1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 #include "util.h" 10 #include <api/fs/debugfs.h> 11 #include <poll.h> 12 #include "cpumap.h" 13 #include "thread_map.h" 14 #include "target.h" 15 #include "evlist.h" 16 #include "evsel.h" 17 #include "debug.h" 18 #include <unistd.h> 19 20 #include "parse-events.h" 21 #include "parse-options.h" 22 23 #include <sys/mman.h> 24 25 #include <linux/bitops.h> 26 #include <linux/hash.h> 27 28 static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx); 29 static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx); 30 31 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 32 #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) 33 34 void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus, 35 struct thread_map *threads) 36 { 37 int i; 38 39 for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i) 40 INIT_HLIST_HEAD(&evlist->heads[i]); 41 INIT_LIST_HEAD(&evlist->entries); 42 perf_evlist__set_maps(evlist, cpus, threads); 43 fdarray__init(&evlist->pollfd, 64); 44 evlist->workload.pid = -1; 45 } 46 47 struct perf_evlist *perf_evlist__new(void) 48 { 49 struct perf_evlist *evlist = zalloc(sizeof(*evlist)); 50 51 if (evlist != NULL) 52 perf_evlist__init(evlist, NULL, NULL); 53 54 return evlist; 55 } 56 57 struct perf_evlist *perf_evlist__new_default(void) 58 { 59 struct perf_evlist *evlist = perf_evlist__new(); 60 61 if (evlist && perf_evlist__add_default(evlist)) { 62 perf_evlist__delete(evlist); 63 evlist = NULL; 64 } 65 66 return evlist; 67 } 68 69 /** 70 * perf_evlist__set_id_pos - set the positions of event ids. 71 * @evlist: selected event list 72 * 73 * Events with compatible sample types all have the same id_pos 74 * and is_pos. For convenience, put a copy on evlist. 75 */ 76 void perf_evlist__set_id_pos(struct perf_evlist *evlist) 77 { 78 struct perf_evsel *first = perf_evlist__first(evlist); 79 80 evlist->id_pos = first->id_pos; 81 evlist->is_pos = first->is_pos; 82 } 83 84 static void perf_evlist__update_id_pos(struct perf_evlist *evlist) 85 { 86 struct perf_evsel *evsel; 87 88 evlist__for_each(evlist, evsel) 89 perf_evsel__calc_id_pos(evsel); 90 91 perf_evlist__set_id_pos(evlist); 92 } 93 94 static void perf_evlist__purge(struct perf_evlist *evlist) 95 { 96 struct perf_evsel *pos, *n; 97 98 evlist__for_each_safe(evlist, n, pos) { 99 list_del_init(&pos->node); 100 perf_evsel__delete(pos); 101 } 102 103 evlist->nr_entries = 0; 104 } 105 106 void perf_evlist__exit(struct perf_evlist *evlist) 107 { 108 zfree(&evlist->mmap); 109 fdarray__exit(&evlist->pollfd); 110 } 111 112 void perf_evlist__delete(struct perf_evlist *evlist) 113 { 114 perf_evlist__munmap(evlist); 115 perf_evlist__close(evlist); 116 cpu_map__delete(evlist->cpus); 117 thread_map__delete(evlist->threads); 118 evlist->cpus = NULL; 119 evlist->threads = NULL; 120 perf_evlist__purge(evlist); 121 perf_evlist__exit(evlist); 122 free(evlist); 123 } 124 125 void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry) 126 { 127 list_add_tail(&entry->node, &evlist->entries); 128 entry->idx = evlist->nr_entries; 129 entry->tracking = !entry->idx; 130 131 if (!evlist->nr_entries++) 132 perf_evlist__set_id_pos(evlist); 133 } 134 135 void perf_evlist__splice_list_tail(struct perf_evlist *evlist, 136 struct list_head *list, 137 int nr_entries) 138 { 139 bool set_id_pos = !evlist->nr_entries; 140 141 list_splice_tail(list, &evlist->entries); 142 evlist->nr_entries += nr_entries; 143 if (set_id_pos) 144 perf_evlist__set_id_pos(evlist); 145 } 146 147 void __perf_evlist__set_leader(struct list_head *list) 148 { 149 struct perf_evsel *evsel, *leader; 150 151 leader = list_entry(list->next, struct perf_evsel, node); 152 evsel = list_entry(list->prev, struct perf_evsel, node); 153 154 leader->nr_members = evsel->idx - leader->idx + 1; 155 156 __evlist__for_each(list, evsel) { 157 evsel->leader = leader; 158 } 159 } 160 161 void perf_evlist__set_leader(struct perf_evlist *evlist) 162 { 163 if (evlist->nr_entries) { 164 evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0; 165 __perf_evlist__set_leader(&evlist->entries); 166 } 167 } 168 169 int perf_evlist__add_default(struct perf_evlist *evlist) 170 { 171 struct perf_event_attr attr = { 172 .type = PERF_TYPE_HARDWARE, 173 .config = PERF_COUNT_HW_CPU_CYCLES, 174 }; 175 struct perf_evsel *evsel; 176 177 event_attr_init(&attr); 178 179 evsel = perf_evsel__new(&attr); 180 if (evsel == NULL) 181 goto error; 182 183 /* use strdup() because free(evsel) assumes name is allocated */ 184 evsel->name = strdup("cycles"); 185 if (!evsel->name) 186 goto error_free; 187 188 