xref: /linux/tools/perf/util/env.c (revision f728c17fc97aea7a33151d9ba64106291c62bb02)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include "linux/compiler.h"
7 #include <linux/ctype.h>
8 #include <linux/zalloc.h>
9 #include "cgroup.h"
10 #include <errno.h>
11 #include <sys/utsname.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include "pmus.h"
15 #include "strbuf.h"
16 #include "trace/beauty/beauty.h"
17 
18 struct perf_env perf_env;
19 
20 #ifdef HAVE_LIBBPF_SUPPORT
21 #include "bpf-event.h"
22 #include "bpf-utils.h"
23 #include <bpf/libbpf.h>
24 
25 void perf_env__insert_bpf_prog_info(struct perf_env *env,
26 				    struct bpf_prog_info_node *info_node)
27 {
28 	down_write(&env->bpf_progs.lock);
29 	__perf_env__insert_bpf_prog_info(env, info_node);
30 	up_write(&env->bpf_progs.lock);
31 }
32 
33 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
34 {
35 	__u32 prog_id = info_node->info_linear->info.id;
36 	struct bpf_prog_info_node *node;
37 	struct rb_node *parent = NULL;
38 	struct rb_node **p;
39 
40 	p = &env->bpf_progs.infos.rb_node;
41 
42 	while (*p != NULL) {
43 		parent = *p;
44 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
45 		if (prog_id < node->info_linear->info.id) {
46 			p = &(*p)->rb_left;
47 		} else if (prog_id > node->info_linear->info.id) {
48 			p = &(*p)->rb_right;
49 		} else {
50 			pr_debug("duplicated bpf prog info %u\n", prog_id);
51 			return;
52 		}
53 	}
54 
55 	rb_link_node(&info_node->rb_node, parent, p);
56 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
57 	env->bpf_progs.infos_cnt++;
58 }
59 
60 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
61 							__u32 prog_id)
62 {
63 	struct bpf_prog_info_node *node = NULL;
64 	struct rb_node *n;
65 
66 	down_read(&env->bpf_progs.lock);
67 	n = env->bpf_progs.infos.rb_node;
68 
69 	while (n) {
70 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
71 		if (prog_id < node->info_linear->info.id)
72 			n = n->rb_left;
73 		else if (prog_id > node->info_linear->info.id)
74 			n = n->rb_right;
75 		else
76 			goto out;
77 	}
78 	node = NULL;
79 
80 out:
81 	up_read(&env->bpf_progs.lock);
82 	return node;
83 }
84 
85 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
86 {
87 	bool ret;
88 
89 	down_write(&env->bpf_progs.lock);
90 	ret = __perf_env__insert_btf(env, btf_node);
91 	up_write(&env->bpf_progs.lock);
92 	return ret;
93 }
94 
95 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
96 {
97 	struct rb_node *parent = NULL;
98 	__u32 btf_id = btf_node->id;
99 	struct btf_node *node;
100 	struct rb_node **p;
101 
102 	p = &env->bpf_progs.btfs.rb_node;
103 
104 	while (*p != NULL) {
105 		parent = *p;
106 		node = rb_entry(parent, struct btf_node, rb_node);
107 		if (btf_id < node->id) {
108 			p = &(*p)->rb_left;
109 		} else if (btf_id > node->id) {
110 			p = &(*p)->rb_right;
111 		} else {
112 			pr_debug("duplicated btf %u\n", btf_id);
113 			return false;
114 		}
115 	}
116 
117 	rb_link_node(&btf_node->rb_node, parent, p);
118 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
119 	env->bpf_progs.btfs_cnt++;
120 	return true;
121 }
122 
123 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
124 {
125 	struct btf_node *res;
126 
127 	down_read(&env->bpf_progs.lock);
128 	res = __perf_env__find_btf(env, btf_id);
129 	up_read(&env->bpf_progs.lock);
130 	return res;
131 }
132 
133 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
134 {
135 	struct btf_node *node = NULL;
136 	struct rb_node *n;
137 
138 	n = env->bpf_progs.btfs.rb_node;
139 
140 	while (n) {
141 		node = rb_entry(n, struct btf_node, rb_node);
