xref: /linux/tools/perf/util/env.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14 
15 struct perf_env perf_env;
16 
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include <bpf/libbpf.h>
20 
21 void perf_env__insert_bpf_prog_info(struct perf_env *env,
22 				    struct bpf_prog_info_node *info_node)
23 {
24 	__u32 prog_id = info_node->info_linear->info.id;
25 	struct bpf_prog_info_node *node;
26 	struct rb_node *parent = NULL;
27 	struct rb_node **p;
28 
29 	down_write(&env->bpf_progs.lock);
30 	p = &env->bpf_progs.infos.rb_node;
31 
32 	while (*p != NULL) {
33 		parent = *p;
34 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
35 		if (prog_id < node->info_linear->info.id) {
36 			p = &(*p)->rb_left;
37 		} else if (prog_id > node->info_linear->info.id) {
38 			p = &(*p)->rb_right;
39 		} else {
40 			pr_debug("duplicated bpf prog info %u\n", prog_id);
41 			goto out;
42 		}
43 	}
44 
45 	rb_link_node(&info_node->rb_node, parent, p);
46 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
47 	env->bpf_progs.infos_cnt++;
48 out:
49 	up_write(&env->bpf_progs.lock);
50 }
51 
52 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
53 							__u32 prog_id)
54 {
55 	struct bpf_prog_info_node *node = NULL;
56 	struct rb_node *n;
57 
58 	down_read(&env->bpf_progs.lock);
59 	n = env->bpf_progs.infos.rb_node;
60 
61 	while (n) {
62 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
63 		if (prog_id < node->info_linear->info.id)
64 			n = n->rb_left;
65 		else if (prog_id > node->info_linear->info.id)
66 			n = n->rb_right;
67 		else
68 			goto out;
69 	}
70 	node = NULL;
71 
72 out:
73 	up_read(&env->bpf_progs.lock);
74 	return node;
75 }
76 
77 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
78 {
79 	struct rb_node *parent = NULL;
80 	__u32 btf_id = btf_node->id;
81 	struct btf_node *node;
82 	struct rb_node **p;
83 
84 	down_write(&env->bpf_progs.lock);
85 	p = &env->bpf_progs.btfs.rb_node;
86 
87 	while (*p != NULL) {
88 		parent = *p;
89 		node = rb_entry(parent, struct btf_node, rb_node);
90 		if (btf_id < node->id) {
91 			p = &(*p)->rb_left;
92 		} else if (btf_id > node->id) {
93 			p = &(*p)->rb_right;
94 		} else {
95 			pr_debug("duplicated btf %u\n", btf_id);
96 			goto out;
97 		}
98 	}
99 
100 	rb_link_node(&btf_node->rb_node, parent, p);
101 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
102 	env->bpf_progs.btfs_cnt++;
103 out:
104 	up_write(&env->bpf_progs.lock);
105 }
106 
107 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
108 {
109 	struct btf_node *node = NULL;
110 	struct rb_node *n;
111 
112 	down_read(&env->bpf_progs.lock);
113 	n = env->bpf_progs.btfs.rb_node;
114 
115 	while (n) {
116 		node = rb_entry(n, struct btf_node, rb_node);
117 		if (btf_id < node->id)
118 			n = n->rb_left;
119 		else if (btf_id > node->id)
120 			n = n->rb_right;
121 		else
122 			goto out;
123 	}
124 	node = NULL;
125 
126 out:
127 	up_read(&env->bpf_progs.lock);
128 	return node;
129 }
130 
131 /* purge data in bpf_progs.infos tree */
132 static void perf_env__purge_bpf(struct perf_env *env)
133 {
134 	struct rb_root *root;
135 	struct rb_node *next;
136 
137 	down_write(&env->bpf_progs.lock);
138 
139 	root = &env->bpf_progs.infos;
140 	next = rb_first(root);
141 
142 	while (next) {
143 		struct bpf_prog_info_node *node;
144 
145 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
146 		next = rb_next(&node->rb_node);
147 		rb_erase(&node->rb_node, root);
148 		free(node->info_linear);
149 		free(node);
150 	}
151 
152 	env->bpf_progs.infos_cnt = 0;
153 
154 	root = &env->bpf_progs.btfs;
155 	next = rb_first(root);
156 
157 	while (next) {
158 		struct btf_node *node;
159 
160 		node = rb_entry(next, struct btf_node, rb_node);
161 		next = rb_next(&node->rb_node);
162 		rb_erase(&node->rb_node, root);
163 		free(node);
164 	}
165 
166 	env->bpf_progs.btfs_cnt = 0;
167 
168 	up_write(&env->bpf_progs.lock);
169 }
170 #else // HAVE_LIBBPF_SUPPORT
171 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
172 {
173 }
174 #endif // HAVE_LIBBPF_SUPPORT
175 
176 void perf_env__exit(struct perf_env *env)
177 {
178 	int i;
179 
180 	perf_env__purge_bpf(env);
181 	perf_env__purge_cgroups(env);
182 	zfree(&env->hostname);
183 	zfree(&env->os_release);
184 	zfree(&env->version);
