xref: /linux/tools/perf/util/cs-etm.c (revision fb71c86cc804b8f490fce1b9140014043ec41858)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 
39 #define MAX_TIMESTAMP (~0ULL)
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 	u8 sample_branches;
54 	u8 sample_instructions;
55 
56 	int num_cpu;
57 	u32 auxtrace_type;
58 	u64 branches_sample_type;
59 	u64 branches_id;
60 	u64 instructions_sample_type;
61 	u64 instructions_sample_period;
62 	u64 instructions_id;
63 	u64 **metadata;
64 	u64 kernel_start;
65 	unsigned int pmu_type;
66 };
67 
68 struct cs_etm_traceid_queue {
69 	u8 trace_chan_id;
70 	pid_t pid, tid;
71 	u64 period_instructions;
72 	size_t last_branch_pos;
73 	union perf_event *event_buf;
74 	struct thread *thread;
75 	struct branch_stack *last_branch;
76 	struct branch_stack *last_branch_rb;
77 	struct cs_etm_packet *prev_packet;
78 	struct cs_etm_packet *packet;
79 	struct cs_etm_packet_queue packet_queue;
80 };
81 
82 struct cs_etm_queue {
83 	struct cs_etm_auxtrace *etm;
84 	struct cs_etm_decoder *decoder;
85 	struct auxtrace_buffer *buffer;
86 	unsigned int queue_nr;
87 	u8 pending_timestamp;
88 	u64 offset;
89 	const unsigned char *buf;
90 	size_t buf_len, buf_used;
91 	/* Conversion between traceID and index in traceid_queues array */
92 	struct intlist *traceid_queues_list;
93 	struct cs_etm_traceid_queue **traceid_queues;
94 };
95 
96 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
99 					   pid_t tid);
100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
102 
103 /* PTMs ETMIDR [11:8] set to b0011 */
104 #define ETMIDR_PTM_VERSION 0x00000300
105 
106 /*
107  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
108  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
109  * encode the etm queue number as the upper 16 bit and the channel as
110  * the lower 16 bit.
111  */
112 #define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
113 		      (queue_nr << 16 | trace_chan_id)
114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
116 
117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
118 {
119 	etmidr &= ETMIDR_PTM_VERSION;
120 
121 	if (etmidr == ETMIDR_PTM_VERSION)
122 		return CS_ETM_PROTO_PTM;
123 
124 	return CS_ETM_PROTO_ETMV3;
125 }
126 
127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
128 {
129 	struct int_node *inode;
130 	u64 *metadata;
131 
132 	inode = intlist__find(traceid_list, trace_chan_id);
133 	if (!inode)
134 		return -EINVAL;
135 
136 	metadata = inode->priv;
137 	*magic = metadata[CS_ETM_MAGIC];
138 	return 0;
139 }
140 
141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
142 {
143 	struct int_node *inode;
144 	u64 *metadata;
145 
146 	inode = intlist__find(traceid_list, trace_chan_id);
147 	if (!inode)
148 		return -EINVAL;
149 
150 	metadata = inode->priv;
151 	*cpu = (int)metadata[CS_ETM_CPU];
152 	return 0;
153 }
154 
155 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
156 					      u8 trace_chan_id)
157 {
158 	/*
159 	 * Wnen a timestamp packet is encountered the backend code
160 	 * is stopped so that the front end has time to process packets
161 	 * that were accumulated in the traceID queue.  Since there can
162 	 * be more than one channel per cs_etm_queue, we need to specify
163 	 * what traceID queue needs servicing.
164 	 */
165 	etmq->pending_timestamp = trace_chan_id;
166 }
167 
168 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
169 				      u8 *trace_chan_id)
170 {
171 	struct cs_etm_packet_queue *packet_queue;
172 
173 	if (!etmq->pending_timestamp)
174 		return 0;
175 
176 	if (trace_chan_id)
177 		*trace_chan_id = etmq->pending_timestamp;
178 
179 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
180 						     etmq->pending_timestamp);
181 	if (!packet_queue)
182 		return 0;
183 
184 	/* Acknowledge pending status */
185 	etmq->pending_timestamp = 0;
186 
187 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
188 	return packet_queue->timestamp;
189 }
190 
191 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
192 {
193 	int i;
194 
195 	queue->head = 0;
196 	queue->tail = 0;
197 	queue->packet_count = 0;
198 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
199 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
200 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
201 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
202 		queue->packet_buffer[i].instr_count = 0;
203 		queue->packet_buffer[i].last_instr_taken_branch = false;
204 		queue->packet_buffer[i].last_instr_size = 0;
205 		queue->packet_buffer[i].last_instr_type = 0;
206 		queue->packet_buffer[i].last_instr_subtype = 0;
207 		queue->packet_buffer[i].last_instr_cond = 0;
208 		queue->packet_buffer[i].flags = 0;
209 		queue->packet_buffer[i].exception_number = UINT32_MAX;
210 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
211 		queue->packet_buffer[i].cpu = INT_MIN;
212 	}
213 }
214 
215 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
216 {
217 	int idx;
218 	struct int_node *inode;
219 	struct cs_etm_traceid_queue *tidq;
220 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
221 
222 	intlist__for_each_entry(inode, traceid_queues_list) {
223 		idx = (int)(intptr_t)inode->priv;
224 		tidq = etmq->traceid_queues[idx];
225 		cs_etm__clear_packet_queue(&tidq->packet_queue);
226 	}
227 }
228 
229 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
230 				      struct cs_etm_traceid_queue *tidq,
231 				      u8 trace_chan_id)
232 {
233 	int rc = -ENOMEM;
234 	struct auxtrace_queue *queue;
235 	struct cs_etm_auxtrace *etm = etmq->etm;
236 
237 	cs_etm__clear_packet_queue(&tidq->packet_queue);
238 
239 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
240 	tidq->tid = queue->tid;
241 	tidq->pid = -1;
242 	tidq->trace_chan_id = trace_chan_id;
243 
244 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
245 	if (!tidq->packet)
246 		goto out;
247 
248 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
249 	if (!tidq->prev_packet)
250 		goto out_free;
251 
252 	if (etm->synth_opts.last_branch) {
253 		size_t sz = sizeof(struct branch_stack);
254 
255 		sz += etm->synth_opts.last_branch_sz *
256 		      sizeof(struct branch_entry);
257 		tidq->last_branch = zalloc(sz);
258 		if (!tidq->last_branch)
259 			goto out_free;
260 		tidq->last_branch_rb = zalloc(sz);
261 		if (!tidq->last_branch_rb)
262 			goto out_free;
263 	}
264 
265 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
266 	if (!tidq->event_buf)
267 		goto out_free;
268 
269 	return 0;
270 
271 out_free:
272 	zfree(&tidq->last_branch_rb);
273 	zfree(&tidq->last_branch);
274 	zfree(&tidq->prev_packet);
275 	zfree(&tidq->packet);
276 out:
277 	return rc;
278 }
279 
280 static struct cs_etm_traceid_queue
281 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
282 {
283 	int idx;
284 	struct int_node *inode;
285 	struct intlist *traceid_queues_list;
286 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
287 	struct cs_etm_auxtrace *etm = etmq->etm;
288 
289 	if (etm->timeless_decoding)
290 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
291 
292 	traceid_queues_list = etmq->traceid_queues_list;
293 
294 	/*
295 	 * Check if the traceid_queue exist for this traceID by looking
296 	 * in the queue list.
297 	 */
298 	inode = intlist__find(traceid_queues_list, trace_chan_id);
299 	if (inode) {
300 		idx = (int)(intptr_t)inode->priv;
301 		return etmq->traceid_queues[idx];
302 	}
303 
304 	/* We couldn't find a traceid_queue for this traceID, allocate one */
305 	tidq = malloc(sizeof(*tidq));
306 	if (!tidq)
307 		return NULL;
308 
309 	memset(tidq, 0, sizeof(*tidq));
310 
311 	/* Get a valid index for the new traceid_queue */
312 	idx = intlist__nr_entries(traceid_queues_list);
313 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
314 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
315 	if (!inode)
316 		goto out_free;
317 
318 	/* Associate this traceID with this index */
319 	inode->priv = (void *)(intptr_t)idx;
320 
321 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
322 		goto out_free;
323 
324 	/* Grow the traceid_queues array by one unit */
325 	traceid_queues = etmq->traceid_queues;
326 	traceid_queues = reallocarray(traceid_queues,
327 				      idx + 1,
328 				      sizeof(*traceid_queues));
329 
330 	/*
331 	 * On failure reallocarray() returns NULL and the original block of
332 	 * memory is left untouched.
333 	 */
334 	if (!traceid_queues)
335 		goto out_free;
336 
337 	traceid_queues[idx] = tidq;
338 	etmq->traceid_queues = traceid_queues;
339 
340 	return etmq->traceid_queues[idx];
341 
342 out_free:
343 	/*
344 	 * Function intlist__remove() removes the inode from the list
345 	 * and delete the memory associated to it.
