1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include <opencsd/ocsd_if_types.h> 17 #include <stdlib.h> 18 19 #include "auxtrace.h" 20 #include "color.h" 21 #include "cs-etm.h" 22 #include "cs-etm-decoder/cs-etm-decoder.h" 23 #include "debug.h" 24 #include "dso.h" 25 #include "evlist.h" 26 #include "intlist.h" 27 #include "machine.h" 28 #include "map.h" 29 #include "perf.h" 30 #include "session.h" 31 #include "map_symbol.h" 32 #include "branch.h" 33 #include "symbol.h" 34 #include "tool.h" 35 #include "thread.h" 36 #include "thread-stack.h" 37 #include <tools/libc_compat.h> 38 39 #define MAX_TIMESTAMP (~0ULL) 40 41 struct cs_etm_auxtrace { 42 struct auxtrace auxtrace; 43 struct auxtrace_queues queues; 44 struct auxtrace_heap heap; 45 struct itrace_synth_opts synth_opts; 46 struct perf_session *session; 47 struct machine *machine; 48 struct thread *unknown_thread; 49 50 u8 timeless_decoding; 51 u8 snapshot_mode; 52 u8 data_queued; 53 u8 sample_branches; 54 u8 sample_instructions; 55 56 int num_cpu; 57 u32 auxtrace_type; 58 u64 branches_sample_type; 59 u64 branches_id; 60 u64 instructions_sample_type; 61 u64 instructions_sample_period; 62 u64 instructions_id; 63 u64 **metadata; 64 u64 kernel_start; 65 unsigned int pmu_type; 66 }; 67 68 struct cs_etm_traceid_queue { 69 u8 trace_chan_id; 70 pid_t pid, tid; 71 u64 period_instructions; 72 size_t last_branch_pos; 73 union perf_event *event_buf; 74 struct thread *thread; 75 struct branch_stack *last_branch; 76 struct branch_stack *last_branch_rb; 77 struct cs_etm_packet *prev_packet; 78 struct cs_etm_packet *packet; 79 struct cs_etm_packet_queue packet_queue; 80 }; 81 82 struct cs_etm_queue { 83 struct cs_etm_auxtrace *etm; 84 struct cs_etm_decoder *decoder; 85 struct auxtrace_buffer *buffer; 86 unsigned int queue_nr; 87 u8 pending_timestamp; 88 u64 offset; 89 const unsigned char *buf; 90 size_t buf_len, buf_used; 91 /* Conversion between traceID and index in traceid_queues array */ 92 struct intlist *traceid_queues_list; 93 struct cs_etm_traceid_queue **traceid_queues; 94 }; 95 96 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); 97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 99 pid_t tid); 100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 102 103 /* PTMs ETMIDR [11:8] set to b0011 */ 104 #define ETMIDR_PTM_VERSION 0x00000300 105 106 /* 107 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 108 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 109 * encode the etm queue number as the upper 16 bit and the channel as 110 * the lower 16 bit. 111 */ 112 #define TO_CS_QUEUE_NR(queue_nr, trace_id_chan) \ 113 (queue_nr << 16 | trace_chan_id) 114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 116 117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 118 { 119 etmidr &= ETMIDR_PTM_VERSION; 120 121 if (etmidr == ETMIDR_PTM_VERSION) 122 return CS_ETM_PROTO_PTM; 123 124 return CS_ETM_PROTO_ETMV3; 125 } 126 127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 128 { 129 struct int_node *inode; 130 u64 *metadata; 131 132 inode = intlist__find(traceid_list, trace_chan_id); 133 if (!inode) 134 return -EINVAL; 135 136 metadata = inode->priv; 137 *magic = metadata[CS_ETM_MAGIC]; 138 return 0; 139 } 140 141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 142 { 143 struct int_node *inode; 144 u64 *metadata; 145 146 inode = intlist__find(traceid_list, trace_chan_id); 147 if (!inode) 148 return -EINVAL; 149 150 metadata = inode->priv; 151 *cpu = (int)metadata[CS_ETM_CPU]; 152 return 0; 153 } 154 155 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 156 u8 trace_chan_id) 157 { 158 /* 159 * Wnen a timestamp packet is encountered the backend code 160 * is stopped so that the front end has time to process packets 161 * that were accumulated in the traceID queue. Since there can 162 * be more than one channel per cs_etm_queue, we need to specify 163 * what traceID queue needs servicing. 164 */ 165 etmq->pending_timestamp = trace_chan_id; 166 } 167 168 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 169 u8 *trace_chan_id) 170 { 171 struct cs_etm_packet_queue *packet_queue; 172 173 if (!etmq->pending_timestamp) 174 return 0; 175 176 if (trace_chan_id) 177 *trace_chan_id = etmq->pending_timestamp; 178 179 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 180 etmq->pending_timestamp); 181 if (!packet_queue) 182 return 0; 183 184 /* Acknowledge pending status */ 185 etmq->pending_timestamp = 0; 186 187 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 188 return packet_queue->timestamp; 189 } 190 191 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 192 { 193 int i; 194 195 queue->head = 0; 196 queue->tail = 0; 197 queue->packet_count = 0; 198 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 199 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 200 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 201 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 202 queue->packet_buffer[i].instr_count = 0; 203 queue->packet_buffer[i].last_instr_taken_branch = false; 204 queue->packet_buffer[i].last_instr_size = 0; 205 queue->packet_buffer[i].last_instr_type = 0; 206 queue->packet_buffer[i].last_instr_subtype = 0; 207 queue->packet_buffer[i].last_instr_cond = 0; 208 queue->packet_buffer[i].flags = 0; 209 queue->packet_buffer[i].exception_number = UINT32_MAX; 210 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 211 queue->packet_buffer[i].cpu = INT_MIN; 212 } 213 } 214 215 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 216 { 217 int idx; 218 struct int_node *inode; 219 struct cs_etm_traceid_queue *tidq; 220 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 221 222 intlist__for_each_entry(inode, traceid_queues_list) { 223 idx = (int)(intptr_t)inode->priv; 224 tidq = etmq->traceid_queues[idx]; 225 cs_etm__clear_packet_queue(&tidq->packet_queue); 226 } 227 } 228 229 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 230 struct cs_etm_traceid_queue *tidq, 231 u8 trace_chan_id) 232 { 233 int rc = -ENOMEM; 234 struct auxtrace_queue *queue; 235 struct cs_etm_auxtrace *etm = etmq->etm; 236 237 cs_etm__clear_packet_queue(&tidq->packet_queue); 238 239 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 240 tidq->tid = queue->tid; 241 tidq->pid = -1; 242 tidq->trace_chan_id = trace_chan_id; 243 244 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 245 if (!tidq->packet) 246 goto out; 247 248 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 249 if (!tidq->prev_packet) 250 goto out_free; 251 252 if (etm->synth_opts.last_branch) { 253 size_t sz = sizeof(struct branch_stack); 254 255 sz += etm->synth_opts.last_branch_sz * 256 sizeof(struct branch_entry); 257 tidq->last_branch = zalloc(sz); 258 if (!tidq->last_branch) 259 goto out_free; 260 tidq->last_branch_rb = zalloc(sz); 261 if (!tidq->last_branch_rb) 262 goto out_free; 263 } 264 265 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 266 if (!tidq->event_buf) 267 goto out_free; 268 269 return 0; 270 271 out_free: 272 zfree(&tidq->last_branch_rb); 273 zfree(&tidq->last_branch); 274 zfree(&tidq->prev_packet); 275 zfree(&tidq->packet); 276 out: 277 return rc; 278 } 279 280 static struct cs_etm_traceid_queue 281 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 282 { 283 int idx; 284 struct int_node *inode; 285 struct intlist *traceid_queues_list; 286 struct cs_etm_traceid_queue *tidq, **traceid_queues; 287 struct cs_etm_auxtrace *etm = etmq->etm; 288 289 if (etm->timeless_decoding) 290 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 291 292 traceid_queues_list = etmq->traceid_queues_list; 293 294 /* 295 * Check if the traceid_queue exist for this traceID by looking 296 * in the queue list. 297 */ 298 inode = intlist__find(traceid_queues_list, trace_chan_id); 299 if (inode) { 300 idx = (int)(intptr_t)inode->priv; 301 return etmq->traceid_queues[idx]; 302 } 303 304 /* We couldn't find a traceid_queue for this traceID, allocate one */ 305 tidq = malloc(sizeof(*tidq)); 306 if (!tidq) 307 return NULL; 308 309 memset(tidq, 0, sizeof(*tidq)); 310 311 /* Get a valid index for the new traceid_queue */ 312 idx = intlist__nr_entries(traceid_queues_list); 313 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 314 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 315 if (!inode) 316 goto out_free; 317 318 /* Associate this traceID with this index */ 319 inode->priv = (void *)(intptr_t)idx; 320 321 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 322 goto out_free; 323 324 /* Grow the traceid_queues array by one unit */ 325 traceid_queues = etmq->traceid_queues; 326 traceid_queues = reallocarray(traceid_queues, 327 idx + 1, 328 sizeof(*traceid_queues)); 329 330 /* 331 * On failure reallocarray() returns NULL and the original block of 332 * memory is left untouched. 