1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include "linux/compiler.h" 7 #include <linux/ctype.h> 8 #include <linux/string.h> 9 #include <linux/zalloc.h> 10 #include "cgroup.h" 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <stdlib.h> 14 #include <string.h> 15 #include "pmu.h" 16 #include "pmus.h" 17 #include "strbuf.h" 18 #include "trace/beauty/beauty.h" 19 20 struct perf_env perf_env; 21 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include "bpf-event.h" 24 #include "bpf-utils.h" 25 #include <bpf/libbpf.h> 26 27 bool perf_env__insert_bpf_prog_info(struct perf_env *env, 28 struct bpf_prog_info_node *info_node) 29 { 30 bool ret; 31 32 down_write(&env->bpf_progs.lock); 33 ret = __perf_env__insert_bpf_prog_info(env, info_node); 34 up_write(&env->bpf_progs.lock); 35 36 return ret; 37 } 38 39 bool __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node) 40 { 41 __u32 prog_id = info_node->info_linear->info.id; 42 struct bpf_prog_info_node *node; 43 struct rb_node *parent = NULL; 44 struct rb_node **p; 45 46 p = &env->bpf_progs.infos.rb_node; 47 48 while (*p != NULL) { 49 parent = *p; 50 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 51 if (prog_id < node->info_linear->info.id) { 52 p = &(*p)->rb_left; 53 } else if (prog_id > node->info_linear->info.id) { 54 p = &(*p)->rb_right; 55 } else { 56 pr_debug("duplicated bpf prog info %u\n", prog_id); 57 return false; 58 } 59 } 60 61 rb_link_node(&info_node->rb_node, parent, p); 62 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 63 env->bpf_progs.infos_cnt++; 64 return true; 65 } 66 67 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 68 __u32 prog_id) 69 { 70 struct bpf_prog_info_node *node = NULL; 71 struct rb_node *n; 72 73 down_read(&env->bpf_progs.lock); 74 n = env->bpf_progs.infos.rb_node; 75 76 while (n) { 77 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 78 if (prog_id < node->info_linear->info.id) 79 n = n->rb_left; 80 else if (prog_id > node->info_linear->info.id) 81 n = n->rb_right; 82 else 83 goto out; 84 } 85 node = NULL; 86 87 out: 88 up_read(&env->bpf_progs.lock); 89 return node; 90 } 91 92 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 93 { 94 bool ret; 95 96 down_write(&env->bpf_progs.lock); 97 ret = __perf_env__insert_btf(env, btf_node); 98 up_write(&env->bpf_progs.lock); 99 return ret; 100 } 101 102 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 103 { 104 struct rb_node *parent = NULL; 105 __u32 btf_id = btf_node->id; 106 struct btf_node *node; 107 struct rb_node **p; 108 109 p = &env->bpf_progs.btfs.rb_node; 110 111 while (*p != NULL) { 112 parent = *p; 113 node = rb_entry(parent, struct btf_node, rb_node); 114 if (btf_id < node->id) { 115 p = &(*p)->rb_left; 116 } else if (btf_id > node->id) { 117 p = &(*p)->rb_right; 118 } else { 119 pr_debug("duplicated btf %u\n", btf_id); 120 return false; 121 } 122 } 123 124 rb_link_node(&btf_node->rb_node, parent, p); 125 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 126 env->bpf_progs.btfs_cnt++; 127 return true; 128 } 129 130 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 131 { 132 struct btf_node *res; 133 134 down_read(&env->bpf_progs.lock); 135 res = __perf_env__find_btf(env, btf_id); 136 up_read(&env->bpf_progs.lock); 137 return res; 138 } 139 140 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id) 141 { 142 struct btf_node *node = NULL; 143 struct rb_node *n; 144 145 n = env->bpf_progs.btfs.rb_node; 146 147 while (n) { 148 node = rb_entry(n, struct btf_node, rb_node); 149 if (btf_id < node->id) 150 n = n->rb_left; 151 else if (btf_id > node->id) 152 n = n->rb_right; 153 else 154 return node; 155 } 156 return NULL; 157 } 158 159 /* purge data in bpf_progs.infos tree */ 160 static void perf_env__purge_bpf(struct perf_env *env) 161 { 162 struct rb_root *root; 163 struct rb_node *next; 164 165 down_write(&env->bpf_progs.lock); 166 167 root = &env->bpf_progs.infos; 168 next = rb_first(root); 169 170 while (next) { 171 struct bpf_prog_info_node *node; 172 173 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 