1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include "linux/compiler.h" 7 #include <linux/ctype.h> 8 #include <linux/zalloc.h> 9 #include "cgroup.h" 10 #include <errno.h> 11 #include <sys/utsname.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include "pmus.h" 15 #include "strbuf.h" 16 #include "trace/beauty/beauty.h" 17 18 struct perf_env perf_env; 19 20 #ifdef HAVE_LIBBPF_SUPPORT 21 #include "bpf-event.h" 22 #include "bpf-utils.h" 23 #include <bpf/libbpf.h> 24 25 void perf_env__insert_bpf_prog_info(struct perf_env *env, 26 struct bpf_prog_info_node *info_node) 27 { 28 down_write(&env->bpf_progs.lock); 29 __perf_env__insert_bpf_prog_info(env, info_node); 30 up_write(&env->bpf_progs.lock); 31 } 32 33 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node) 34 { 35 __u32 prog_id = info_node->info_linear->info.id; 36 struct bpf_prog_info_node *node; 37 struct rb_node *parent = NULL; 38 struct rb_node **p; 39 40 p = &env->bpf_progs.infos.rb_node; 41 42 while (*p != NULL) { 43 parent = *p; 44 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 45 if (prog_id < node->info_linear->info.id) { 46 p = &(*p)->rb_left; 47 } else if (prog_id > node->info_linear->info.id) { 48 p = &(*p)->rb_right; 49 } else { 50 pr_debug("duplicated bpf prog info %u\n", prog_id); 51 return; 52 } 53 } 54 55 rb_link_node(&info_node->rb_node, parent, p); 56 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 57 env->bpf_progs.infos_cnt++; 58 } 59 60 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 61 __u32 prog_id) 62 { 63 struct bpf_prog_info_node *node = NULL; 64 struct rb_node *n; 65 66 down_read(&env->bpf_progs.lock); 67 n = env->bpf_progs.infos.rb_node; 68 69 while (n) { 70 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 71 if (prog_id < node->info_linear->info.id) 72 n = n->rb_left; 73 else if (prog_id > node->info_linear->info.id) 74 n = n->rb_right; 75 else 76 goto out; 77 } 78 node = NULL; 79 80 out: 81 up_read(&env->bpf_progs.lock); 82 return node; 83 } 84 85 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 86 { 87 bool ret; 88 89 down_write(&env->bpf_progs.lock); 90 ret = __perf_env__insert_btf(env, btf_node); 91 up_write(&env->bpf_progs.lock); 92 return ret; 93 } 94 95 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 96 { 97 struct rb_node *parent = NULL; 98 __u32 btf_id = btf_node->id; 99 struct btf_node *node; 100 struct rb_node **p; 101 102 p = &env->bpf_progs.btfs.rb_node; 103 104 while (*p != NULL) { 105 parent = *p; 106 node = rb_entry(parent, struct btf_node, rb_node); 107 if (btf_id < node->id) { 108 p = &(*p)->rb_left; 109 } else if (btf_id > node->id) { 110 p = &(*p)->rb_right; 111 } else { 112 pr_debug("duplicated btf %u\n", btf_id); 113 return false; 114 } 115 } 116 117 rb_link_node(&btf_node->rb_node, parent, p); 118 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 119 env->bpf_progs.btfs_cnt++; 120 return true; 121 } 122 123 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 124 { 125 struct btf_node *res; 126 127 down_read(&env->bpf_progs.lock); 128 res = __perf_env__find_btf(env, btf_id); 129 up_read(&env->bpf_progs.lock); 130 return res; 131 } 132 133 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id) 134 { 135 struct btf_node *node = NULL; 136 struct rb_node *n; 137 138 n = env->bpf_progs.btfs.rb_node; 139 140 while (n) { 141 node = rb_entry(n, struct btf_node, rb_node); 142 if (btf_id < node->id) 143 n = n->rb_left; 144 else if (btf_id > node->id) 145 n = n->rb_right; 146 else 147 return node; 148 } 149 return NULL; 150 } 151 152 /* purge data in bpf_progs.infos tree */ 153 static void perf_env__purge_bpf(struct perf_env *env) 154 { 155 struct rb_root *root; 156 struct rb_node *next; 157 158 down_write(&env->bpf_progs.lock); 159 160 root = &env->bpf_progs.infos; 161 next = rb_first(root); 162 163 while (next) { 164 struct bpf_prog_info_node *node; 165 166 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 167 next = rb_next(&node->rb_node); 168 rb_erase(&node->rb_node, root); 169 zfree(&node->info_linear); 170 free(node); 171 } 172 173 env->bpf_progs.infos_cnt = 0; 174 175 root = &env->bpf_progs.btfs; 176 next = rb_first(root); 177 178 while (next) { 179 struct btf_node *node; 180 181 node = rb_entry(next, struct btf_node, rb_node); 182 next = rb_next(&node->rb_node); 183 rb_erase(&node->rb_node, root); 184 free(node); 185 } 186 187 env->bpf_progs.btfs_cnt = 0; 188 189 up_write(&env->bpf_progs.lock); 190 } 191 #else // HAVE_LIBBPF_SUPPORT 192 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 193 { 194 } 195 #endif // HAVE_LIBBPF_SUPPORT 196 197 void perf_env__exit(struct perf_env *env) 198 { 199 int i, j; 200 201 perf_env__purge_bpf(env); 202 perf_env__purge_cgroups(env); 203 zfree(&env->hostname); 204 zfree(&env->os_release); 205 zfree(&env->version); 206 zfree(&env->arch); 207 zfree(&env->cpu_desc); 208 zfree(&env->cpuid); 209 zfree(&env->cmdline); 210 zfree(&env->cmdline_argv); 211 zfree(&env->sibling_dies); 212 zfree(&env->sibling_cores); 213 zfree(&env->sibling_threads); 214 zfree(&env->pmu_mappings); 215 zfree(&env->cpu); 216 for (i = 0; i < env->nr_cpu_pmu_caps; i++) 217 zfree(&env->cpu_pmu_caps[i]); 218 zfree(&env->cpu_pmu_caps); 219 zfree(&env->numa_map); 220 221 for (i = 0; i < env->nr_numa_nodes; i++) 222 perf_cpu_map__put(env->numa_nodes[i].map); 223 zfree(&env->numa_nodes); 224 225 for (i = 0; i < env->caches_cnt; i++) 226 cpu_cache_level__free(&env->caches[i]); 227 zfree(&env->caches); 228 229 for (i = 0; i < env->nr_memory_nodes; i++) 230 zfree(&env->memory_nodes[i].set); 231 zfree(&env->memory_nodes); 232 233 for (i = 0; i < env->nr_hybrid_nodes; i++) { 234 zfree(&env->hybrid_nodes[i].pmu_name); 235 zfree(&env->hybrid_nodes[i].cpus); 236 } 237 zfree(&env->hybrid_nodes); 238 239 for (i = 0; i < env->nr_pmus_with_caps; i++) { 240 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) 241 zfree(&env->pmu_caps[i].caps[j]); 242 zfree(&env->pmu_caps[i].caps); 243 zfree(&env->pmu_caps[i].pmu_name); 244 } 245 zfree(&env->pmu_caps); 246 } 247 248 void perf_env__init(struct perf_env *env) 249 { 250 #ifdef HAVE_LIBBPF_SUPPORT 251 env->bpf_progs.infos = RB_ROOT; 252 env->bpf_progs.btfs = RB_ROOT; 253 init_rwsem(&env->bpf_progs.lock); 254 #endif 255 env->kernel_is_64_bit = -1; 256 } 257 258 static void perf_env__init_kernel_mode(struct perf_env *env) 259 { 260 const char *arch = perf_env__raw_arch(env); 261 262 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) || 263 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) || 264 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) || 265 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7)) 266 env->kernel_is_64_bit = 1; 267 else 268 env->kernel_is_64_bit = 0; 269 } 270 271 int perf_env__kernel_is_64_bit(struct perf_env *env) 272 { 273 if (env->kernel_is_64_bit == -1) 274 perf_env__init_kernel_mode(env); 275 276 return env->kernel_is_64_bit; 277 } 278 279 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 280 { 281 int i; 282 283 /* do not include NULL termination */ 284 env->cmdline_argv = calloc(argc, sizeof(char *)); 285 if (env->cmdline_argv == NULL) 286 goto out_enomem; 287 288 /* 289 * Must copy argv contents because it gets moved around during option 290 * parsing: 291 */ 292 for (i = 0; i < argc ; i++) { 293 env->cmdline_argv[i] = argv[i]; 294 if (env->cmdline_argv[i] == NULL) 295 goto out_free; 296 } 297 298 env->nr_cmdline = argc; 299 300 return 0; 301 out_free: 302 zfree(&env->cmdline_argv); 303 out_enomem: 304 return -ENOMEM; 305 } 306 307 int perf_env__read_cpu_topology_map(struct