xref: /linux/tools/perf/util/env.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14 
15 struct perf_env perf_env;
16 
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include "bpf-utils.h"
20 #include <bpf/libbpf.h>
21 
22 void perf_env__insert_bpf_prog_info(struct perf_env *env,
23 				    struct bpf_prog_info_node *info_node)
24 {
25 	__u32 prog_id = info_node->info_linear->info.id;
26 	struct bpf_prog_info_node *node;
27 	struct rb_node *parent = NULL;
28 	struct rb_node **p;
29 
30 	down_write(&env->bpf_progs.lock);
31 	p = &env->bpf_progs.infos.rb_node;
32 
33 	while (*p != NULL) {
34 		parent = *p;
35 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
36 		if (prog_id < node->info_linear->info.id) {
37 			p = &(*p)->rb_left;
38 		} else if (prog_id > node->info_linear->info.id) {
39 			p = &(*p)->rb_right;
40 		} else {
41 			pr_debug("duplicated bpf prog info %u\n", prog_id);
42 			goto out;
43 		}
44 	}
45 
46 	rb_link_node(&info_node->rb_node, parent, p);
47 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
48 	env->bpf_progs.infos_cnt++;
49 out:
50 	up_write(&env->bpf_progs.lock);
51 }
52 
53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 							__u32 prog_id)
55 {
56 	struct bpf_prog_info_node *node = NULL;
57 	struct rb_node *n;
58 
59 	down_read(&env->bpf_progs.lock);
60 	n = env->bpf_progs.infos.rb_node;
61 
62 	while (n) {
63 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 		if (prog_id < node->info_linear->info.id)
65 			n = n->rb_left;
66 		else if (prog_id > node->info_linear->info.id)
67 			n = n->rb_right;
68 		else
69 			goto out;
70 	}
71 	node = NULL;
72 
73 out:
74 	up_read(&env->bpf_progs.lock);
75 	return node;
76 }
77 
78 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 	struct rb_node *parent = NULL;
81 	__u32 btf_id = btf_node->id;
82 	struct btf_node *node;
83 	struct rb_node **p;
84 
85 	down_write(&env->bpf_progs.lock);
86 	p = &env->bpf_progs.btfs.rb_node;
87 
88 	while (*p != NULL) {
89 		parent = *p;
90 		node = rb_entry(parent, struct btf_node, rb_node);
91 		if (btf_id < node->id) {
92 			p = &(*p)->rb_left;
93 		} else if (btf_id > node->id) {
94 			p = &(*p)->rb_right;
95 		} else {
96 			pr_debug("duplicated btf %u\n", btf_id);
97 			goto out;
98 		}
99 	}
100 
101 	rb_link_node(&btf_node->rb_node, parent, p);
102 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
103 	env->bpf_progs.btfs_cnt++;
104 out:
105 	up_write(&env->bpf_progs.lock);
106 }
107 
108 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
109 {
110 	struct btf_node *node = NULL;
111 	struct rb_node *n;
112 
113 	down_read(&env->bpf_progs.lock);
114 	n = env->bpf_progs.btfs.rb_node;
115 
116 	while (n) {
117 		node = rb_entry(n, struct btf_node, rb_node);
118 		if (btf_id < node->id)
119 			n = n->rb_left;
120 		else if (btf_id > node->id)
121 			n = n->rb_right;
122 		else
123 			goto out;
124 	}
125 	node = NULL;
126 
127 out:
128 	up_read(&env->bpf_progs.lock);
129 	return node;
130 }
131 
132 /* purge data in bpf_progs.infos tree */
133 static void perf_env__purge_bpf(struct perf_env *env)
134 {
135 	struct rb_root *root;
136 	struct rb_node *next;
137 
138 	down_write(&env->bpf_progs.lock);
139 
140 	root = &env->bpf_progs.infos;
141 	next = rb_first(root);
142 
143 	while (next) {
144 		struct bpf_prog_info_node *node;
145 
146 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
147 		next = rb_next(&node->rb_node);
148 		rb_erase(&node->rb_node, root);
149 		free(node->info_linear);
150 		free(node);
151 	}
152 
153 	env->bpf_progs.infos_cnt = 0;
154 
155 	root = &env->bpf_progs.btfs;
156 	next = rb_first(root);
157 
158 	while (next) {
159 		struct btf_node *node;
160 
161 		node = rb_entry(next, struct btf_node, rb_node);
162 		next = rb_next(&node->rb_node);
163 		rb_erase(&node->rb_node, root);
164 		free(node);
165 	}
166 
167 	env->bpf_progs.btfs_cnt = 0;
168 
169 	up_write(&env->bpf_progs.lock);
170 }
171 #else // HAVE_LIBBPF_SUPPORT
172 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
173 {
174 }
175 #endif // HAVE_LIBBPF_SUPPORT
176 
177 void perf_env__exit(struct perf_env *env)
178 {
179 	int i;
180 
181 	perf_env__purge_bpf(env);
182 	perf_env__purge_cgroups(env);
183 	zfree(&env->hostname);
184 	zfree(&env->os_release);
185 	zfree(&env->version);