346 	 */
347 	intlist__remove(traceid_queues_list, inode);
348 	free(tidq);
349 
350 	return NULL;
351 }
352 
353 struct cs_etm_packet_queue
354 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
355 {
356 	struct cs_etm_traceid_queue *tidq;
357 
358 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
359 	if (tidq)
360 		return &tidq->packet_queue;
361 
362 	return NULL;
363 }
364 
365 static void cs_etm__packet_dump(const char *pkt_string)
366 {
367 	const char *color = PERF_COLOR_BLUE;
368 	int len = strlen(pkt_string);
369 
370 	if (len && (pkt_string[len-1] == '\n'))
371 		color_fprintf(stdout, color, "	%s", pkt_string);
372 	else
373 		color_fprintf(stdout, color, "	%s\n", pkt_string);
374 
375 	fflush(stdout);
376 }
377 
378 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
379 					  struct cs_etm_auxtrace *etm, int idx,
380 					  u32 etmidr)
381 {
382 	u64 **metadata = etm->metadata;
383 
384 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
385 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
386 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
387 }
388 
389 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
390 					  struct cs_etm_auxtrace *etm, int idx)
391 {
392 	u64 **metadata = etm->metadata;
393 
394 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
395 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
396 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
397 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
398 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
399 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
400 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
401 }
402 
403 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
404 				     struct cs_etm_auxtrace *etm)
405 {
406 	int i;
407 	u32 etmidr;
408 	u64 architecture;
409 
410 	for (i = 0; i < etm->num_cpu; i++) {
411 		architecture = etm->metadata[i][CS_ETM_MAGIC];
412 
413 		switch (architecture) {
414 		case __perf_cs_etmv3_magic:
415 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
416 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
417 			break;
418 		case __perf_cs_etmv4_magic:
419 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
420 			break;
421 		default:
422 			return -EINVAL;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
430 				       struct cs_etm_queue *etmq,
431 				       enum cs_etm_decoder_operation mode)
432 {
433 	int ret = -EINVAL;
434 
435 	if (!(mode < CS_ETM_OPERATION_MAX))
436 		goto out;
437 
438 	d_params->packet_printer = cs_etm__packet_dump;
439 	d_params->operation = mode;
440 	d_params->data = etmq;
441 	d_params->formatted = true;
442 	d_params->fsyncs = false;
443 	d_params->hsyncs = false;
444 	d_params->frame_aligned = true;
445 
446 	ret = 0;
447 out:
448 	return ret;
449 }
450 
451 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
452 			       struct auxtrace_buffer *buffer)
453 {
454 	int ret;
455 	const char *color = PERF_COLOR_BLUE;
456 	struct cs_etm_decoder_params d_params;
457 	struct cs_etm_trace_params *t_params;
458 	struct cs_etm_decoder *decoder;
459 	size_t buffer_used = 0;
460 
461 	fprintf(stdout, "\n");
462 	color_fprintf(stdout, color,
463 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
464 		     buffer->size);
465 
466 	/* Use metadata to fill in trace parameters for trace decoder */
467 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
468 
469 	if (!t_params)
470 		return;
471 
472 	if (cs_etm__init_trace_params(t_params, etm))
473 		goto out_free;
474 
475 	/* Set decoder parameters to simply print the trace packets */
476 	if (cs_etm__init_decoder_params(&d_params, NULL,
477 					CS_ETM_OPERATION_PRINT))
478 		goto out_free;
479 
480 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
481 
482 	if (!decoder)
483 		goto out_free;
484 	do {
485 		size_t consumed;
486 
487 		ret = cs_etm_decoder__process_data_block(
488 				decoder, buffer->offset,
489 				&((u8 *)buffer->data)[buffer_used],
490 				buffer->size - buffer_used, &consumed);
491 		if (ret)
492 			break;
493 
494 		buffer_used += consumed;
495 	} while (buffer_used < buffer->size);
496 
497 	cs_etm_decoder__free(decoder);
498 
499 out_free:
500 	zfree(&t_params);
501 }
502 
503 static int cs_etm__flush_events(struct perf_session *session,
504 				struct perf_tool *tool)
505 {
506 	int ret;
507 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
508 						   struct cs_etm_auxtrace,
509 						   auxtrace);
510 	if (dump_trace)
511 		return 0;
512 
513 	if (!tool->ordered_events)
514 		return -EINVAL;
515 
516 	ret = cs_etm__update_queues(etm);
517 
518 	if (ret < 0)
519 		return ret;
520 
521 	if (etm->timeless_decoding)
522 		return cs_etm__process_timeless_queues(etm, -1);
523 
524 	return cs_etm__process_queues(etm);
525 }
526 
527 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
528 {
529 	int idx;
530 	uintptr_t priv;
531 	struct int_node *inode, *tmp;
532 	struct cs_etm_traceid_queue *tidq;
533 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
534 
535 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
536 		priv = (uintptr_t)inode->priv;
537 		idx = priv;
538 
539 		/* Free this traceid_queue from the array */
540 		tidq = etmq->traceid_queues[idx];
541 		thread__zput(tidq->thread);
542 		zfree(&tidq->event_buf);
543 		zfree(&tidq->last_branch);
544 		zfree(&tidq->last_branch_rb);
545 		zfree(&tidq->prev_packet);
546 		zfree(&tidq->packet);
547 		zfree(&tidq);
548 
549 		/*
550 		 * Function intlist__remove() removes the inode from the list
551 		 * and delete the memory associated to it.
552 		 */
553 		intlist__remove(traceid_queues_list, inode);
554 	}
555 
556 	/* Then the RB tree itself */
557 	intlist__delete(traceid_queues_list);
558 	etmq->traceid_queues_list = NULL;
559 
560 	/* finally free the traceid_queues array */
561 	zfree(&etmq->traceid_queues);
562 }
563 
564 static void cs_etm__free_queue(void *priv)
565 {
566 	struct cs_etm_queue *etmq = priv;
567 
568 	if (!etmq)
569 		return;
570 
571 	cs_etm_decoder__free(etmq->decoder);
572 	cs_etm__free_traceid_queues(etmq);
573 	free(etmq);
574 }
575 
576 static void cs_etm__free_events(struct perf_session *session)
577 {
578 	unsigned int i;
579 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
580 						   struct cs_etm_auxtrace,
581 						   auxtrace);
582 	struct auxtrace_queues *queues = &aux->queues;
583 
584 	for (i = 0; i < queues->nr_queues; i++) {
585 		cs_etm__free_queue(queues->queue_array[i].priv);
586 		queues->queue_array[i].priv = NULL;
587 	}
588 
589 	auxtrace_queues__free(queues);
590 }
591 
592 static void cs_etm__free(struct perf_session *session)
593 {
594 	int i;
595 	struct int_node *inode, *tmp;
596 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
597 						   struct cs_etm_auxtrace,
598 						   auxtrace);
599 	cs_etm__free_events(session);
600 	session->auxtrace = NULL;
601 
602 	/* First remove all traceID/metadata nodes for the RB tree */
603 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
604 		intlist__remove(traceid_list, inode);
605 	/* Then the RB tree itself */
606 	intlist__delete(traceid_list);
607 
608 	for (i = 0; i < aux->num_cpu; i++)
609 		zfree(&aux->metadata[i]);
610 
611 	thread__zput(aux->unknown_thread);
612 	zfree(&aux->metadata);
613 	zfree(&aux);
614 }
615 
616 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
617 {
618 	struct machine *machine;
619 
620 	machine = etmq->etm->machine;
621 
622 	if (address >= etmq->etm->kernel_start) {
623 		if (machine__is_host(machine))
624 			return PERF_RECORD_MISC_KERNEL;
625 		else
626 			return PERF_RECORD_MISC_GUEST_KERNEL;
627 	} else {
628 		if (machine__is_host(machine))
629 			return PERF_RECORD_MISC_USER;
630 		else if (perf_guest)
631 			return PERF_RECORD_MISC_GUEST_USER;
632 		else
633 			return PERF_RECORD_MISC_HYPERVISOR;
634 	}
635 }
636 
637 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
638 			      u64 address, size_t size, u8 *buffer)
639 {
640 	u8  cpumode;
641 	u64 offset;
642 	int len;
643 	struct thread *thread;
644 	struct machine *machine;
645 	struct addr_location al;
646 	struct cs_etm_traceid_queue *tidq;
647 
648 	if (!etmq)
649 		return 0;
650 
651 	machine = etmq->etm->machine;
652 	cpumode = cs_etm__cpu_mode(etmq, address);
653 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
654 	if (!tidq)
655 		return 0;
656 
657 	thread = tidq->thread;
658 	if (!thread) {
659 		if (cpumode != PERF_RECORD_MISC_KERNEL)
660 			return 0;
661 		thread = etmq->etm->unknown_thread;
662 	}
663 
664 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
665 		return 0;
666 
667 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
668 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
669 		return 0;
670 
671 	offset = al.map->map_ip(al.map, address);
672 
673 	map__load(al.map);
674 
675 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
676 
677 	if (len <= 0)
678 		return 0;
679 
680 	return len;
681 }
682 
683 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
684 {
685 	struct cs_etm_decoder_params d_params;
686 	struct cs_etm_trace_params  *t_params = NULL;
687 	struct cs_etm_queue *etmq;
688 
689 	etmq = zalloc(sizeof(*etmq));
690 	if (!etmq)
691 		return NULL;
692 
693 	etmq->traceid_queues_list = intlist__new(NULL);
694 	if (!etmq->traceid_queues_list)
695 		goto out_free;
696 
697 	/* Use metadata to fill in trace parameters for trace decoder */
698 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
699 
700 	if (!t_params)
701 		goto out_free;
702 
703 	if (cs_etm__init_trace_params(t_params, etm))
704 		goto out_free;
705 
706 	/* Set decoder parameters to decode trace packets */
707 	if (cs_etm__init_decoder_params(&d_params, etmq,
708 					CS_ETM_OPERATION_DECODE))
709 		goto out_free;
710 
711 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
712 
713 	if (!etmq->decoder)
714 		goto out_free;
715 
716 	/*
717 	 * Register a function to handle all memory accesses required by
718 	 * the trace decoder library.