perf_evlist__add(evlist, evsel); 189 return 0; 190 error_free: 191 perf_evsel__delete(evsel); 192 error: 193 return -ENOMEM; 194 } 195 196 static int perf_evlist__add_attrs(struct perf_evlist *evlist, 197 struct perf_event_attr *attrs, size_t nr_attrs) 198 { 199 struct perf_evsel *evsel, *n; 200 LIST_HEAD(head); 201 size_t i; 202 203 for (i = 0; i < nr_attrs; i++) { 204 evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i); 205 if (evsel == NULL) 206 goto out_delete_partial_list; 207 list_add_tail(&evsel->node, &head); 208 } 209 210 perf_evlist__splice_list_tail(evlist, &head, nr_attrs); 211 212 return 0; 213 214 out_delete_partial_list: 215 __evlist__for_each_safe(&head, n, evsel) 216 perf_evsel__delete(evsel); 217 return -1; 218 } 219 220 int __perf_evlist__add_default_attrs(struct perf_evlist *evlist, 221 struct perf_event_attr *attrs, size_t nr_attrs) 222 { 223 size_t i; 224 225 for (i = 0; i < nr_attrs; i++) 226 event_attr_init(attrs + i); 227 228 return perf_evlist__add_attrs(evlist, attrs, nr_attrs); 229 } 230 231 struct perf_evsel * 232 perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id) 233 { 234 struct perf_evsel *evsel; 235 236 evlist__for_each(evlist, evsel) { 237 if (evsel->attr.type == PERF_TYPE_TRACEPOINT && 238 (int)evsel->attr.config == id) 239 return evsel; 240 } 241 242 return NULL; 243 } 244 245 struct perf_evsel * 246 perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist, 247 const char *name) 248 { 249 struct perf_evsel *evsel; 250 251 evlist__for_each(evlist, evsel) { 252 if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) && 253 (strcmp(evsel->name, name) == 0)) 254 return evsel; 255 } 256 257 return NULL; 258 } 259 260 int perf_evlist__add_newtp(struct perf_evlist *evlist, 261 const char *sys, const char *name, void *handler) 262 { 263 struct perf_evsel *evsel = perf_evsel__newtp(sys, name); 264 265 if (evsel == NULL) 266 return -1; 267 268 evsel->handler = handler; 269 perf_evlist__add(evlist, evsel); 270 return 0; 271 } 272 273 static int perf_evlist__nr_threads(struct perf_evlist *evlist, 274 struct perf_evsel *evsel) 275 { 276 if (evsel->system_wide) 277 return 1; 278 else 279 return thread_map__nr(evlist->threads); 280 } 281 282 void perf_evlist__disable(struct perf_evlist *evlist) 283 { 284 int cpu, thread; 285 struct perf_evsel *pos; 286 int nr_cpus = cpu_map__nr(evlist->cpus); 287 int nr_threads; 288 289 for (cpu = 0; cpu < nr_cpus; cpu++) { 290 evlist__for_each(evlist, pos) { 291 if (!perf_evsel__is_group_leader(pos) || !pos->fd) 292 continue; 293 nr_threads = perf_evlist__nr_threads(evlist, pos); 294 for (thread = 0; thread < nr_threads; thread++) 295 ioctl(FD(pos, cpu, thread), 296 PERF_EVENT_IOC_DISABLE, 0); 297 } 298 } 299 } 300 301 void perf_evlist__enable(struct perf_evlist *evlist) 302 { 303 int cpu, thread; 304 struct perf_evsel *pos; 305 int nr_cpus = cpu_map__nr(evlist->cpus); 306 int nr_threads; 307 308 for (cpu = 0; cpu < nr_cpus; cpu++) { 309 evlist__for_each(evlist, pos) { 310 if (!perf_evsel__is_group_leader(pos) || !pos->fd) 311 continue; 312 nr_threads = perf_evlist__nr_threads(evlist, pos); 313 for (thread = 0; thread < nr_threads; thread++) 314 ioctl(FD(pos, cpu, thread), 315 PERF_EVENT_IOC_ENABLE, 0); 316 } 317 } 318 } 319 320 int perf_evlist__disable_event(struct perf_evlist *evlist, 321 struct perf_evsel *evsel) 322 { 323 int cpu, thread, err; 324 int nr_cpus = cpu_map__nr(evlist->cpus); 325 int nr_threads = perf_evlist__nr_threads(evlist, evsel); 326 327 if (!evsel->fd) 328 return 0; 329 330 for (cpu = 0; cpu < nr_cpus; cpu++) { 331 for (thread = 0; thread < nr_threads; thread++) { 332 err = ioctl(FD(evsel, cpu, thread), 333 PERF_EVENT_IOC_DISABLE, 0); 334 if (err) 335 return err; 336 } 337 } 338 return 0; 339 } 340 341 int perf_evlist__enable_event(struct perf_evlist *evlist, 342 struct perf_evsel *evsel) 343 { 344 int cpu, thread, err; 345 int nr_cpus = cpu_map__nr(evlist->cpus); 346 int nr_threads = perf_evlist__nr_threads(evlist, evsel); 347 348 if (!evsel->fd) 349 return -EINVAL; 350 351 for (cpu = 0; cpu < nr_cpus; cpu++) { 352 for (thread = 0; thread < nr_threads; thread++) { 353 err = ioctl(FD(evsel, cpu, thread), 354 PERF_EVENT_IOC_ENABLE, 0); 355 if (err) 356 return err; 357 } 358 } 359 return 0; 360 } 361 362 static int perf_evlist__enable_event_cpu(struct perf_evlist *evlist, 363 struct perf_evsel *evsel, int cpu) 364 { 365 int thread, err; 366 int nr_threads = perf_evlist__nr_threads(evlist, evsel); 367 368 if (!evsel->fd) 369 return -EINVAL; 370 371 for (thread = 0; thread < nr_threads; thread++) { 372 err = ioctl(FD(evsel, cpu, thread), 373 