185 	zfree(&env->arch);
186 	zfree(&env->cpu_desc);
187 	zfree(&env->cpuid);
188 	zfree(&env->cmdline);
189 	zfree(&env->cmdline_argv);
190 	zfree(&env->sibling_dies);
191 	zfree(&env->sibling_cores);
192 	zfree(&env->sibling_threads);
193 	zfree(&env->pmu_mappings);
194 	zfree(&env->cpu);
195 	zfree(&env->cpu_pmu_caps);
196 	zfree(&env->numa_map);
197 
198 	for (i = 0; i < env->nr_numa_nodes; i++)
199 		perf_cpu_map__put(env->numa_nodes[i].map);
200 	zfree(&env->numa_nodes);
201 
202 	for (i = 0; i < env->caches_cnt; i++)
203 		cpu_cache_level__free(&env->caches[i]);
204 	zfree(&env->caches);
205 
206 	for (i = 0; i < env->nr_memory_nodes; i++)
207 		zfree(&env->memory_nodes[i].set);
208 	zfree(&env->memory_nodes);
209 
210 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
211 		zfree(&env->hybrid_nodes[i].pmu_name);
212 		zfree(&env->hybrid_nodes[i].cpus);
213 	}
214 	zfree(&env->hybrid_nodes);
215 
216 	for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
217 		zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
218 		zfree(&env->hybrid_cpc_nodes[i].pmu_name);
219 	}
220 	zfree(&env->hybrid_cpc_nodes);
221 }
222 
223 void perf_env__init(struct perf_env *env)
224 {
225 #ifdef HAVE_LIBBPF_SUPPORT
226 	env->bpf_progs.infos = RB_ROOT;
227 	env->bpf_progs.btfs = RB_ROOT;
228 	init_rwsem(&env->bpf_progs.lock);
229 #endif
230 	env->kernel_is_64_bit = -1;
231 }
232 
233 static void perf_env__init_kernel_mode(struct perf_env *env)
234 {
235 	const char *arch = perf_env__raw_arch(env);
236 
237 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
238 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
239 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
240 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
241 		env->kernel_is_64_bit = 1;
242 	else
243 		env->kernel_is_64_bit = 0;
244 }
245 
246 int perf_env__kernel_is_64_bit(struct perf_env *env)
247 {
248 	if (env->kernel_is_64_bit == -1)
249 		perf_env__init_kernel_mode(env);
250 
251 	return env->kernel_is_64_bit;
252 }
253 
254 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
255 {
256 	int i;
257 
258 	/* do not include NULL termination */
259 	env->cmdline_argv = calloc(argc, sizeof(char *));
260 	if (env->cmdline_argv == NULL)
261 		goto out_enomem;
262 
263 	/*
264 	 * Must copy argv contents because it gets moved around during option
265 	 * parsing:
266 	 */
267 	for (i = 0; i < argc ; i++) {
268 		env->cmdline_argv[i] = argv[i];
269 		if (env->cmdline_argv[i] == NULL)
270 			goto out_free;
271 	}
272 
273 	env->nr_cmdline = argc;
274 
275 	return 0;
276 out_free:
277 	zfree(&env->cmdline_argv);
278 out_enomem:
279 	return -ENOMEM;
280 }
281 
282 int perf_env__read_cpu_topology_map(struct perf_env *env)
283 {
284 	int cpu, nr_cpus;
285 
286 	if (env->cpu != NULL)
287 		return 0;
288 
289 	if (env->nr_cpus_avail == 0)
290 		env->nr_cpus_avail = cpu__max_present_cpu();
291 
292 	nr_cpus = env->nr_cpus_avail;
293 	if (nr_cpus == -1)
294 		return -EINVAL;
295 
296 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
297 	if (env->cpu == NULL)
298 		return -ENOMEM;
299 
300 	for (cpu = 0; cpu < nr_cpus; ++cpu) {
301 		env->cpu[cpu].core_id	= cpu_map__get_core_id(cpu);
302 		env->cpu[cpu].socket_id	= cpu_map__get_socket_id(cpu);
303 		env->cpu[cpu].die_id	= cpu_map__get_die_id(cpu);
304 	}
305 
306 	env->nr_cpus_avail = nr_cpus;
307 	return 0;
308 }
309 
310 int perf_env__read_pmu_mappings(struct perf_env *env)
311 {
312 	struct perf_pmu *pmu = NULL;
313 	u32 pmu_num = 0;
314 	struct strbuf sb;
315 
316 	while ((pmu = perf_pmu__scan(pmu))) {
317 		if (!pmu->name)
318 			continue;
319 		pmu_num++;
320 	}
321 	if (!pmu_num) {
322 		pr_debug("pmu mappings not available\n");
323 		return -ENOENT;
324 	}
325 	env->nr_pmu_mappings = pmu_num;
326 
327 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
328 		return -ENOMEM;
329 
330 	while ((pmu = perf_pmu__scan(pmu))) {
331 		if (!pmu->name)
332 			continue;
333 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
334 			goto error;
335 		/* include a NULL character at the end */
336 		if (strbuf_add(&sb, "", 1) < 0)
337 			goto error;
338 	}
339 
340 	env->pmu_mappings = strbuf_detach(&sb, NULL);
341 
342 	return 0;
343 
344 error:
345 	strbuf_release(&sb);
346 	return -1;
