xref: /linux/tools/perf/util/env.c (revision 5ce42b5de461c3154f61a023b191dd6b77ee66c0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include "linux/compiler.h"
7 #include <linux/ctype.h>
8 #include <linux/string.h>
9 #include <linux/zalloc.h>
10 #include "cgroup.h"
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include "pmus.h"
16 #include "strbuf.h"
17 #include "trace/beauty/beauty.h"
18 
19 struct perf_env perf_env;
20 
21 #ifdef HAVE_LIBBPF_SUPPORT
22 #include "bpf-event.h"
23 #include "bpf-utils.h"
24 #include <bpf/libbpf.h>
25 
26 void perf_env__insert_bpf_prog_info(struct perf_env *env,
27 				    struct bpf_prog_info_node *info_node)
28 {
29 	down_write(&env->bpf_progs.lock);
30 	__perf_env__insert_bpf_prog_info(env, info_node);
31 	up_write(&env->bpf_progs.lock);
32 }
33 
34 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
35 {
36 	__u32 prog_id = info_node->info_linear->info.id;
37 	struct bpf_prog_info_node *node;
38 	struct rb_node *parent = NULL;
39 	struct rb_node **p;
40 
41 	p = &env->bpf_progs.infos.rb_node;
42 
43 	while (*p != NULL) {
44 		parent = *p;
45 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
46 		if (prog_id < node->info_linear->info.id) {
47 			p = &(*p)->rb_left;
48 		} else if (prog_id > node->info_linear->info.id) {
49 			p = &(*p)->rb_right;
50 		} else {
51 			pr_debug("duplicated bpf prog info %u\n", prog_id);
52 			return;
53 		}
54 	}
55 
56 	rb_link_node(&info_node->rb_node, parent, p);
57 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
58 	env->bpf_progs.infos_cnt++;
59 }
60 
61 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
62 							__u32 prog_id)
63 {
64 	struct bpf_prog_info_node *node = NULL;
65 	struct rb_node *n;
66 
67 	down_read(&env->bpf_progs.lock);
68 	n = env->bpf_progs.infos.rb_node;
69 
70 	while (n) {
71 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
72 		if (prog_id < node->info_linear->info.id)
73 			n = n->rb_left;
74 		else if (prog_id > node->info_linear->info.id)
75 			n = n->rb_right;
76 		else
77 			goto out;
78 	}
79 	node = NULL;
80 
81 out:
82 	up_read(&env->bpf_progs.lock);
83 	return node;
84 }
85 
86 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
87 {
88 	bool ret;
89 
90 	down_write(&env->bpf_progs.lock);
91 	ret = __perf_env__insert_btf(env, btf_node);
92 	up_write(&env->bpf_progs.lock);
93 	return ret;
94 }
95 
96 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
97 {
98 	struct rb_node *parent = NULL;
99 	__u32 btf_id = btf_node->id;
100 	struct btf_node *node;
101 	struct rb_node **p;
102 
103 	p = &env->bpf_progs.btfs.rb_node;
104 
105 	while (*p != NULL) {
106 		parent = *p;
107 		node = rb_entry(parent, struct btf_node, rb_node);
108 		if (btf_id < node->id) {
109 			p = &(*p)->rb_left;
110 		} else if (btf_id > node->id) {
111 			p = &(*p)->rb_right;
112 		} else {
113 			pr_debug("duplicated btf %u\n", btf_id);
114 			return false;
115 		}
116 	}
117 
118 	rb_link_node(&btf_node->rb_node, parent, p);
119 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
120 	env->bpf_progs.btfs_cnt++;
121 	return true;
122 }
123 
124 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
125 {
126 	struct btf_node *res;
127 
128 	down_read(&env->bpf_progs.lock);
129 	res = __perf_env__find_btf(env, btf_id);
130 	up_read(&env->bpf_progs.lock);
131 	return res;
132 }
133 
134 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
135 {
136 	struct btf_node *node = NULL;
137 	struct rb_node *n;
138 
139 	n = env->bpf_progs.btfs.rb_node;
140 
141 	while (n) {
142 		node = rb_entry(n, struct btf_node, rb_node);
143 		if (btf_id < node->id)
144 			n = n->rb_left;
145 		else if (btf_id > node->id)
146 			n = n->rb_right;
147 		else
148 			return node;
149 	}
150 	return NULL;
151 }
152 
153 /* purge data in bpf_progs.infos tree */
154 static void perf_env__purge_bpf(struct perf_env *env)
155 {
156 	struct rb_root *root;
157 	struct rb_node *next;
158 
159 	down_write(&env->bpf_progs.lock);
160 
161 	root = &env->bpf_progs.infos;
162 	next = rb_first(root);
163 
164 	while (next) {
165 		struct bpf_prog_info_node *node;
166 
167 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
168 		next = rb_next(&node->rb_node);