333 */ 334 if (!traceid_queues) 335 goto out_free; 336 337 traceid_queues[idx] = tidq; 338 etmq->traceid_queues = traceid_queues; 339 340 return etmq->traceid_queues[idx]; 341 342 out_free: 343 /* 344 * Function intlist__remove() removes the inode from the list 345 * and delete the memory associated to it. 346 */ 347 intlist__remove(traceid_queues_list, inode); 348 free(tidq); 349 350 return NULL; 351 } 352 353 struct cs_etm_packet_queue 354 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 355 { 356 struct cs_etm_traceid_queue *tidq; 357 358 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 359 if (tidq) 360 return &tidq->packet_queue; 361 362 return NULL; 363 } 364 365 static void cs_etm__packet_dump(const char *pkt_string) 366 { 367 const char *color = PERF_COLOR_BLUE; 368 int len = strlen(pkt_string); 369 370 if (len && (pkt_string[len-1] == '\n')) 371 color_fprintf(stdout, color, " %s", pkt_string); 372 else 373 color_fprintf(stdout, color, " %s\n", pkt_string); 374 375 fflush(stdout); 376 } 377 378 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 379 struct cs_etm_auxtrace *etm, int idx, 380 u32 etmidr) 381 { 382 u64 **metadata = etm->metadata; 383 384 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 385 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 386 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 387 } 388 389 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 390 struct cs_etm_auxtrace *etm, int idx) 391 { 392 u64 **metadata = etm->metadata; 393 394 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 395 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 396 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 397 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 398 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 399 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 400 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 401 } 402 403 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 404 struct cs_etm_auxtrace *etm) 405 { 406 int i; 407 u32 etmidr; 408 u64 architecture; 409 410 for (i = 0; i < etm->num_cpu; i++) { 411 architecture = etm->metadata[i][CS_ETM_MAGIC]; 412 413 switch (architecture) { 414 case __perf_cs_etmv3_magic: 415 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 416 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 417 break; 418 case __perf_cs_etmv4_magic: 419 cs_etm__set_trace_param_etmv4(t_params, etm, i); 420 break; 421 default: 422 return -EINVAL; 423 } 424 } 425 426 return 0; 427 } 428 429 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 430 struct cs_etm_queue *etmq, 431 enum cs_etm_decoder_operation mode) 432 { 433 int ret = -EINVAL; 434 435 if (!(mode < CS_ETM_OPERATION_MAX)) 436 goto out; 437 438 d_params->packet_printer = cs_etm__packet_dump; 439 d_params->operation = mode; 440 d_params->data = etmq; 441 d_params->formatted = true; 442 d_params->fsyncs = false; 443 d_params->hsyncs = false; 444 d_params->frame_aligned = true; 445 446 ret = 0; 447 out: 448 return ret; 449 } 450 451 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, 452 struct auxtrace_buffer *buffer) 453 { 454 int ret; 455 const char *color = PERF_COLOR_BLUE; 456 struct cs_etm_decoder_params d_params; 457 struct cs_etm_trace_params *t_params; 458 struct cs_etm_decoder *decoder; 459 size_t buffer_used = 0; 460 461 fprintf(stdout, "\n"); 462 color_fprintf(stdout, color, 463 ". ... CoreSight ETM Trace data: size %zu bytes\n", 464 buffer->size); 465 466 /* Use metadata to fill in trace parameters for trace decoder */ 467 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 468 469 if (!t_params) 470 return; 471 472 if (cs_etm__init_trace_params(t_params, etm)) 473 goto out_free; 474 475 /* Set decoder parameters to simply print the trace packets */ 476 if (cs_etm__init_decoder_params(&d_params, NULL, 477 CS_ETM_OPERATION_PRINT)) 478 goto out_free; 479 480 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 481 482 if (!decoder) 483 goto out_free; 484 do { 485 size_t consumed; 486 487 ret = cs_etm_decoder__process_data_block( 488 decoder, buffer->offset, 489 &((u8 *)buffer->data)[buffer_used], 490 buffer->size - buffer_used, &consumed); 491 if (ret) 492 break; 493 494 buffer_used += consumed; 495 } while (buffer_used < buffer->size); 496 497 cs_etm_decoder__free(decoder); 498 499 out_free: 500 zfree(&t_params); 501 } 502 503 static int cs_etm__flush_events(struct perf_session *session, 504 struct perf_tool *tool) 505 { 506 int ret; 507 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 508 struct cs_etm_auxtrace, 509 auxtrace); 510 if (dump_trace) 511 return 0; 512 513 if (!tool->ordered_events) 514 return -EINVAL; 515 516 ret = cs_etm__update_queues(etm); 517 518 if (ret < 0) 519 return ret; 520 521 if (etm->timeless_decoding) 522 return cs_etm__process_timeless_queues(etm, -1); 523 524 return cs_etm__process_queues(etm); 525 } 526 527 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 528 { 529 int idx; 530 uintptr_t priv; 531 struct int_node *inode, *tmp; 532 struct cs_etm_traceid_queue *tidq; 533 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 534 535 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 536 priv = (uintptr_t)inode->priv; 537 idx = priv; 538 539 /* Free this traceid_queue from the array */ 540 tidq = etmq->traceid_queues[idx]; 541 thread__zput(tidq->thread); 542 zfree(&tidq->event_buf); 543 zfree(&tidq->last_branch); 544 zfree(&tidq->last_branch_rb); 545 zfree(&tidq->prev_packet); 546 zfree(&tidq->packet); 547 zfree(&tidq); 548 549 /* 550 * Function intlist__remove() removes the inode from the list 551 * and delete the memory associated to it. 552 */ 553 intlist__remove(traceid_queues_list, inode); 554 } 555 556 /* Then the RB tree itself */ 557 intlist__delete(traceid_queues_list); 558 etmq->traceid_queues_list = NULL; 559 560 /* finally free the traceid_queues array */ 561 zfree(&etmq->traceid_queues); 562 } 563 564 static void cs_etm__free_queue(void *priv) 565 { 566 struct cs_etm_queue *etmq = priv; 567 568 if (!etmq) 569 return; 570 571 cs_etm_decoder__free(etmq->decoder); 572 cs_etm__free_traceid_queues(etmq); 573 free(etmq); 574 } 575 576 static void cs_etm__free_events(struct perf_session *session) 577 { 578 unsigned int i; 579 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 580 struct cs_etm_auxtrace, 581 auxtrace); 582 struct auxtrace_queues *queues = &aux->queues; 583 584 for (i = 0; i < queues->nr_queues; i++) { 585 cs_etm__free_queue(queues->queue_array[i].priv); 586 queues->queue_array[i].priv = NULL; 587 } 588 589 auxtrace_queues__free(queues); 590 } 591 592 static void cs_etm__free(struct perf_session *session) 593 { 594 int i; 595 struct int_node *inode, *tmp; 596 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 597 struct cs_etm_auxtrace, 598 auxtrace); 599 cs_etm__free_events(session); 600 session->auxtrace = NULL; 601 602 /* First remove all traceID/metadata nodes for the RB tree */ 603 intlist__for_each_entry_safe(inode, tmp, traceid_list) 604 intlist__remove(traceid_list, inode); 605 /* Then the RB tree itself */ 606 intlist__delete(traceid_list); 607 608 for (i = 0; i < aux->num_cpu; i++) 609 zfree(&aux->metadata[i]); 610 611 thread__zput(aux->unknown_thread); 612 zfree(&aux->metadata); 613 zfree(&aux); 614 } 615 616 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 617 { 618 struct machine *machine; 619 620 machine = etmq->etm->machine; 621 622 if (address >= etmq->etm->kernel_start) { 623 if (machine__is_host(machine)) 624 return PERF_RECORD_MISC_KERNEL; 625 else 626 return PERF_RECORD_MISC_GUEST_KERNEL; 627 } else { 628 if (machine__is_host(machine)) 629 return PERF_RECORD_MISC_USER; 630 else if (perf_guest) 631 return PERF_RECORD_MISC_GUEST_USER; 632 else 633 return PERF_RECORD_MISC_HYPERVISOR; 634 } 635 } 636 637 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 638 u64 address, size_t size, u8 *buffer) 639 { 640 u8 cpumode; 641 u64 offset; 642 int len; 643 struct thread *thread; 644 struct machine *machine; 645 struct addr_location al; 646 struct cs_etm_traceid_queue *tidq; 647 648 if (!etmq) 649 return 0; 650 651 machine = etmq->etm->machine; 652 cpumode = cs_etm__cpu_mode(etmq, address); 653 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 654 if (!tidq) 655 return 0; 656 657 thread = tidq->thread; 658 if (!thread) { 659 if (cpumode != PERF_RECORD_MISC_KERNEL) 660 return 0; 661 thread = etmq->etm->unknown_thread; 662 } 663 664 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 665 return 0; 666 667 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 668 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 669 return 0; 670 671 offset = al.map->map_ip(al.map, address); 672 673 map__load(al.map); 674 675 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 676 677 if (len <= 0) 678 return 0; 679 680 return len; 681 } 682 683 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm) 684 { 685 struct cs_etm_decoder_params d_params; 686 struct cs_etm_trace_params *t_params = NULL; 687 struct cs_etm_queue *etmq; 688 689 etmq = zalloc(sizeof(*etmq)); 690 if (!etmq) 691 return NULL; 692 693 etmq->traceid_queues_list = intlist__new(NULL); 694 if (!etmq->traceid_queues_list) 695 goto out_free; 696 697 /* Use metadata to fill in trace parameters for trace decoder */ 698 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 699 700 if (!t_params) 701 goto out_free; 702 703 if (cs_etm__init_trace_params(t_params, etm)) 704 goto out_free; 705 706 /* Set decoder parameters to decode trace packets */ 707 if (cs_etm__init_decoder_params(&d_params, etmq, 708 CS_ETM_OPERATION_DECODE)) 709 goto out_free; 710 711 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 712 713 if (!etmq->decoder) 714 goto out_free; 715 716 /* 717 * Register a function to handle all memory accesses required by 718 * the trace decoder library. 