186 	zfree(&env->arch);
187 	zfree(&env->cpu_desc);
188 	zfree(&env->cpuid);
189 	zfree(&env->cmdline);
190 	zfree(&env->cmdline_argv);
191 	zfree(&env->sibling_dies);
192 	zfree(&env->sibling_cores);
193 	zfree(&env->sibling_threads);
194 	zfree(&env->pmu_mappings);
195 	zfree(&env->cpu);
196 	zfree(&env->cpu_pmu_caps);
197 	zfree(&env->numa_map);
198 
199 	for (i = 0; i < env->nr_numa_nodes; i++)
200 		perf_cpu_map__put(env->numa_nodes[i].map);
201 	zfree(&env->numa_nodes);
202 
203 	for (i = 0; i < env->caches_cnt; i++)
204 		cpu_cache_level__free(&env->caches[i]);
205 	zfree(&env->caches);
206 
207 	for (i = 0; i < env->nr_memory_nodes; i++)
208 		zfree(&env->memory_nodes[i].set);
209 	zfree(&env->memory_nodes);
210 
211 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
212 		zfree(&env->hybrid_nodes[i].pmu_name);
213 		zfree(&env->hybrid_nodes[i].cpus);
214 	}
215 	zfree(&env->hybrid_nodes);
216 
217 	for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
218 		zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
219 		zfree(&env->hybrid_cpc_nodes[i].pmu_name);
220 	}
221 	zfree(&env->hybrid_cpc_nodes);
222 }
223 
224 void perf_env__init(struct perf_env *env)
225 {
226 #ifdef HAVE_LIBBPF_SUPPORT
227 	env->bpf_progs.infos = RB_ROOT;
228 	env->bpf_progs.btfs = RB_ROOT;
229 	init_rwsem(&env->bpf_progs.lock);
230 #endif
231 	env->kernel_is_64_bit = -1;
232 }
233 
234 static void perf_env__init_kernel_mode(struct perf_env *env)
235 {
236 	const char *arch = perf_env__raw_arch(env);
237 
238 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
239 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
240 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
241 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
242 		env->kernel_is_64_bit = 1;
243 	else
244 		env->kernel_is_64_bit = 0;
245 }
246 
247 int perf_env__kernel_is_64_bit(struct perf_env *env)
248 {
249 	if (env->kernel_is_64_bit == -1)
250 		perf_env__init_kernel_mode(env);
251 
252 	return env->kernel_is_64_bit;
253 }
254 
255 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
256 {
257 	int i;
258 
259 	/* do not include NULL termination */
260 	env->cmdline_argv = calloc(argc, sizeof(char *));
261 	if (env->cmdline_argv == NULL)
262 		goto out_enomem;
263 
264 	/*
265 	 * Must copy argv contents because it gets moved around during option
266 	 * parsing:
267 	 */
268 	for (i = 0; i < argc ; i++) {
269 		env->cmdline_argv[i] = argv[i];
270 		if (env->cmdline_argv[i] == NULL)
271 			goto out_free;
272 	}
273 
274 	env->nr_cmdline = argc;
275 
276 	return 0;
277 out_free:
278 	zfree(&env->cmdline_argv);
279 out_enomem:
280 	return -ENOMEM;
281 }
282 
283 int perf_env__read_cpu_topology_map(struct perf_env *env)
284 {
285 	int cpu, nr_cpus;
286 
287 	if (env->cpu != NULL)
288 		return 0;
289 
290 	if (env->nr_cpus_avail == 0)
291 		env->nr_cpus_avail = cpu__max_present_cpu();
292 
293 	nr_cpus = env->nr_cpus_avail;
294 	if (nr_cpus == -1)
295 		return -EINVAL;
296 
297 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
298 	if (env->cpu == NULL)
299 		return -ENOMEM;
300 
301 	for (cpu = 0; cpu < nr_cpus; ++cpu) {
302 		env->cpu[cpu].core_id	= cpu_map__get_core_id(cpu);
303 		env->cpu[cpu].socket_id	= cpu_map__get_socket_id(cpu);
304 		env->cpu[cpu].die_id	= cpu_map__get_die_id(cpu);
305 	}
306 
307 	env->nr_cpus_avail = nr_cpus;
308 	return 0;
309 }
310 
311 int perf_env__read_pmu_mappings(struct perf_env *env)
312 {
313 	struct perf_pmu *pmu = NULL;
314 	u32 pmu_num = 0;
315 	struct strbuf sb;
316 
317 	while ((pmu = perf_pmu__scan(pmu))) {
318 		if (!pmu->name)
319 			continue;
320 		pmu_num++;
321 	}
322 	if (!pmu_num) {
323 		pr_debug("pmu mappings not available\n");
324 		return -ENOENT;
325 	}
326 	env->nr_pmu_mappings = pmu_num;
327 
328 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
329 		return -ENOMEM;
330 
331 	while ((pmu = perf_pmu__scan(pmu))) {
332 		if (!pmu->name)
333 			continue;
334 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
335 			goto error;
336 		/* include a NULL character at the end */
337 		if (strbuf_add(&sb, "", 1) < 0)
338 			goto error;
339 	}
340 
341 	env->pmu_mappings = strbuf_detach(&sb, NULL);
342 
343 	return 0;
344 
345 error:
346 	strbuf_release(&sb);
347 	return -1;
