1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include "util/rwsem.h" 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/rbtree.h> 10 #include <linux/string.h> 11 #include <linux/zalloc.h> 12 #include "cgroup.h" 13 #include <errno.h> 14 #include <sys/utsname.h> 15 #include <stdlib.h> 16 #include <string.h> 17 #include "pmu.h" 18 #include "pmus.h" 19 #include "strbuf.h" 20 #include "trace/beauty/beauty.h" 21 22 #ifdef HAVE_LIBBPF_SUPPORT 23 #include "bpf-event.h" 24 #include "bpf-utils.h" 25 #include <bpf/libbpf.h> 26 27 bool perf_env__insert_bpf_prog_info(struct perf_env *env, 28 struct bpf_prog_info_node *info_node) 29 { 30 bool ret; 31 32 down_write(&env->bpf_progs.lock); 33 ret = __perf_env__insert_bpf_prog_info(env, info_node); 34 up_write(&env->bpf_progs.lock); 35 36 return ret; 37 } 38 39 bool __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node) 40 { 41 __u32 prog_id = info_node->info_linear->info.id; 42 struct bpf_prog_info_node *node; 43 struct rb_node *parent = NULL; 44 struct rb_node **p; 45 46 p = &env->bpf_progs.infos.rb_node; 47 48 while (*p != NULL) { 49 parent = *p; 50 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 51 if (prog_id < node->info_linear->info.id) { 52 p = &(*p)->rb_left; 53 } else if (prog_id > node->info_linear->info.id) { 54 p = &(*p)->rb_right; 55 } else { 56 pr_debug("duplicated bpf prog info %u\n", prog_id); 57 return false; 58 } 59 } 60 61 rb_link_node(&info_node->rb_node, parent, p); 62 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 63 env->bpf_progs.infos_cnt++; 64 return true; 65 } 66 67 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 68 __u32 prog_id) 69 { 70 struct bpf_prog_info_node *node = NULL; 71 struct rb_node *n; 72 73 down_read(&env->bpf_progs.lock); 74 n = env->bpf_progs.infos.rb_node; 75 76 while (n) { 77 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 78 if (prog_id < node->info_linear->info.id) 79 n = n->rb_left; 80 else if (prog_id > node->info_linear->info.id) 81 n = n->rb_right; 82 else 83 goto out; 84 } 85 node = NULL; 86 87 out: 88 up_read(&env->bpf_progs.lock); 89 return node; 90 } 91 92 void perf_env__iterate_bpf_prog_info(struct perf_env *env, 93 void (*cb)(struct bpf_prog_info_node *node, 94 void *data), 95 void *data) 96 { 97 struct rb_node *first; 98 99 down_read(&env->bpf_progs.lock); 100 first = rb_first(&env->bpf_progs.infos); 101 for (struct rb_node *node = first; node != NULL; node = rb_next(node)) 102 (*cb)(rb_entry(node, struct bpf_prog_info_node, rb_node), data); 103 up_read(&env->bpf_progs.lock); 104 } 105 106 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 107 { 108 bool ret; 109 110 down_write(&env->bpf_progs.lock); 111 ret = __perf_env__insert_btf(env, btf_node); 112 up_write(&env->bpf_progs.lock); 113 return ret; 114 } 115 116 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 117 { 118 struct rb_node *parent = NULL; 119 __u32 btf_id = btf_node->id; 120 struct btf_node *node; 121 struct rb_node **p; 122 123 p = &env->bpf_progs.btfs.rb_node; 124 125 while (*p != NULL) { 126 parent = *p; 127 node = rb_entry(parent, struct btf_node, rb_node); 128 if (btf_id < node->id) { 129 p = &(*p)->rb_left; 130 } else if (btf_id > node->id) { 131 p = &(*p)->rb_right; 