719 */ 720 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 721 0x0L, ((u64) -1L), 722 cs_etm__mem_access)) 723 goto out_free_decoder; 724 725 zfree(&t_params); 726 return etmq; 727 728 out_free_decoder: 729 cs_etm_decoder__free(etmq->decoder); 730 out_free: 731 intlist__delete(etmq->traceid_queues_list); 732 free(etmq); 733 734 return NULL; 735 } 736 737 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 738 struct auxtrace_queue *queue, 739 unsigned int queue_nr) 740 { 741 int ret = 0; 742 unsigned int cs_queue_nr; 743 u8 trace_chan_id; 744 u64 timestamp; 745 struct cs_etm_queue *etmq = queue->priv; 746 747 if (list_empty(&queue->head) || etmq) 748 goto out; 749 750 etmq = cs_etm__alloc_queue(etm); 751 752 if (!etmq) { 753 ret = -ENOMEM; 754 goto out; 755 } 756 757 queue->priv = etmq; 758 etmq->etm = etm; 759 etmq->queue_nr = queue_nr; 760 etmq->offset = 0; 761 762 if (etm->timeless_decoding) 763 goto out; 764 765 /* 766 * We are under a CPU-wide trace scenario. As such we need to know 767 * when the code that generated the traces started to execute so that 768 * it can be correlated with execution on other CPUs. So we get a 769 * handle on the beginning of traces and decode until we find a 770 * timestamp. The timestamp is then added to the auxtrace min heap 771 * in order to know what nibble (of all the etmqs) to decode first. 772 */ 773 while (1) { 774 /* 775 * Fetch an aux_buffer from this etmq. Bail if no more 776 * blocks or an error has been encountered. 777 */ 778 ret = cs_etm__get_data_block(etmq); 779 if (ret <= 0) 780 goto out; 781 782 /* 783 * Run decoder on the trace block. The decoder will stop when 784 * encountering a timestamp, a full packet queue or the end of 785 * trace for that block. 786 */ 787 ret = cs_etm__decode_data_block(etmq); 788 if (ret) 789 goto out; 790 791 /* 792 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 793 * the timestamp calculation for us. 794 */ 795 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 796 797 /* We found a timestamp, no need to continue. */ 798 if (timestamp) 799 break; 800 801 /* 802 * We didn't find a timestamp so empty all the traceid packet 803 * queues before looking for another timestamp packet, either 804 * in the current data block or a new one. Packets that were 805 * just decoded are useless since no timestamp has been 806 * associated with them. As such simply discard them. 807 */ 808 cs_etm__clear_all_packet_queues(etmq); 809 } 810 811 /* 812 * We have a timestamp. Add it to the min heap to reflect when 813 * instructions conveyed by the range packets of this traceID queue 814 * started to execute. Once the same has been done for all the traceID 815 * queues of each etmq, redenring and decoding can start in 816 * chronological order. 817 * 818 * Note that packets decoded above are still in the traceID's packet 819 * queue and will be processed in cs_etm__process_queues(). 820 */ 821 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan); 822 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp); 823 out: 824 return ret; 825 } 826 827 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) 828 { 829 unsigned int i; 830 int ret; 831 832 if (!etm->kernel_start) 833 etm->kernel_start = machine__kernel_start(etm->machine); 834 835 for (i = 0; i < etm->queues.nr_queues; i++) { 836 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); 837 if (ret) 838 return ret; 839 } 840 841 return 0; 842 } 843 844 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) 845 { 846 if (etm->queues.new_data) { 847 etm->queues.new_data = false; 848 return cs_etm__setup_queues(etm); 849 } 850 851 return 0; 852 } 853 854 static inline 855 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 856 struct cs_etm_traceid_queue *tidq) 857 { 858 struct branch_stack *bs_src = tidq->last_branch_rb; 859 struct branch_stack *bs_dst = tidq->last_branch; 860 size_t nr = 0; 861 862 /* 863 * Set the number of records before early exit: ->nr is used to 864 * determine how many branches to copy from ->entries. 865 */ 866 bs_dst->nr = bs_src->nr; 867 868 /* 869 * Early exit when there is nothing to copy. 870 */ 871 if (!bs_src->nr) 872 return; 873 874 /* 875 * As bs_src->entries is a circular buffer, we need to copy from it in 876 * two steps. First, copy the branches from the most recently inserted 877 * branch ->last_branch_pos until the end of bs_src->entries buffer. 878 */ 879 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 880 memcpy(&bs_dst->entries[0], 881 &bs_src->entries[tidq->last_branch_pos], 882 sizeof(struct branch_entry) * nr); 883 884 /* 885 * If we wrapped around at least once, the branches from the beginning 886 * of the bs_src->entries buffer and until the ->last_branch_pos element 887 * are older valid branches: copy them over. The total number of 888 * branches copied over will be equal to the number of branches asked by 889 * the user in last_branch_sz. 890 */ 891 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 892 memcpy(&bs_dst->entries[nr], 893 &bs_src->entries[0], 894 sizeof(struct branch_entry) * tidq->last_branch_pos); 895 } 896 } 897 898 static inline 899 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 900 { 901 tidq->last_branch_pos = 0; 902 tidq->last_branch_rb->nr = 0; 903 } 904 905 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 906 u8 trace_chan_id, u64 addr) 907 { 908 u8 instrBytes[2]; 909 910 cs_etm__mem_access(etmq, trace_chan_id, addr, 911 ARRAY_SIZE(instrBytes), instrBytes); 912 /* 913 * T32 instruction size is indicated by bits[15:11] of the first 914 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 915 * denote a 32-bit instruction. 916 */ 917 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 918 } 919 920 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 921 { 922 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 923 if (packet->sample_type == CS_ETM_DISCONTINUITY) 924 return 0; 925 926 return packet->start_addr; 927 } 928 929 static inline 930 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 931 { 932 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 933 if (packet->sample_type == CS_ETM_DISCONTINUITY) 934 return 0; 935 936 return packet->end_addr - packet->last_instr_size; 937 } 938 939 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 940 u64 trace_chan_id, 941 const struct cs_etm_packet *packet, 942 u64 offset) 943 { 944 if (packet->isa == CS_ETM_ISA_T32) { 945 u64 addr = packet->start_addr; 946 947 while (offset > 0) { 948 addr += cs_etm__t32_instr_size(etmq, 949 trace_chan_id, addr); 950 offset--; 951 } 952 return addr; 953 } 954 955 /* Assume a 4 byte instruction size (A32/A64) */ 956 return packet->start_addr + offset * 4; 957 } 958 959 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 960 struct cs_etm_traceid_queue *tidq) 961 { 962 struct branch_stack *bs = tidq->last_branch_rb; 963 struct branch_entry *be; 964 965 /* 966 * The branches are recorded in a circular buffer in reverse 967 * chronological order: we start recording from the last element of the 968 * buffer down. After writing the first element of the stack, move the 969 * insert position back to the end of the buffer. 970 */ 971 if (!tidq->last_branch_pos) 972 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 973 974 tidq->last_branch_pos -= 1; 975 976 be = &bs->entries[tidq->last_branch_pos]; 977 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 978 be->to = cs_etm__first_executed_instr(tidq->packet); 979 /* No support for mispredict */ 980 be->flags.mispred = 0; 981 be->flags.predicted = 1; 982 983 /* 984 * Increment bs->nr until reaching the number of last branches asked by 985 * the user on the command line. 986 */ 987 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 988 bs->nr += 1; 989 } 990 991 static int cs_etm__inject_event(union perf_event *event, 992 struct perf_sample *sample, u64 type) 993 { 994 event->header.size = perf_event__sample_event_size(sample, type, 0); 995 return perf_event__synthesize_sample(event, type, 0, sample); 996 } 997 998 999 static int 1000 cs_etm__get_trace(struct cs_etm_queue *etmq) 1001 { 1002 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1003 struct auxtrace_buffer *old_buffer = aux_buffer; 1004 struct auxtrace_queue *queue; 1005 1006 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1007 1008 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1009 1010 /* If no more data, drop the previous auxtrace_buffer and return */ 1011 if (!aux_buffer) { 1012 if (old_buffer) 1013 auxtrace_buffer__drop_data(old_buffer); 1014 etmq->buf_len = 0; 1015 return 0; 1016 } 1017 1018 etmq->buffer = aux_buffer; 1019 1020 /* If the aux_buffer doesn't have data associated, try to load it */ 1021 if (!aux_buffer->data) { 1022 /* get the file desc associated with the perf data file */ 1023 int fd = perf_data__fd(etmq->etm->session->data); 1024 1025 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1026 if (!aux_buffer->data) 1027 return -ENOMEM; 1028 } 1029 1030 /* If valid, drop the previous buffer */ 1031 if (old_buffer) 1032 auxtrace_buffer__drop_data(old_buffer); 1033 1034 etmq->buf_used = 0; 1035 etmq->buf_len = aux_buffer->size; 1036 etmq->buf = aux_buffer->data; 1037 1038 return etmq->buf_len; 1039 } 1040 1041 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1042 struct cs_etm_traceid_queue *tidq) 1043 { 1044 if ((!tidq->thread) && (tidq->tid != -1)) 1045 tidq->thread = machine__find_thread(etm->machine, -1, 1046 tidq->tid); 1047 1048 if (tidq->thread) 1049 tidq->pid = tidq->thread->pid_; 1050 } 1051 1052 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1053 pid_t tid, u8 trace_chan_id) 1054 { 1055 int cpu, err = -EINVAL; 1056 struct cs_etm_auxtrace *etm = etmq->etm; 1057 struct cs_etm_traceid_queue *tidq; 1058 1059 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1060 if (!tidq) 1061 return err; 1062 1063 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1064 return err; 1065 1066 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1067 if (err) 1068 return err; 1069 1070 tidq->tid = tid; 1071 thread__zput(tidq->thread); 1072 1073 cs_etm__set_pid_tid_cpu(etm, tidq); 1074 return 0; 1075 } 1076 1077 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1078 { 1079 return !!etmq->etm->timeless_decoding; 1080 } 1081 1082 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1083 u64 trace_chan_id, 1084 const struct cs_etm_packet *packet, 1085 struct perf_sample *sample) 1086 { 1087 /* 1088 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1089 * packet, so directly bail out with 'insn_len' = 0. 