169 		rb_erase(&node->rb_node, root);
170 		zfree(&node->info_linear);
171 		free(node);
172 	}
173 
174 	env->bpf_progs.infos_cnt = 0;
175 
176 	root = &env->bpf_progs.btfs;
177 	next = rb_first(root);
178 
179 	while (next) {
180 		struct btf_node *node;
181 
182 		node = rb_entry(next, struct btf_node, rb_node);
183 		next = rb_next(&node->rb_node);
184 		rb_erase(&node->rb_node, root);
185 		free(node);
186 	}
187 
188 	env->bpf_progs.btfs_cnt = 0;
189 
190 	up_write(&env->bpf_progs.lock);
191 }
192 #else // HAVE_LIBBPF_SUPPORT
193 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
194 {
195 }
196 #endif // HAVE_LIBBPF_SUPPORT
197 
198 void perf_env__exit(struct perf_env *env)
199 {
200 	int i, j;
201 
202 	perf_env__purge_bpf(env);
203 	perf_env__purge_cgroups(env);
204 	zfree(&env->hostname);
205 	zfree(&env->os_release);
206 	zfree(&env->version);
207 	zfree(&env->arch);
208 	zfree(&env->cpu_desc);
209 	zfree(&env->cpuid);
210 	zfree(&env->cmdline);
211 	zfree(&env->cmdline_argv);
212 	zfree(&env->sibling_dies);
213 	zfree(&env->sibling_cores);
214 	zfree(&env->sibling_threads);
215 	zfree(&env->pmu_mappings);
216 	zfree(&env->cpu);
217 	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
218 		zfree(&env->cpu_pmu_caps[i]);
219 	zfree(&env->cpu_pmu_caps);
220 	zfree(&env->numa_map);
221 
222 	for (i = 0; i < env->nr_numa_nodes; i++)
223 		perf_cpu_map__put(env->numa_nodes[i].map);
224 	zfree(&env->numa_nodes);
225 
226 	for (i = 0; i < env->caches_cnt; i++)
227 		cpu_cache_level__free(&env->caches[i]);
228 	zfree(&env->caches);
229 
230 	for (i = 0; i < env->nr_memory_nodes; i++)
231 		zfree(&env->memory_nodes[i].set);
232 	zfree(&env->memory_nodes);
233 
234 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
235 		zfree(&env->hybrid_nodes[i].pmu_name);
236 		zfree(&env->hybrid_nodes[i].cpus);
237 	}
238 	zfree(&env->hybrid_nodes);
239 
240 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
241 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
242 			zfree(&env->pmu_caps[i].caps[j]);
243 		zfree(&env->pmu_caps[i].caps);
244 		zfree(&env->pmu_caps[i].pmu_name);
245 	}
246 	zfree(&env->pmu_caps);
247 }
248 
249 void perf_env__init(struct perf_env *env)
250 {
251 #ifdef HAVE_LIBBPF_SUPPORT
252 	env->bpf_progs.infos = RB_ROOT;
253 	env->bpf_progs.btfs = RB_ROOT;
254 	init_rwsem(&env->bpf_progs.lock);
255 #endif
256 	env->kernel_is_64_bit = -1;
257 }
258 
259 static void perf_env__init_kernel_mode(struct perf_env *env)
260 {
261 	const char *arch = perf_env__raw_arch(env);
262 
263 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
264 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
265 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
266 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
267 		env->kernel_is_64_bit = 1;
268 	else
269 		env->kernel_is_64_bit = 0;
270 }
271 
272 int perf_env__kernel_is_64_bit(struct perf_env *env)
273 {
274 	if (env->kernel_is_64_bit == -1)
275 		perf_env__init_kernel_mode(env);
276 
277 	return env->kernel_is_64_bit;
278 }
279 
280 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
281 {
282 	int i;
283 
284 	/* do not include NULL termination */
285 	env->cmdline_argv = calloc(argc, sizeof(char *));
286 	if (env->cmdline_argv == NULL)
287 		goto out_enomem;
288 
289 	/*
290 	 * Must copy argv contents because it gets moved around during option
291 	 * parsing:
292 	 */
293 	for (i = 0; i < argc ; i++) {
294 		env->cmdline_argv[i] = argv[i];
295 		if (env->cmdline_argv[i] == NULL)
296 			goto out_free;
297 	}
298 
299 	env->nr_cmdline = argc;
300 
301 	return 0;
302 out_free:
303 	zfree(&env->cmdline_argv);
304 out_enomem:
305 	return -ENOMEM;
306 }
307 
308 int perf_env__read_cpu_topology_map(struct perf_env *env)
309 {
310 	int idx, nr_cpus;
311 
312 	if (env->cpu != NULL)
313 		return 0;
314 
315 	if (env->nr_cpus_avail == 0)
316 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
317 
318 	nr_cpus = env->nr_cpus_avail;
319 	if (nr_cpus == -1)
320 		return -EINVAL;
321 
322 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
323 	if (env->cpu == NULL)
324 		return -ENOMEM;
325 
326 	for (idx = 0; idx < nr_cpus; ++idx) {