719 	 */
720 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
721 					      0x0L, ((u64) -1L),
722 					      cs_etm__mem_access))
723 		goto out_free_decoder;
724 
725 	zfree(&t_params);
726 	return etmq;
727 
728 out_free_decoder:
729 	cs_etm_decoder__free(etmq->decoder);
730 out_free:
731 	intlist__delete(etmq->traceid_queues_list);
732 	free(etmq);
733 
734 	return NULL;
735 }
736 
737 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
738 			       struct auxtrace_queue *queue,
739 			       unsigned int queue_nr)
740 {
741 	int ret = 0;
742 	unsigned int cs_queue_nr;
743 	u8 trace_chan_id;
744 	u64 timestamp;
745 	struct cs_etm_queue *etmq = queue->priv;
746 
747 	if (list_empty(&queue->head) || etmq)
748 		goto out;
749 
750 	etmq = cs_etm__alloc_queue(etm);
751 
752 	if (!etmq) {
753 		ret = -ENOMEM;
754 		goto out;
755 	}
756 
757 	queue->priv = etmq;
758 	etmq->etm = etm;
759 	etmq->queue_nr = queue_nr;
760 	etmq->offset = 0;
761 
762 	if (etm->timeless_decoding)
763 		goto out;
764 
765 	/*
766 	 * We are under a CPU-wide trace scenario.  As such we need to know
767 	 * when the code that generated the traces started to execute so that
768 	 * it can be correlated with execution on other CPUs.  So we get a
769 	 * handle on the beginning of traces and decode until we find a
770 	 * timestamp.  The timestamp is then added to the auxtrace min heap
771 	 * in order to know what nibble (of all the etmqs) to decode first.
772 	 */
773 	while (1) {
774 		/*
775 		 * Fetch an aux_buffer from this etmq.  Bail if no more
776 		 * blocks or an error has been encountered.
777 		 */
778 		ret = cs_etm__get_data_block(etmq);
779 		if (ret <= 0)
780 			goto out;
781 
782 		/*
783 		 * Run decoder on the trace block.  The decoder will stop when
784 		 * encountering a timestamp, a full packet queue or the end of
785 		 * trace for that block.
786 		 */
787 		ret = cs_etm__decode_data_block(etmq);
788 		if (ret)
789 			goto out;
790 
791 		/*
792 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
793 		 * the timestamp calculation for us.
794 		 */
795 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
796 
797 		/* We found a timestamp, no need to continue. */
798 		if (timestamp)
799 			break;
800 
801 		/*
802 		 * We didn't find a timestamp so empty all the traceid packet
803 		 * queues before looking for another timestamp packet, either
804 		 * in the current data block or a new one.  Packets that were
805 		 * just decoded are useless since no timestamp has been
806 		 * associated with them.  As such simply discard them.
807 		 */
808 		cs_etm__clear_all_packet_queues(etmq);
809 	}
810 
811 	/*
812 	 * We have a timestamp.  Add it to the min heap to reflect when
813 	 * instructions conveyed by the range packets of this traceID queue
814 	 * started to execute.  Once the same has been done for all the traceID
815 	 * queues of each etmq, redenring and decoding can start in
816 	 * chronological order.
817 	 *
818 	 * Note that packets decoded above are still in the traceID's packet
819 	 * queue and will be processed in cs_etm__process_queues().
820 	 */
821 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
822 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
823 out:
824 	return ret;
825 }
826 
827 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
828 {
829 	unsigned int i;
830 	int ret;
831 
832 	if (!etm->kernel_start)
833 		etm->kernel_start = machine__kernel_start(etm->machine);
834 
835 	for (i = 0; i < etm->queues.nr_queues; i++) {
836 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
837 		if (ret)
838 			return ret;
839 	}
840 
841 	return 0;
842 }
843 
844 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
845 {
846 	if (etm->queues.new_data) {
847 		etm->queues.new_data = false;
848 		return cs_etm__setup_queues(etm);
849 	}
850 
851 	return 0;
852 }
853 
854 static inline
855 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
856 				 struct cs_etm_traceid_queue *tidq)
857 {
858 	struct branch_stack *bs_src = tidq->last_branch_rb;
859 	struct branch_stack *bs_dst = tidq->last_branch;
860 	size_t nr = 0;
861 
862 	/*
863 	 * Set the number of records before early exit: ->nr is used to
864 	 * determine how many branches to copy from ->entries.
865 	 */
866 	bs_dst->nr = bs_src->nr;
867 
868 	/*
869 	 * Early exit when there is nothing to copy.
870 	 */
871 	if (!bs_src->nr)
872 		return;
873 
874 	/*
875 	 * As bs_src->entries is a circular buffer, we need to copy from it in
876 	 * two steps.  First, copy the branches from the most recently inserted
877 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
878 	 */
879 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
880 	memcpy(&bs_dst->entries[0],
881 	       &bs_src->entries[tidq->last_branch_pos],
882 	       sizeof(struct branch_entry) * nr);
883 
884 	/*
885 	 * If we wrapped around at least once, the branches from the beginning
886 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
887 	 * are older valid branches: copy them over.  The total number of
888 	 * branches copied over will be equal to the number of branches asked by
889 	 * the user in last_branch_sz.
890 	 */
891 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
892 		memcpy(&bs_dst->entries[nr],
893 		       &bs_src->entries[0],
894 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
895 	}
896 }
897 
898 static inline
899 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
900 {
901 	tidq->last_branch_pos = 0;
902 	tidq->last_branch_rb->nr = 0;
903 }
904 
905 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
906 					 u8 trace_chan_id, u64 addr)
907 {
908 	u8 instrBytes[2];
909 
910 	cs_etm__mem_access(etmq, trace_chan_id, addr,
911 			   ARRAY_SIZE(instrBytes), instrBytes);
912 	/*
913 	 * T32 instruction size is indicated by bits[15:11] of the first
914 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
915 	 * denote a 32-bit instruction.
916 	 */
917 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
918 }
919 
920 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
921 {
922 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
923 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
924 		return 0;
925 
926 	return packet->start_addr;
927 }
928 
929 static inline
930 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
931 {
932 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
933 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
934 		return 0;
935 
936 	return packet->end_addr - packet->last_instr_size;
937 }
938 
939 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
940 				     u64 trace_chan_id,
941 				     const struct cs_etm_packet *packet,
942 				     u64 offset)
943 {
944 	if (packet->isa == CS_ETM_ISA_T32) {
945 		u64 addr = packet->start_addr;
946 
947 		while (offset > 0) {
948 			addr += cs_etm__t32_instr_size(etmq,
949 						       trace_chan_id, addr);
950 			offset--;
951 		}
952 		return addr;
953 	}
954 
955 	/* Assume a 4 byte instruction size (A32/A64) */
956 	return packet->start_addr + offset * 4;
957 }
958 
959 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
960 					  struct cs_etm_traceid_queue *tidq)
961 {
962 	struct branch_stack *bs = tidq->last_branch_rb;
963 	struct branch_entry *be;
964 
965 	/*
966 	 * The branches are recorded in a circular buffer in reverse
967 	 * chronological order: we start recording from the last element of the
968 	 * buffer down.  After writing the first element of the stack, move the
969 	 * insert position back to the end of the buffer.
970 	 */
971 	if (!tidq->last_branch_pos)
972 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
973 
974 	tidq->last_branch_pos -= 1;
975 
976 	be       = &bs->entries[tidq->last_branch_pos];
977 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
978 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
979 	/* No support for mispredict */
980 	be->flags.mispred = 0;
981 	be->flags.predicted = 1;
982 
983 	/*
984 	 * Increment bs->nr until reaching the number of last branches asked by
985 	 * the user on the command line.
986 	 */
987 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
988 		bs->nr += 1;
989 }
990 
991 static int cs_etm__inject_event(union perf_event *event,
992 			       struct perf_sample *sample, u64 type)
993 {
994 	event->header.size = perf_event__sample_event_size(sample, type, 0);
995 	return perf_event__synthesize_sample(event, type, 0, sample);
996 }
997 
998 
999 static int
1000 cs_etm__get_trace(struct cs_etm_queue *etmq)
1001 {
1002 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1003 	struct auxtrace_buffer *old_buffer = aux_buffer;
1004 	struct auxtrace_queue *queue;
1005 
1006 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1007 
1008 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1009 
1010 	/* If no more data, drop the previous auxtrace_buffer and return */
1011 	if (!aux_buffer) {
1012 		if (old_buffer)
1013 			auxtrace_buffer__drop_data(old_buffer);
1014 		etmq->buf_len = 0;
1015 		return 0;
1016 	}
1017 
1018 	etmq->buffer = aux_buffer;
1019 
1020 	/* If the aux_buffer doesn't have data associated, try to load it */
1021 	if (!aux_buffer->data) {
1022 		/* get the file desc associated with the perf data file */
1023 		int fd = perf_data__fd(etmq->etm->session->data);
1024 
1025 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1026 		if (!aux_buffer->data)
1027 			return -ENOMEM;
1028 	}
1029 
1030 	/* If valid, drop the previous buffer */
1031 	if (old_buffer)
1032 		auxtrace_buffer__drop_data(old_buffer);
1033 
1034 	etmq->buf_used = 0;
1035 	etmq->buf_len = aux_buffer->size;
1036 	etmq->buf = aux_buffer->data;
1037 
1038 	return etmq->buf_len;
1039 }
1040 
1041 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1042 				    struct cs_etm_traceid_queue *tidq)
1043 {
1044 	if ((!tidq->thread) && (tidq->tid != -1))
1045 		tidq->thread = machine__find_thread(etm->machine, -1,
1046 						    tidq->tid);
1047 
1048 	if (tidq->thread)
1049 		tidq->pid = tidq->thread->pid_;
1050 }
1051 
1052 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1053 			 pid_t tid, u8 trace_chan_id)
1054 {
1055 	int cpu, err = -EINVAL;
1056 	struct cs_etm_auxtrace *etm = etmq->etm;
1057 	struct cs_etm_traceid_queue *tidq;
1058 
1059 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1060 	if (!tidq)
1061 		return err;
1062 
1063 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1064 		return err;
1065 
1066 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1067 	if (err)
1068 		return err;
1069 
1070 	tidq->tid = tid;
1071 	thread__zput(tidq->thread);
1072 
1073 	cs_etm__set_pid_tid_cpu(etm, tidq);
1074 	return 0;
1075 }
1076 
1077 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1078 {
1079 	return !!etmq->etm->timeless_decoding;
1080 }
1081 
1082 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1083 			      u64 trace_chan_id,
1084 			      const struct cs_etm_packet *packet,
1085 			      struct perf_sample *sample)
1086 {
1087 	/*
1088 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1089 	 * packet, so directly bail out with 'insn_len' = 0.
