xref: /linux/tools/perf/util/env.c (revision 1dc707e647bc919834eff9636c8d00b78c782545)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include "linux/compiler.h"
7 #include <linux/ctype.h>
8 #include <linux/string.h>
9 #include <linux/zalloc.h>
10 #include "cgroup.h"
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include "pmu.h"
16 #include "pmus.h"
17 #include "strbuf.h"
18 #include "trace/beauty/beauty.h"
19 
20 struct perf_env perf_env;
21 
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include "bpf-event.h"
24 #include "bpf-utils.h"
25 #include <bpf/libbpf.h>
26 
27 void perf_env__insert_bpf_prog_info(struct perf_env *env,
28 				    struct bpf_prog_info_node *info_node)
29 {
30 	down_write(&env->bpf_progs.lock);
31 	__perf_env__insert_bpf_prog_info(env, info_node);
32 	up_write(&env->bpf_progs.lock);
33 }
34 
35 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
36 {
37 	__u32 prog_id = info_node->info_linear->info.id;
38 	struct bpf_prog_info_node *node;
39 	struct rb_node *parent = NULL;
40 	struct rb_node **p;
41 
42 	p = &env->bpf_progs.infos.rb_node;
43 
44 	while (*p != NULL) {
45 		parent = *p;
46 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
47 		if (prog_id < node->info_linear->info.id) {
48 			p = &(*p)->rb_left;
49 		} else if (prog_id > node->info_linear->info.id) {
50 			p = &(*p)->rb_right;
51 		} else {
52 			pr_debug("duplicated bpf prog info %u\n", prog_id);
53 			return;
54 		}
55 	}
56 
57 	rb_link_node(&info_node->rb_node, parent, p);
58 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
59 	env->bpf_progs.infos_cnt++;
60 }
61 
62 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
63 							__u32 prog_id)
64 {
65 	struct bpf_prog_info_node *node = NULL;
66 	struct rb_node *n;
67 
68 	down_read(&env->bpf_progs.lock);
69 	n = env->bpf_progs.infos.rb_node;
70 
71 	while (n) {
72 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
73 		if (prog_id < node->info_linear->info.id)
74 			n = n->rb_left;
75 		else if (prog_id > node->info_linear->info.id)
76 			n = n->rb_right;
77 		else
78 			goto out;
79 	}
80 	node = NULL;
81 
82 out:
83 	up_read(&env->bpf_progs.lock);
84 	return node;
85 }
86 
87 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
88 {
89 	bool ret;
90 
91 	down_write(&env->bpf_progs.lock);
92 	ret = __perf_env__insert_btf(env, btf_node);
93 	up_write(&env->bpf_progs.lock);
94 	return ret;
95 }
96 
97 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
98 {
99 	struct rb_node *parent = NULL;
100 	__u32 btf_id = btf_node->id;
101 	struct btf_node *node;
102 	struct rb_node **p;
103 
104 	p = &env->bpf_progs.btfs.rb_node;
105 
106 	while (*p != NULL) {
107 		parent = *p;
108 		node = rb_entry(parent, struct btf_node, rb_node);
109 		if (btf_id < node->id) {
110 			p = &(*p)->rb_left;
111 		} else if (btf_id > node->id) {
112 			p = &(*p)->rb_right;
113 		} else {
114 			pr_debug("duplicated btf %u\n", btf_id);
115 			return false;
116 		}
117 	}
118 
119 	rb_link_node(&btf_node->rb_node, parent, p);
120 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
121 	env->bpf_progs.btfs_cnt++;
122 	return true;
123 }
124 
125 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
126 {
127 	struct btf_node *res;
128 
129 	down_read(&env->bpf_progs.lock);
130 	res = __perf_env__find_btf(env, btf_id);
131 	up_read(&env->bpf_progs.lock);
132 	return res;
133 }
134 
135 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
136 {
137 	struct btf_node *node = NULL;
138 	struct rb_node *n;
139 
140 	n = env->bpf_progs.btfs.rb_node;
141 
142 	while (n) {
143 		node = rb_entry(n, struct btf_node, rb_node);