PERF_EVENT_IOC_ENABLE, 0); 374 if (err) 375 return err; 376 } 377 return 0; 378 } 379 380 static int perf_evlist__enable_event_thread(struct perf_evlist *evlist, 381 struct perf_evsel *evsel, 382 int thread) 383 { 384 int cpu, err; 385 int nr_cpus = cpu_map__nr(evlist->cpus); 386 387 if (!evsel->fd) 388 return -EINVAL; 389 390 for (cpu = 0; cpu < nr_cpus; cpu++) { 391 err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); 392 if (err) 393 return err; 394 } 395 return 0; 396 } 397 398 int perf_evlist__enable_event_idx(struct perf_evlist *evlist, 399 struct perf_evsel *evsel, int idx) 400 { 401 bool per_cpu_mmaps = !cpu_map__empty(evlist->cpus); 402 403 if (per_cpu_mmaps) 404 return perf_evlist__enable_event_cpu(evlist, evsel, idx); 405 else 406 return perf_evlist__enable_event_thread(evlist, evsel, idx); 407 } 408 409 int perf_evlist__alloc_pollfd(struct perf_evlist *evlist) 410 { 411 int nr_cpus = cpu_map__nr(evlist->cpus); 412 int nr_threads = thread_map__nr(evlist->threads); 413 int nfds = 0; 414 struct perf_evsel *evsel; 415 416 list_for_each_entry(evsel, &evlist->entries, node) { 417 if (evsel->system_wide) 418 nfds += nr_cpus; 419 else 420 nfds += nr_cpus * nr_threads; 421 } 422 423 if (fdarray__available_entries(&evlist->pollfd) < nfds && 424 fdarray__grow(&evlist->pollfd, nfds) < 0) 425 return -ENOMEM; 426 427 return 0; 428 } 429 430 static int __perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd, int idx) 431 { 432 int pos = fdarray__add(&evlist->pollfd, fd, POLLIN | POLLERR | POLLHUP); 433 /* 434 * Save the idx so that when we filter out fds POLLHUP'ed we can 435 * close the associated evlist->mmap[] entry. 436 */ 437 if (pos >= 0) { 438 evlist->pollfd.priv[pos].idx = idx; 439 440 fcntl(fd, F_SETFL, O_NONBLOCK); 441 } 442 443 return pos; 444 } 445 446 int perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd) 447 { 448 return __perf_evlist__add_pollfd(evlist, fd, -1); 449 } 450 451 static void perf_evlist__munmap_filtered(struct fdarray *fda, int fd) 452 { 453 struct perf_evlist *evlist = container_of(fda, struct perf_evlist, pollfd); 454 455 perf_evlist__mmap_put(evlist, fda->priv[fd].idx); 456 } 457 458 int perf_evlist__filter_pollfd(struct perf_evlist *evlist, short revents_and_mask) 459 { 460 return fdarray__filter(&evlist->pollfd, revents_and_mask, 461 perf_evlist__munmap_filtered); 462 } 463 464 int perf_evlist__poll(struct perf_evlist *evlist, int timeout) 465 { 466 return fdarray__poll(&evlist->pollfd, timeout); 467 } 468 469 static void perf_evlist__id_hash(struct perf_evlist *evlist, 470 struct perf_evsel *evsel, 471 int cpu, int thread, u64 id) 472 { 473 int hash; 474 struct perf_sample_id *sid = SID(evsel, cpu, thread); 475 476 sid->id = id; 477 sid->evsel = evsel; 478 hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS); 479 hlist_add_head(&sid->node, &evlist->heads[hash]); 480 } 481 482 void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel, 483 int cpu, int thread, u64 id) 484 { 485 perf_evlist__id_hash(evlist, evsel, cpu, thread, id); 486 evsel->id[evsel->ids++] = id; 487 } 488 489 static int perf_evlist__id_add_fd(struct perf_evlist *evlist, 490 struct perf_evsel *evsel, 491 int cpu, int thread, int fd) 492 { 493 u64 read_data[4] = { 0, }; 494 int id_idx = 1; /* The first entry is the counter value */ 495 u64 id; 496 int ret; 497 498 ret = ioctl(fd, PERF_EVENT_IOC_ID, &id); 499 if (!ret) 500 goto add; 501 502 if (errno != ENOTTY) 503 return -1; 504 505 /* Legacy way to get event id.. All hail to old kernels! */ 506 507 /* 508 * This way does not work with group format read, so bail 509 * out in that case. 510 */ 511 if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP) 512 return -1; 513 514 if (!(evsel->attr.read_format & PERF_FORMAT_ID) || 515 read(fd, &read_data, sizeof(read_data)) == -1) 516 return -1; 517 518 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 519 ++id_idx; 520 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 521 ++id_idx; 522 523 id = read_data[id_idx]; 524 525 add: 526 perf_evlist__id_add(evlist, evsel, cpu, thread, id); 527 return 0; 528 } 529 530 struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id) 531 { 532 struct hlist_head *head; 533 struct perf_sample_id *sid; 534 int hash; 535 536 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 537 head = &evlist->heads[hash]; 538 539 hlist_for_each_entry(sid, head, node) 540 if (sid->id == id) 541 return sid; 542 543 return NULL; 544 } 545 546 struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id) 547 { 548 struct perf_sample_id *sid; 549 550 if (evlist->nr_entries == 1) 551 return