142 		if (btf_id < node->id)
143 			n = n->rb_left;
144 		else if (btf_id > node->id)
145 			n = n->rb_right;
146 		else
147 			return node;
148 	}
149 	return NULL;
150 }
151 
152 /* purge data in bpf_progs.infos tree */
153 static void perf_env__purge_bpf(struct perf_env *env)
154 {
155 	struct rb_root *root;
156 	struct rb_node *next;
157 
158 	down_write(&env->bpf_progs.lock);
159 
160 	root = &env->bpf_progs.infos;
161 	next = rb_first(root);
162 
163 	while (next) {
164 		struct bpf_prog_info_node *node;
165 
166 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
167 		next = rb_next(&node->rb_node);
168 		rb_erase(&node->rb_node, root);
169 		zfree(&node->info_linear);
170 		free(node);
171 	}
172 
173 	env->bpf_progs.infos_cnt = 0;
174 
175 	root = &env->bpf_progs.btfs;
176 	next = rb_first(root);
177 
178 	while (next) {
179 		struct btf_node *node;
180 
181 		node = rb_entry(next, struct btf_node, rb_node);
182 		next = rb_next(&node->rb_node);
183 		rb_erase(&node->rb_node, root);
184 		free(node);
185 	}
186 
187 	env->bpf_progs.btfs_cnt = 0;
188 
189 	up_write(&env->bpf_progs.lock);
190 }
191 #else // HAVE_LIBBPF_SUPPORT
192 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
193 {
194 }
195 #endif // HAVE_LIBBPF_SUPPORT
196 
197 void perf_env__exit(struct perf_env *env)
198 {
199 	int i, j;
200 
201 	perf_env__purge_bpf(env);
202 	perf_env__purge_cgroups(env);
203 	zfree(&env->hostname);
204 	zfree(&env->os_release);
205 	zfree(&env->version);
206 	zfree(&env->arch);
207 	zfree(&env->cpu_desc);
208 	zfree(&env->cpuid);
209 	zfree(&env->cmdline);
210 	zfree(&env->cmdline_argv);
211 	zfree(&env->sibling_dies);
212 	zfree(&env->sibling_cores);
213 	zfree(&env->sibling_threads);
214 	zfree(&env->pmu_mappings);
215 	zfree(&env->cpu);
216 	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
217 		zfree(&env->cpu_pmu_caps[i]);
218 	zfree(&env->cpu_pmu_caps);
219 	zfree(&env->numa_map);
220 
221 	for (i = 0; i < env->nr_numa_nodes; i++)
222 		perf_cpu_map__put(env->numa_nodes[i].map);
223 	zfree(&env->numa_nodes);
224 
225 	for (i = 0; i < env->caches_cnt; i++)
226 		cpu_cache_level__free(&env->caches[i]);
227 	zfree(&env->caches);
228 
229 	for (i = 0; i < env->nr_memory_nodes; i++)
230 		zfree(&env->memory_nodes[i].set);
231 	zfree(&env->memory_nodes);
232 
233 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
234 		zfree(&env->hybrid_nodes[i].pmu_name);
235 		zfree(&env->hybrid_nodes[i].cpus);
236 	}
237 	zfree(&env->hybrid_nodes);
238 
239 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
240 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
241 			zfree(&env->pmu_caps[i].caps[j]);
242 		zfree(&env->pmu_caps[i].caps);
243 		zfree(&env->pmu_caps[i].pmu_name);
244 	}
245 	zfree(&env->pmu_caps);
246 }
247 
248 void perf_env__init(struct perf_env *env)
249 {
250 #ifdef HAVE_LIBBPF_SUPPORT
251 	env->bpf_progs.infos = RB_ROOT;
252 	env->bpf_progs.btfs = RB_ROOT;
253 	init_rwsem(&env->bpf_progs.lock);
254 #endif
255 	env->kernel_is_64_bit = -1;
256 }
257 
258 static void perf_env__init_kernel_mode(struct perf_env *env)
259 {
260 	const char *arch = perf_env__raw_arch(env);
261 
262 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
263 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
264 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
265 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
266 		env->kernel_is_64_bit = 1;
267 	else
268 		env->kernel_is_64_bit = 0;
269 }
270 
271 int perf_env__kernel_is_64_bit(struct perf_env *env)
272 {
273 	if (env->kernel_is_64_bit == -1)
274 		perf_env__init_kernel_mode(env);