144 		if (btf_id < node->id)
145 			n = n->rb_left;
146 		else if (btf_id > node->id)
147 			n = n->rb_right;
148 		else
149 			return node;
150 	}
151 	return NULL;
152 }
153 
154 /* purge data in bpf_progs.infos tree */
155 static void perf_env__purge_bpf(struct perf_env *env)
156 {
157 	struct rb_root *root;
158 	struct rb_node *next;
159 
160 	down_write(&env->bpf_progs.lock);
161 
162 	root = &env->bpf_progs.infos;
163 	next = rb_first(root);
164 
165 	while (next) {
166 		struct bpf_prog_info_node *node;
167 
168 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
169 		next = rb_next(&node->rb_node);
170 		rb_erase(&node->rb_node, root);
171 		zfree(&node->info_linear);
172 		free(node);
173 	}
174 
175 	env->bpf_progs.infos_cnt = 0;
176 
177 	root = &env->bpf_progs.btfs;
178 	next = rb_first(root);
179 
180 	while (next) {
181 		struct btf_node *node;
182 
183 		node = rb_entry(next, struct btf_node, rb_node);
184 		next = rb_next(&node->rb_node);
185 		rb_erase(&node->rb_node, root);
186 		free(node);
187 	}
188 
189 	env->bpf_progs.btfs_cnt = 0;
190 
191 	up_write(&env->bpf_progs.lock);
192 }
193 #else // HAVE_LIBBPF_SUPPORT
194 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
195 {
196 }
197 #endif // HAVE_LIBBPF_SUPPORT
198 
199 void perf_env__exit(struct perf_env *env)
200 {
201 	int i, j;
202 
203 	perf_env__purge_bpf(env);
204 	perf_env__purge_cgroups(env);
205 	zfree(&env->hostname);
206 	zfree(&env->os_release);
207 	zfree(&env->version);
208 	zfree(&env->arch);
209 	zfree(&env->cpu_desc);
210 	zfree(&env->cpuid);
211 	zfree(&env->cmdline);
212 	zfree(&env->cmdline_argv);
213 	zfree(&env->sibling_dies);
214 	zfree(&env->sibling_cores);
215 	zfree(&env->sibling_threads);
216 	zfree(&env->pmu_mappings);
217 	zfree(&env->cpu);
218 	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
219 		zfree(&env->cpu_pmu_caps[i]);
220 	zfree(&env->cpu_pmu_caps);
221 	zfree(&env->numa_map);
222 
223 	for (i = 0; i < env->nr_numa_nodes; i++)
224 		perf_cpu_map__put(env->numa_nodes[i].map);
225 	zfree(&env->numa_nodes);
226 
227 	for (i = 0; i < env->caches_cnt; i++)
228 		cpu_cache_level__free(&env->caches[i]);
229 	zfree(&env->caches);
230 
231 	for (i = 0; i < env->nr_memory_nodes; i++)
232 		zfree(&env->memory_nodes[i].set);
233 	zfree(&env->memory_nodes);
234 
235 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
236 		zfree(&env->hybrid_nodes[i].pmu_name);
237 		zfree(&env->hybrid_nodes[i].cpus);
238 	}
239 	zfree(&env->hybrid_nodes);
240 
241 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
242 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
243 			zfree(&env->pmu_caps[i].caps[j]);
244 		zfree(&env->pmu_caps[i].caps);
245 		zfree(&env->pmu_caps[i].pmu_name);
246 	}
247 	zfree(&env->pmu_caps);
248 }
249 
250 void perf_env__init(struct perf_env *env)
251 {
252 #ifdef HAVE_LIBBPF_SUPPORT
253 	env->bpf_progs.infos = RB_ROOT;
254 	env->bpf_progs.btfs = RB_ROOT;
255 	init_rwsem(&env->bpf_progs.lock);
256 #endif
257 	env->kernel_is_64_bit = -1;
258 }
259 
260 static void perf_env__init_kernel_mode(struct perf_env *env)
261 {
262 	const char *arch = perf_env__raw_arch(env);
263 
264 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
265 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
266 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
267 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
268 		env->kernel_is_64_bit = 1;
269 	else
270 		env->kernel_is_64_bit = 0;
271 }
272 
273 int perf_env__kernel_is_64_bit(struct perf_env *env)
274 {
275 	if (env->kernel_is_64_bit == -1)