174 next = rb_next(&node->rb_node); 175 rb_erase(&node->rb_node, root); 176 zfree(&node->info_linear); 177 free(node); 178 } 179 180 env->bpf_progs.infos_cnt = 0; 181 182 root = &env->bpf_progs.btfs; 183 next = rb_first(root); 184 185 while (next) { 186 struct btf_node *node; 187 188 node = rb_entry(next, struct btf_node, rb_node); 189 next = rb_next(&node->rb_node); 190 rb_erase(&node->rb_node, root); 191 free(node); 192 } 193 194 env->bpf_progs.btfs_cnt = 0; 195 196 up_write(&env->bpf_progs.lock); 197 } 198 #else // HAVE_LIBBPF_SUPPORT 199 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 200 { 201 } 202 #endif // HAVE_LIBBPF_SUPPORT 203 204 void perf_env__exit(struct perf_env *env) 205 { 206 int i, j; 207 208 perf_env__purge_bpf(env); 209 perf_env__purge_cgroups(env); 210 zfree(&env->hostname); 211 zfree(&env->os_release); 212 zfree(&env->version); 213 zfree(&env->arch); 214 zfree(&env->cpu_desc); 215 zfree(&env->cpuid); 216 zfree(&env->cmdline); 217 zfree(&env->cmdline_argv); 218 zfree(&env->sibling_dies); 219 zfree(&env->sibling_cores); 220 zfree(&env->sibling_threads); 221 zfree(&env->pmu_mappings); 222 zfree(&env->cpu); 223 for (i = 0; i < env->nr_cpu_pmu_caps; i++) 224 zfree(&env->cpu_pmu_caps[i]); 225 zfree(&env->cpu_pmu_caps); 226 zfree(&env->numa_map); 227 228 for (i = 0; i < env->nr_numa_nodes; i++) 229 perf_cpu_map__put(env->numa_nodes[i].map); 230 zfree(&env->numa_nodes); 231 232 for (i = 0; i < env->caches_cnt; i++) 233 cpu_cache_level__free(&env->caches[i]); 234 zfree(&env->caches); 235 236 for (i = 0; i < env->nr_memory_nodes; i++) 237 zfree(&env->memory_nodes[i].set); 238 zfree(&env->memory_nodes); 239 240 for (i = 0; i < env->nr_hybrid_nodes; i++) { 241 zfree(&env->hybrid_nodes[i].pmu_name); 242 zfree(&env->hybrid_nodes[i].cpus); 243 } 244 zfree(&env->hybrid_nodes); 245 246 for (i = 0; i < env->nr_pmus_with_caps; i++) { 247 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) 248 zfree(&env->pmu_caps[i].caps[j]); 249 zfree(&env->pmu_caps[i].caps); 250 zfree(&env->pmu_caps[i].pmu_name); 251 } 252 zfree(&env->pmu_caps); 253 } 254 255 void perf_env__init(struct perf_env *env) 256 { 257 #ifdef HAVE_LIBBPF_SUPPORT 258 env->bpf_progs.infos = RB_ROOT; 259 env->bpf_progs.btfs = RB_ROOT; 260 init_rwsem(&env->bpf_progs.lock); 261 #endif 262 env->kernel_is_64_bit = -1; 263 } 264 265 static void perf_env__init_kernel_mode(struct perf_env *env) 266 { 267 const char *arch = perf_env__raw_arch(env); 268 269 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) || 270 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) || 271 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) || 272 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7)) 273 env->kernel_is_64_bit = 1; 274 else 275 env->kernel_is_64_bit = 0; 276 } 277 278 int perf_env__kernel_is_64_bit(struct perf_env *env) 279 { 280 if (env->kernel_is_64_bit == -1) 281 perf_env__init_kernel_mode(env); 282 283 return env->kernel_is_64_bit; 284 } 285 286 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 287 { 288 int i; 289 290 /* do not include NULL termination */ 291 env->cmdline_argv = calloc(argc, sizeof(char *)); 292 if (env->cmdline_argv == NULL) 293 goto out_enomem; 294 295 /* 296 * Must copy argv contents because it gets moved around during option 297 * parsing: 298 */ 299 for (i = 0; i < argc ; i++) { 300 env->cmdline_argv[i] = argv[i]; 301 if (env->cmdline_argv[i] == NULL) 302 goto out_free; 303 } 304 305 env->nr_cmdline = argc; 306 307 return 0; 308 out_free: 309 zfree(&env->cmdline_argv); 310 out_enomem: 311 return -ENOMEM; 312 } 313 314 int perf_env__read_cpu_topology_map(struct perf_env *env) 315 { 316 int idx, nr_cpus; 317 318 if (env->cpu != NULL) 319 return 0; 320 321 if (env->nr_cpus_avail == 0) 322 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 323 324 nr_cpus = env->nr_cpus_avail; 325 if (nr_cpus == -1) 326 return -EINVAL; 327 328 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 329 if (env->cpu == NULL) 330 return -ENOMEM; 331 332 for (idx = 0; idx < nr_cpus; ++idx) { 333 struct perf_cpu cpu = { .cpu = idx }; 334 int core_id = cpu__get_core_id(cpu); 335 int socket_id = cpu__get_socket_id(cpu); 336 int die_id = cpu__get_die_id(cpu); 337 338 env->cpu[idx].core_id = core_id >= 0 ? core_id : -1; 339 env->cpu[idx].socket_id = socket_id >= 0 ? socket_id : -1; 340 env->cpu[idx].die_id = die_id >= 0 ? die_id : -1; 341 } 342 343 env->nr_cpus_avail = nr_cpus; 344 return 0; 345 } 346 347 int perf_env__read_pmu_mappings(struct perf_env *env) 348 { 349 struct perf_pmu *pmu = NULL; 350 u32 pmu_num = 0; 351 struct strbuf sb; 352 353 while ((pmu = perf_pmus__scan(pmu))) 354 pmu_num++; 355 356 if (!pmu_num) { 357 pr_debug("pmu mappings not available\n"); 358 return -ENOENT; 359 } 360 env->nr_pmu_mappings = pmu_num; 361 362 if (strbuf_init(&sb, 128 * pmu_num) < 0) 363 return -ENOMEM; 364 365 while ((pmu = perf_pmus__scan(pmu))) { 366 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0) 367 goto error; 368 /* include a NULL character at the end */ 369 if (strbuf_add(&sb, "", 1) < 0) 370 goto error; 371 } 372 373 env->pmu_mappings = strbuf_detach(&sb, NULL); 374 375 return 0; 376 377 error: 378 strbuf_release(&sb); 379 return -1; 380 } 381 382 int perf_env__read_cpuid(struct perf_env *env) 383 { 384 char cpuid[128]; 385 struct perf_cpu cpu = {-1}; 386 int err = get_cpuid(cpuid, sizeof(cpuid), cpu); 387 388 if (err) 389 return err; 390 391 free(env->cpuid); 392 env->cpuid = strdup(cpuid); 393 if (env->cpuid == NULL) 394 return ENOMEM; 395 return 0; 396 } 397 398 static int perf_env__read_arch(struct perf_env *env) 399 { 400 struct utsname uts; 401 402 if (env->arch) 403 return 0; 404 405 if (!uname(&uts)) 406 env->arch = strdup(uts.machine); 407 408 return env->arch ? 0 : -ENOMEM; 409 } 410 411 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 412 { 413 if (env->nr_cpus_avail == 0) 414 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 415 416 return env->nr_cpus_avail ? 0 : -ENOENT; 417 } 418 419 const char *perf_env__raw_arch(struct perf_env *env) 420 { 421 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 422 } 423 424 int perf_env__nr_cpus_avail(struct perf_env *env) 425 { 426 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 427 } 428 429 void cpu_cache_level__free(struct cpu_cache_level *cache) 430 { 431 zfree(&cache->type); 432 zfree(&cache->map); 433 zfree(&cache->size); 434 } 435 436 /* 437 * Return architecture name in a normalized form. 438 * The conversion logic comes from the Makefile. 439 */ 440 static const char *normalize_arch(char *arch) 441 { 442 if (!strcmp(arch, "x86_64")) 443 return "x86"; 444 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 445 return "x86"; 446 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 447 return "sparc"; 448 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5)) 449 return "arm64"; 450 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 451 return "arm"; 452 if (!strncmp(arch, "s390", 4)) 453 return "s390"; 454 if (!strncmp(arch, "parisc", 6)) 455 return "parisc"; 456 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 457 return "powerpc"; 458 if (!strncmp(arch, "mips", 4)) 459 return "mips"; 460 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 461 return "sh"; 462 if (!strncmp(arch, "loongarch", 9)) 463 return "loongarch"; 464 465 return arch; 466 } 467 468 const char *perf_env__arch(struct perf_env *env) 469 { 470 char *arch_name; 471 472 if (!env || !env->arch) { /* Assume local operation */ 473 static struct utsname uts = { .machine[0] = '\0', }; 474 if (uts.machine[0] == '\0' && uname(&uts) < 0) 475 return NULL; 476 arch_name = uts.machine; 477 } else 478 arch_name = env->arch; 479 480 return normalize_arch(arch_name); 481 } 482 483 #if defined(HAVE_LIBTRACEEVENT) 484 #include "trace/beauty/arch_errno_names.c" 485 #endif 486 487 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused) 488 { 489 #if defined(HAVE_LIBTRACEEVENT) 490 if (env->arch_strerrno == NULL) 491 env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env)); 492 493 return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function"; 494 #else 