perf_evlist__first(evlist); 552 553 sid = perf_evlist__id2sid(evlist, id); 554 if (sid) 555 return sid->evsel; 556 557 if (!perf_evlist__sample_id_all(evlist)) 558 return perf_evlist__first(evlist); 559 560 return NULL; 561 } 562 563 static int perf_evlist__event2id(struct perf_evlist *evlist, 564 union perf_event *event, u64 *id) 565 { 566 const u64 *array = event->sample.array; 567 ssize_t n; 568 569 n = (event->header.size - sizeof(event->header)) >> 3; 570 571 if (event->header.type == PERF_RECORD_SAMPLE) { 572 if (evlist->id_pos >= n) 573 return -1; 574 *id = array[evlist->id_pos]; 575 } else { 576 if (evlist->is_pos > n) 577 return -1; 578 n -= evlist->is_pos; 579 *id = array[n]; 580 } 581 return 0; 582 } 583 584 static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist, 585 union perf_event *event) 586 { 587 struct perf_evsel *first = perf_evlist__first(evlist); 588 struct hlist_head *head; 589 struct perf_sample_id *sid; 590 int hash; 591 u64 id; 592 593 if (evlist->nr_entries == 1) 594 return first; 595 596 if (!first->attr.sample_id_all && 597 event->header.type != PERF_RECORD_SAMPLE) 598 return first; 599 600 if (perf_evlist__event2id(evlist, event, &id)) 601 return NULL; 602 603 /* Synthesized events have an id of zero */ 604 if (!id) 605 return first; 606 607 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 608 head = &evlist->heads[hash]; 609 610 hlist_for_each_entry(sid, head, node) { 611 if (sid->id == id) 612 return sid->evsel; 613 } 614 return NULL; 615 } 616 617 union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx) 618 { 619 struct perf_mmap *md = &evlist->mmap[idx]; 620 unsigned int head = perf_mmap__read_head(md); 621 unsigned int old = md->prev; 622 unsigned char *data = md->base + page_size; 623 union perf_event *event = NULL; 624 625 if (evlist->overwrite) { 626 /* 627 * If we're further behind than half the buffer, there's a chance 628 * the writer will bite our tail and mess up the samples under us. 629 * 630 * If we somehow ended up ahead of the head, we got messed up. 631 * 632 * In either case, truncate and restart at head. 633 */ 634 int diff = head - old; 635 if (diff > md->mask / 2 || diff < 0) { 636 fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); 637 638 /* 639 * head points to a known good entry, start there. 640 */ 641 old = head; 642 } 643 } 644 645 if (old != head) { 646 size_t size; 647 648 event = (union perf_event *)&data[old & md->mask]; 649 size = event->header.size; 650 651 /* 652 * Event straddles the mmap boundary -- header should always 653 * be inside due to u64 alignment of output. 654 */ 655 if ((old & md->mask) + size != ((old + size) & md->mask)) { 656 unsigned int offset = old; 657 unsigned int len = min(sizeof(*event), size), cpy; 658 void *dst = md->event_copy; 659 660 do { 661 cpy = min(md->mask + 1 - (offset & md->mask), len); 662 memcpy(dst, &data[offset & md->mask], cpy); 663 offset += cpy; 664 dst += cpy; 665 len -= cpy; 666 } while (len); 667 668 event = (union perf_event *) md->event_copy; 669 } 670 671 old += size; 672 } 673 674 md->prev = old; 675 676 return event; 677 } 678 679 static bool perf_mmap__empty(struct perf_mmap *md) 680 { 681 return perf_mmap__read_head(md) != md->prev; 682 } 683 684 static void perf_evlist__mmap_get(struct perf_evlist *evlist, int idx) 685 { 686 ++evlist->mmap[idx].refcnt; 687 } 688 689 static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx) 690 { 691 BUG_ON(evlist->mmap[idx].refcnt == 0); 692 693 if (--evlist->mmap[idx].refcnt == 0) 694 __perf_evlist__munmap(evlist, idx); 695 } 696 697 void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx) 698 { 699 struct perf_mmap *md = &evlist->mmap[idx]; 700 701 if (!evlist->overwrite) { 702 unsigned int old = md->prev; 703 704 perf_mmap__write_tail(md, old); 705 } 706 707 if (md->refcnt == 1 && perf_mmap__empty(md)) 708 perf_evlist__mmap_put(evlist, idx); 709 } 710 711 static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx) 712 { 713 if (evlist->mmap[idx].base != NULL) { 714 munmap(evlist->mmap[idx].base, evlist->mmap_len); 715 evlist->mmap[idx].base = NULL; 716 evlist->mmap[idx].refcnt = 0; 717 } 718 } 719 720 void perf_evlist__munmap(struct perf_evlist *evlist) 721 { 722 int i; 723 724 if (evlist->mmap == NULL) 725 return; 726 727 for (i = 0; i < evlist->nr_mmaps; i++) 728 __perf_evlist__munmap(evlist, i); 729 730 zfree(&evlist->mmap); 731 } 732 733 static int perf_evlist__alloc_mmap(struct perf_evlist *evlist) 734 { 735 evlist->nr_mmaps = cpu_map__nr(evlist->cpus); 736 if (cpu_map__empty(evlist->cpus)) 737 evlist->nr_mmaps = thread_map__nr(evlist->threads); 738 evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap)); 739 return evlist->mmap != NULL ? 