1090 */ 1091 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1092 sample->insn_len = 0; 1093 return; 1094 } 1095 1096 /* 1097 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1098 * cs_etm__t32_instr_size(). 1099 */ 1100 if (packet->isa == CS_ETM_ISA_T32) 1101 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1102 sample->ip); 1103 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1104 else 1105 sample->insn_len = 4; 1106 1107 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1108 sample->insn_len, (void *)sample->insn); 1109 } 1110 1111 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1112 struct cs_etm_traceid_queue *tidq, 1113 u64 addr, u64 period) 1114 { 1115 int ret = 0; 1116 struct cs_etm_auxtrace *etm = etmq->etm; 1117 union perf_event *event = tidq->event_buf; 1118 struct perf_sample sample = {.ip = 0,}; 1119 1120 event->sample.header.type = PERF_RECORD_SAMPLE; 1121 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1122 event->sample.header.size = sizeof(struct perf_event_header); 1123 1124 sample.ip = addr; 1125 sample.pid = tidq->pid; 1126 sample.tid = tidq->tid; 1127 sample.id = etmq->etm->instructions_id; 1128 sample.stream_id = etmq->etm->instructions_id; 1129 sample.period = period; 1130 sample.cpu = tidq->packet->cpu; 1131 sample.flags = tidq->prev_packet->flags; 1132 sample.cpumode = event->sample.header.misc; 1133 1134 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1135 1136 if (etm->synth_opts.last_branch) { 1137 cs_etm__copy_last_branch_rb(etmq, tidq); 1138 sample.branch_stack = tidq->last_branch; 1139 } 1140 1141 if (etm->synth_opts.inject) { 1142 ret = cs_etm__inject_event(event, &sample, 1143 etm->instructions_sample_type); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1149 1150 if (ret) 1151 pr_err( 1152 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1153 ret); 1154 1155 if (etm->synth_opts.last_branch) 1156 cs_etm__reset_last_branch_rb(tidq); 1157 1158 return ret; 1159 } 1160 1161 /* 1162 * The cs etm packet encodes an instruction range between a branch target 1163 * and the next taken branch. Generate sample accordingly. 1164 */ 1165 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1166 struct cs_etm_traceid_queue *tidq) 1167 { 1168 int ret = 0; 1169 struct cs_etm_auxtrace *etm = etmq->etm; 1170 struct perf_sample sample = {.ip = 0,}; 1171 union perf_event *event = tidq->event_buf; 1172 struct dummy_branch_stack { 1173 u64 nr; 1174 struct branch_entry entries; 1175 } dummy_bs; 1176 u64 ip; 1177 1178 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1179 1180 event->sample.header.type = PERF_RECORD_SAMPLE; 1181 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1182 event->sample.header.size = sizeof(struct perf_event_header); 1183 1184 sample.ip = ip; 1185 sample.pid = tidq->pid; 1186 sample.tid = tidq->tid; 1187 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1188 sample.id = etmq->etm->branches_id; 1189 sample.stream_id = etmq->etm->branches_id; 1190 sample.period = 1; 1191 sample.cpu = tidq->packet->cpu; 1192 sample.flags = tidq->prev_packet->flags; 1193 sample.cpumode = event->sample.header.misc; 1194 1195 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1196 &sample); 1197 1198 /* 1199 * perf report cannot handle events without a branch stack 1200 */ 1201 if (etm->synth_opts.last_branch) { 1202 dummy_bs = (struct dummy_branch_stack){ 1203 .nr = 1, 1204 .entries = { 1205 .from = sample.ip, 1206 .to = sample.addr, 1207 }, 1208 }; 1209 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1210 } 1211 1212 if (etm->synth_opts.inject) { 1213 ret = cs_etm__inject_event(event, &sample, 1214 etm->branches_sample_type); 1215 if (ret) 1216 return ret; 1217 } 1218 1219 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1220 1221 if (ret) 1222 pr_err( 1223 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1224 ret); 1225 1226 return ret; 1227 } 1228 1229 struct cs_etm_synth { 1230 struct perf_tool dummy_tool; 1231 struct perf_session *session; 1232 }; 1233 1234 static int cs_etm__event_synth(struct perf_tool *tool, 1235 union perf_event *event, 1236 struct perf_sample *sample __maybe_unused, 1237 struct machine *machine __maybe_unused) 1238 { 1239 struct cs_etm_synth *cs_etm_synth = 1240 container_of(tool, struct cs_etm_synth, dummy_tool); 1241 1242 return perf_session__deliver_synth_event(cs_etm_synth->session, 1243 event, NULL); 1244 } 1245 1246 static int cs_etm__synth_event(struct perf_session *session, 1247 struct perf_event_attr *attr, u64 id) 1248 { 1249 struct cs_etm_synth cs_etm_synth; 1250 1251 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1252 cs_etm_synth.session = session; 1253 1254 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1255 &id, cs_etm__event_synth); 1256 } 1257 1258 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1259 struct perf_session *session) 1260 { 1261 struct evlist *evlist = session->evlist; 1262 struct evsel *evsel; 1263 struct perf_event_attr attr; 1264 bool found = false; 1265 u64 id; 1266 int err; 1267 1268 evlist__for_each_entry(evlist, evsel) { 1269 if (evsel->core.attr.type == etm->pmu_type) { 1270 found = true; 1271 break; 1272 } 1273 } 1274 1275 if (!found) { 1276 pr_debug("No selected events with CoreSight Trace data\n"); 1277 return 0; 1278 } 1279 1280 memset(&attr, 0, sizeof(struct perf_event_attr)); 1281 attr.size = sizeof(struct perf_event_attr); 1282 attr.type = PERF_TYPE_HARDWARE; 1283 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1284 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1285 PERF_SAMPLE_PERIOD; 1286 if (etm->timeless_decoding) 1287 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1288 else 1289 attr.sample_type |= PERF_SAMPLE_TIME; 1290 1291 attr.exclude_user = evsel->core.attr.exclude_user; 1292 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1293 attr.exclude_hv = evsel->core.attr.exclude_hv; 1294 attr.exclude_host = evsel->core.attr.exclude_host; 1295 attr.exclude_guest = evsel->core.attr.exclude_guest; 1296 attr.sample_id_all = evsel->core.attr.sample_id_all; 1297 attr.read_format = evsel->core.attr.read_format; 1298 1299 /* create new id val to be a fixed offset from evsel id */ 1300 id = evsel->id[0] + 1000000000; 1301 1302 if (!id) 1303 id = 1; 1304 1305 if (etm->synth_opts.branches) { 1306 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1307 attr.sample_period = 1; 1308 attr.sample_type |= PERF_SAMPLE_ADDR; 1309 err = cs_etm__synth_event(session, &attr, id); 1310 if (err) 1311 return err; 1312 etm->sample_branches = true; 1313 etm->branches_sample_type = attr.sample_type; 1314 etm->branches_id = id; 1315 id += 1; 1316 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1317 } 1318 1319 if (etm->synth_opts.last_branch) 1320 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1321 1322 if (etm->synth_opts.instructions) { 1323 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1324 attr.sample_period = etm->synth_opts.period; 1325 etm->instructions_sample_period = attr.sample_period; 1326 err = cs_etm__synth_event(session, &attr, id); 1327 if (err) 1328 return err; 1329 etm->sample_instructions = true; 1330 etm->instructions_sample_type = attr.sample_type; 1331 etm->instructions_id = id; 1332 id += 1; 1333 } 1334 1335 return 0; 1336 } 1337 1338 static int cs_etm__sample(struct cs_etm_queue *etmq, 1339 struct cs_etm_traceid_queue *tidq) 1340 { 1341 struct cs_etm_auxtrace *etm = etmq->etm; 1342 struct cs_etm_packet *tmp; 1343 int ret; 1344 u8 trace_chan_id = tidq->trace_chan_id; 1345 u64 instrs_executed = tidq->packet->instr_count; 1346 1347 tidq->period_instructions += instrs_executed; 1348 1349 /* 1350 * Record a branch when the last instruction in 1351 * PREV_PACKET is a branch. 