276 		perf_env__init_kernel_mode(env);
277 
278 	return env->kernel_is_64_bit;
279 }
280 
281 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
282 {
283 	int i;
284 
285 	/* do not include NULL termination */
286 	env->cmdline_argv = calloc(argc, sizeof(char *));
287 	if (env->cmdline_argv == NULL)
288 		goto out_enomem;
289 
290 	/*
291 	 * Must copy argv contents because it gets moved around during option
292 	 * parsing:
293 	 */
294 	for (i = 0; i < argc ; i++) {
295 		env->cmdline_argv[i] = argv[i];
296 		if (env->cmdline_argv[i] == NULL)
297 			goto out_free;
298 	}
299 
300 	env->nr_cmdline = argc;
301 
302 	return 0;
303 out_free:
304 	zfree(&env->cmdline_argv);
305 out_enomem:
306 	return -ENOMEM;
307 }
308 
309 int perf_env__read_cpu_topology_map(struct perf_env *env)
310 {
311 	int idx, nr_cpus;
312 
313 	if (env->cpu != NULL)
314 		return 0;
315 
316 	if (env->nr_cpus_avail == 0)
317 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
318 
319 	nr_cpus = env->nr_cpus_avail;
320 	if (nr_cpus == -1)
321 		return -EINVAL;
322 
323 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
324 	if (env->cpu == NULL)
325 		return -ENOMEM;
326 
327 	for (idx = 0; idx < nr_cpus; ++idx) {
328 		struct perf_cpu cpu = { .cpu = idx };
329 
330 		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
331 		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
332 		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
333 	}
334 
335 	env->nr_cpus_avail = nr_cpus;
336 	return 0;
337 }
338 
339 int perf_env__read_pmu_mappings(struct perf_env *env)
340 {
341 	struct perf_pmu *pmu = NULL;
342 	u32 pmu_num = 0;
343 	struct strbuf sb;
344 
345 	while ((pmu = perf_pmus__scan(pmu)))
346 		pmu_num++;
347 
348 	if (!pmu_num) {
349 		pr_debug("pmu mappings not available\n");
350 		return -ENOENT;
351 	}
352 	env->nr_pmu_mappings = pmu_num;
353 
354 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
355 		return -ENOMEM;
356 
357 	while ((pmu = perf_pmus__scan(pmu))) {
358 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
359 			goto error;
360 		/* include a NULL character at the end */
361 		if (strbuf_add(&sb, "", 1) < 0)
362 			goto error;
363 	}
364 
365 	env->pmu_mappings = strbuf_detach(&sb, NULL);
366 
367 	return 0;
368 
369 error:
370 	strbuf_release(&sb);
371 	return -1;
372 }
373 
374 int perf_env__read_cpuid(struct perf_env *env)
375 {
376 	char cpuid[128];
377 	struct perf_cpu cpu = {-1};
378 	int err = get_cpuid(cpuid, sizeof(cpuid), cpu);
379 
380 	if (err)
381 		return err;
382 
383 	free(env->cpuid);
384 	env->cpuid = strdup(cpuid);
385 	if (env->cpuid == NULL)
386 		return ENOMEM;
387 	return 0;
388 }
389 
390 static int perf_env__read_arch(struct perf_env *env)
391 {
392 	struct utsname uts;
393 
394 	if (env->arch)
395 		return 0;
396 
397 	if (!uname(&uts))
398 		env->arch = strdup(uts.machine);
399 
400 	return env->arch ? 0 : -ENOMEM;
401 }
402 
403 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
404 {
405 	if (env->nr_cpus_avail == 0)
406 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
407 
408 	return env->nr_cpus_avail ? 0 : -ENOENT;
409 }
410 
411 const char *perf_env__raw_arch(struct perf_env *env)
412 {
413 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
414 }
415 
416 int perf_env__nr_cpus_avail(struct perf_env *env)
417 {
418 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
419 }
420 
421 void cpu_cache_level__free(struct cpu_cache_level *cache)
422 {
423 	zfree(&cache->type);
424 	zfree(&cache->map);
425 	zfree(&cache->size);
426 }
427 
428 /*
429  * Return architecture name in a normalized form.