0 : -ENOMEM; 740 } 741 742 struct mmap_params { 743 int prot; 744 int mask; 745 }; 746 747 static int __perf_evlist__mmap(struct perf_evlist *evlist, int idx, 748 struct mmap_params *mp, int fd) 749 { 750 /* 751 * The last one will be done at perf_evlist__mmap_consume(), so that we 752 * make sure we don't prevent tools from consuming every last event in 753 * the ring buffer. 754 * 755 * I.e. we can get the POLLHUP meaning that the fd doesn't exist 756 * anymore, but the last events for it are still in the ring buffer, 757 * waiting to be consumed. 758 * 759 * Tools can chose to ignore this at their own discretion, but the 760 * evlist layer can't just drop it when filtering events in 761 * perf_evlist__filter_pollfd(). 762 */ 763 evlist->mmap[idx].refcnt = 2; 764 evlist->mmap[idx].prev = 0; 765 evlist->mmap[idx].mask = mp->mask; 766 evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, mp->prot, 767 MAP_SHARED, fd, 0); 768 if (evlist->mmap[idx].base == MAP_FAILED) { 769 pr_debug2("failed to mmap perf event ring buffer, error %d\n", 770 errno); 771 evlist->mmap[idx].base = NULL; 772 return -1; 773 } 774 775 return 0; 776 } 777 778 static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx, 779 struct mmap_params *mp, int cpu, 780 int thread, int *output) 781 { 782 struct perf_evsel *evsel; 783 784 evlist__for_each(evlist, evsel) { 785 int fd; 786 787 if (evsel->system_wide && thread) 788 continue; 789 790 fd = FD(evsel, cpu, thread); 791 792 if (*output == -1) { 793 *output = fd; 794 if (__perf_evlist__mmap(evlist, idx, mp, *output) < 0) 795 return -1; 796 } else { 797 if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0) 798 return -1; 799 800 perf_evlist__mmap_get(evlist, idx); 801 } 802 803 if (__perf_evlist__add_pollfd(evlist, fd, idx) < 0) { 804 perf_evlist__mmap_put(evlist, idx); 805 return -1; 806 } 807 808 if ((evsel->attr.read_format & PERF_FORMAT_ID) && 809 perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0) 810 return -1; 811 } 812 813 return 0; 814 } 815 816 static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, 817 struct mmap_params *mp) 818 { 819 int cpu, thread; 820 int nr_cpus = cpu_map__nr(evlist->cpus); 821 int nr_threads = thread_map__nr(evlist->threads); 822 823 pr_debug2("perf event ring buffer mmapped per cpu\n"); 824 for (cpu = 0; cpu < nr_cpus; cpu++) { 825 int output = -1; 826 827 for (thread = 0; thread < nr_threads; thread++) { 828 if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu, 829 thread, &output)) 830 goto out_unmap; 831 } 832 } 833 834 return 0; 835 836 out_unmap: 837 for (cpu = 0; cpu < nr_cpus; cpu++) 838 __perf_evlist__munmap(evlist, cpu); 839 return -1; 840 } 841 842 static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, 843 struct mmap_params *mp) 844 { 845 int thread; 846 int nr_threads = thread_map__nr(evlist->threads); 847 848 pr_debug2("perf event ring buffer mmapped per thread\n"); 849 for (thread = 0; thread < nr_threads; thread++) { 850 int output = -1; 851 852 if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread, 853 &output)) 854 goto out_unmap; 855 } 856 857 return 0; 858 859 out_unmap: 860 for (thread = 0; thread < nr_threads; thread++) 861 __perf_evlist__munmap(evlist, thread); 862 return -1; 863 } 864 865 static size_t perf_evlist__mmap_size(unsigned long pages) 866 { 867 /* 512 kiB: default amount of unprivileged mlocked memory */ 868 if (pages == UINT_MAX) 869 pages = (512 * 1024) / page_size; 870 else if (!is_power_of_2(pages)) 871 return 0; 872 873 return (pages + 1) * page_size; 874 } 875 876 static long parse_pages_arg(const char *str, unsigned long min, 877 unsigned long max) 878 { 879 unsigned long pages, val; 880 static struct parse_tag tags[] = { 881 { .tag = 'B', .mult = 1 }, 882 { .tag = 'K', .mult = 1 << 10 }, 883 { .tag = 'M', .mult = 1 << 20 }, 884 { .tag = 'G', .mult = 1 << 30 }, 885 { .tag = 0 }, 886 }; 887 888 if (str == NULL) 889 return -EINVAL; 890 891 val = parse_tag_value(str, tags); 892 if (val != (unsigned long) -1) { 893 /* we got file size value */ 894 pages = PERF_ALIGN(val, page_size) / page_size; 895 } else { 896 /* we got pages count value */ 897 char *eptr; 898 pages = strtoul(str, &eptr, 10); 899 if (*eptr != '\0') 900 return -EINVAL; 901 } 902 903 if (pages == 0 && min == 0) { 904 /* leave number of pages at 0 */ 905 } else if (!is_power_of_2(pages)) { 906 /* round pages up to next power of 2 */ 907 pages = next_pow2_l(pages); 908 if (!pages) 909 return -EINVAL; 910 pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n", 911 pages * page_size, pages); 912 } 913 914 if (pages > max) 915 return -EINVAL; 916 917 return pages; 918 } 919 920 int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str, 921 int unset __maybe_unused) 922 { 923 unsigned int *mmap_pages = opt->value; 924 unsigned long max = UINT_MAX; 925 long pages; 926 927 if (max > SIZE_MAX / page_size) 928 max = SIZE_MAX / page_size; 929 930 pages = parse_pages_arg(str, 1, max); 931 if (pages < 0) { 932 pr_err("Invalid argument for --mmap_pages/-m\n"); 933 return -1; 934 } 935 936 *mmap_pages = pages; 937 return 0; 938 } 939 940 /** 941 * perf_evlist__mmap - Create mmaps to receive events. 