1090 	 */
1091 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1092 		sample->insn_len = 0;
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1098 	 * cs_etm__t32_instr_size().
1099 	 */
1100 	if (packet->isa == CS_ETM_ISA_T32)
1101 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1102 							  sample->ip);
1103 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1104 	else
1105 		sample->insn_len = 4;
1106 
1107 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1108 			   sample->insn_len, (void *)sample->insn);
1109 }
1110 
1111 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1112 					    struct cs_etm_traceid_queue *tidq,
1113 					    u64 addr, u64 period)
1114 {
1115 	int ret = 0;
1116 	struct cs_etm_auxtrace *etm = etmq->etm;
1117 	union perf_event *event = tidq->event_buf;
1118 	struct perf_sample sample = {.ip = 0,};
1119 
1120 	event->sample.header.type = PERF_RECORD_SAMPLE;
1121 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1122 	event->sample.header.size = sizeof(struct perf_event_header);
1123 
1124 	sample.ip = addr;
1125 	sample.pid = tidq->pid;
1126 	sample.tid = tidq->tid;
1127 	sample.id = etmq->etm->instructions_id;
1128 	sample.stream_id = etmq->etm->instructions_id;
1129 	sample.period = period;
1130 	sample.cpu = tidq->packet->cpu;
1131 	sample.flags = tidq->prev_packet->flags;
1132 	sample.cpumode = event->sample.header.misc;
1133 
1134 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1135 
1136 	if (etm->synth_opts.last_branch) {
1137 		cs_etm__copy_last_branch_rb(etmq, tidq);
1138 		sample.branch_stack = tidq->last_branch;
1139 	}
1140 
1141 	if (etm->synth_opts.inject) {
1142 		ret = cs_etm__inject_event(event, &sample,
1143 					   etm->instructions_sample_type);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1149 
1150 	if (ret)
1151 		pr_err(
1152 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1153 			ret);
1154 
1155 	if (etm->synth_opts.last_branch)
1156 		cs_etm__reset_last_branch_rb(tidq);
1157 
1158 	return ret;
1159 }
1160 
1161 /*
1162  * The cs etm packet encodes an instruction range between a branch target
1163  * and the next taken branch. Generate sample accordingly.
1164  */
1165 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1166 				       struct cs_etm_traceid_queue *tidq)
1167 {
1168 	int ret = 0;
1169 	struct cs_etm_auxtrace *etm = etmq->etm;
1170 	struct perf_sample sample = {.ip = 0,};
1171 	union perf_event *event = tidq->event_buf;
1172 	struct dummy_branch_stack {
1173 		u64			nr;
1174 		struct branch_entry	entries;
1175 	} dummy_bs;
1176 	u64 ip;
1177 
1178 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1179 
1180 	event->sample.header.type = PERF_RECORD_SAMPLE;
1181 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1182 	event->sample.header.size = sizeof(struct perf_event_header);
1183 
1184 	sample.ip = ip;
1185 	sample.pid = tidq->pid;
1186 	sample.tid = tidq->tid;
1187 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1188 	sample.id = etmq->etm->branches_id;
1189 	sample.stream_id = etmq->etm->branches_id;
1190 	sample.period = 1;
1191 	sample.cpu = tidq->packet->cpu;
1192 	sample.flags = tidq->prev_packet->flags;
1193 	sample.cpumode = event->sample.header.misc;
1194 
1195 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1196 			  &sample);
1197 
1198 	/*
1199 	 * perf report cannot handle events without a branch stack
1200 	 */
1201 	if (etm->synth_opts.last_branch) {
1202 		dummy_bs = (struct dummy_branch_stack){
1203 			.nr = 1,
1204 			.entries = {
1205 				.from = sample.ip,
1206 				.to = sample.addr,
1207 			},
1208 		};
1209 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1210 	}
1211 
1212 	if (etm->synth_opts.inject) {
1213 		ret = cs_etm__inject_event(event, &sample,
1214 					   etm->branches_sample_type);
1215 		if (ret)
1216 			return ret;
1217 	}
1218 
1219 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1220 
1221 	if (ret)
1222 		pr_err(
1223 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1224 		ret);
1225 
1226 	return ret;
1227 }
1228 
1229 struct cs_etm_synth {
1230 	struct perf_tool dummy_tool;
1231 	struct perf_session *session;
1232 };
1233 
1234 static int cs_etm__event_synth(struct perf_tool *tool,
1235 			       union perf_event *event,
1236 			       struct perf_sample *sample __maybe_unused,
1237 			       struct machine *machine __maybe_unused)
1238 {
1239 	struct cs_etm_synth *cs_etm_synth =
1240 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1241 
1242 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1243 						 event, NULL);
1244 }
1245 
1246 static int cs_etm__synth_event(struct perf_session *session,
1247 			       struct perf_event_attr *attr, u64 id)
1248 {
1249 	struct cs_etm_synth cs_etm_synth;
1250 
1251 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1252 	cs_etm_synth.session = session;
1253 
1254 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1255 					   &id, cs_etm__event_synth);
1256 }
1257 
1258 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1259 				struct perf_session *session)
1260 {
1261 	struct evlist *evlist = session->evlist;
1262 	struct evsel *evsel;
1263 	struct perf_event_attr attr;
1264 	bool found = false;
1265 	u64 id;
1266 	int err;
1267 
1268 	evlist__for_each_entry(evlist, evsel) {
1269 		if (evsel->core.attr.type == etm->pmu_type) {
1270 			found = true;
1271 			break;
1272 		}
1273 	}
1274 
1275 	if (!found) {
1276 		pr_debug("No selected events with CoreSight Trace data\n");
1277 		return 0;
1278 	}
1279 
1280 	memset(&attr, 0, sizeof(struct perf_event_attr));
1281 	attr.size = sizeof(struct perf_event_attr);
1282 	attr.type = PERF_TYPE_HARDWARE;
1283 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1284 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1285 			    PERF_SAMPLE_PERIOD;
1286 	if (etm->timeless_decoding)
1287 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1288 	else
1289 		attr.sample_type |= PERF_SAMPLE_TIME;
1290 
1291 	attr.exclude_user = evsel->core.attr.exclude_user;
1292 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1293 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1294 	attr.exclude_host = evsel->core.attr.exclude_host;
1295 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1296 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1297 	attr.read_format = evsel->core.attr.read_format;
1298 
1299 	/* create new id val to be a fixed offset from evsel id */
1300 	id = evsel->id[0] + 1000000000;
1301 
1302 	if (!id)
1303 		id = 1;
1304 
1305 	if (etm->synth_opts.branches) {
1306 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1307 		attr.sample_period = 1;
1308 		attr.sample_type |= PERF_SAMPLE_ADDR;
1309 		err = cs_etm__synth_event(session, &attr, id);
1310 		if (err)
1311 			return err;
1312 		etm->sample_branches = true;
1313 		etm->branches_sample_type = attr.sample_type;
1314 		etm->branches_id = id;
1315 		id += 1;
1316 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1317 	}
1318 
1319 	if (etm->synth_opts.last_branch)
1320 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1321 
1322 	if (etm->synth_opts.instructions) {
1323 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1324 		attr.sample_period = etm->synth_opts.period;
1325 		etm->instructions_sample_period = attr.sample_period;
1326 		err = cs_etm__synth_event(session, &attr, id);
1327 		if (err)
1328 			return err;
1329 		etm->sample_instructions = true;
1330 		etm->instructions_sample_type = attr.sample_type;
1331 		etm->instructions_id = id;
1332 		id += 1;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static int cs_etm__sample(struct cs_etm_queue *etmq,
1339 			  struct cs_etm_traceid_queue *tidq)
1340 {
1341 	struct cs_etm_auxtrace *etm = etmq->etm;
1342 	struct cs_etm_packet *tmp;
1343 	int ret;
1344 	u8 trace_chan_id = tidq->trace_chan_id;
1345 	u64 instrs_executed = tidq->packet->instr_count;
1346 
1347 	tidq->period_instructions += instrs_executed;
1348 
1349 	/*
1350 	 * Record a branch when the last instruction in
1351 	 * PREV_PACKET is a branch.