430  * The conversion logic comes from the Makefile.
431  */
432 static const char *normalize_arch(char *arch)
433 {
434 	if (!strcmp(arch, "x86_64"))
435 		return "x86";
436 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
437 		return "x86";
438 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
439 		return "sparc";
440 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
441 		return "arm64";
442 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
443 		return "arm";
444 	if (!strncmp(arch, "s390", 4))
445 		return "s390";
446 	if (!strncmp(arch, "parisc", 6))
447 		return "parisc";
448 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
449 		return "powerpc";
450 	if (!strncmp(arch, "mips", 4))
451 		return "mips";
452 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
453 		return "sh";
454 	if (!strncmp(arch, "loongarch", 9))
455 		return "loongarch";
456 
457 	return arch;
458 }
459 
460 const char *perf_env__arch(struct perf_env *env)
461 {
462 	char *arch_name;
463 
464 	if (!env || !env->arch) { /* Assume local operation */
465 		static struct utsname uts = { .machine[0] = '\0', };
466 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
467 			return NULL;
468 		arch_name = uts.machine;
469 	} else
470 		arch_name = env->arch;
471 
472 	return normalize_arch(arch_name);
473 }
474 
475 const char *perf_env__arch_strerrno(struct perf_env *env __maybe_unused, int err __maybe_unused)
476 {
477 #if defined(HAVE_SYSCALL_TABLE_SUPPORT) && defined(HAVE_LIBTRACEEVENT)
478 	if (env->arch_strerrno == NULL)
479 		env->arch_strerrno = arch_syscalls__strerrno_function(perf_env__arch(env));
480 
481 	return env->arch_strerrno ? env->arch_strerrno(err) : "no arch specific strerrno function";
482 #else
483 	return "!(HAVE_SYSCALL_TABLE_SUPPORT && HAVE_LIBTRACEEVENT)";
484 #endif
485 }
486 
487 const char *perf_env__cpuid(struct perf_env *env)
488 {
489 	int status;
490 
491 	if (!env->cpuid) { /* Assume local operation */
492 		status = perf_env__read_cpuid(env);
493 		if (status)
494 			return NULL;
495 	}
496 
497 	return env->cpuid;
498 }
499 
500 int perf_env__nr_pmu_mappings(struct perf_env *env)
501 {
502 	int status;
503 
504 	if (!env->nr_pmu_mappings) { /* Assume local operation */
505 		status = perf_env__read_pmu_mappings(env);
506 		if (status)
507 			return 0;
508 	}
509 
510 	return env->nr_pmu_mappings;
511 }
512 
513 const char *perf_env__pmu_mappings(struct perf_env *env)
514 {
515 	int status;
516 
517 	if (!env->pmu_mappings) { /* Assume local operation */
518 		status = perf_env__read_pmu_mappings(env);
519 		if (status)
520 			return NULL;
521 	}
522 
523 	return env->pmu_mappings;
524 }
525 
526 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
527 {
528 	if (!env->nr_numa_map) {
529 		struct numa_node *nn;
530 		int i, nr = 0;
531 
532 		for (i = 0; i < env->nr_numa_nodes; i++) {
533 			nn = &env->numa_nodes[i];
534 			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
535 		}
536 
537 		nr++;
538 
539 		/*
540 		 * We initialize the numa_map array to prepare