1352 */ 1353 if (etm->synth_opts.last_branch && 1354 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1355 tidq->prev_packet->last_instr_taken_branch) 1356 cs_etm__update_last_branch_rb(etmq, tidq); 1357 1358 if (etm->sample_instructions && 1359 tidq->period_instructions >= etm->instructions_sample_period) { 1360 /* 1361 * Emit instruction sample periodically 1362 * TODO: allow period to be defined in cycles and clock time 1363 */ 1364 1365 /* Get number of instructions executed after the sample point */ 1366 u64 instrs_over = tidq->period_instructions - 1367 etm->instructions_sample_period; 1368 1369 /* 1370 * Calculate the address of the sampled instruction (-1 as 1371 * sample is reported as though instruction has just been 1372 * executed, but PC has not advanced to next instruction) 1373 */ 1374 u64 offset = (instrs_executed - instrs_over - 1); 1375 u64 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1376 tidq->packet, offset); 1377 1378 ret = cs_etm__synth_instruction_sample( 1379 etmq, tidq, addr, etm->instructions_sample_period); 1380 if (ret) 1381 return ret; 1382 1383 /* Carry remaining instructions into next sample period */ 1384 tidq->period_instructions = instrs_over; 1385 } 1386 1387 if (etm->sample_branches) { 1388 bool generate_sample = false; 1389 1390 /* Generate sample for tracing on packet */ 1391 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1392 generate_sample = true; 1393 1394 /* Generate sample for branch taken packet */ 1395 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1396 tidq->prev_packet->last_instr_taken_branch) 1397 generate_sample = true; 1398 1399 if (generate_sample) { 1400 ret = cs_etm__synth_branch_sample(etmq, tidq); 1401 if (ret) 1402 return ret; 1403 } 1404 } 1405 1406 if (etm->sample_branches || etm->synth_opts.last_branch) { 1407 /* 1408 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 1409 * the next incoming packet. 1410 */ 1411 tmp = tidq->packet; 1412 tidq->packet = tidq->prev_packet; 1413 tidq->prev_packet = tmp; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1420 { 1421 /* 1422 * When the exception packet is inserted, whether the last instruction 1423 * in previous range packet is taken branch or not, we need to force 1424 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1425 * to generate branch sample for the instruction range before the 1426 * exception is trapped to kernel or before the exception returning. 1427 * 1428 * The exception packet includes the dummy address values, so don't 1429 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1430 * for generating instruction and branch samples. 1431 */ 1432 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1433 tidq->prev_packet->last_instr_taken_branch = true; 1434 1435 return 0; 1436 } 1437 1438 static int cs_etm__flush(struct cs_etm_queue *etmq, 1439 struct cs_etm_traceid_queue *tidq) 1440 { 1441 int err = 0; 1442 struct cs_etm_auxtrace *etm = etmq->etm; 1443 struct cs_etm_packet *tmp; 1444 1445 /* Handle start tracing packet */ 1446 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1447 goto swap_packet; 1448 1449 if (etmq->etm->synth_opts.last_branch && 1450 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1451 /* 1452 * Generate a last branch event for the branches left in the 1453 * circular buffer at the end of the trace. 1454 * 1455 * Use the address of the end of the last reported execution 1456 * range 1457 */ 1458 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1459 1460 err = cs_etm__synth_instruction_sample( 1461 etmq, tidq, addr, 1462 tidq->period_instructions); 1463 if (err) 1464 return err; 1465 1466 tidq->period_instructions = 0; 1467 1468 } 1469 1470 if (etm->sample_branches && 1471 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1472 err = cs_etm__synth_branch_sample(etmq, tidq); 1473 if (err) 1474 return err; 1475 } 1476 1477 swap_packet: 1478 if (etm->sample_branches || etm->synth_opts.last_branch) { 1479 /* 1480 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 1481 * the next incoming packet. 1482 */ 1483 tmp = tidq->packet; 1484 tidq->packet = tidq->prev_packet; 1485 tidq->prev_packet = tmp; 1486 } 1487 1488 return err; 1489 } 1490 1491 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1492 struct cs_etm_traceid_queue *tidq) 1493 { 1494 int err; 1495 1496 /* 1497 * It has no new packet coming and 'etmq->packet' contains the stale 1498 * packet which was set at the previous time with packets swapping; 1499 * so skip to generate branch sample to avoid stale packet. 1500 * 1501 * For this case only flush branch stack and generate a last branch 1502 * event for the branches left in the circular buffer at the end of 1503 * the trace. 1504 */ 1505 if (etmq->etm->synth_opts.last_branch && 1506 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1507 /* 1508 * Use the address of the end of the last reported execution 1509 * range. 1510 */ 1511 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1512 1513 err = cs_etm__synth_instruction_sample( 1514 etmq, tidq, addr, 1515 tidq->period_instructions); 1516 if (err) 1517 return err; 1518 1519 tidq->period_instructions = 0; 1520 } 1521 1522 return 0; 1523 } 1524 /* 1525 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1526 * if need be. 1527 * Returns: < 0 if error 1528 * = 0 if no more auxtrace_buffer to read 1529 * > 0 if the current buffer isn't empty yet 1530 */ 1531 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1532 { 1533 int ret; 1534 1535 if (!etmq->buf_len) { 1536 ret = cs_etm__get_trace(etmq); 1537 if (ret <= 0) 1538 return ret; 1539 /* 1540 * We cannot assume consecutive blocks in the data file 1541 * are contiguous, reset the decoder to force re-sync. 1542 */ 1543 ret = cs_etm_decoder__reset(etmq->decoder); 1544 if (ret) 1545 return ret; 1546 } 1547 1548 return etmq->buf_len; 1549 } 1550 1551 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1552 struct cs_etm_packet *packet, 1553 u64 end_addr) 1554 { 1555 /* Initialise to keep compiler happy */ 1556 u16 instr16 = 0; 1557 u32 instr32 = 0; 1558 u64 addr; 1559 1560 switch (packet->isa) { 1561 case CS_ETM_ISA_T32: 1562 /* 1563 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1564 * 1565 * b'15 b'8 1566 * +-----------------+--------+ 1567 * | 1 1 0 1 1 1 1 1 | imm8 | 1568 * +-----------------+--------+ 1569 * 1570 * According to the specifiction, it only defines SVC for T32 1571 * with 16 bits instruction and has no definition for 32bits; 1572 * so below only read 2 bytes as instruction size for T32. 1573 */ 1574 addr = end_addr - 2; 1575 cs_etm__mem_access(etmq, trace_chan_id, addr, 1576 sizeof(instr16), (u8 *)&instr16); 1577 if ((instr16 & 0xFF00) == 0xDF00) 1578 return true; 1579 1580 break; 1581 case CS_ETM_ISA_A32: 1582 /* 1583 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1584 * 1585 * b'31 b'28 b'27 b'24 1586 * +---------+---------+-------------------------+ 1587 * | !1111 | 1 1 1 1 | imm24 | 1588 * +---------+---------+-------------------------+ 1589 */ 1590 addr = end_addr - 4; 1591 cs_etm__mem_access(etmq, trace_chan_id, addr, 1592 sizeof(instr32), (u8 *)&instr32); 1593 if ((instr32 & 0x0F000000) == 0x0F000000 && 1594 (instr32 & 0xF0000000) != 0xF0000000) 1595 return true; 1596 1597 break; 1598 case CS_ETM_ISA_A64: 1599 /* 1600 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1601 * 1602 * b'31 b'21 b'4 b'0 1603 * +-----------------------+---------+-----------+ 1604 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1605 * +-----------------------+---------+-----------+ 1606 */ 1607 addr = end_addr - 4; 1608 cs_etm__mem_access(etmq, trace_chan_id, addr, 1609 sizeof(instr32), (u8 *)&instr32); 1610 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1611 return true; 1612 1613 break; 1614 case CS_ETM_ISA_UNKNOWN: 1615 default: 1616 break; 1617 } 1618 1619 return false; 1620 } 1621 1622 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1623 struct cs_etm_traceid_queue *tidq, u64 magic) 1624 { 1625 u8 trace_chan_id = tidq->trace_chan_id; 1626 struct cs_etm_packet *packet = tidq->packet; 1627 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1628 1629 if (magic == __perf_cs_etmv3_magic) 1630 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1631 return true; 1632 1633 /* 1634 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1635 * HVC cases; need to check if it's SVC instruction based on 1636 * packet address. 1637 */ 1638 if (magic == __perf_cs_etmv4_magic) { 1639 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1640 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1641 prev_packet->end_addr)) 1642 return true; 1643 } 1644 1645 return false; 1646 } 1647 1648 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1649 u64 magic) 1650 { 1651 struct cs_etm_packet *packet = tidq->packet; 1652 1653 if (magic == __perf_cs_etmv3_magic) 1654 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1655 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1656 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1657 packet->exception_number == CS_ETMV3_EXC_IRQ || 1658 packet->exception_number == CS_ETMV3_EXC_FIQ) 1659 return true; 1660 1661 if (magic == __perf_cs_etmv4_magic) 1662 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1663 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1664 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1665 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1666 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1667 packet->exception_number == CS_ETMV4_EXC_IRQ || 1668 packet->exception_number == CS_ETMV4_EXC_FIQ) 1669 return true; 1670 1671 return false; 1672 } 1673 1674 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1675 struct cs_etm_traceid_queue *tidq, 1676 u64 magic) 1677 { 1678 u8 trace_chan_id = tidq->trace_chan_id; 1679 struct cs_etm_packet *packet = tidq->packet; 1680 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1681 1682 if (magic == __perf_cs_etmv3_magic) 1683 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1684 packet->exception_number == CS_ETMV3_EXC_HYP || 1685 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1686 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1687 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1688 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1689 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1690 return true; 1691 1692 if (magic == __perf_cs_etmv4_magic) { 1693 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 1694 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 1695 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 1696 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 1697 return true; 1698 1699 /* 1700 * For CS_ETMV4_EXC_CALL, except SVC other instructions 1701 * (SMC, HVC) are taken as sync exceptions. 