275 
276 	return env->kernel_is_64_bit;
277 }
278 
279 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
280 {
281 	int i;
282 
283 	/* do not include NULL termination */
284 	env->cmdline_argv = calloc(argc, sizeof(char *));
285 	if (env->cmdline_argv == NULL)
286 		goto out_enomem;
287 
288 	/*
289 	 * Must copy argv contents because it gets moved around during option
290 	 * parsing:
291 	 */
292 	for (i = 0; i < argc ; i++) {
293 		env->cmdline_argv[i] = argv[i];
294 		if (env->cmdline_argv[i] == NULL)
295 			goto out_free;
296 	}
297 
298 	env->nr_cmdline = argc;
299 
300 	return 0;
301 out_free:
302 	zfree(&env->cmdline_argv);
303 out_enomem:
304 	return -ENOMEM;
305 }
306 
307 int perf_env__read_cpu_topology_map(struct perf_env *env)
308 {
309 	int idx, nr_cpus;
310 
311 	if (env->cpu != NULL)
312 		return 0;
313 
314 	if (env->nr_cpus_avail == 0)
315 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
316 
317 	nr_cpus = env->nr_cpus_avail;
318 	if (nr_cpus == -1)
319 		return -EINVAL;
320 
321 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
322 	if (env->cpu == NULL)
323 		return -ENOMEM;
324 
325 	for (idx = 0; idx < nr_cpus; ++idx) {
326 		struct perf_cpu cpu = { .cpu = idx };
327 
328 		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
329 		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
330 		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
331 	}
332 
333 	env->nr_cpus_avail = nr_cpus;
334 	return 0;
335 }
336 
337 int perf_env__read_pmu_mappings(struct perf_env *env)
338 {
339 	struct perf_pmu *pmu = NULL;
340 	u32 pmu_num = 0;
341 	struct strbuf sb;
342 
343 	while ((pmu = perf_pmus__scan(pmu)))
344 		pmu_num++;
345 
346 	if (!pmu_num) {
347 		pr_debug("pmu mappings not available\n");
348 		return -ENOENT;
349 	}
350 	env->nr_pmu_mappings = pmu_num;
351 
352 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
353 		return -ENOMEM;
354 
355 	while ((pmu = perf_pmus__scan(pmu))) {
356 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
357 			goto error;
358 		/* include a NULL character at the end */
359 		if (strbuf_add(&sb, "", 1) < 0)
360 			goto error;
361 	}
362 
363 	env->pmu_mappings = strbuf_detach(&sb, NULL);
364 
365 	return 0;
366 
367 error:
368 	strbuf_release(&sb);
369 	return -1;
370 }
371 
372 int perf_env__read_cpuid(struct perf_env *env)
373 {
374 	char cpuid[128];
375 	int err = get_cpuid(cpuid, sizeof(cpuid));
376 
377 	if (err)
378 		return err;
379 
380 	free(env->cpuid);
381 	env->cpuid = strdup(cpuid);
382 	if (env->cpuid == NULL)
383 		return ENOMEM;
384 	return 0;
385 }
386 
387 static int perf_env__read_arch(struct perf_env *env)
388 {
389 	struct utsname uts;
390 
391 	if (env->arch)
392 		return 0;
393 
394 	if (!uname(&uts))
395 		env->arch = strdup(uts.machine);
396 
397 	return env->arch ? 0 : -ENOMEM;
398 }
399 
400 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
401 {
402 	if (env->nr_cpus_avail == 0)
403 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
404 
405 	return env->nr_cpus_avail ? 0 : -ENOENT;
406 }
407 
408 const char *perf_env__raw_arch(struct perf_env *env)
409 {
410 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
411 }
412 
413 int perf_env__nr_cpus_avail(struct perf_env *env)
414 {
415 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
416 }
417 
418 void cpu_cache_level__free(struct cpu_cache_level *cache)
419 {
420 	zfree(&cache->type);
421 	zfree(&cache->map);
422 	zfree(&cache->size);
423 }
424 
425 /*
426  * Return architecture name in a normalized form.
427  * The conversion logic comes from the Makefile.