perf_env *env) 308 { 309 int idx, nr_cpus; 310 311 if (env->cpu != NULL) 312 return 0; 313 314 if (env->nr_cpus_avail == 0) 315 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 316 317 nr_cpus = env->nr_cpus_avail; 318 if (nr_cpus == -1) 319 return -EINVAL; 320 321 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 322 if (env->cpu == NULL) 323 return -ENOMEM; 324 325 for (idx = 0; idx < nr_cpus; ++idx) { 326 struct perf_cpu cpu = { .cpu = idx }; 327 328 env->cpu[idx].core_id = cpu__get_core_id(cpu); 329 env->cpu[idx].socket_id = cpu__get_socket_id(cpu); 330 env->cpu[idx].die_id = cpu__get_die_id(cpu); 331 } 332 333 env->nr_cpus_avail = nr_cpus; 334 return 0; 335 } 336 337 int perf_env__read_pmu_mappings(struct perf_env *env) 338 { 339 struct perf_pmu *pmu = NULL; 340 u32 pmu_num = 0; 341 struct strbuf sb; 342 343 while ((pmu = perf_pmus__scan(pmu))) 344 pmu_num++; 345 346 if (!pmu_num) { 347 pr_debug("pmu mappings not available\n"); 348 return -ENOENT; 349 } 350 env->nr_pmu_mappings = pmu_num; 351 352 if (strbuf_init(&sb, 128 * pmu_num) < 0) 353 return -ENOMEM; 354 355 while ((pmu = perf_pmus__scan(pmu))) { 356 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0) 357 goto error; 358 /* include a NULL character at the end */ 359 if (strbuf_add(&sb, "", 1) < 0) 360 goto error; 361 } 362 363 env->pmu_mappings = strbuf_detach(&sb, NULL); 364 365 return 0; 366 367 error: 368 strbuf_release(&sb); 369 return -1; 370 } 371 372 int perf_env__read_cpuid(struct perf_env *env) 373 { 374 char cpuid[128]; 375 int err = get_cpuid(cpuid, sizeof(cpuid)); 376 377 if (err) 378 return err; 379 380 free(env->cpuid); 381 env->cpuid = strdup(cpuid); 382 if (env->cpuid == NULL) 383 return ENOMEM; 384 return 0; 385 } 386 387 static int perf_env__read_arch(struct perf_env *env) 388 { 389 struct utsname uts; 390 391 if (env->arch) 392 return 0; 393 394 if (!uname(&uts)) 395 env->arch = strdup(uts.machine); 396 397 return env->arch ? 0 : -ENOMEM; 398 } 399 400 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 401 { 402 if (env->nr_cpus_avail == 0) 403 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 404 405 return env->nr_cpus_avail ? 0 : -ENOENT; 406 } 407 408 const char *perf_env__raw_arch(struct perf_env *env) 409 { 410 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 411 } 412 413 int perf_env__nr_cpus_avail(struct perf_env *env) 414 { 415 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 416 } 417 418 void cpu_cache_level__free(struct cpu_cache_level *cache) 419 { 420 zfree(&cache->type); 421 zfree(&cache->map); 422 zfree(&cache->size); 423 } 424 425 /* 426 * Return architecture name in a normalized form. 427 * The conversion logic comes from the Makefile. 428 */ 429 static const char *normalize_arch(char *arch) 430 { 431 if (!strcmp(arch, "x86_64")) 432 return "x86"; 433 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 434 return "x86"; 435 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 436 return "sparc"; 437 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5)) 438 return "arm64"; 439 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 440 return "arm"; 441 if (!strncmp(arch, "s390", 4)) 442 return "s390"; 443 if (!strncmp(arch, "parisc", 6)) 444 return "parisc"; 445 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 446 return "powerpc"; 447 if (!strncmp(arch, "mips", 4)) 448 return "mips"; 449 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 450 return "sh"; 451 if (!strncmp(arch, "loongarch", 9)) 452 return "loongarch"; 453 454 return arch; 455 } 456 457 const char *perf_env__arch(struct perf_env *env) 458 { 459 char *arch_name; 460 461 if (!env || !env->arch) { /* Assume local operation */ 462 static struct utsname uts = { .machine[0] = '\0', }; 463 if (uts.machine[0] == '\0' && uname(&uts) < 0) 464 return NULL; 465 arch_name = uts.machine; 466 } else 467 arch_name = env->arch; 468 469 return normalize_arch(arch_name); 470 } 471 472 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused) 473 { 474 #if defined(HAVE_SYSCALL_TABLE_SUPPORT) && defined(HAVE_LIBTRACEEVENT) 475 if (env->arch_strerrno == NULL) 476 env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env)); 477 478 return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function"; 479 #else 480 return "!