader != new_leader && leader && leader->core.nr_members > 1)
2482 			strbuf_addch(sb, '}');
2483 
2484 		if (!first)
2485 			strbuf_addch(sb, ',');
2486 
2487 		if (sb->len > max_length) {
2488 			strbuf_addstr(sb, "...");
2489 			return;
2490 		}
2491 		if (leader != new_leader && new_leader->core.nr_members > 1)
2492 			strbuf_addch(sb, '{');
2493 
2494 		strbuf_addstr(sb, evsel__name(evsel));
2495 		first = false;
2496 		leader = new_leader;
2497 	}
2498 	if (leader && leader->core.nr_members > 1)
2499 		strbuf_addch(sb, '}');
2500 }
2501 
2502 void evlist__check_mem_load_aux(struct evlist *evlist)
2503 {
2504 	struct evsel *leader, *evsel, *pos;
2505 
2506 	/*
2507 	 * For some platforms, the 'mem-loads' event is required to use
2508 	 * together with 'mem-loads-aux' within a group and 'mem-loads-aux'
2509 	 * must be the group leader. Now we disable this group before reporting
2510 	 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
2511 	 * any valid memory load information.
2512 	 */
2513 	evlist__for_each_entry(evlist, evsel) {
2514 		leader = evsel__leader(evsel);
2515 		if (leader == evsel)
2516 			continue;
2517 
2518 		if (leader->name && strstr(leader->name, "mem-loads-aux")) {
2519 			for_each_group_evsel(pos, leader) {
2520 				evsel__set_leader(pos, pos);
2521 				pos->core.nr_members = 0;
2522 			}
2523 		}
2524 	}
2525 }
2526 
2527 /**
2528  * evlist__warn_user_requested_cpus() - Check each evsel against requested CPUs
2529  *     and warn if the user CPU list is inapplicable for the event's PMU's
2530  *     CPUs. Not core PMUs list a CPU in sysfs, but this may be overwritten by a
2531  *     user requested CPU and so any online CPU is applicable. Core PMUs handle
2532  *     events on the CPUs in their list and otherwise the event isn't supported.
2533  * @evlist: The list of events being checked.
2534  * @cpu_list: The user provided list of CPUs.
2535  */
2536 void evlist__warn_user_requested_cpus(struct evlist *evlist, const char *cpu_list)
2537 {
2538 	struct perf_cpu_map *user_requested_cpus;
2539 	struct evsel *pos;
2540 
2541 	if (!cpu_list)
2542 		return;
2543 
2544 	user_requested_cpus = perf_cpu_map__new(cpu_list);
2545 	if (!user_requested_cpus)
2546 		return;
2547 
2548 	evlist__for_each_entry(evlist, pos) {
2549 		struct perf_cpu_map *intersect, *to_test, *online = cpu_map__online();
2550 		const struct perf_pmu *pmu = evsel__find_pmu(pos);
2551 
2552 		to_test = pmu && pmu->is_core ? pmu->cpus : online;
2553 		intersect = perf_cpu_map__intersect(to_test, user_requested_cpus);
2554 		if (!perf_cpu_map__equal(intersect, user_requested_cpus)) {
2555 			char buf[128];
2556 
2557 			cpu_map__snprint(to_test, buf, sizeof(buf));
2558 			pr_warning("WARNING: A requested CPU in '%s' is not supported by PMU '%s' (CPUs %s) for event '%s'\n",
2559 				cpu_list, pmu ? pmu->name : "cpu", buf, evsel__name(pos));
2560 		}
2561 		perf_cpu_map__put(intersect);
2562 		perf_cpu_map__put(online);
2563 	}
2564 	perf_cpu_map__put(user_requested_cpus);
2565 }
2566 
2567 /* Should uniquify be disabled for the evlist? */
2568 static bool evlist__disable_uniquify(const struct evlist *evlist)
2569 {
2570 	struct evsel *counter;
2571 	struct perf_pmu *last_pmu = NULL;
2572 	bool first = true;
2573 
2574 	evlist__for_each_entry(evlist, counter) {
2575 		/* If PMUs vary then uniquify can be useful. */
2576 		if (!first && counter->pmu != last_pmu)
2577 			return false;
2578 		first = false;
2579 		if (counter->pmu) {
2580 			/* Allow uniquify for uncore PMUs. */
2581 			if (!counter->pmu->is_core)
2582 				return false;
2583 			/* Keep hybrid event names uniquified for clarity. */
2584 			if (perf_pmus__num_core_pmus() > 1)
2585 				return false;
2586 		}
2587 		last_pmu = counter->pmu;
2588 	}
2589 	return true;
2590 }
2591 
2592 static bool evlist__set_needs_uniquify(struct evlist *evlist, const struct perf_stat_config *config)
2593 {
2594 	struct evsel *counter;
2595 	bool needs_uniquify = false;
2596 
2597 	if (evlist__disable_uniquify(evlist)) {
2598 		evlist__for_each_entry(evlist, counter)
2599 			counter->uniquified_name = true;
2600 		return false;
2601 	}
2602 
2603 	evlist__for_each_entry(evlist, counter) {
2604 		if (evsel__set_needs_uniquify(counter, config))
2605 			needs_uniquify = true;
2606 	}
2607 	return needs_uniquify;
2608 }
2609 
2610 void evlist__uniquify_evsel_names(struct evlist *evlist, const struct perf_stat_config *config)
2611 {
2612 	if (evlist__set_needs_uniquify(evlist, config)) {
2613 		struct evsel *pos;
2614 
2615 		evlist__for_each_entry(evlist, pos)
2616 			evsel__uniquify_counter(pos);
2617 	}
2618 }
2619 
2620 bool evlist__has_bpf_output(struct evlist *evlist)
2621 {
2622 	struct evsel *evsel;
2623 
2624 	evlist__for_each_entry(evlist, evsel) {
2625 		if (evsel__is_bpf_output(evsel))
2626 			return true;
2627 	}
2628 
2629 	return false;
2630 }
2631 
2632 bool evlist__needs_bpf_sb_event(struct evlist *evlist)
2633 {
2634 	struct evsel *evsel;
2635 
2636 	evlist__for_each_entry(evlist, evsel) {
2637 		if (evsel__is_dummy_event(evsel))
2638 			continue;
2639 		if (!evsel->core.attr.exclude_kernel)
2640 			return true;
2641 	}
2642 
2643 	return false;
2644 }
2645