428  */
429 static const char *normalize_arch(char *arch)
430 {
431 	if (!strcmp(arch, "x86_64"))
432 		return "x86";
433 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
434 		return "x86";
435 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
436 		return "sparc";
437 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
438 		return "arm64";
439 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
440 		return "arm";
441 	if (!strncmp(arch, "s390", 4))
442 		return "s390";
443 	if (!strncmp(arch, "parisc", 6))
444 		return "parisc";
445 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
446 		return "powerpc";
447 	if (!strncmp(arch, "mips", 4))
448 		return "mips";
449 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
450 		return "sh";
451 	if (!strncmp(arch, "loongarch", 9))
452 		return "loongarch";
453 
454 	return arch;
455 }
456 
457 const char *perf_env__arch(struct perf_env *env)
458 {
459 	char *arch_name;
460 
461 	if (!env || !env->arch) { /* Assume local operation */
462 		static struct utsname uts = { .machine[0] = '\0', };
463 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
464 			return NULL;
465 		arch_name = uts.machine;
466 	} else
467 		arch_name = env->arch;
468 
469 	return normalize_arch(arch_name);
470 }
471 
472 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused)
473 {
474 #if defined(HAVE_SYSCALL_TABLE_SUPPORT) && defined(HAVE_LIBTRACEEVENT)
475 	if (env->arch_strerrno == NULL)
476 		env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env));
477 
478 	return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function";
479 #else
480 	return "!(HAVE_SYSCALL_TABLE_SUPPORT && HAVE_LIBTRACEEVENT)";
481 #endif
482 }
483 
484 const char *perf_env__cpuid(struct perf_env *env)
485 {
486 	int status;
487 
488 	if (!env->cpuid) { /* Assume local operation */
489 		status = perf_env__read_cpuid(env);
490 		if (status)
491 			return NULL;
492 	}
493 
494 	return env->cpuid;
495 }
496 
497 int perf_env__nr_pmu_mappings(struct perf_env *env)
498 {
499 	int status;
500 
501 	if (!env->nr_pmu_mappings) { /* Assume local operation */
502 		status = perf_env__read_pmu_mappings(env);
503 		if (status)
504 			return 0;
505 	}
506 
507 	return env->nr_pmu_mappings;
508 }
509 
510 const char *perf_env__pmu_mappings(struct perf_env *env)
511 {
512 	int status;
513 
514 	if (!env->pmu_mappings) { /* Assume local operation */
515 		status = perf_env__read_pmu_mappings(env);
516 		if (status)
517 			return NULL;
518 	}
519 
520 	return env->pmu_mappings;
521 }
522 
523 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
524 {
525 	if (!env->nr_numa_map) {
526 		struct numa_node *nn;
527 		int i, nr = 0;
528 
529 		for (i = 0; i < env->nr_numa_nodes; i++) {
530 			nn = &env->numa_nodes[i];
531 			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
532 		}
533 
534 		nr++;
535 
536 		/*
537 		 * We initialize the numa_map array to prepare
538 		 * it for missing cpus, which return node -1
539 		 */
540 		env->numa_map = malloc(nr * sizeof(int));
541 		if (!env->numa_map)
542 			return -1;
543 
544 		for (i = 0; i < nr; i++)
545 			env->numa_map[i] = -1;
546 
547 		env->nr_numa_map = nr;
548 
549 		for (i = 0; i < env->nr_numa_nodes; i++) {
550 			struct perf_cpu tmp;
551 			int j;
552 
553 			nn = &env->numa_nodes[i];
554 			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
555 				env->numa_map[tmp.cpu] = i;
556 		}
557 	}
558 
559 	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
560 }
561 
562 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name)
563 {
564 	char *pmu_mapping = env->pmu_mappings, *colon;
565 
566 	for (int i = 0; i < env->nr_pmu_mappings; ++i) {
567 		if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':')
568 			goto out_error;
569 
570 		pmu_mapping = colon + 1;
571 		if (strcmp(pmu_mapping, pmu_name) == 0)
572 			return true;
573 
574 		pmu_mapping += strlen(pmu_mapping) + 1;
575 	}
576 out_error:
577 	return false;
578 }
579 
580 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
581 			     const char *cap)
582 {
583 	char *cap_eq;
584 	int cap_size;
585 	char **ptr;
586 	int i, j;
587 
588 	if (!pmu_name || !cap)
589 		return NULL;
590 
591 	cap_size = strlen(cap);
592 	cap_eq = zalloc(cap_size + 2);
593 	if (!cap_eq)
594 		return NULL;
595 
596 	memcpy(cap_eq, cap, cap_size);
597 	cap_eq[cap_size] = '=';
598 
599 	if (!strcmp(pmu_name, "cpu")) {
600 		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
601 			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
602 				free(cap_eq);
603 				return &env->cpu_pmu_caps[i][cap_size + 1];
604 			}
605 		}
606 		goto out;
607 	}
608 
609 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
610 		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
611 			continue;
612 
613 		ptr = env->pmu_caps[i].caps;
614 
615 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
616 			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
617 				free(cap_eq);
618 				return &ptr[j][cap_size + 1];
619 			}
620 		}
621 	}
622 
623 out:
624 	free(cap_eq);
625 	return NULL;
626 }
627