1352 	 */
1353 	if (etm->synth_opts.last_branch &&
1354 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1355 	    tidq->prev_packet->last_instr_taken_branch)
1356 		cs_etm__update_last_branch_rb(etmq, tidq);
1357 
1358 	if (etm->sample_instructions &&
1359 	    tidq->period_instructions >= etm->instructions_sample_period) {
1360 		/*
1361 		 * Emit instruction sample periodically
1362 		 * TODO: allow period to be defined in cycles and clock time
1363 		 */
1364 
1365 		/* Get number of instructions executed after the sample point */
1366 		u64 instrs_over = tidq->period_instructions -
1367 			etm->instructions_sample_period;
1368 
1369 		/*
1370 		 * Calculate the address of the sampled instruction (-1 as
1371 		 * sample is reported as though instruction has just been
1372 		 * executed, but PC has not advanced to next instruction)
1373 		 */
1374 		u64 offset = (instrs_executed - instrs_over - 1);
1375 		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1376 					      tidq->packet, offset);
1377 
1378 		ret = cs_etm__synth_instruction_sample(
1379 			etmq, tidq, addr, etm->instructions_sample_period);
1380 		if (ret)
1381 			return ret;
1382 
1383 		/* Carry remaining instructions into next sample period */
1384 		tidq->period_instructions = instrs_over;
1385 	}
1386 
1387 	if (etm->sample_branches) {
1388 		bool generate_sample = false;
1389 
1390 		/* Generate sample for tracing on packet */
1391 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1392 			generate_sample = true;
1393 
1394 		/* Generate sample for branch taken packet */
1395 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1396 		    tidq->prev_packet->last_instr_taken_branch)
1397 			generate_sample = true;
1398 
1399 		if (generate_sample) {
1400 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1401 			if (ret)
1402 				return ret;
1403 		}
1404 	}
1405 
1406 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1407 		/*
1408 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1409 		 * the next incoming packet.
1410 		 */
1411 		tmp = tidq->packet;
1412 		tidq->packet = tidq->prev_packet;
1413 		tidq->prev_packet = tmp;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1420 {
1421 	/*
1422 	 * When the exception packet is inserted, whether the last instruction
1423 	 * in previous range packet is taken branch or not, we need to force
1424 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1425 	 * to generate branch sample for the instruction range before the
1426 	 * exception is trapped to kernel or before the exception returning.
1427 	 *
1428 	 * The exception packet includes the dummy address values, so don't
1429 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1430 	 * for generating instruction and branch samples.
1431 	 */
1432 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1433 		tidq->prev_packet->last_instr_taken_branch = true;
1434 
1435 	return 0;
1436 }
1437 
1438 static int cs_etm__flush(struct cs_etm_queue *etmq,
1439 			 struct cs_etm_traceid_queue *tidq)
1440 {
1441 	int err = 0;
1442 	struct cs_etm_auxtrace *etm = etmq->etm;
1443 	struct cs_etm_packet *tmp;
1444 
1445 	/* Handle start tracing packet */
1446 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1447 		goto swap_packet;
1448 
1449 	if (etmq->etm->synth_opts.last_branch &&
1450 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1451 		/*
1452 		 * Generate a last branch event for the branches left in the
1453 		 * circular buffer at the end of the trace.
1454 		 *
1455 		 * Use the address of the end of the last reported execution
1456 		 * range
1457 		 */
1458 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1459 
1460 		err = cs_etm__synth_instruction_sample(
1461 			etmq, tidq, addr,
1462 			tidq->period_instructions);
1463 		if (err)
1464 			return err;
1465 
1466 		tidq->period_instructions = 0;
1467 
1468 	}
1469 
1470 	if (etm->sample_branches &&
1471 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1472 		err = cs_etm__synth_branch_sample(etmq, tidq);
1473 		if (err)
1474 			return err;
1475 	}
1476 
1477 swap_packet:
1478 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1479 		/*
1480 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1481 		 * the next incoming packet.
1482 		 */
1483 		tmp = tidq->packet;
1484 		tidq->packet = tidq->prev_packet;
1485 		tidq->prev_packet = tmp;
1486 	}
1487 
1488 	return err;
1489 }
1490 
1491 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1492 			     struct cs_etm_traceid_queue *tidq)
1493 {
1494 	int err;
1495 
1496 	/*
1497 	 * It has no new packet coming and 'etmq->packet' contains the stale
1498 	 * packet which was set at the previous time with packets swapping;
1499 	 * so skip to generate branch sample to avoid stale packet.
1500 	 *
1501 	 * For this case only flush branch stack and generate a last branch
1502 	 * event for the branches left in the circular buffer at the end of
1503 	 * the trace.
1504 	 */
1505 	if (etmq->etm->synth_opts.last_branch &&
1506 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1507 		/*
1508 		 * Use the address of the end of the last reported execution
1509 		 * range.
1510 		 */
1511 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1512 
1513 		err = cs_etm__synth_instruction_sample(
1514 			etmq, tidq, addr,
1515 			tidq->period_instructions);
1516 		if (err)
1517 			return err;
1518 
1519 		tidq->period_instructions = 0;
1520 	}
1521 
1522 	return 0;
1523 }
1524 /*
1525  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1526  *			   if need be.
1527  * Returns:	< 0	if error
1528  *		= 0	if no more auxtrace_buffer to read
1529  *		> 0	if the current buffer isn't empty yet
1530  */
1531 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1532 {
1533 	int ret;
1534 
1535 	if (!etmq->buf_len) {
1536 		ret = cs_etm__get_trace(etmq);
1537 		if (ret <= 0)
1538 			return ret;
1539 		/*
1540 		 * We cannot assume consecutive blocks in the data file
1541 		 * are contiguous, reset the decoder to force re-sync.
1542 		 */
1543 		ret = cs_etm_decoder__reset(etmq->decoder);
1544 		if (ret)
1545 			return ret;
1546 	}
1547 
1548 	return etmq->buf_len;
1549 }
1550 
1551 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1552 				 struct cs_etm_packet *packet,
1553 				 u64 end_addr)
1554 {
1555 	/* Initialise to keep compiler happy */
1556 	u16 instr16 = 0;
1557 	u32 instr32 = 0;
1558 	u64 addr;
1559 
1560 	switch (packet->isa) {
1561 	case CS_ETM_ISA_T32:
1562 		/*
1563 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1564 		 *
1565 		 *  b'15         b'8
1566 		 * +-----------------+--------+
1567 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1568 		 * +-----------------+--------+
1569 		 *
1570 		 * According to the specifiction, it only defines SVC for T32
1571 		 * with 16 bits instruction and has no definition for 32bits;
1572 		 * so below only read 2 bytes as instruction size for T32.
1573 		 */
1574 		addr = end_addr - 2;
1575 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1576 				   sizeof(instr16), (u8 *)&instr16);
1577 		if ((instr16 & 0xFF00) == 0xDF00)
1578 			return true;
1579 
1580 		break;
1581 	case CS_ETM_ISA_A32:
1582 		/*
1583 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1584 		 *
1585 		 *  b'31 b'28 b'27 b'24
1586 		 * +---------+---------+-------------------------+
1587 		 * |  !1111  | 1 1 1 1 |        imm24            |
1588 		 * +---------+---------+-------------------------+
1589 		 */
1590 		addr = end_addr - 4;
1591 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1592 				   sizeof(instr32), (u8 *)&instr32);
1593 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1594 		    (instr32 & 0xF0000000) != 0xF0000000)
1595 			return true;
1596 
1597 		break;
1598 	case CS_ETM_ISA_A64:
1599 		/*
1600 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1601 		 *
1602 		 *  b'31               b'21           b'4     b'0
1603 		 * +-----------------------+---------+-----------+
1604 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1605 		 * +-----------------------+---------+-----------+
1606 		 */
1607 		addr = end_addr - 4;
1608 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1609 				   sizeof(instr32), (u8 *)&instr32);
1610 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1611 			return true;
1612 
1613 		break;
1614 	case CS_ETM_ISA_UNKNOWN:
1615 	default:
1616 		break;
1617 	}
1618 
1619 	return false;
1620 }
1621 
1622 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1623 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1624 {
1625 	u8 trace_chan_id = tidq->trace_chan_id;
1626 	struct cs_etm_packet *packet = tidq->packet;
1627 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1628 
1629 	if (magic == __perf_cs_etmv3_magic)
1630 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1631 			return true;
1632 
1633 	/*
1634 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1635 	 * HVC cases; need to check if it's SVC instruction based on
1636 	 * packet address.
1637 	 */
1638 	if (magic == __perf_cs_etmv4_magic) {
1639 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1640 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1641 					 prev_packet->end_addr))
1642 			return true;
1643 	}
1644 
1645 	return false;
1646 }
1647 
1648 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1649 				       u64 magic)
1650 {
1651 	struct cs_etm_packet *packet = tidq->packet;
1652 
1653 	if (magic == __perf_cs_etmv3_magic)
1654 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1655 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1656 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1657 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1658 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1659 			return true;
1660 
1661 	if (magic == __perf_cs_etmv4_magic)
1662 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1663 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1664 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1665 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1666 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1667 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1668 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1669 			return true;
1670 
1671 	return false;
1672 }
1673 
1674 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1675 				      struct cs_etm_traceid_queue *tidq,
1676 				      u64 magic)
1677 {
1678 	u8 trace_chan_id = tidq->trace_chan_id;
1679 	struct cs_etm_packet *packet = tidq->packet;
1680 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1681 
1682 	if (magic == __perf_cs_etmv3_magic)
1683 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1684 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1685 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1686 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1687 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1688 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1689 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1690 			return true;
1691 
1692 	if (magic == __perf_cs_etmv4_magic) {
1693 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1694 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1695 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1696 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1697 			return true;
1698 
1699 		/*
1700 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1701 		 * (SMC, HVC) are taken as sync exceptions.