942 * @evlist: list of events 943 * @pages: map length in pages 944 * @overwrite: overwrite older events? 945 * 946 * If @overwrite is %false the user needs to signal event consumption using 947 * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this 948 * automatically. 949 * 950 * Return: %0 on success, negative error code otherwise. 951 */ 952 int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages, 953 bool overwrite) 954 { 955 struct perf_evsel *evsel; 956 const struct cpu_map *cpus = evlist->cpus; 957 const struct thread_map *threads = evlist->threads; 958 struct mmap_params mp = { 959 .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), 960 }; 961 962 if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0) 963 return -ENOMEM; 964 965 if (evlist->pollfd.entries == NULL && perf_evlist__alloc_pollfd(evlist) < 0) 966 return -ENOMEM; 967 968 evlist->overwrite = overwrite; 969 evlist->mmap_len = perf_evlist__mmap_size(pages); 970 pr_debug("mmap size %zuB\n", evlist->mmap_len); 971 mp.mask = evlist->mmap_len - page_size - 1; 972 973 evlist__for_each(evlist, evsel) { 974 if ((evsel->attr.read_format & PERF_FORMAT_ID) && 975 evsel->sample_id == NULL && 976 perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0) 977 return -ENOMEM; 978 } 979 980 if (cpu_map__empty(cpus)) 981 return perf_evlist__mmap_per_thread(evlist, &mp); 982 983 return perf_evlist__mmap_per_cpu(evlist, &mp); 984 } 985 986 int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target) 987 { 988 evlist->threads = thread_map__new_str(target->pid, target->tid, 989 target->uid); 990 991 if (evlist->threads == NULL) 992 return -1; 993 994 if (target__uses_dummy_map(target)) 995 evlist->cpus = cpu_map__dummy_new(); 996 else 997 evlist->cpus = cpu_map__new(target->cpu_list); 998 999 if (evlist->cpus == NULL) 1000 goto out_delete_threads; 1001 1002 return 0; 1003 1004 out_delete_threads: 1005 thread_map__delete(evlist->threads); 1006 return -1; 1007 } 1008 1009 int perf_evlist__apply_filters(struct perf_evlist *evlist) 1010 { 1011 struct perf_evsel *evsel; 1012 int err = 0; 1013 const int ncpus = cpu_map__nr(evlist->cpus), 1014 nthreads = thread_map__nr(evlist->threads); 1015 1016 evlist__for_each(evlist, evsel) { 1017 if (evsel->filter == NULL) 1018 continue; 1019 1020 err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter); 1021 if (err) 1022 break; 1023 } 1024 1025 return err; 1026 } 1027 1028 int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter) 1029 { 1030 struct perf_evsel *evsel; 1031 int err = 0; 1032 const int ncpus = cpu_map__nr(evlist->cpus), 1033 nthreads = thread_map__nr(evlist->threads); 1034 1035 evlist__for_each(evlist, evsel) { 1036 err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter); 1037 if (err) 1038 break; 1039 } 1040 1041 return err; 1042 } 1043 1044 bool perf_evlist__valid_sample_type(struct perf_evlist *evlist) 1045 { 1046 struct perf_evsel *pos; 1047 1048 if (evlist->nr_entries == 1) 1049 return true; 1050 1051 if (evlist->id_pos < 0 || evlist->is_pos < 0) 1052 return false; 1053 1054 evlist__for_each(evlist, pos) { 1055 if (pos->id_pos != evlist->id_pos || 1056 pos->is_pos != evlist->is_pos) 1057 return false; 1058 } 1059 1060 return true; 1061 } 1062 1063 u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist) 1064 { 1065 struct perf_evsel *evsel; 1066 1067 if (evlist->combined_sample_type) 1068 return evlist->combined_sample_type; 1069 1070 evlist__for_each(evlist, evsel) 1071 evlist->combined_sample_type |= evsel->attr.sample_type; 1072 1073 return evlist->combined_sample_type; 1074 } 1075 1076 u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist) 1077 { 1078 evlist->combined_sample_type = 0; 1079 return __perf_evlist__combined_sample_type(evlist); 1080 } 1081 1082 bool perf_evlist__valid_read_format(struct perf_evlist *evlist) 1083 { 1084 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; 1085 u64 read_format = first->attr.read_format; 1086 u64 sample_type = first->attr.sample_type; 1087 1088 evlist__for_each(evlist, pos) { 1089 if (read_format != pos->attr.read_format) 1090 return false; 1091 } 1092 1093 /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */ 1094 if ((sample_type & PERF_SAMPLE_READ) && 1095 !