132 } else { 133 pr_debug("duplicated btf %u\n", btf_id); 134 return false; 135 } 136 } 137 138 rb_link_node(&btf_node->rb_node, parent, p); 139 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 140 env->bpf_progs.btfs_cnt++; 141 return true; 142 } 143 144 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 145 { 146 struct btf_node *res; 147 148 down_read(&env->bpf_progs.lock); 149 res = __perf_env__find_btf(env, btf_id); 150 up_read(&env->bpf_progs.lock); 151 return res; 152 } 153 154 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id) 155 { 156 struct btf_node *node = NULL; 157 struct rb_node *n; 158 159 n = env->bpf_progs.btfs.rb_node; 160 161 while (n) { 162 node = rb_entry(n, struct btf_node, rb_node); 163 if (btf_id < node->id) 164 n = n->rb_left; 165 else if (btf_id > node->id) 166 n = n->rb_right; 167 else 168 return node; 169 } 170 return NULL; 171 } 172 173 /* purge data in bpf_progs.infos tree */ 174 static void perf_env__purge_bpf(struct perf_env *env) 175 { 176 struct rb_root *root; 177 struct rb_node *next; 178 179 down_write(&env->bpf_progs.lock); 180 181 root = &env->bpf_progs.infos; 182 next = rb_first(root); 183 184 while (next) { 185 struct bpf_prog_info_node *node; 186 187 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 188 next = rb_next(&node->rb_node); 189 rb_erase(&node->rb_node, root); 190 zfree(&node->info_linear); 191 bpf_metadata_free(node->metadata); 192 free(node); 193 } 194 195 env->bpf_progs.infos_cnt = 0; 196 197 root = &env->bpf_progs.btfs; 198 next = rb_first(root); 199 200 while (next) { 201 struct btf_node *node; 202 203 node = rb_entry(next, struct btf_node, rb_node); 204 next = rb_next(&node->rb_node); 205 rb_erase(&node->rb_node, root); 206 free(node); 207 } 208 209 env->bpf_progs.btfs_cnt = 0; 210 211 up_write(&env->bpf_progs.lock); 212 } 213 #else // HAVE_LIBBPF_SUPPORT 214 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 215 { 216 } 217 #endif // HAVE_LIBBPF_SUPPORT 218 219 void perf_env__exit(struct perf_env *env) 220 { 221 int i, j; 222 223 perf_env__purge_bpf(env); 224 perf_env__purge_cgroups(env); 225 zfree(&env->hostname); 226 zfree(&env->os_release); 227 zfree(&env->version); 228 zfree(&env->arch); 229 zfree(&env->cpu_desc); 230 zfree(&env->cpuid); 231 zfree(&env->cmdline); 232 zfree(&env->cmdline_argv); 233 zfree(&env->sibling_dies); 234 zfree(&env->sibling_cores); 235 zfree(&env->sibling_threads); 236 zfree(&env->pmu_mappings); 237 zfree(&env->cpu); 238 for (i = 0; i < env->nr_cpu_pmu_caps; i++) 239 zfree(&env->cpu_pmu_caps[i]); 240 zfree(&env->cpu_pmu_caps); 241 zfree(&env->numa_map); 242 243 for (i = 0; i < env->nr_numa_nodes; i++) 244 perf_cpu_map__put(env->numa_nodes[i].map); 245 zfree(&env->numa_nodes); 246 247 for (i = 0; i < env->caches_cnt; i++) 248 cpu_cache_level__free(&env->caches[i]); 249 zfree(&env->caches); 250 251 for (i = 0; i < env->nr_memory_nodes; i++) 252 zfree(&env->memory_nodes[i].set); 253 zfree(&env->memory_nodes); 254 255 for (i = 0; i < env->nr_hybrid_nodes; i++) { 256 zfree(&env->hybrid_nodes[i].pmu_name); 257 zfree(&env->hybrid_nodes[i].cpus); 258 } 259 zfree(&env->hybrid_nodes); 260 261 for (i = 0; i < env->nr_pmus_with_caps; i++) { 262 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) 