327 		struct perf_cpu cpu = { .cpu = idx };
328 
329 		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
330 		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
331 		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
332 	}
333 
334 	env->nr_cpus_avail = nr_cpus;
335 	return 0;
336 }
337 
338 int perf_env__read_pmu_mappings(struct perf_env *env)
339 {
340 	struct perf_pmu *pmu = NULL;
341 	u32 pmu_num = 0;
342 	struct strbuf sb;
343 
344 	while ((pmu = perf_pmus__scan(pmu)))
345 		pmu_num++;
346 
347 	if (!pmu_num) {
348 		pr_debug("pmu mappings not available\n");
349 		return -ENOENT;
350 	}
351 	env->nr_pmu_mappings = pmu_num;
352 
353 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
354 		return -ENOMEM;
355 
356 	while ((pmu = perf_pmus__scan(pmu))) {
357 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
358 			goto error;
359 		/* include a NULL character at the end */
360 		if (strbuf_add(&sb, "", 1) < 0)
361 			goto error;
362 	}
363 
364 	env->pmu_mappings = strbuf_detach(&sb, NULL);
365 
366 	return 0;
367 
368 error:
369 	strbuf_release(&sb);
370 	return -1;
371 }
372 
373 int perf_env__read_cpuid(struct perf_env *env)
374 {
375 	char cpuid[128];
376 	int err = get_cpuid(cpuid, sizeof(cpuid));
377 
378 	if (err)
379 		return err;
380 
381 	free(env->cpuid);
382 	env->cpuid = strdup(cpuid);
383 	if (env->cpuid == NULL)
384 		return ENOMEM;
385 	return 0;
386 }
387 
388 static int perf_env__read_arch(struct perf_env *env)
389 {
390 	struct utsname uts;
391 
392 	if (env->arch)
393 		return 0;
394 
395 	if (!uname(&uts))
396 		env->arch = strdup(uts.machine);
397 
398 	return env->arch ? 0 : -ENOMEM;
399 }
400 
401 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
402 {
403 	if (env->nr_cpus_avail == 0)
404 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
405 
406 	return env->nr_cpus_avail ? 0 : -ENOENT;
407 }
408 
409 const char *perf_env__raw_arch(struct perf_env *env)
410 {
411 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
412 }
413 
414 int perf_env__nr_cpus_avail(struct perf_env *env)
415 {
416 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
417 }
418 
419 void cpu_cache_level__free(struct cpu_cache_level *cache)
420 {
421 	zfree(&cache->type);
422 	zfree(&cache->map);
423 	zfree(&cache->size);
424 }
425 
426 /*
427  * Return architecture name in a normalized form.
428  * The conversion logic comes from the Makefile.
429  */
430 static const char *normalize_arch(char *arch)
431 {
432 	if (!strcmp(arch, "x86_64"))
433 		return "x86";
434 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
435 		return "x86";
436 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
437 		return "sparc";
438 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
439 		return "arm64";
440 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
441 		return "arm";
442 	if (!strncmp(arch, "s390", 4))
443 		return "s390";
444 	if (!strncmp(arch, "parisc", 6))
445 		return "parisc";
446 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
447 		return "powerpc";
448 	if (!strncmp(arch, "mips", 4))
449 		return "mips";
450 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
451 		return "sh";
452 	if (!strncmp(arch, "loongarch", 9))
453 		return "loongarch";
454 
455 	return arch;
456 }
457 
458 const char *perf_env__arch(struct perf_env *env)
459 {
460 	char *arch_name;
461 
462 	if (!env || !env->arch) { /* Assume local operation */
463 		static struct utsname uts = { .machine[0] = '\0', };
464 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
465 			return NULL;
466 		arch_name = uts.machine;
467 	} else
468 		arch_name = env->arch;
469 
470 	return normalize_arch(arch_name);
471 }
472 
473 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused)
474 {
475 #if defined(HAVE_SYSCALL_TABLE_SUPPORT) && defined(HAVE_LIBTRACEEVENT)
476 	if (env->arch_strerrno == NULL)
477 		env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env));
478 
479 	return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function";
480 #else
481 	return "!(HAVE_SYSCALL_TABLE_SUPPORT && HAVE_LIBTRACEEVENT)";
482 #endif
483 }
484 
485 const char *perf_env__cpuid(struct perf_env *env)
486 {
487 	int status;
488 