(HAVE_SYSCALL_TABLE_SUPPORT && HAVE_LIBTRACEEVENT)"; 481 #endif 482 } 483 484 const char *perf_env__cpuid(struct perf_env *env) 485 { 486 int status; 487 488 if (!env->cpuid) { /* Assume local operation */ 489 status = perf_env__read_cpuid(env); 490 if (status) 491 return NULL; 492 } 493 494 return env->cpuid; 495 } 496 497 int perf_env__nr_pmu_mappings(struct perf_env *env) 498 { 499 int status; 500 501 if (!env->nr_pmu_mappings) { /* Assume local operation */ 502 status = perf_env__read_pmu_mappings(env); 503 if (status) 504 return 0; 505 } 506 507 return env->nr_pmu_mappings; 508 } 509 510 const char *perf_env__pmu_mappings(struct perf_env *env) 511 { 512 int status; 513 514 if (!env->pmu_mappings) { /* Assume local operation */ 515 status = perf_env__read_pmu_mappings(env); 516 if (status) 517 return NULL; 518 } 519 520 return env->pmu_mappings; 521 } 522 523 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu) 524 { 525 if (!env->nr_numa_map) { 526 struct numa_node *nn; 527 int i, nr = 0; 528 529 for (i = 0; i < env->nr_numa_nodes; i++) { 530 nn = &env->numa_nodes[i]; 531 nr = max(nr, perf_cpu_map__max(nn->map).cpu); 532 } 533 534 nr++; 535 536 /* 537 * We initialize the numa_map array to prepare 538 * it for missing cpus, which return node -1 539 */ 540 env->numa_map = malloc(nr * sizeof(int)); 541 if (!env->numa_map) 542 return -1; 543 544 for (i = 0; i < nr; i++) 545 env->numa_map[i] = -1; 546 547 env->nr_numa_map = nr; 548 549 for (i = 0; i < env->nr_numa_nodes; i++) { 550 struct perf_cpu tmp; 551 int j; 552 553 nn = &env->numa_nodes[i]; 554 perf_cpu_map__for_each_cpu(tmp, j, nn->map) 555 env->numa_map[tmp.cpu] = i; 556 } 557 } 558 559 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1; 560 } 561 562 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name) 563 { 564 char *pmu_mapping = env->pmu_mappings, *colon; 565 566 for (int i = 0; i < env->nr_pmu_mappings; ++i) { 567 if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':') 568 goto out_error; 569 570 pmu_mapping = colon + 1; 571 if (strcmp(pmu_mapping, pmu_name) == 0) 572 return true; 573 574 pmu_mapping += strlen(pmu_mapping) + 1; 575 } 576 out_error: 577 return false; 578 } 579 580 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name, 581 const char *cap) 582 { 583 char *cap_eq; 584 int cap_size; 585 char **ptr; 586 int i, j; 587 588 if (!pmu_name || !cap) 589 return NULL; 590 591 cap_size = strlen(cap); 592 cap_eq = zalloc(cap_size + 2); 593 if (!cap_eq) 594 return NULL; 595 596 memcpy(cap_eq, cap, cap_size); 597 cap_eq[cap_size] = '='; 598 599 if (!strcmp(pmu_name, "cpu")) { 600 for (i = 0; i < env->nr_cpu_pmu_caps; i++) { 601 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) { 602 free(cap_eq); 603 return &env->cpu_pmu_caps[i][cap_size + 1]; 604 } 605 } 606 goto out; 607 } 608 609 for (i = 0; i < env->nr_pmus_with_caps; i++) { 610 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name)) 611 continue; 612 613 ptr = env->pmu_caps[i].caps; 614 615 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) { 616 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) { 617 free(cap_eq); 618 return &ptr[j][cap_size + 1]; 619 } 620 } 621 } 622 623 out: 624 free(cap_eq); 625 return NULL; 626 } 627