263 zfree(&env->pmu_caps[i].caps[j]); 264 zfree(&env->pmu_caps[i].caps); 265 zfree(&env->pmu_caps[i].pmu_name); 266 } 267 zfree(&env->pmu_caps); 268 } 269 270 void perf_env__init(struct perf_env *env) 271 { 272 memset(env, 0, sizeof(*env)); 273 #ifdef HAVE_LIBBPF_SUPPORT 274 env->bpf_progs.infos = RB_ROOT; 275 env->bpf_progs.btfs = RB_ROOT; 276 init_rwsem(&env->bpf_progs.lock); 277 #endif 278 env->kernel_is_64_bit = -1; 279 } 280 281 static void perf_env__init_kernel_mode(struct perf_env *env) 282 { 283 const char *arch = perf_env__raw_arch(env); 284 285 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) || 286 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) || 287 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) || 288 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7)) 289 env->kernel_is_64_bit = 1; 290 else 291 env->kernel_is_64_bit = 0; 292 } 293 294 int perf_env__kernel_is_64_bit(struct perf_env *env) 295 { 296 if (env->kernel_is_64_bit == -1) 297 perf_env__init_kernel_mode(env); 298 299 return env->kernel_is_64_bit; 300 } 301 302 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 303 { 304 int i; 305 306 /* do not include NULL termination */ 307 env->cmdline_argv = calloc(argc, sizeof(char *)); 308 if (env->cmdline_argv == NULL) 309 goto out_enomem; 310 311 /* 312 * Must copy argv contents because it gets moved around during option 313 * parsing: 314 */ 315 for (i = 0; i < argc ; i++) { 316 env->cmdline_argv[i] = argv[i]; 317 if (env->cmdline_argv[i] == NULL) 318 goto out_free; 319 } 320 321 env->nr_cmdline = argc; 322 323 return 0; 324 out_free: 325 zfree(&env->cmdline_argv); 326 out_enomem: 327 return -ENOMEM; 328 } 329 330 int perf_env__read_cpu_topology_map(struct perf_env *env) 331 { 332 int idx, nr_cpus; 333 334 if (env->cpu != NULL) 335 return 0; 336 337 if (env->nr_cpus_avail == 0) 338 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 339 340 nr_cpus = env->nr_cpus_avail; 341 if (nr_cpus == -1) 342 return -EINVAL; 343 344 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 345 if (env->cpu == NULL) 346 return -ENOMEM; 347 348 for (idx = 0; idx < nr_cpus; ++idx) { 349 struct perf_cpu cpu = { .cpu = idx }; 350 int core_id = cpu__get_core_id(cpu); 351 int socket_id = cpu__get_socket_id(cpu); 352 int die_id = cpu__get_die_id(cpu); 353 354 env->cpu[idx].core_id = core_id >= 0 ? core_id : -1; 355 env->cpu[idx].socket_id = socket_id >= 0 ? socket_id : -1; 356 env->cpu[idx].die_id = die_id >= 0 ? die_id : -1; 357 } 358 359 env->nr_cpus_avail = nr_cpus; 360 return 0; 361 } 362 363 int perf_env__read_pmu_mappings(struct perf_env *env) 364 { 365 struct perf_pmu *pmu = NULL; 366 u32 pmu_num = 0; 367 struct strbuf sb; 368 369 while ((pmu = perf_pmus__scan(pmu))) 370 pmu_num++; 371 372 if (!pmu_num) { 373 pr_debug("pmu mappings not available\n"); 374 return -ENOENT; 375 } 376 env->nr_pmu_mappings = pmu_num; 377 378 if (strbuf_init(&sb, 128 * pmu_num) < 0) 379 return -ENOMEM; 380 381 while ((pmu = perf_pmus__scan(pmu))) { 382 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0) 383 goto error; 384 /* include a NULL character at the end */ 385 if (strbuf_add(&sb, "", 1) < 0) 386 goto error; 387 } 388 389 env->pmu_mappings = strbuf_detach(&sb, NULL); 390 391 return 0; 392 393 error: 394 strbuf_release(&sb); 395 return -1; 396 } 397 398 int perf_env__read_cpuid(struct perf_env *env) 399 { 400 char cpuid[128]; 401 struct perf_cpu cpu = {-1}; 402 int err = get_cpuid(cpuid, sizeof(cpuid), cpu); 403 404 if (err) 405 return err; 406 407 free(env->cpuid); 408 env->cpuid = strdup(cpuid); 409 if (env->cpuid == NULL) 410 return ENOMEM; 411 return 0; 412 } 413 414 static int perf_env__read_arch(struct perf_env *env) 415 { 416 struct utsname uts; 417 418 if (env->arch) 419 return 0; 420 421 if (!uname(&uts)) 422 env->arch = strdup(uts.machine); 423 424 return env->arch ? 0 : -ENOMEM; 425 } 426 427 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 428 { 429 if (env->nr_cpus_avail == 0) 430 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 431 432 return env->nr_cpus_avail ? 0 : -ENOENT; 433 } 434 435 static int __perf_env__read_core_pmu_caps(const struct perf_pmu *pmu, 436 int *nr_caps, char ***caps, 437 unsigned int *max_branches, 438 unsigned int *br_cntr_nr, 439 unsigned int *br_cntr_width) 440 { 441 struct perf_pmu_caps *pcaps = NULL; 442 char *ptr, **tmp; 443 int ret = 0; 444 445 *nr_caps = 0; 446 *caps = NULL; 447 448 if (!pmu->nr_caps) 449 return 0; 450 451 *caps = calloc(pmu->nr_caps, sizeof(char *)); 452 if (!*caps) 453 return -ENOMEM; 454 455 tmp = *caps; 456 list_for_each_entry(pcaps, &pmu->caps, list) { 457 if (asprintf(&ptr, "%s=%s", pcaps->name, pcaps->value) < 0) { 458 ret = -ENOMEM; 459 goto error; 460 } 461 462 *tmp++ = ptr; 463 464 if (!strcmp(pcaps->name, "branches")) 465 *max_branches = atoi(pcaps->value); 466 else if (!strcmp(pcaps->name, "branch_counter_nr")) 467 *br_cntr_nr = atoi(pcaps->value); 468 else if (!strcmp(pcaps->name, "branch_counter_width")) 469 *br_cntr_width = atoi(pcaps->value); 470 } 471 *nr_caps = pmu->nr_caps; 472 return 0; 473 error: 474 while (tmp-- != *caps) 475 zfree(tmp); 476 zfree(caps); 477 *nr_caps = 0; 478 return ret; 479 } 480 481 int perf_env__read_core_pmu_caps(struct perf_env *env) 482 { 483 struct pmu_caps *pmu_caps; 484 struct perf_pmu *pmu = NULL; 485 int nr_pmu, i = 0, j; 486 int ret; 487 488 nr_pmu = perf_pmus__num_core_pmus(); 489 490 if (!nr_pmu) 491 return -ENODEV; 492 493 if (nr_pmu == 1) { 494 pmu = perf_pmus__find_core_pmu(); 495 if (!pmu) 496 return -ENODEV; 497 ret = perf_pmu__caps_parse(pmu); 498 if (ret < 0) 499 return ret; 500 return __perf_env__read_core_pmu_caps(pmu, &env->nr_cpu_pmu_caps, 501 &env->cpu_pmu_caps, 502 &env->max_branches, 503 &env->br_cntr_nr, 504 &env->br_cntr_width); 505 } 506 507 pmu_caps = calloc(nr_pmu, sizeof(*pmu_caps)); 508 if (!pmu_caps) 509 return -ENOMEM; 510 511 while ((pmu = perf_pmus__scan_core(pmu)) != NULL) { 512 if (perf_pmu__caps_parse(pmu) <= 0) 513 continue; 514 ret = __perf_env__read_core_pmu_caps(pmu, &pmu_caps[i].nr_caps, 515 &pmu_caps[i].caps, 516 &pmu_caps[i].max_branches, 517 &pmu_caps[i].br_cntr_nr, 518 &pmu_caps[i].br_cntr_width); 519 if (ret) 520 goto error; 521 522 pmu_caps[i].pmu_name = strdup(pmu->name); 523 if (!pmu_caps[i].pmu_name) { 524 ret = -ENOMEM; 525 goto error; 526 } 527 i++; 528 } 529 530 env->nr_pmus_with_caps = nr_pmu; 531 env->pmu_caps = pmu_caps; 532 533 return 