495 return "!HAVE_LIBTRACEEVENT"; 496 #endif 497 } 498 499 const char *perf_env__cpuid(struct perf_env *env) 500 { 501 int status; 502 503 if (!env->cpuid) { /* Assume local operation */ 504 status = perf_env__read_cpuid(env); 505 if (status) 506 return NULL; 507 } 508 509 return env->cpuid; 510 } 511 512 int perf_env__nr_pmu_mappings(struct perf_env *env) 513 { 514 int status; 515 516 if (!env->nr_pmu_mappings) { /* Assume local operation */ 517 status = perf_env__read_pmu_mappings(env); 518 if (status) 519 return 0; 520 } 521 522 return env->nr_pmu_mappings; 523 } 524 525 const char *perf_env__pmu_mappings(struct perf_env *env) 526 { 527 int status; 528 529 if (!env->pmu_mappings) { /* Assume local operation */ 530 status = perf_env__read_pmu_mappings(env); 531 if (status) 532 return NULL; 533 } 534 535 return env->pmu_mappings; 536 } 537 538 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu) 539 { 540 if (!env->nr_numa_map) { 541 struct numa_node *nn; 542 int i, nr = 0; 543 544 for (i = 0; i < env->nr_numa_nodes; i++) { 545 nn = &env->numa_nodes[i]; 546 nr = max(nr, perf_cpu_map__max(nn->map).cpu); 547 } 548 549 nr++; 550 551 /* 552 * We initialize the numa_map array to prepare 553 * it for missing cpus, which return node -1 554 */ 555 env->numa_map = malloc(nr * sizeof(int)); 556 if (!env->numa_map) 557 return -1; 558 559 for (i = 0; i < nr; i++) 560 env->numa_map[i] = -1; 561 562 env->nr_numa_map = nr; 563 564 for (i = 0; i < env->nr_numa_nodes; i++) { 565 struct perf_cpu tmp; 566 int j; 567 568 nn = &env->numa_nodes[i]; 569 perf_cpu_map__for_each_cpu(tmp, j, nn->map) 570 env->numa_map[tmp.cpu] = i; 571 } 572 } 573 574 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1; 575 } 576 577 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name) 578 { 579 char *pmu_mapping = env->pmu_mappings, *colon; 580 581 for (int i = 0; i < env->nr_pmu_mappings; ++i) { 582 if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':') 583 goto out_error; 584 585 pmu_mapping = colon + 1; 586 if (strcmp(pmu_mapping, pmu_name) == 0) 587 return true; 588 589 pmu_mapping += strlen(pmu_mapping) + 1; 590 } 591 out_error: 592 return false; 593 } 594 595 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name, 596 const char *cap) 597 { 598 char *cap_eq; 599 int cap_size; 600 char **ptr; 601 int i, j; 602 603 if (!pmu_name || !cap) 604 return NULL; 605 606 cap_size = strlen(cap); 607 cap_eq = zalloc(cap_size + 2); 608 if (!cap_eq) 609 return NULL; 610 611 memcpy(cap_eq, cap, cap_size); 612 cap_eq[cap_size] = '='; 613 614 if (!strcmp(pmu_name, "cpu")) { 615 for (i = 0; i < env->nr_cpu_pmu_caps; i++) { 616 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) { 617 free(cap_eq); 618 return &env->cpu_pmu_caps[i][cap_size + 1]; 619 } 620 } 621 goto out; 622 } 623 624 for (i = 0; i < env->nr_pmus_with_caps; i++) { 625 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name)) 626 continue; 627 628 ptr = env->pmu_caps[i].caps; 629 630 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) { 631 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) { 632 free(cap_eq); 633 return &ptr[j][cap_size + 1]; 634 } 635 } 636 } 637 638 out: 639 free(cap_eq); 640 return NULL; 641 } 642 643 void perf_env__find_br_cntr_info(struct perf_env *env, 644 unsigned int *nr, 645 unsigned int *width) 646 { 647 if (nr) { 648 *nr = env->cpu_pmu_caps ? env->br_cntr_nr : 649 env->pmu_caps->br_cntr_nr; 650 } 651 652 if (width) { 653 *width = env->cpu_pmu_caps ? env->br_cntr_width : 654 env->pmu_caps->br_cntr_width; 655 } 656 } 657 658 bool perf_env__is_x86_amd_cpu(struct perf_env *env) 659 { 660 static int is_amd; /* 0: Uninitialized, 1: Yes, -1: No */ 661 662 if (is_amd == 0) 663 is_amd = env->cpuid && strstarts(env->cpuid, "AuthenticAMD") ? 1 : -1; 664 665 return is_amd >= 1 ? true : false; 666 } 667 668 bool x86__is_amd_cpu(void) 669 { 670 struct perf_env env = { .total_mem = 0, }; 671 bool is_amd; 672 673 perf_env__cpuid(&env); 674 is_amd = perf_env__is_x86_amd_cpu(&env); 675 perf_env__exit(&env); 676 677 return is_amd; 678 } 679