1702 */ 1703 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1704 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1705 prev_packet->end_addr)) 1706 return true; 1707 1708 /* 1709 * ETMv4 has 5 bits for exception number; if the numbers 1710 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 1711 * they are implementation defined exceptions. 1712 * 1713 * For this case, simply take it as sync exception. 1714 */ 1715 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 1716 packet->exception_number <= CS_ETMV4_EXC_END) 1717 return true; 1718 } 1719 1720 return false; 1721 } 1722 1723 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 1724 struct cs_etm_traceid_queue *tidq) 1725 { 1726 struct cs_etm_packet *packet = tidq->packet; 1727 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1728 u8 trace_chan_id = tidq->trace_chan_id; 1729 u64 magic; 1730 int ret; 1731 1732 switch (packet->sample_type) { 1733 case CS_ETM_RANGE: 1734 /* 1735 * Immediate branch instruction without neither link nor 1736 * return flag, it's normal branch instruction within 1737 * the function. 1738 */ 1739 if (packet->last_instr_type == OCSD_INSTR_BR && 1740 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 1741 packet->flags = PERF_IP_FLAG_BRANCH; 1742 1743 if (packet->last_instr_cond) 1744 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 1745 } 1746 1747 /* 1748 * Immediate branch instruction with link (e.g. BL), this is 1749 * branch instruction for function call. 1750 */ 1751 if (packet->last_instr_type == OCSD_INSTR_BR && 1752 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1753 packet->flags = PERF_IP_FLAG_BRANCH | 1754 PERF_IP_FLAG_CALL; 1755 1756 /* 1757 * Indirect branch instruction with link (e.g. BLR), this is 1758 * branch instruction for function call. 1759 */ 1760 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1761 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1762 packet->flags = PERF_IP_FLAG_BRANCH | 1763 PERF_IP_FLAG_CALL; 1764 1765 /* 1766 * Indirect branch instruction with subtype of 1767 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 1768 * function return for A32/T32. 1769 */ 1770 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1771 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 1772 packet->flags = PERF_IP_FLAG_BRANCH | 1773 PERF_IP_FLAG_RETURN; 1774 1775 /* 1776 * Indirect branch instruction without link (e.g. BR), usually 1777 * this is used for function return, especially for functions 1778 * within dynamic link lib. 1779 */ 1780 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1781 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 1782 packet->flags = PERF_IP_FLAG_BRANCH | 1783 PERF_IP_FLAG_RETURN; 1784 1785 /* Return instruction for function return. */ 1786 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1787 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 1788 packet->flags = PERF_IP_FLAG_BRANCH | 1789 PERF_IP_FLAG_RETURN; 1790 1791 /* 1792 * Decoder might insert a discontinuity in the middle of 1793 * instruction packets, fixup prev_packet with flag 1794 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 1795 */ 1796 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1797 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1798 PERF_IP_FLAG_TRACE_BEGIN; 1799 1800 /* 1801 * If the previous packet is an exception return packet 1802 * and the return address just follows SVC instuction, 1803 * it needs to calibrate the previous packet sample flags 1804 * as PERF_IP_FLAG_SYSCALLRET. 1805 */ 1806 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 1807 PERF_IP_FLAG_RETURN | 1808 PERF_IP_FLAG_INTERRUPT) && 1809 cs_etm__is_svc_instr(etmq, trace_chan_id, 1810 packet, packet->start_addr)) 1811 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1812 PERF_IP_FLAG_RETURN | 1813 PERF_IP_FLAG_SYSCALLRET; 1814 break; 1815 case CS_ETM_DISCONTINUITY: 1816 /* 1817 * The trace is discontinuous, if the previous packet is 1818 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 1819 * for previous packet. 1820 */ 1821 if (prev_packet->sample_type == CS_ETM_RANGE) 1822 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1823 PERF_IP_FLAG_TRACE_END; 1824 break; 1825 case CS_ETM_EXCEPTION: 1826 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 1827 if (ret) 1828 return ret; 1829 1830 /* The exception is for system call. */ 1831 if (cs_etm__is_syscall(etmq, tidq, magic)) 1832 packet->flags = PERF_IP_FLAG_BRANCH | 1833 PERF_IP_FLAG_CALL | 1834 PERF_IP_FLAG_SYSCALLRET; 1835 /* 1836 * The exceptions are triggered by external signals from bus, 1837 * interrupt controller, debug module, PE reset or halt. 1838 */ 1839 else if (cs_etm__is_async_exception(tidq, magic)) 1840 packet->flags = PERF_IP_FLAG_BRANCH | 1841 PERF_IP_FLAG_CALL | 1842 PERF_IP_FLAG_ASYNC | 1843 PERF_IP_FLAG_INTERRUPT; 1844 /* 1845 * Otherwise, exception is caused by trap, instruction & 1846 * data fault, or alignment errors. 1847 */ 1848 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 1849 packet->flags = PERF_IP_FLAG_BRANCH | 1850 PERF_IP_FLAG_CALL | 1851 PERF_IP_FLAG_INTERRUPT; 1852 1853 /* 1854 * When the exception packet is inserted, since exception 1855 * packet is not used standalone for generating samples 1856 * and it's affiliation to the previous instruction range 1857 * packet; so set previous range packet flags to tell perf 1858 * it is an exception taken branch. 1859 */ 1860 if (prev_packet->sample_type == CS_ETM_RANGE) 1861 prev_packet->flags = packet->flags; 1862 break; 1863 case CS_ETM_EXCEPTION_RET: 1864 /* 1865 * When the exception return packet is inserted, since 1866 * exception return packet is not used standalone for 1867 * generating samples and it's affiliation to the previous 1868 * instruction range packet; so set previous range packet 1869 * flags to tell perf it is an exception return branch. 1870 * 1871 * The exception return can be for either system call or 1872 * other exception types; unfortunately the packet doesn't 1873 * contain exception type related info so we cannot decide 1874 * the exception type purely based on exception return packet. 1875 * If we record the exception number from exception packet and 1876 * reuse it for excpetion return packet, this is not reliable 1877 * due the trace can be discontinuity or the interrupt can 1878 * be nested, thus the recorded exception number cannot be 1879 * used for exception return packet for these two cases. 1880 * 1881 * For exception return packet, we only need to distinguish the 1882 * packet is for system call or for other types. Thus the 1883 * decision can be deferred when receive the next packet which 1884 * contains the return address, based on the return address we 1885 * can read out the previous instruction and check if it's a 1886 * system call instruction and then calibrate the sample flag 1887 * as needed. 1888 */ 1889 if (prev_packet->sample_type == CS_ETM_RANGE) 1890 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1891 PERF_IP_FLAG_RETURN | 1892 PERF_IP_FLAG_INTERRUPT; 1893 break; 1894 case CS_ETM_EMPTY: 1895 default: 1896 break; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 1903 { 1904 int ret = 0; 1905 size_t processed = 0; 1906 1907 /* 1908 * Packets are decoded and added to the decoder's packet queue 1909 * until the decoder packet processing callback has requested that 1910 * processing stops or there is nothing left in the buffer. Normal 1911 * operations that stop processing are a timestamp packet or a full 1912 * decoder buffer queue. 1913 */ 1914 ret = cs_etm_decoder__process_data_block(etmq->decoder, 1915 etmq->offset, 1916 &etmq->buf[etmq->buf_used], 1917 etmq->buf_len, 1918 &processed); 1919 if (ret) 1920 goto out; 1921 1922 etmq->offset += processed; 1923 etmq->buf_used += processed; 1924 etmq->buf_len -= processed; 1925 1926 out: 1927 return ret; 1928 } 1929 1930 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 1931 struct cs_etm_traceid_queue *tidq) 1932 { 1933 int ret; 1934 struct cs_etm_packet_queue *packet_queue; 1935 1936 packet_queue = &tidq->packet_queue; 1937 1938 /* Process each packet in this chunk */ 1939 while (1) { 1940 ret = cs_etm_decoder__get_packet(packet_queue, 1941 tidq->packet); 1942 if (ret <= 0) 1943 /* 1944 * Stop processing this chunk on 1945 * end of data or error 1946 */ 1947 break; 1948 1949 /* 1950 * Since packet addresses are swapped in packet 1951 * handling within below switch() statements, 1952 * thus setting sample flags must be called 1953 * prior to switch() statement to use address 1954 * information before packets swapping. 