348 }
349 
350 int perf_env__read_cpuid(struct perf_env *env)
351 {
352 	char cpuid[128];
353 	int err = get_cpuid(cpuid, sizeof(cpuid));
354 
355 	if (err)
356 		return err;
357 
358 	free(env->cpuid);
359 	env->cpuid = strdup(cpuid);
360 	if (env->cpuid == NULL)
361 		return ENOMEM;
362 	return 0;
363 }
364 
365 static int perf_env__read_arch(struct perf_env *env)
366 {
367 	struct utsname uts;
368 
369 	if (env->arch)
370 		return 0;
371 
372 	if (!uname(&uts))
373 		env->arch = strdup(uts.machine);
374 
375 	return env->arch ? 0 : -ENOMEM;
376 }
377 
378 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
379 {
380 	if (env->nr_cpus_avail == 0)
381 		env->nr_cpus_avail = cpu__max_present_cpu();
382 
383 	return env->nr_cpus_avail ? 0 : -ENOENT;
384 }
385 
386 const char *perf_env__raw_arch(struct perf_env *env)
387 {
388 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
389 }
390 
391 int perf_env__nr_cpus_avail(struct perf_env *env)
392 {
393 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
394 }
395 
396 void cpu_cache_level__free(struct cpu_cache_level *cache)
397 {
398 	zfree(&cache->type);
399 	zfree(&cache->map);
400 	zfree(&cache->size);
401 }
402 
403 /*
404  * Return architecture name in a normalized form.
405  * The conversion logic comes from the Makefile.
406  */
407 static const char *normalize_arch(char *arch)
408 {
409 	if (!strcmp(arch, "x86_64"))
410 		return "x86";
411 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
412 		return "x86";
413 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
414 		return "sparc";
415 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
416 		return "arm64";
417 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
418 		return "arm";
419 	if (!strncmp(arch, "s390", 4))
420 		return "s390";
421 	if (!strncmp(arch, "parisc", 6))
422 		return "parisc";
423 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
424 		return "powerpc";
425 	if (!strncmp(arch, "mips", 4))
426 		return "mips";
427 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
428 		return "sh";
429 
430 	return arch;
431 }
432 
433 const char *perf_env__arch(struct perf_env *env)
434 {
435 	char *arch_name;
436 
437 	if (!env || !env->arch) { /* Assume local operation */
438 		static struct utsname uts = { .machine[0] = '\0', };
439 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
440 			return NULL;
441 		arch_name = uts.machine;
442 	} else
443 		arch_name = env->arch;
444 
445 	return normalize_arch(arch_name);
446 }
447 
448 const char *perf_env__cpuid(struct perf_env *env)
449 {
450 	int status;
451 
452 	if (!env || !env->cpuid) { /* Assume local operation */
453 		status = perf_env__read_cpuid(env);
454 		if (status)
455 			return NULL;
456 	}
457 
458 	return env->cpuid;
459 }
460 
461 int perf_env__nr_pmu_mappings(struct perf_env *env)
462 {
463 	int status;
464 
465 	if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
466 		status = perf_env__read_pmu_mappings(env);
467 		if (status)
468 			return 0;
469 	}
470 
471 	return env->nr_pmu_mappings;
472 }
473 
474 const char *perf_env__pmu_mappings(struct perf_env *env)
475 {
476 	int status;
477 
478 	if (!env || !env->pmu_mappings) { /* Assume local operation */
479 		status = perf_env__read_pmu_mappings(env);
480 		if (status)
481 			return NULL;
482 	}
483 
484 	return env->pmu_mappings;
485 }
486 
487 int perf_env__numa_node(struct perf_env *env, int cpu)
488 {
489 	if (!env->nr_numa_map) {
490 		struct numa_node *nn;
491 		int i, nr = 0;
492 
493 		for (i = 0; i < env->nr_numa_nodes; i++) {
494 			nn = &env->numa_nodes[i];
495 			nr = max(nr, perf_cpu_map__max(nn->map));
496 		}
497 
498 		nr++;
499 
500 		/*
501 		 * We initialize the numa_map array to prepare
502 		 * it for missing cpus, which return node -1
503 		 */
504 		env->numa_map = malloc(nr * sizeof(int));
505 		if (!env->numa_map)
506 			return -1;
507 
508 		for (i = 0; i < nr; i++)
509 			env->numa_map[i] = -1;
510 
511 		env->nr_numa_map = nr;
512 
513 		for (i = 0; i < env->nr_numa_nodes; i++) {
514 			int tmp, j;
515 
516 			nn = &env->numa_nodes[i];
517 			perf_cpu_map__for_each_cpu(j, tmp, nn->map)
518 				env->numa_map[j] = i;
519 		}
520 	}
521 
522 	return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
523 }
524