347 }
348 
349 int perf_env__read_cpuid(struct perf_env *env)
350 {
351 	char cpuid[128];
352 	int err = get_cpuid(cpuid, sizeof(cpuid));
353 
354 	if (err)
355 		return err;
356 
357 	free(env->cpuid);
358 	env->cpuid = strdup(cpuid);
359 	if (env->cpuid == NULL)
360 		return ENOMEM;
361 	return 0;
362 }
363 
364 static int perf_env__read_arch(struct perf_env *env)
365 {
366 	struct utsname uts;
367 
368 	if (env->arch)
369 		return 0;
370 
371 	if (!uname(&uts))
372 		env->arch = strdup(uts.machine);
373 
374 	return env->arch ? 0 : -ENOMEM;
375 }
376 
377 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
378 {
379 	if (env->nr_cpus_avail == 0)
380 		env->nr_cpus_avail = cpu__max_present_cpu();
381 
382 	return env->nr_cpus_avail ? 0 : -ENOENT;
383 }
384 
385 const char *perf_env__raw_arch(struct perf_env *env)
386 {
387 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
388 }
389 
390 int perf_env__nr_cpus_avail(struct perf_env *env)
391 {
392 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
393 }
394 
395 void cpu_cache_level__free(struct cpu_cache_level *cache)
396 {
397 	zfree(&cache->type);
398 	zfree(&cache->map);
399 	zfree(&cache->size);
400 }
401 
402 /*
403  * Return architecture name in a normalized form.
404  * The conversion logic comes from the Makefile.
405  */
406 static const char *normalize_arch(char *arch)
407 {
408 	if (!strcmp(arch, "x86_64"))
409 		return "x86";
410 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
411 		return "x86";
412 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
413 		return "sparc";
414 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
415 		return "arm64";
416 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
417 		return "arm";
418 	if (!strncmp(arch, "s390", 4))
419 		return "s390";
420 	if (!strncmp(arch, "parisc", 6))
421 		return "parisc";
422 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
423 		return "powerpc";
424 	if (!strncmp(arch, "mips", 4))
425 		return "mips";
426 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
427 		return "sh";
428 
429 	return arch;
430 }
431 
432 const char *perf_env__arch(struct perf_env *env)
433 {
434 	char *arch_name;
435 
436 	if (!env || !env->arch) { /* Assume local operation */
437 		static struct utsname uts = { .machine[0] = '\0', };
438 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
439 			return NULL;
440 		arch_name = uts.machine;
441 	} else
442 		arch_name = env->arch;
443 
444 	return normalize_arch(arch_name);
445 }
446 
447 const char *perf_env__cpuid(struct perf_env *env)
448 {
449 	int status;
450 
451 	if (!env || !env->cpuid) { /* Assume local operation */
452 		status = perf_env__read_cpuid(env);
453 		if (status)
454 			return NULL;
455 	}
456 
457 	return env->cpuid;
458 }
459 
460 int perf_env__nr_pmu_mappings(struct perf_env *env)
461 {
462 	int status;
463 
464 	if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
465 		status = perf_env__read_pmu_mappings(env);
466 		if (status)
467 			return 0;
468 	}
469 
470 	return env->nr_pmu_mappings;
471 }
472 
473 const char *perf_env__pmu_mappings(struct perf_env *env)
474 {
475 	int status;
476 
477 	if (!env || !env->pmu_mappings) { /* Assume local operation */
478 		status = perf_env__read_pmu_mappings(env);
479 		if (status)
480 			return NULL;
481 	}
482 
483 	return env->pmu_mappings;
484 }
485 
486 int perf_env__numa_node(struct perf_env *env, int cpu)
487 {
488 	if (!env->nr_numa_map) {
489 		struct numa_node *nn;
490 		int i, nr = 0;
491 
492 		for (i = 0; i < env->nr_numa_nodes; i++) {
493 			nn = &env->numa_nodes[i];
494 			nr = max(nr, perf_cpu_map__max(nn->map));
495 		}
496 
497 		nr++;
498 
499 		/*
500 		 * We initialize the numa_map array to prepare
501 		 * it for missing cpus, which return node -1
502 		 */
503 		env->numa_map = malloc(nr * sizeof(int));
504 		if (!env->numa_map)
505 			return -1;
506 
507 		for (i = 0; i < nr; i++)
508 			env->numa_map[i] = -1;
509 
510 		env->nr_numa_map = nr;
511 
512 		for (i = 0; i < env->nr_numa_nodes; i++) {
513 			int tmp, j;
514 
515 			nn = &env->numa_nodes[i];
516 			perf_cpu_map__for_each_cpu(j, tmp, nn->map)
517 				env->numa_map[j] = i;
518 		}
519 	}
520 
521 	return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
522 }
523