541 		 * it for missing cpus, which return node -1
542 		 */
543 		env->numa_map = malloc(nr * sizeof(int));
544 		if (!env->numa_map)
545 			return -1;
546 
547 		for (i = 0; i < nr; i++)
548 			env->numa_map[i] = -1;
549 
550 		env->nr_numa_map = nr;
551 
552 		for (i = 0; i < env->nr_numa_nodes; i++) {
553 			struct perf_cpu tmp;
554 			int j;
555 
556 			nn = &env->numa_nodes[i];
557 			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
558 				env->numa_map[tmp.cpu] = i;
559 		}
560 	}
561 
562 	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
563 }
564 
565 bool perf_env__has_pmu_mapping(struct perf_env *env, const char *pmu_name)
566 {
567 	char *pmu_mapping = env->pmu_mappings, *colon;
568 
569 	for (int i = 0; i < env->nr_pmu_mappings; ++i) {
570 		if (strtoul(pmu_mapping, &colon, 0) == ULONG_MAX || *colon != ':')
571 			goto out_error;
572 
573 		pmu_mapping = colon + 1;
574 		if (strcmp(pmu_mapping, pmu_name) == 0)
575 			return true;
576 
577 		pmu_mapping += strlen(pmu_mapping) + 1;
578 	}
579 out_error:
580 	return false;
581 }
582 
583 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
584 			     const char *cap)
585 {
586 	char *cap_eq;
587 	int cap_size;
588 	char **ptr;
589 	int i, j;
590 
591 	if (!pmu_name || !cap)
592 		return NULL;
593 
594 	cap_size = strlen(cap);
595 	cap_eq = zalloc(cap_size + 2);
596 	if (!cap_eq)
597 		return NULL;
598 
599 	memcpy(cap_eq, cap, cap_size);
600 	cap_eq[cap_size] = '=';
601 
602 	if (!strcmp(pmu_name, "cpu")) {
603 		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
604 			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
605 				free(cap_eq);
606 				return &env->cpu_pmu_caps[i][cap_size + 1];
607 			}
608 		}
609 		goto out;
610 	}
611 
612 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
613 		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
614 			continue;
615 
616 		ptr = env->pmu_caps[i].caps;
617 
618 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
619 			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
620 				free(cap_eq);
621 				return &ptr[j][cap_size + 1];
622 			}
623 		}
624 	}
625 
626 out:
627 	free(cap_eq);
628 	return NULL;
629 }
630 
631 void perf_env__find_br_cntr_info(struct perf_env *env,
632 				 unsigned int *nr,
633 				 unsigned int *width)
634 {
635 	if (nr) {
636 		*nr = env->cpu_pmu_caps ? env->br_cntr_nr :
637 					  env->pmu_caps->br_cntr_nr;
638 	}
639 
640 	if (width) {
641 		*width = env->cpu_pmu_caps ? env->br_cntr_width :
642 					     env->pmu_caps->br_cntr_width;
643 	}
644 }
645 
646 bool perf_env__is_x86_amd_cpu(struct perf_env *env)
647 {
648 	static int is_amd; /* 0: Uninitialized, 1: Yes, -1: No */
649 
650 	if (is_amd == 0)
651 		is_amd = env->cpuid && strstarts(env->cpuid, "AuthenticAMD") ? 1 : -1;
652 
653 	return is_amd >= 1 ? true : false;
654 }
655 
656 bool x86__is_amd_cpu(void)
657 {
658 	struct perf_env env = { .total_mem = 0, };
659 	bool is_amd;
660 
661 	perf_env__cpuid(&env);
662 	is_amd = perf_env__is_x86_amd_cpu(&env);
663 	perf_env__exit(&env);
664 
665 	return is_amd;
666 }
667