1702 		 */
1703 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1704 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1705 					  prev_packet->end_addr))
1706 			return true;
1707 
1708 		/*
1709 		 * ETMv4 has 5 bits for exception number; if the numbers
1710 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1711 		 * they are implementation defined exceptions.
1712 		 *
1713 		 * For this case, simply take it as sync exception.
1714 		 */
1715 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1716 		    packet->exception_number <= CS_ETMV4_EXC_END)
1717 			return true;
1718 	}
1719 
1720 	return false;
1721 }
1722 
1723 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1724 				    struct cs_etm_traceid_queue *tidq)
1725 {
1726 	struct cs_etm_packet *packet = tidq->packet;
1727 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1728 	u8 trace_chan_id = tidq->trace_chan_id;
1729 	u64 magic;
1730 	int ret;
1731 
1732 	switch (packet->sample_type) {
1733 	case CS_ETM_RANGE:
1734 		/*
1735 		 * Immediate branch instruction without neither link nor
1736 		 * return flag, it's normal branch instruction within
1737 		 * the function.
1738 		 */
1739 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1740 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1741 			packet->flags = PERF_IP_FLAG_BRANCH;
1742 
1743 			if (packet->last_instr_cond)
1744 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1745 		}
1746 
1747 		/*
1748 		 * Immediate branch instruction with link (e.g. BL), this is
1749 		 * branch instruction for function call.
1750 		 */
1751 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1752 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1753 			packet->flags = PERF_IP_FLAG_BRANCH |
1754 					PERF_IP_FLAG_CALL;
1755 
1756 		/*
1757 		 * Indirect branch instruction with link (e.g. BLR), this is
1758 		 * branch instruction for function call.
1759 		 */
1760 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1761 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1762 			packet->flags = PERF_IP_FLAG_BRANCH |
1763 					PERF_IP_FLAG_CALL;
1764 
1765 		/*
1766 		 * Indirect branch instruction with subtype of
1767 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1768 		 * function return for A32/T32.
1769 		 */
1770 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1771 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1772 			packet->flags = PERF_IP_FLAG_BRANCH |
1773 					PERF_IP_FLAG_RETURN;
1774 
1775 		/*
1776 		 * Indirect branch instruction without link (e.g. BR), usually
1777 		 * this is used for function return, especially for functions
1778 		 * within dynamic link lib.
1779 		 */
1780 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1781 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1782 			packet->flags = PERF_IP_FLAG_BRANCH |
1783 					PERF_IP_FLAG_RETURN;
1784 
1785 		/* Return instruction for function return. */
1786 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1787 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1788 			packet->flags = PERF_IP_FLAG_BRANCH |
1789 					PERF_IP_FLAG_RETURN;
1790 
1791 		/*
1792 		 * Decoder might insert a discontinuity in the middle of
1793 		 * instruction packets, fixup prev_packet with flag
1794 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1795 		 */
1796 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1797 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1798 					      PERF_IP_FLAG_TRACE_BEGIN;
1799 
1800 		/*
1801 		 * If the previous packet is an exception return packet
1802 		 * and the return address just follows SVC instuction,
1803 		 * it needs to calibrate the previous packet sample flags
1804 		 * as PERF_IP_FLAG_SYSCALLRET.
1805 		 */
1806 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1807 					   PERF_IP_FLAG_RETURN |
1808 					   PERF_IP_FLAG_INTERRUPT) &&
1809 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1810 					 packet, packet->start_addr))
1811 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1812 					     PERF_IP_FLAG_RETURN |
1813 					     PERF_IP_FLAG_SYSCALLRET;
1814 		break;
1815 	case CS_ETM_DISCONTINUITY:
1816 		/*
1817 		 * The trace is discontinuous, if the previous packet is
1818 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1819 		 * for previous packet.
1820 		 */
1821 		if (prev_packet->sample_type == CS_ETM_RANGE)
1822 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1823 					      PERF_IP_FLAG_TRACE_END;
1824 		break;
1825 	case CS_ETM_EXCEPTION:
1826 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1827 		if (ret)
1828 			return ret;
1829 
1830 		/* The exception is for system call. */
1831 		if (cs_etm__is_syscall(etmq, tidq, magic))
1832 			packet->flags = PERF_IP_FLAG_BRANCH |
1833 					PERF_IP_FLAG_CALL |
1834 					PERF_IP_FLAG_SYSCALLRET;
1835 		/*
1836 		 * The exceptions are triggered by external signals from bus,
1837 		 * interrupt controller, debug module, PE reset or halt.
1838 		 */
1839 		else if (cs_etm__is_async_exception(tidq, magic))
1840 			packet->flags = PERF_IP_FLAG_BRANCH |
1841 					PERF_IP_FLAG_CALL |
1842 					PERF_IP_FLAG_ASYNC |
1843 					PERF_IP_FLAG_INTERRUPT;
1844 		/*
1845 		 * Otherwise, exception is caused by trap, instruction &
1846 		 * data fault, or alignment errors.
1847 		 */
1848 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1849 			packet->flags = PERF_IP_FLAG_BRANCH |
1850 					PERF_IP_FLAG_CALL |
1851 					PERF_IP_FLAG_INTERRUPT;
1852 
1853 		/*
1854 		 * When the exception packet is inserted, since exception
1855 		 * packet is not used standalone for generating samples
1856 		 * and it's affiliation to the previous instruction range
1857 		 * packet; so set previous range packet flags to tell perf
1858 		 * it is an exception taken branch.
1859 		 */
1860 		if (prev_packet->sample_type == CS_ETM_RANGE)
1861 			prev_packet->flags = packet->flags;
1862 		break;
1863 	case CS_ETM_EXCEPTION_RET:
1864 		/*
1865 		 * When the exception return packet is inserted, since
1866 		 * exception return packet is not used standalone for
1867 		 * generating samples and it's affiliation to the previous
1868 		 * instruction range packet; so set previous range packet
1869 		 * flags to tell perf it is an exception return branch.
1870 		 *
1871 		 * The exception return can be for either system call or
1872 		 * other exception types; unfortunately the packet doesn't
1873 		 * contain exception type related info so we cannot decide
1874 		 * the exception type purely based on exception return packet.
1875 		 * If we record the exception number from exception packet and
1876 		 * reuse it for excpetion return packet, this is not reliable
1877 		 * due the trace can be discontinuity or the interrupt can
1878 		 * be nested, thus the recorded exception number cannot be
1879 		 * used for exception return packet for these two cases.
1880 		 *
1881 		 * For exception return packet, we only need to distinguish the
1882 		 * packet is for system call or for other types.  Thus the
1883 		 * decision can be deferred when receive the next packet which
1884 		 * contains the return address, based on the return address we
1885 		 * can read out the previous instruction and check if it's a
1886 		 * system call instruction and then calibrate the sample flag
1887 		 * as needed.
1888 		 */
1889 		if (prev_packet->sample_type == CS_ETM_RANGE)
1890 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1891 					     PERF_IP_FLAG_RETURN |
1892 					     PERF_IP_FLAG_INTERRUPT;
1893 		break;
1894 	case CS_ETM_EMPTY:
1895 	default:
1896 		break;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1903 {
1904 	int ret = 0;
1905 	size_t processed = 0;
1906 
1907 	/*
1908 	 * Packets are decoded and added to the decoder's packet queue
1909 	 * until the decoder packet processing callback has requested that
1910 	 * processing stops or there is nothing left in the buffer.  Normal
1911 	 * operations that stop processing are a timestamp packet or a full
1912 	 * decoder buffer queue.
1913 	 */
1914 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1915 						 etmq->offset,
1916 						 &etmq->buf[etmq->buf_used],
1917 						 etmq->buf_len,
1918 						 &processed);
1919 	if (ret)
1920 		goto out;
1921 
1922 	etmq->offset += processed;
1923 	etmq->buf_used += processed;
1924 	etmq->buf_len -= processed;
1925 
1926 out:
1927 	return ret;
1928 }
1929 
1930 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1931 					 struct cs_etm_traceid_queue *tidq)
1932 {
1933 	int ret;
1934 	struct cs_etm_packet_queue *packet_queue;
1935 
1936 	packet_queue = &tidq->packet_queue;
1937 
1938 	/* Process each packet in this chunk */
1939 	while (1) {
1940 		ret = cs_etm_decoder__get_packet(packet_queue,
1941 						 tidq->packet);
1942 		if (ret <= 0)
1943 			/*
1944 			 * Stop processing this chunk on
1945 			 * end of data or error
1946 			 */
1947 			break;
1948 
1949 		/*
1950 		 * Since packet addresses are swapped in packet
1951 		 * handling within below switch() statements,
1952 		 * thus setting sample flags must be called
1953 		 * prior to switch() statement to use address
1954 		 * information before packets swapping.
1955 		 */
1956 		ret = cs_etm__set_sample_flags(etmq, tidq);
1957 		if (ret < 0)
1958 			break;
1959 
1960 		switch (tidq->packet->sample_type) {
1961 		case CS_ETM_RANGE:
1962 			/*
1963 			 * If the packet contains an instruction
1964 			 * range, generate instruction sequence
1965 			 * events.
1966 			 */
1967 			cs_etm__sample(etmq, tidq);
1968 			break;
1969 		case CS_ETM_EXCEPTION:
1970 		case CS_ETM_EXCEPTION_RET:
1971 			/*
1972 			 * If the exception packet is coming,
1973 			 * make sure the previous instruction
1974 			 * range packet to be handled properly.