(read_format & PERF_FORMAT_ID)) { 1096 return false; 1097 } 1098 1099 return true; 1100 } 1101 1102 u64 perf_evlist__read_format(struct perf_evlist *evlist) 1103 { 1104 struct perf_evsel *first = perf_evlist__first(evlist); 1105 return first->attr.read_format; 1106 } 1107 1108 u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist) 1109 { 1110 struct perf_evsel *first = perf_evlist__first(evlist); 1111 struct perf_sample *data; 1112 u64 sample_type; 1113 u16 size = 0; 1114 1115 if (!first->attr.sample_id_all) 1116 goto out; 1117 1118 sample_type = first->attr.sample_type; 1119 1120 if (sample_type & PERF_SAMPLE_TID) 1121 size += sizeof(data->tid) * 2; 1122 1123 if (sample_type & PERF_SAMPLE_TIME) 1124 size += sizeof(data->time); 1125 1126 if (sample_type & PERF_SAMPLE_ID) 1127 size += sizeof(data->id); 1128 1129 if (sample_type & PERF_SAMPLE_STREAM_ID) 1130 size += sizeof(data->stream_id); 1131 1132 if (sample_type & PERF_SAMPLE_CPU) 1133 size += sizeof(data->cpu) * 2; 1134 1135 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1136 size += sizeof(data->id); 1137 out: 1138 return size; 1139 } 1140 1141 bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist) 1142 { 1143 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; 1144 1145 evlist__for_each_continue(evlist, pos) { 1146 if (first->attr.sample_id_all != pos->attr.sample_id_all) 1147 return false; 1148 } 1149 1150 return true; 1151 } 1152 1153 bool perf_evlist__sample_id_all(struct perf_evlist *evlist) 1154 { 1155 struct perf_evsel *first = perf_evlist__first(evlist); 1156 return first->attr.sample_id_all; 1157 } 1158 1159 void perf_evlist__set_selected(struct perf_evlist *evlist, 1160 struct perf_evsel *evsel) 1161 { 1162 evlist->selected = evsel; 1163 } 1164 1165 void perf_evlist__close(struct perf_evlist *evlist) 1166 { 1167 struct perf_evsel *evsel; 1168 int ncpus = cpu_map__nr(evlist->cpus); 1169 int nthreads = thread_map__nr(evlist->threads); 1170 int n; 1171 1172 evlist__for_each_reverse(evlist, evsel) { 1173 n = evsel->cpus ? evsel->cpus->nr : ncpus; 1174 perf_evsel__close(evsel, n, nthreads); 1175 } 1176 } 1177 1178 int perf_evlist__open(struct perf_evlist *evlist) 1179 { 1180 struct perf_evsel *evsel; 1181 int err; 1182 1183 perf_evlist__update_id_pos(evlist); 1184 1185 evlist__for_each(evlist, evsel) { 1186 err = perf_evsel__open(evsel, evlist->cpus, evlist->threads); 1187 if (err < 0) 1188 goto out_err; 1189 } 1190 1191 return 0; 1192 out_err: 1193 perf_evlist__close(evlist); 1194 errno = -err; 1195 return err; 1196 } 1197 1198 int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target, 1199 const char *argv[], bool pipe_output, 1200 void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) 1201 { 1202 int child_ready_pipe[2], go_pipe[2]; 1203 char bf; 1204 1205 if (pipe(child_ready_pipe) < 0) { 1206 perror("failed to create 'ready' pipe"); 1207 return -1; 1208 } 1209 1210 if (pipe(go_pipe) < 0) { 1211 perror("failed to create 'go' pipe"); 1212 goto out_close_ready_pipe; 1213 } 1214 1215 evlist->workload.pid = fork(); 1216 if (evlist->workload.pid < 0) { 1217 perror("failed to fork"); 1218 goto out_close_pipes; 1219 } 1220 1221 if (!evlist->workload.pid) { 1222 int ret; 1223 1224 if (pipe_output) 1225 dup2(2, 1); 1226 1227 signal(SIGTERM, SIG_DFL); 1228 1229 close(child_ready_pipe[0]); 1230 close(go_pipe[1]); 1231 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); 1232 1233 /* 1234 * Tell the parent we're ready to go 1235 */ 1236 close(child_ready_pipe[1]); 1237 1238 /* 1239 * Wait until the parent tells us to go. 1240 */ 1241 ret = read(go_pipe[0], &bf, 1); 1242 /* 1243 * The parent will ask for the execvp() to be performed by 1244 * writing exactly one byte, in workload.cork_fd, usually via 1245 * perf_evlist__start_workload(). 