489 	if (!env->cpuid) { /* Assume local operation */
490 		status = perf_env__read_cpuid(env);
491 		if (status)
492 			return NULL;
493 	}
494 
495 	return env->cpuid;
496 }
497 
498 int perf_env__nr_pmu_mappings(struct perf_env *env)
499 {
500 	int status;
501 
502 	if (!env->nr_pmu_mappings) { /* Assume local operation */
503 		status = perf_env__read_pmu_mappings(env);
504 		if (status)
505 			return 0;
506 	}
507 
508 	return env->nr_pmu_mappings;
509 }
510 
511 const char *perf_env__pmu_mappings(struct perf_env *env)
512 {
513 	int status;
514 
515 	if (!env->pmu_mappings) { /* Assume local operation */
516 		status = perf_env__read_pmu_mappings(env);
517 		if (status)
518 			return NULL;
519 	}
520 
521 	return env->pmu_mappings;
522 }
523 
524 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
525 {
526 	if (!env->nr_numa_map) {
527 		struct numa_node *nn;
528 		int i, nr = 0;
529 
530 		for (i = 0; i < env->nr_numa_nodes; i++) {
531 			nn = &env->numa_nodes[i];
532 			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
533 		}
534 
535 		nr++;
536 
537 		/*
538 		 * We initialize the numa_map array to prepare
539 		 * it for missing cpus, which return node -1
540 		 */
541 		env->numa_map = malloc(nr * sizeof(int));
542 		if (!env->numa_map)
543 			return -1;
544 
545 		for (i = 0; i < nr; i++)
546 			env->numa_map[i] = -1;
547 
548 		env->nr_numa_map = nr;
549 
550 		for (i = 0; i < env->nr_numa_nodes; i++) {
551 			struct perf_cpu tmp;
552 			int j;
553 
554 			nn = &env->numa_nodes[i];
555 			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
556 				env->numa_map[tmp.cpu] = i;
557 		}
558 	}
559 
560 	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
561 }
562 
563 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name)
564 {
565 	char *pmu_mapping = env->pmu_mappings, *colon;
566 
567 	for (int i = 0; i < env->nr_pmu_mappings; ++i) {
568 		if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':')
569 			goto out_error;
570 
571 		pmu_mapping = colon + 1;
572 		if (strcmp(pmu_mapping, pmu_name) == 0)
573 			return true;
574 
575 		pmu_mapping += strlen(pmu_mapping) + 1;
576 	}
577 out_error:
578 	return false;
579 }
580 
581 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
582 			     const char *cap)
583 {
584 	char *cap_eq;
585 	int cap_size;
586 	char **ptr;
587 	int i, j;
588 
589 	if (!pmu_name || !cap)
590 		return NULL;
591 
592 	cap_size = strlen(cap);
593 	cap_eq = zalloc(cap_size + 2);
594 	if (!cap_eq)
595 		return NULL;
596 
597 	memcpy(cap_eq, cap, cap_size);
598 	cap_eq[cap_size] = '=';
599 
600 	if (!strcmp(pmu_name, "cpu")) {
601 		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
602 			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
603 				free(cap_eq);
604 				return &env->cpu_pmu_caps[i][cap_size + 1];
605 			}
606 		}
607 		goto out;
608 	}
609 
610 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
611 		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
612 			continue;
613 
614 		ptr = env->pmu_caps[i].caps;
615 
616 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
617 			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
618 				free(cap_eq);
619 				return &ptr[j][cap_size + 1];
620 			}
621 		}
622 	}
623 
624 out:
625 	free(cap_eq);
626 	return NULL;
627 }
628 
629 void perf_env__find_br_cntr_info(struct perf_env *env,
630 				 unsigned int *nr,
631 				 unsigned int *width)
632 {
633 	if (nr) {
634 		*nr = env->cpu_pmu_caps ? env->br_cntr_nr :
635 					  env->pmu_caps->br_cntr_nr;
636 	}
637 
638 	if (width) {
639 		*width = env->cpu_pmu_caps ? env->br_cntr_width :
640 					     env->pmu_caps->br_cntr_width;
641 	}
642 }
643 
644 bool perf_env__is_x86_amd_cpu(struct perf_env *env)
645 {
646 	static int is_amd; /* 0: Uninitialized, 1: Yes, -1: No */
647 
648 	if (is_amd == 0)
649 		is_amd = env->cpuid && strstarts(env->cpuid, "AuthenticAMD") ? 1 : -1;
650 
651 	return is_amd >= 1 ? true : false;
652 }
653 
654 bool x86__is_amd_cpu(void)
655 {
656 	struct perf_env env = { .total_mem = 0, };
657 	bool is_amd;
658 
659 	perf_env__cpuid(&env);
660 	is_amd = perf_env__is_x86_amd_cpu(&env);
661 	perf_env__exit(&env);
662 
663 	return is_amd;
664 }
665