1975 			 */
1976 			cs_etm__exception(tidq);
1977 			break;
1978 		case CS_ETM_DISCONTINUITY:
1979 			/*
1980 			 * Discontinuity in trace, flush
1981 			 * previous branch stack
1982 			 */
1983 			cs_etm__flush(etmq, tidq);
1984 			break;
1985 		case CS_ETM_EMPTY:
1986 			/*
1987 			 * Should not receive empty packet,
1988 			 * report error.
1989 			 */
1990 			pr_err("CS ETM Trace: empty packet\n");
1991 			return -EINVAL;
1992 		default:
1993 			break;
1994 		}
1995 	}
1996 
1997 	return ret;
1998 }
1999 
2000 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2001 {
2002 	int idx;
2003 	struct int_node *inode;
2004 	struct cs_etm_traceid_queue *tidq;
2005 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2006 
2007 	intlist__for_each_entry(inode, traceid_queues_list) {
2008 		idx = (int)(intptr_t)inode->priv;
2009 		tidq = etmq->traceid_queues[idx];
2010 
2011 		/* Ignore return value */
2012 		cs_etm__process_traceid_queue(etmq, tidq);
2013 
2014 		/*
2015 		 * Generate an instruction sample with the remaining
2016 		 * branchstack entries.
2017 		 */
2018 		cs_etm__flush(etmq, tidq);
2019 	}
2020 }
2021 
2022 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2023 {
2024 	int err = 0;
2025 	struct cs_etm_traceid_queue *tidq;
2026 
2027 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2028 	if (!tidq)
2029 		return -EINVAL;
2030 
2031 	/* Go through each buffer in the queue and decode them one by one */
2032 	while (1) {
2033 		err = cs_etm__get_data_block(etmq);
2034 		if (err <= 0)
2035 			return err;
2036 
2037 		/* Run trace decoder until buffer consumed or end of trace */
2038 		do {
2039 			err = cs_etm__decode_data_block(etmq);
2040 			if (err)
2041 				return err;
2042 
2043 			/*
2044 			 * Process each packet in this chunk, nothing to do if
2045 			 * an error occurs other than hoping the next one will
2046 			 * be better.
2047 			 */
2048 			err = cs_etm__process_traceid_queue(etmq, tidq);
2049 
2050 		} while (etmq->buf_len);
2051 
2052 		if (err == 0)
2053 			/* Flush any remaining branch stack entries */
2054 			err = cs_etm__end_block(etmq, tidq);
2055 	}
2056 
2057 	return err;
2058 }
2059 
2060 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2061 					   pid_t tid)
2062 {
2063 	unsigned int i;
2064 	struct auxtrace_queues *queues = &etm->queues;
2065 
2066 	for (i = 0; i < queues->nr_queues; i++) {
2067 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2068 		struct cs_etm_queue *etmq = queue->priv;
2069 		struct cs_etm_traceid_queue *tidq;
2070 
2071 		if (!etmq)
2072 			continue;
2073 
2074 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2075 						CS_ETM_PER_THREAD_TRACEID);
2076 
2077 		if (!tidq)
2078 			continue;
2079 
2080 		if ((tid == -1) || (tidq->tid == tid)) {
2081 			cs_etm__set_pid_tid_cpu(etm, tidq);
2082 			cs_etm__run_decoder(etmq);
2083 		}
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2090 {
2091 	int ret = 0;
2092 	unsigned int cs_queue_nr, queue_nr;
2093 	u8 trace_chan_id;
2094 	u64 timestamp;
2095 	struct auxtrace_queue *queue;
2096 	struct cs_etm_queue *etmq;
2097 	struct cs_etm_traceid_queue *tidq;
2098 
2099 	while (1) {
2100 		if (!etm->heap.heap_cnt)
2101 			goto out;
2102 
2103 		/* Take the entry at the top of the min heap */
2104 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2105 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2106 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2107 		queue = &etm->queues.queue_array[queue_nr];
2108 		etmq = queue->priv;
2109 
2110 		/*
2111 		 * Remove the top entry from the heap since we are about
2112 		 * to process it.
2113 		 */
2114 		auxtrace_heap__pop(&etm->heap);
2115 
2116 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2117 		if (!tidq) {
2118 			/*
2119 			 * No traceID queue has been allocated for this traceID,
2120 			 * which means something somewhere went very wrong.  No
2121 			 * other choice than simply exit.
2122 			 */
2123 			ret = -EINVAL;
2124 			goto out;
2125 		}
2126 
2127 		/*
2128 		 * Packets associated with this timestamp are already in
2129 		 * the etmq's traceID queue, so process them.
2130 		 */
2131 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2132 		if (ret < 0)
2133 			goto out;
2134 
2135 		/*
2136 		 * Packets for this timestamp have been processed, time to
2137 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2138 		 * if need be.
2139 		 */
2140 refetch:
2141 		ret = cs_etm__get_data_block(etmq);
2142 		if (ret < 0)
2143 			goto out;
2144 
2145 		/*
2146 		 * No more auxtrace_buffers to process in this etmq, simply
2147 		 * move on to another entry in the auxtrace_heap.
2148 		 */
2149 		if (!ret)
2150 			continue;
2151 
2152 		ret = cs_etm__decode_data_block(etmq);
2153 		if (ret)
2154 			goto out;
2155 
2156 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2157 
2158 		if (!timestamp) {
2159 			/*
2160 			 * Function cs_etm__decode_data_block() returns when
2161 			 * there is no more traces to decode in the current
2162 			 * auxtrace_buffer OR when a timestamp has been
2163 			 * encountered on any of the traceID queues.  Since we
2164 			 * did not get a timestamp, there is no more traces to
2165 			 * process in this auxtrace_buffer.  As such empty and
2166 			 * flush all traceID queues.
2167 			 */
2168 			cs_etm__clear_all_traceid_queues(etmq);
2169 
2170 			/* Fetch another auxtrace_buffer for this etmq */
2171 			goto refetch;
2172 		}
2173 
2174 		/*
2175 		 * Add to the min heap the timestamp for packets that have
2176 		 * just been decoded.  They will be processed and synthesized
2177 		 * during the next call to cs_etm__process_traceid_queue() for
2178 		 * this queue/traceID.
2179 		 */
2180 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2181 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2182 	}
2183 
2184 out:
2185 	return ret;
2186 }
2187 
2188 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2189 					union perf_event *event)
2190 {
2191 	struct thread *th;
2192 
2193 	if (etm->timeless_decoding)
2194 		return 0;
2195 
2196 	/*
2197 	 * Add the tid/pid to the log so that we can get a match when
2198 	 * we get a contextID from the decoder.
2199 	 */
2200 	th = machine__findnew_thread(etm->machine,
2201 				     event->itrace_start.pid,
2202 				     event->itrace_start.tid);
2203 	if (!th)
2204 		return -ENOMEM;
2205 
2206 	thread__put(th);
2207 
2208 	return 0;
2209 }
2210 
2211 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2212 					   union perf_event *event)
2213 {
2214 	struct thread *th;
2215 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2216 
2217 	/*
2218 	 * Context switch in per-thread mode are irrelevant since perf
2219 	 * will start/stop tracing as the process is scheduled.
2220 	 */
2221 	if (etm->timeless_decoding)
2222 		return 0;
2223 
2224 	/*
2225 	 * SWITCH_IN events carry the next process to be switched out while
2226 	 * SWITCH_OUT events carry the process to be switched in.  As such
2227 	 * we don't care about IN events.
2228 	 */
2229 	if (!out)
2230 		return 0;
2231 
2232 	/*
2233 	 * Add the tid/pid to the log so that we can get a match when
2234 	 * we get a contextID from the decoder.
2235 	 */
2236 	th = machine__findnew_thread(etm->machine,
2237 				     event->context_switch.next_prev_pid,
2238 				     event->context_switch.next_prev_tid);
2239 	if (!th)
2240 		return -ENOMEM;
2241 
2242 	thread__put(th);
2243 
2244 	return 0;
2245 }
2246 
2247 static int cs_etm__process_event(struct perf_session *session,
2248 				 union perf_event *event,
2249 				 struct perf_sample *sample,
2250 				 struct perf_tool *tool)
2251 {
2252 	int err = 0;
2253 	u64 timestamp;
2254 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2255 						   struct cs_etm_auxtrace,
2256 						   auxtrace);
2257 
2258 	if (dump_trace)
2259 		return 0;
2260 
2261 	if (!tool->ordered_events) {
2262 		pr_err("CoreSight ETM Trace requires ordered events\n");
2263 		return -EINVAL;
2264 	}
2265 
2266 	if (sample->time && (sample->time != (u64) -1))
2267 		timestamp = sample->time;
2268 	else
2269 		timestamp = 0;
2270 
2271 	if (timestamp || etm->timeless_decoding) {
2272 		err = cs_etm__update_queues(etm);
2273 		if (err)
2274 			return err;
2275 	}
2276 
2277 	if (etm->timeless_decoding &&
2278 	    event->header.type == PERF_RECORD_EXIT)
2279 		return cs_etm__process_timeless_queues(etm,
2280 						       event->fork.tid);
2281 
2282 	if (event->header.type == PERF_RECORD_ITRACE_START)
2283 		return cs_etm__process_itrace_start(etm, event);
2284 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2285 		return cs_etm__process_switch_cpu_wide(etm, event);
2286 
2287 	if (!etm->timeless_decoding &&
2288 	    event->header.type == PERF_RECORD_AUX)
2289 		return cs_etm__process_queues(etm);
2290 
2291 	return 0;
2292 }
2293 
2294 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2295 					  union perf_event *event,
2296 					  struct perf_tool *tool __maybe_unused)
2297 {
2298 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2299 						   struct cs_etm_auxtrace,
2300 						   auxtrace);
2301 	if (!etm->data_queued) {
2302 		struct auxtrace_buffer *buffer;
2303 		off_t  data_offset;
2304 		int fd = perf_data__fd(session->data);
2305 		bool is_pipe = perf_data__is_pipe(session->data);
2306 		int err;
2307 
2308 		if (is_pipe)
2309 			data_offset = 0;
2310 		else {
2311 			data_offset = lseek(fd, 0, SEEK_CUR);
2312 			if (data_offset == -1)
2313 				return -errno;
2314 		}
2315 
2316 		err = auxtrace_queues__add_event(&etm->queues, session,
2317 						 event, data_offset, &buffer);
2318 		if (err)
2319 			return err;
2320 
2321 		if (dump_trace)
2322 			if (auxtrace_buffer__get_data(buffer, fd)) {
2323 				cs_etm__dump_event(etm, buffer);
2324 				auxtrace_buffer__put_data(buffer);
2325 			}
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2332 {
2333 	struct evsel *evsel;
2334 	struct evlist *evlist = etm->session->evlist;
2335 	bool timeless_decoding = true;
2336 
2337 	/*
2338 	 * Circle through the list of event and complain if we find one
2339 	 * with the time bit set.