1246 * 1247 * For cancelling the workload without actuallin running it, 1248 * the parent will just close workload.cork_fd, without writing 1249 * anything, i.e. read will return zero and we just exit() 1250 * here. 1251 */ 1252 if (ret != 1) { 1253 if (ret == -1) 1254 perror("unable to read pipe"); 1255 exit(ret); 1256 } 1257 1258 execvp(argv[0], (char **)argv); 1259 1260 if (exec_error) { 1261 union sigval val; 1262 1263 val.sival_int = errno; 1264 if (sigqueue(getppid(), SIGUSR1, val)) 1265 perror(argv[0]); 1266 } else 1267 perror(argv[0]); 1268 exit(-1); 1269 } 1270 1271 if (exec_error) { 1272 struct sigaction act = { 1273 .sa_flags = SA_SIGINFO, 1274 .sa_sigaction = exec_error, 1275 }; 1276 sigaction(SIGUSR1, &act, NULL); 1277 } 1278 1279 if (target__none(target)) 1280 evlist->threads->map[0] = evlist->workload.pid; 1281 1282 close(child_ready_pipe[1]); 1283 close(go_pipe[0]); 1284 /* 1285 * wait for child to settle 1286 */ 1287 if (read(child_ready_pipe[0], &bf, 1) == -1) { 1288 perror("unable to read pipe"); 1289 goto out_close_pipes; 1290 } 1291 1292 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); 1293 evlist->workload.cork_fd = go_pipe[1]; 1294 close(child_ready_pipe[0]); 1295 return 0; 1296 1297 out_close_pipes: 1298 close(go_pipe[0]); 1299 close(go_pipe[1]); 1300 out_close_ready_pipe: 1301 close(child_ready_pipe[0]); 1302 close(child_ready_pipe[1]); 1303 return -1; 1304 } 1305 1306 int perf_evlist__start_workload(struct perf_evlist *evlist) 1307 { 1308 if (evlist->workload.cork_fd > 0) { 1309 char bf = 0; 1310 int ret; 1311 /* 1312 * Remove the cork, let it rip! 1313 */ 1314 ret = write(evlist->workload.cork_fd, &bf, 1); 1315 if (ret < 0) 1316 perror("enable to write to pipe"); 1317 1318 close(evlist->workload.cork_fd); 1319 return ret; 1320 } 1321 1322 return 0; 1323 } 1324 1325 int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event, 1326 struct perf_sample *sample) 1327 { 1328 struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event); 1329 1330 if (!evsel) 1331 return -EFAULT; 1332 return perf_evsel__parse_sample(evsel, event, sample); 1333 } 1334 1335 size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp) 1336 { 1337 struct perf_evsel *evsel; 1338 size_t printed = 0; 1339 1340 evlist__for_each(evlist, evsel) { 1341 printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "", 1342 perf_evsel__name(evsel)); 1343 } 1344 1345 return printed + fprintf(fp, "\n"); 1346 } 1347 1348 int perf_evlist__strerror_tp(struct perf_evlist *evlist __maybe_unused, 1349 int err, char *buf, size_t size) 1350 { 1351 char sbuf[128]; 1352 1353 switch (err) { 1354 case ENOENT: 1355 scnprintf(buf, size, "%s", 1356 "Error:\tUnable to find debugfs\n" 1357 "Hint:\tWas your kernel was compiled with debugfs support?\n" 1358 "Hint:\tIs the debugfs filesystem mounted?\n" 1359 "Hint:\tTry 'sudo mount -t debugfs nodev /sys/kernel/debug'"); 1360 break; 1361 case EACCES: 1362 scnprintf(buf, size, 1363 "Error:\tNo permissions to read %s/tracing/events/raw_syscalls\n" 1364 "Hint:\tTry 'sudo mount -o remount,mode=755 %s'\n", 1365 debugfs_mountpoint, debugfs_mountpoint); 1366 break; 1367 default: 1368 scnprintf(buf, size, "%s", strerror_r(err, sbuf, sizeof(sbuf))); 1369 break; 1370 } 1371 1372 return 0; 1373 } 1374 1375 int perf_evlist__strerror_open(struct perf_evlist *evlist __maybe_unused, 1376 int err, char *buf, size_t size) 1377 { 1378 int printed, value; 1379 char sbuf[STRERR_BUFSIZE], *emsg = strerror_r(err, sbuf, sizeof(sbuf)); 1380 1381 switch (err) { 1382 case EACCES: 1383 case EPERM: 1384 printed = scnprintf(buf, size, 1385 "Error:\t%s.\n" 1386 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); 1387 1388 value = perf_event_paranoid(); 1389 1390 printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); 1391 1392 if (value >= 2) { 1393 printed += scnprintf(buf + printed, size - printed, 1394 "For your workloads it needs to be <= 1\nHint:\t"); 1395 } 1396 printed += scnprintf(buf + printed, size - printed, 1397 "For system wide tracing it needs to be set to -1.\n"); 1398 1399 printed += scnprintf(buf + printed, size - printed, 1400 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" 1401 "Hint:\tThe current value is %d.", value); 1402 break; 1403 default: 1404 scnprintf(buf, size, "%s", emsg); 1405 break; 1406 } 1407 1408 return 0; 1409 } 1410 1411 void perf_evlist__to_front(struct perf_evlist *evlist, 1412 struct perf_evsel *move_evsel) 1413 { 1414 struct perf_evsel *evsel, *n; 1415 LIST_HEAD(move); 1416 1417 if (move_evsel == perf_evlist__first(evlist)) 1418 return; 1419 1420 evlist__for_each_safe(evlist, n, evsel) { 1421 if (evsel->leader == move_evsel->leader) 1422 list_move_tail(&evsel->node, &move); 1423 } 1424 1425 list_splice(&move, &evlist->entries); 1426 } 1427 1428 void perf_evlist__set_tracking_event(struct perf_evlist *evlist, 1429 struct perf_evsel *tracking_evsel) 1430 { 1431 struct perf_evsel *evsel; 1432 1433 if (tracking_evsel->tracking) 1434 return; 1435 1436 evlist__for_each(evlist, evsel) { 1437 if (evsel != tracking_evsel) 1438 evsel->tracking = false; 1439 } 1440 1441 tracking_evsel->tracking = true; 1442 } 1443