1955 */ 1956 ret = cs_etm__set_sample_flags(etmq, tidq); 1957 if (ret < 0) 1958 break; 1959 1960 switch (tidq->packet->sample_type) { 1961 case CS_ETM_RANGE: 1962 /* 1963 * If the packet contains an instruction 1964 * range, generate instruction sequence 1965 * events. 1966 */ 1967 cs_etm__sample(etmq, tidq); 1968 break; 1969 case CS_ETM_EXCEPTION: 1970 case CS_ETM_EXCEPTION_RET: 1971 /* 1972 * If the exception packet is coming, 1973 * make sure the previous instruction 1974 * range packet to be handled properly. 1975 */ 1976 cs_etm__exception(tidq); 1977 break; 1978 case CS_ETM_DISCONTINUITY: 1979 /* 1980 * Discontinuity in trace, flush 1981 * previous branch stack 1982 */ 1983 cs_etm__flush(etmq, tidq); 1984 break; 1985 case CS_ETM_EMPTY: 1986 /* 1987 * Should not receive empty packet, 1988 * report error. 1989 */ 1990 pr_err("CS ETM Trace: empty packet\n"); 1991 return -EINVAL; 1992 default: 1993 break; 1994 } 1995 } 1996 1997 return ret; 1998 } 1999 2000 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2001 { 2002 int idx; 2003 struct int_node *inode; 2004 struct cs_etm_traceid_queue *tidq; 2005 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2006 2007 intlist__for_each_entry(inode, traceid_queues_list) { 2008 idx = (int)(intptr_t)inode->priv; 2009 tidq = etmq->traceid_queues[idx]; 2010 2011 /* Ignore return value */ 2012 cs_etm__process_traceid_queue(etmq, tidq); 2013 2014 /* 2015 * Generate an instruction sample with the remaining 2016 * branchstack entries. 2017 */ 2018 cs_etm__flush(etmq, tidq); 2019 } 2020 } 2021 2022 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2023 { 2024 int err = 0; 2025 struct cs_etm_traceid_queue *tidq; 2026 2027 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2028 if (!tidq) 2029 return -EINVAL; 2030 2031 /* Go through each buffer in the queue and decode them one by one */ 2032 while (1) { 2033 err = cs_etm__get_data_block(etmq); 2034 if (err <= 0) 2035 return err; 2036 2037 /* Run trace decoder until buffer consumed or end of trace */ 2038 do { 2039 err = cs_etm__decode_data_block(etmq); 2040 if (err) 2041 return err; 2042 2043 /* 2044 * Process each packet in this chunk, nothing to do if 2045 * an error occurs other than hoping the next one will 2046 * be better. 2047 */ 2048 err = cs_etm__process_traceid_queue(etmq, tidq); 2049 2050 } while (etmq->buf_len); 2051 2052 if (err == 0) 2053 /* Flush any remaining branch stack entries */ 2054 err = cs_etm__end_block(etmq, tidq); 2055 } 2056 2057 return err; 2058 } 2059 2060 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2061 pid_t tid) 2062 { 2063 unsigned int i; 2064 struct auxtrace_queues *queues = &etm->queues; 2065 2066 for (i = 0; i < queues->nr_queues; i++) { 2067 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2068 struct cs_etm_queue *etmq = queue->priv; 2069 struct cs_etm_traceid_queue *tidq; 2070 2071 if (!etmq) 2072 continue; 2073 2074 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2075 CS_ETM_PER_THREAD_TRACEID); 2076 2077 if (!tidq) 2078 continue; 2079 2080 if ((tid == -1) || (tidq->tid == tid)) { 2081 cs_etm__set_pid_tid_cpu(etm, tidq); 2082 cs_etm__run_decoder(etmq); 2083 } 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2090 { 2091 int ret = 0; 2092 unsigned int cs_queue_nr, queue_nr; 2093 u8 trace_chan_id; 2094 u64 timestamp; 2095 struct auxtrace_queue *queue; 2096 struct cs_etm_queue *etmq; 2097 struct cs_etm_traceid_queue *tidq; 2098 2099 while (1) { 2100 if (!etm->heap.heap_cnt) 2101 goto out; 2102 2103 /* Take the entry at the top of the min heap */ 2104 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2105 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2106 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2107 queue = &etm->queues.queue_array[queue_nr]; 2108 etmq = queue->priv; 2109 2110 /* 2111 * Remove the top entry from the heap since we are about 2112 * to process it. 2113 */ 2114 auxtrace_heap__pop(&etm->heap); 2115 2116 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2117 if (!tidq) { 2118 /* 2119 * No traceID queue has been allocated for this traceID, 2120 * which means something somewhere went very wrong. No 2121 * other choice than simply exit. 2122 */ 2123 ret = -EINVAL; 2124 goto out; 2125 } 2126 2127 /* 2128 * Packets associated with this timestamp are already in 2129 * the etmq's traceID queue, so process them. 2130 */ 2131 ret = cs_etm__process_traceid_queue(etmq, tidq); 2132 if (ret < 0) 2133 goto out; 2134 2135 /* 2136 * Packets for this timestamp have been processed, time to 2137 * move on to the next timestamp, fetching a new auxtrace_buffer 2138 * if need be. 2139 */ 2140 refetch: 2141 ret = cs_etm__get_data_block(etmq); 2142 if (ret < 0) 2143 goto out; 2144 2145 /* 2146 * No more auxtrace_buffers to process in this etmq, simply 2147 * move on to another entry in the auxtrace_heap. 2148 */ 2149 if (!ret) 2150 continue; 2151 2152 ret = cs_etm__decode_data_block(etmq); 2153 if (ret) 2154 goto out; 2155 2156 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2157 2158 if (!timestamp) { 2159 /* 2160 * Function cs_etm__decode_data_block() returns when 2161 * there is no more traces to decode in the current 2162 * auxtrace_buffer OR when a timestamp has been 2163 * encountered on any of the traceID queues. Since we 2164 * did not get a timestamp, there is no more traces to 2165 * process in this auxtrace_buffer. As such empty and 2166 * flush all traceID queues. 2167 */ 2168 cs_etm__clear_all_traceid_queues(etmq); 2169 2170 /* Fetch another auxtrace_buffer for this etmq */ 2171 goto refetch; 2172 } 2173 2174 /* 2175 * Add to the min heap the timestamp for packets that have 2176 * just been decoded. They will be processed and synthesized 2177 * during the next call to cs_etm__process_traceid_queue() for 2178 * this queue/traceID. 2179 */ 2180 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2181 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp); 2182 } 2183 2184 out: 2185 return ret; 2186 } 2187 2188 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2189 union perf_event *event) 2190 { 2191 struct thread *th; 2192 2193 if (etm->timeless_decoding) 2194 return 0; 2195 2196 /* 2197 * Add the tid/pid to the log so that we can get a match when 2198 * we get a contextID from the decoder. 2199 */ 2200 th = machine__findnew_thread(etm->machine, 2201 event->itrace_start.pid, 2202 event->itrace_start.tid); 2203 if (!th) 2204 return -ENOMEM; 2205 2206 thread__put(th); 2207 2208 return 0; 2209 } 2210 2211 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2212 union perf_event *event) 2213 { 2214 struct thread *th; 2215 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2216 2217 /* 2218 * Context switch in per-thread mode are irrelevant since perf 2219 * will start/stop tracing as the process is scheduled. 2220 */ 2221 if (etm->timeless_decoding) 2222 return 0; 2223 2224 /* 2225 * SWITCH_IN events carry the next process to be switched out while 2226 * SWITCH_OUT events carry the process to be switched in. As such 2227 * we don't care about IN events. 2228 */ 2229 if (!out) 2230 return 0; 2231 2232 /* 2233 * Add the tid/pid to the log so that we can get a match when 2234 * we get a contextID from the decoder. 2235 */ 2236 th = machine__findnew_thread(etm->machine, 2237 event->context_switch.next_prev_pid, 2238 event->context_switch.next_prev_tid); 2239 if (!th) 2240 return -ENOMEM; 2241 2242 thread__put(th); 2243 2244 return 0; 2245 } 2246 2247 static int cs_etm__process_event(struct perf_session *session, 2248 union perf_event *event, 2249 struct perf_sample *sample, 2250 struct perf_tool *tool) 2251 { 2252 int err = 0; 2253 u64 timestamp; 2254 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2255 struct cs_etm_auxtrace, 2256 auxtrace); 2257 2258 if (dump_trace) 2259 return 0; 2260 2261 if (!tool->ordered_events) { 2262 pr_err("CoreSight ETM Trace requires ordered events\n"); 2263 return -EINVAL; 2264 } 2265 2266 if (sample->time && (sample->time != (u64) -1)) 2267 timestamp = sample->time; 2268 else 2269 timestamp = 0; 2270 2271 if (timestamp || etm->timeless_decoding) { 2272 err = cs_etm__update_queues(etm); 2273 if (err) 2274 return err; 2275 } 2276 2277 if (etm->timeless_decoding && 2278 event->header.type == PERF_RECORD_EXIT) 2279 return cs_etm__process_timeless_queues(etm, 2280 event->fork.tid); 2281 2282 if (event->header.type == PERF_RECORD_ITRACE_START) 2283 return cs_etm__process_itrace_start(etm, event); 2284 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2285 return cs_etm__process_switch_cpu_wide(etm, event); 2286 2287 if (!etm->timeless_decoding && 2288 event->header.type == PERF_RECORD_AUX) 2289 return cs_etm__process_queues(etm); 2290 2291 return 0; 2292 } 2293 2294 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2295 union perf_event *event, 2296 struct perf_tool *tool __maybe_unused) 2297 { 2298 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2299 struct cs_etm_auxtrace, 2300 auxtrace); 2301 if (!etm->data_queued) { 2302 struct auxtrace_buffer *buffer; 2303 off_t data_offset; 2304 int fd = perf_data__fd(session->data); 2305 bool is_pipe = perf_data__is_pipe(session->data); 2306 int err; 2307 2308 if (is_pipe) 2309 data_offset = 0; 2310 else { 2311 data_offset = lseek(fd, 0, SEEK_CUR); 2312 if (data_offset == -1) 2313 return -errno; 2314 } 2315 2316 err = auxtrace_queues__add_event(&etm->queues, session, 2317 event, data_offset, &buffer); 2318 if (err) 2319 return err; 2320 2321 if (dump_trace) 2322 if (auxtrace_buffer__get_data(buffer, fd)) { 2323 cs_etm__dump_event(etm, buffer); 2324 auxtrace_buffer__put_data(buffer); 2325 } 2326 } 2327 2328 return 0; 2329 } 2330 2331 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2332 { 2333 struct evsel *evsel; 2334 struct evlist *evlist = etm->session->evlist; 2335 bool timeless_decoding = true; 2336 2337 /* 2338 * Circle through the list of event and complain if we find one 2339 * with the time bit set. 2340 */ 2341 evlist__for_each_entry(evlist, evsel) { 2342 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2343 timeless_decoding = false; 2344 } 2345 2346 return timeless_decoding; 2347 } 2348 2349 static const char * const cs_etm_global_header_fmts[] = { 2350 [CS_HEADER_VERSION_0] = " Header version %llx\n", 2351 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 2352 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 2353 }; 2354 2355 static const char * const cs_etm_priv_fmts[] = { 2356 [CS_ETM_MAGIC] = " Magic number %llx\n", 2357 [CS_ETM_CPU] = " CPU %lld\n", 2358 [CS_ETM_ETMCR] = " ETMCR %llx\n", 2359 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 2360 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 2361 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 2362 }; 2363 2364 static const char * const cs_etmv4_priv_fmts[] = { 2365 [CS_ETM_MAGIC] = " Magic number %llx\n", 2366 [CS_ETM_CPU] = " CPU %lld\n", 2367 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 2368 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 2369 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 2370 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 2371 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 2372 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 2373 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 2374 }; 2375 2376 static void cs_etm__print_auxtrace_info(__u64 *val, int num) 2377 { 2378 int i, j, cpu = 0; 2379 2380 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 2381 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 2382 2383 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { 2384 if (val[i] == __perf_cs_etmv3_magic) 2385 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) 2386 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2387 else if (val[i] == __perf_cs_etmv4_magic) 2388 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) 2389 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2390 else 2391 /* failure.. return */ 2392 return; 2393 } 2394 } 2395 2396 int cs_etm__process_auxtrace_info(union perf_event *event, 2397 struct perf_session *session) 2398 { 2399 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 2400 struct cs_etm_auxtrace *etm = NULL; 2401 struct int_node *inode; 2402 unsigned int pmu_type; 2403 int event_header_size = sizeof(struct perf_event_header); 2404 int info_header_size; 2405 int total_size = auxtrace_info->header.size; 2406 int priv_size = 0; 2407 int num_cpu; 2408 int err = 0, idx = -1; 2409 int i, j, k; 2410 u64 *ptr, *hdr = NULL; 2411 u64 **metadata = NULL; 2412 2413 /* 2414 * sizeof(auxtrace_info_event::type) + 2415 * sizeof(auxtrace_info_event::reserved) == 8 2416 */ 2417 info_header_size = 8; 2418 2419 if (total_size < (event_header_size + info_header_size)) 2420 return -EINVAL; 2421 2422 priv_size = total_size - event_header_size - info_header_size; 2423 2424 /* First the global part */ 2425 ptr = (u64 *) auxtrace_info->priv; 2426 2427 /* Look for version '0' of the header */ 2428 if (ptr[0] != 0) 2429 return -EINVAL; 2430 2431 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); 2432 if (!hdr) 2433 return -ENOMEM; 2434 2435 /* Extract header information - see cs-etm.h for format */ 2436 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 2437 hdr[i] = ptr[i]; 2438 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 2439 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 2440 0xffffffff); 2441 2442 /* 2443 * Create an RB tree for traceID-metadata tuple. Since the conversion 2444 * has to be made for each packet that gets decoded, optimizing access 2445 * in anything other than a sequential array is worth doing. 2446 */ 2447 traceid_list = intlist__new(NULL); 2448 if (!traceid_list) { 2449 err = -ENOMEM; 2450 goto err_free_hdr; 2451 } 2452 2453 metadata = zalloc(sizeof(*metadata) * num_cpu); 2454 if (!metadata) { 2455 err = -ENOMEM; 2456 goto err_free_traceid_list; 2457 } 2458 2459 /* 2460 * The metadata is stored in the auxtrace_info section and encodes 2461 * the configuration of the ARM embedded trace macrocell which is 2462 * required by the trace decoder to properly decode the trace due 2463 * to its highly compressed nature. 2464 */ 2465 for (j = 0; j < num_cpu; j++) { 2466 if (ptr[i] == __perf_cs_etmv3_magic) { 2467 metadata[j] = zalloc(sizeof(*metadata[j]) * 2468 CS_ETM_PRIV_MAX); 2469 if (!metadata[j]) { 2470 err = -ENOMEM; 2471 goto err_free_metadata; 2472 } 2473 for (k = 0; k < CS_ETM_PRIV_MAX; k++) 2474 metadata[j][k] = ptr[i + k]; 2475 2476 /* The traceID is our handle */ 2477 idx = metadata[j][CS_ETM_ETMTRACEIDR]; 2478 i += CS_ETM_PRIV_MAX; 2479 } else if (ptr[i] == __perf_cs_etmv4_magic) { 2480 metadata[j] = zalloc(sizeof(*metadata[j]) * 2481 CS_ETMV4_PRIV_MAX); 2482 if (!metadata[j]) { 2483 err = -ENOMEM; 2484 goto err_free_metadata; 2485 } 2486 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) 2487 metadata[j][k] = ptr[i + k]; 2488 2489 /* The traceID is our handle */ 2490 idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; 2491 i += CS_ETMV4_PRIV_MAX; 2492 } 2493 2494 /* Get an RB node for this CPU */ 2495 inode = intlist__findnew(traceid_list, idx); 2496 2497 /* Something went wrong, no need to continue */ 2498 if (!inode) { 2499 err = -ENOMEM; 2500 goto err_free_metadata; 2501 } 2502 2503 /* 2504 * The node for that CPU should not be taken. 2505 * Back out if that's the case. 2506 */ 2507 if (inode->priv) { 2508 err = -EINVAL; 2509 goto err_free_metadata; 2510 } 2511 /* All good, associate the traceID with the metadata pointer */ 2512 inode->priv = metadata[j]; 2513 } 2514 2515 /* 2516 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and 2517 * CS_ETMV4_PRIV_MAX mark how many double words are in the 2518 * global metadata, and each cpu's metadata respectively. 2519 * The following tests if the correct number of double words was 2520 * present in the auxtrace info section. 2521 */ 2522 if (i * 8 != priv_size) { 2523 err = -EINVAL; 2524 goto err_free_metadata; 2525 } 2526 2527 etm = zalloc(sizeof(*etm)); 2528 2529 if (!etm) { 2530 err = -ENOMEM; 2531 goto err_free_metadata; 2532 } 2533 2534 err = auxtrace_queues__init(&etm->queues); 2535 if (err) 2536 goto err_free_etm; 2537 2538 etm->session = session; 2539 etm->machine = &session->machines.host; 2540 2541 etm->num_cpu = num_cpu; 2542 etm->pmu_type = pmu_type; 2543 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 2544 etm->metadata = metadata; 2545 etm->auxtrace_type = auxtrace_info->type; 2546 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 2547 2548 etm->auxtrace.process_event = cs_etm__process_event; 2549 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 2550 etm->auxtrace.flush_events = cs_etm__flush_events; 2551 etm->auxtrace.free_events = cs_etm__free_events; 2552 etm->auxtrace.free = cs_etm__free; 2553 session->auxtrace = &etm->auxtrace; 2554 2555 etm->unknown_thread = thread__new(999999999, 999999999); 2556 if (!etm->unknown_thread) { 2557 err = -ENOMEM; 2558 goto err_free_queues; 2559 } 2560 2561 /* 2562 * Initialize list node so that at thread__zput() we can avoid 2563 * segmentation fault at list_del_init(). 2564 */ 2565 INIT_LIST_HEAD(&etm->unknown_thread->node); 2566 2567 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 2568 if (err) 2569 goto err_delete_thread; 2570 2571 if (thread__init_map_groups(etm->unknown_thread, etm->machine)) { 2572 err = -ENOMEM; 2573 goto err_delete_thread; 2574 } 2575 2576 if (dump_trace) { 2577 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 2578 return 0; 2579 } 2580 2581 if (session->itrace_synth_opts->set) { 2582 etm->synth_opts = *session->itrace_synth_opts; 2583 } else { 2584 itrace_synth_opts__set_default(&etm->synth_opts, 2585 session->itrace_synth_opts->default_no_sample); 2586 etm->synth_opts.callchain = false; 2587 } 2588 2589 err = cs_etm__synth_events(etm, session); 2590 if (err) 2591 goto err_delete_thread; 2592 2593 err = auxtrace_queues__process_index(&etm->queues, session); 2594 if (err) 2595 goto err_delete_thread; 2596 2597 etm->data_queued = etm->queues.populated; 2598 2599 return 0; 2600 2601 err_delete_thread: 2602 thread__zput(etm->unknown_thread); 2603 err_free_queues: 2604 auxtrace_queues__free(&etm->queues); 2605 session->auxtrace = NULL; 2606 err_free_etm: 2607 zfree(&etm); 2608 err_free_metadata: 2609 /* No need to check @metadata[j], free(NULL) is supported */ 2610 for (j = 0; j < num_cpu; j++) 2611 zfree(&metadata[j]); 2612 zfree(&metadata); 2613 err_free_traceid_list: 2614 intlist__delete(traceid_list); 2615 err_free_hdr: 2616 zfree(&hdr); 2617 2618 return err; 2619 } 2620