2340 	 */
2341 	evlist__for_each_entry(evlist, evsel) {
2342 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2343 			timeless_decoding = false;
2344 	}
2345 
2346 	return timeless_decoding;
2347 }
2348 
2349 static const char * const cs_etm_global_header_fmts[] = {
2350 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2351 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2352 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2353 };
2354 
2355 static const char * const cs_etm_priv_fmts[] = {
2356 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2357 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2358 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2359 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2360 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2361 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2362 };
2363 
2364 static const char * const cs_etmv4_priv_fmts[] = {
2365 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2366 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2367 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2368 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2369 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2370 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2371 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2372 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2373 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2374 };
2375 
2376 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2377 {
2378 	int i, j, cpu = 0;
2379 
2380 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2381 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2382 
2383 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2384 		if (val[i] == __perf_cs_etmv3_magic)
2385 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2386 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2387 		else if (val[i] == __perf_cs_etmv4_magic)
2388 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2389 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2390 		else
2391 			/* failure.. return */
2392 			return;
2393 	}
2394 }
2395 
2396 int cs_etm__process_auxtrace_info(union perf_event *event,
2397 				  struct perf_session *session)
2398 {
2399 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2400 	struct cs_etm_auxtrace *etm = NULL;
2401 	struct int_node *inode;
2402 	unsigned int pmu_type;
2403 	int event_header_size = sizeof(struct perf_event_header);
2404 	int info_header_size;
2405 	int total_size = auxtrace_info->header.size;
2406 	int priv_size = 0;
2407 	int num_cpu;
2408 	int err = 0, idx = -1;
2409 	int i, j, k;
2410 	u64 *ptr, *hdr = NULL;
2411 	u64 **metadata = NULL;
2412 
2413 	/*
2414 	 * sizeof(auxtrace_info_event::type) +
2415 	 * sizeof(auxtrace_info_event::reserved) == 8
2416 	 */
2417 	info_header_size = 8;
2418 
2419 	if (total_size < (event_header_size + info_header_size))
2420 		return -EINVAL;
2421 
2422 	priv_size = total_size - event_header_size - info_header_size;
2423 
2424 	/* First the global part */
2425 	ptr = (u64 *) auxtrace_info->priv;
2426 
2427 	/* Look for version '0' of the header */
2428 	if (ptr[0] != 0)
2429 		return -EINVAL;
2430 
2431 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2432 	if (!hdr)
2433 		return -ENOMEM;
2434 
2435 	/* Extract header information - see cs-etm.h for format */
2436 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2437 		hdr[i] = ptr[i];
2438 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2439 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2440 				    0xffffffff);
2441 
2442 	/*
2443 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2444 	 * has to be made for each packet that gets decoded, optimizing access
2445 	 * in anything other than a sequential array is worth doing.
2446 	 */
2447 	traceid_list = intlist__new(NULL);
2448 	if (!traceid_list) {
2449 		err = -ENOMEM;
2450 		goto err_free_hdr;
2451 	}
2452 
2453 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2454 	if (!metadata) {
2455 		err = -ENOMEM;
2456 		goto err_free_traceid_list;
2457 	}
2458 
2459 	/*
2460 	 * The metadata is stored in the auxtrace_info section and encodes
2461 	 * the configuration of the ARM embedded trace macrocell which is
2462 	 * required by the trace decoder to properly decode the trace due
2463 	 * to its highly compressed nature.
2464 	 */
2465 	for (j = 0; j < num_cpu; j++) {
2466 		if (ptr[i] == __perf_cs_etmv3_magic) {
2467 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2468 					     CS_ETM_PRIV_MAX);
2469 			if (!metadata[j]) {
2470 				err = -ENOMEM;
2471 				goto err_free_metadata;
2472 			}
2473 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2474 				metadata[j][k] = ptr[i + k];
2475 
2476 			/* The traceID is our handle */
2477 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2478 			i += CS_ETM_PRIV_MAX;
2479 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2480 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2481 					     CS_ETMV4_PRIV_MAX);
2482 			if (!metadata[j]) {
2483 				err = -ENOMEM;
2484 				goto err_free_metadata;
2485 			}
2486 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2487 				metadata[j][k] = ptr[i + k];
2488 
2489 			/* The traceID is our handle */
2490 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2491 			i += CS_ETMV4_PRIV_MAX;
2492 		}
2493 
2494 		/* Get an RB node for this CPU */
2495 		inode = intlist__findnew(traceid_list, idx);
2496 
2497 		/* Something went wrong, no need to continue */
2498 		if (!inode) {
2499 			err = -ENOMEM;
2500 			goto err_free_metadata;
2501 		}
2502 
2503 		/*
2504 		 * The node for that CPU should not be taken.
2505 		 * Back out if that's the case.
2506 		 */
2507 		if (inode->priv) {
2508 			err = -EINVAL;
2509 			goto err_free_metadata;
2510 		}
2511 		/* All good, associate the traceID with the metadata pointer */
2512 		inode->priv = metadata[j];
2513 	}
2514 
2515 	/*
2516 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2517 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2518 	 * global metadata, and each cpu's metadata respectively.
2519 	 * The following tests if the correct number of double words was
2520 	 * present in the auxtrace info section.
2521 	 */
2522 	if (i * 8 != priv_size) {
2523 		err = -EINVAL;
2524 		goto err_free_metadata;
2525 	}
2526 
2527 	etm = zalloc(sizeof(*etm));
2528 
2529 	if (!etm) {
2530 		err = -ENOMEM;
2531 		goto err_free_metadata;
2532 	}
2533 
2534 	err = auxtrace_queues__init(&etm->queues);
2535 	if (err)
2536 		goto err_free_etm;
2537 
2538 	etm->session = session;
2539 	etm->machine = &session->machines.host;
2540 
2541 	etm->num_cpu = num_cpu;
2542 	etm->pmu_type = pmu_type;
2543 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2544 	etm->metadata = metadata;
2545 	etm->auxtrace_type = auxtrace_info->type;
2546 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2547 
2548 	etm->auxtrace.process_event = cs_etm__process_event;
2549 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2550 	etm->auxtrace.flush_events = cs_etm__flush_events;
2551 	etm->auxtrace.free_events = cs_etm__free_events;
2552 	etm->auxtrace.free = cs_etm__free;
2553 	session->auxtrace = &etm->auxtrace;
2554 
2555 	etm->unknown_thread = thread__new(999999999, 999999999);
2556 	if (!etm->unknown_thread) {
2557 		err = -ENOMEM;
2558 		goto err_free_queues;
2559 	}
2560 
2561 	/*
2562 	 * Initialize list node so that at thread__zput() we can avoid
2563 	 * segmentation fault at list_del_init().
2564 	 */
2565 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2566 
2567 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2568 	if (err)
2569 		goto err_delete_thread;
2570 
2571 	if (thread__init_map_groups(etm->unknown_thread, etm->machine)) {
2572 		err = -ENOMEM;
2573 		goto err_delete_thread;
2574 	}
2575 
2576 	if (dump_trace) {
2577 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2578 		return 0;
2579 	}
2580 
2581 	if (session->itrace_synth_opts->set) {
2582 		etm->synth_opts = *session->itrace_synth_opts;
2583 	} else {
2584 		itrace_synth_opts__set_default(&etm->synth_opts,
2585 				session->itrace_synth_opts->default_no_sample);
2586 		etm->synth_opts.callchain = false;
2587 	}
2588 
2589 	err = cs_etm__synth_events(etm, session);
2590 	if (err)
2591 		goto err_delete_thread;
2592 
2593 	err = auxtrace_queues__process_index(&etm->queues, session);
2594 	if (err)
2595 		goto err_delete_thread;
2596 
2597 	etm->data_queued = etm->queues.populated;
2598 
2599 	return 0;
2600 
2601 err_delete_thread:
2602 	thread__zput(etm->unknown_thread);
2603 err_free_queues:
2604 	auxtrace_queues__free(&etm->queues);
2605 	session->auxtrace = NULL;
2606 err_free_etm:
2607 	zfree(&etm);
2608 err_free_metadata:
2609 	/* No need to check @metadata[j], free(NULL) is supported */
2610 	for (j = 0; j < num_cpu; j++)
2611 		zfree(&metadata[j]);
2612 	zfree(&metadata);
2613 err_free_traceid_list:
2614 	intlist__delete(traceid_list);
2615 err_free_hdr:
2616 	zfree(&hdr);
2617 
2618 	return err;
2619 }
2620