0; 534 error: 535 for (i = 0; i < nr_pmu; i++) { 536 for (j = 0; j < pmu_caps[i].nr_caps; j++) 537 zfree(&pmu_caps[i].caps[j]); 538 zfree(&pmu_caps[i].caps); 539 zfree(&pmu_caps[i].pmu_name); 540 } 541 zfree(&pmu_caps); 542 return ret; 543 } 544 545 const char *perf_env__raw_arch(struct perf_env *env) 546 { 547 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 548 } 549 550 int perf_env__nr_cpus_avail(struct perf_env *env) 551 { 552 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 553 } 554 555 void cpu_cache_level__free(struct cpu_cache_level *cache) 556 { 557 zfree(&cache->type); 558 zfree(&cache->map); 559 zfree(&cache->size); 560 } 561 562 /* 563 * Return architecture name in a normalized form. 564 * The conversion logic comes from the Makefile. 565 */ 566 static const char *normalize_arch(char *arch) 567 { 568 if (!strcmp(arch, "x86_64")) 569 return "x86"; 570 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 571 return "x86"; 572 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 573 return "sparc"; 574 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5)) 575 return "arm64"; 576 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 577 return "arm"; 578 if (!strncmp(arch, "s390", 4)) 579 return "s390"; 580 if (!strncmp(arch, "parisc", 6)) 581 return "parisc"; 582 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 583 return "powerpc"; 584 if (!strncmp(arch, "mips", 4)) 585 return "mips"; 586 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 587 return "sh"; 588 if (!strncmp(arch, "loongarch", 9)) 589 return "loongarch"; 590 591 return arch; 592 } 593 594 const char *perf_env__arch(struct perf_env *env) 595 { 596 char *arch_name; 597 598 if (!env || !env->arch) { /* Assume local operation */ 599 static struct utsname uts = { .machine[0] = '\0', }; 600 if (uts.machine[0] == '\0' && uname(&uts) < 0) 601 return NULL; 602 arch_name = uts.machine; 603 } else 604 arch_name = env->arch; 605 606 return normalize_arch(arch_name); 607 } 608 609 #if defined(HAVE_LIBTRACEEVENT) 610 #include "trace/beauty/arch_errno_names.c" 611 #endif 612 613 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused) 614 { 615 #if defined(HAVE_LIBTRACEEVENT) 616 if (env->arch_strerrno == NULL) 617 env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env)); 618 619 return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function"; 620 #else 621 return "!HAVE_LIBTRACEEVENT"; 622 #endif 623 } 624 625 const char *perf_env__cpuid(struct perf_env *env) 626 { 627 int status; 628 629 if (!env->cpuid) { /* Assume local operation */ 630 status = perf_env__read_cpuid(env); 631 if (status) 632 return NULL; 633 } 634 635 return env->cpuid; 636 } 637 638 int perf_env__nr_pmu_mappings(struct perf_env *env) 639 { 640 int status; 641 642 if (!env->nr_pmu_mappings) { /* Assume local operation */ 643 status = perf_env__read_pmu_mappings(env); 644 if (status) 645 return 0; 646 } 647 648 return env->nr_pmu_mappings; 649 } 650 651 const char *perf_env__pmu_mappings(struct perf_env *env) 652 { 653 int status; 654 655 if (!env->pmu_mappings) { /* Assume local operation */ 656 status = perf_env__read_pmu_mappings(env); 657 if (status) 658 return NULL; 659 } 660 661 return env->pmu_mappings; 662 } 663 664 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu) 665 { 666 if (!env->nr_numa_map) { 667 struct numa_node *nn; 668 int i, nr = 0; 669 670 for (i = 0; i < env->nr_numa_nodes; i++) { 671 nn = &env->numa_nodes[i]; 672 nr = max(nr, (int)perf_cpu_map__max(nn->map).cpu); 673 } 674 675 nr++; 676 677 /* 678 * We initialize the numa_map array to prepare 679 * it for missing cpus, which return node -1 680 */ 681 env->numa_map = malloc(nr * sizeof(int)); 682 if (!env->numa_map) 683 return -1; 684 685 for (i = 0; i < nr; i++) 686 env->numa_map[i] = -1; 687 688 env->nr_numa_map = nr; 689 690 for (i = 0; i < env->nr_numa_nodes; i++) { 691 struct perf_cpu tmp; 692 int j; 693 694 nn = &env->numa_nodes[i]; 695 perf_cpu_map__for_each_cpu(tmp, j, nn->map) 696 env->numa_map[tmp.cpu] = i; 697 } 698 } 699 700 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1; 701 } 702 703 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name) 704 { 705 char *pmu_mapping = env->pmu_mappings, *colon; 706 707 for (int i = 0; i < env->nr_pmu_mappings; ++i) { 708 if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':') 709 goto out_error; 710 711 pmu_mapping = colon + 1; 712 if (strcmp(pmu_mapping, pmu_name) == 0) 713 return true; 714 715 pmu_mapping += strlen(pmu_mapping) + 1; 716 } 717 out_error: 718 return false; 719 } 720 721 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name, 722 const char *cap) 723 { 724 char *cap_eq; 725 int cap_size; 726 char **ptr; 727 int i, j; 728 729 if (!pmu_name || !cap) 730 return NULL; 731 732 cap_size = strlen(cap); 733 cap_eq = zalloc(cap_size + 2); 734 if (!cap_eq) 735 return NULL; 736 737 memcpy(cap_eq, cap, cap_size); 738 cap_eq[cap_size] = '='; 739 740 if (!strcmp(pmu_name, "cpu")) { 741 for (i = 0; i < env->nr_cpu_pmu_caps; i++) { 742 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) { 743 free(cap_eq); 744 return &env->cpu_pmu_caps[i][cap_size + 1]; 745 } 746 } 747 goto out; 748 } 749 750 for (i = 0; i < env->nr_pmus_with_caps; i++) { 751 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name)) 752 continue; 753 754 ptr = env->pmu_caps[i].caps; 755 756 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) { 757 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) { 758 free(cap_eq); 759 return &ptr[j][cap_size + 1]; 760 } 761 } 762 } 763 764 out: 765 free(cap_eq); 766 return NULL; 767 } 768 769 void perf_env__find_br_cntr_info(struct perf_env *env, 770 unsigned int *nr, 771 unsigned int *width) 772 { 773 if (nr) { 774 *nr = env->cpu_pmu_caps ? env->br_cntr_nr : 775 env->pmu_caps->br_cntr_nr; 776 } 777 778 if (width) { 779 *width = env->cpu_pmu_caps ? env->br_cntr_width : 780 env->pmu_caps->br_cntr_width; 781 } 782 } 783 784 bool perf_env__is_x86_amd_cpu(struct perf_env *env) 785 { 786 static int is_amd; /* 0: Uninitialized, 1: Yes, -1: No */ 787 788 if (is_amd == 0) 789 is_amd = env->cpuid && strstarts(env->cpuid, "AuthenticAMD") ? 1 : -1; 790 791 return is_amd >= 1 ? true : false; 792 } 793 794 bool x86__is_amd_cpu(void) 795 { 796 struct perf_env env = { .total_mem = 0, }; 797 bool is_amd; 798 799 perf_env__cpuid(&env); 800 is_amd = perf_env__is_x86_amd_cpu(&env); 801 perf_env__exit(&env); 802 803 return is_amd; 804 } 805