xref: /linux/tools/perf/util/cs-etm.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
39 
40 #define MAX_TIMESTAMP (~0ULL)
41 
42 struct cs_etm_auxtrace {
43 	struct auxtrace auxtrace;
44 	struct auxtrace_queues queues;
45 	struct auxtrace_heap heap;
46 	struct itrace_synth_opts synth_opts;
47 	struct perf_session *session;
48 	struct machine *machine;
49 	struct thread *unknown_thread;
50 
51 	u8 timeless_decoding;
52 	u8 snapshot_mode;
53 	u8 data_queued;
54 	u8 sample_branches;
55 	u8 sample_instructions;
56 
57 	int num_cpu;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	u64 kernel_start;
66 	unsigned int pmu_type;
67 };
68 
69 struct cs_etm_traceid_queue {
70 	u8 trace_chan_id;
71 	pid_t pid, tid;
72 	u64 period_instructions;
73 	size_t last_branch_pos;
74 	union perf_event *event_buf;
75 	struct thread *thread;
76 	struct branch_stack *last_branch;
77 	struct branch_stack *last_branch_rb;
78 	struct cs_etm_packet *prev_packet;
79 	struct cs_etm_packet *packet;
80 	struct cs_etm_packet_queue packet_queue;
81 };
82 
83 struct cs_etm_queue {
84 	struct cs_etm_auxtrace *etm;
85 	struct cs_etm_decoder *decoder;
86 	struct auxtrace_buffer *buffer;
87 	unsigned int queue_nr;
88 	u8 pending_timestamp;
89 	u64 offset;
90 	const unsigned char *buf;
91 	size_t buf_len, buf_used;
92 	/* Conversion between traceID and index in traceid_queues array */
93 	struct intlist *traceid_queues_list;
94 	struct cs_etm_traceid_queue **traceid_queues;
95 };
96 
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99 
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103 					   pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106 
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109 
110 /*
111  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113  * encode the etm queue number as the upper 16 bit and the channel as
114  * the lower 16 bit.
115  */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
117 		      (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120 
121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123 	etmidr &= ETMIDR_PTM_VERSION;
124 
125 	if (etmidr == ETMIDR_PTM_VERSION)
126 		return CS_ETM_PROTO_PTM;
127 
128 	return CS_ETM_PROTO_ETMV3;
129 }
130 
131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133 	struct int_node *inode;
134 	u64 *metadata;
135 
136 	inode = intlist__find(traceid_list, trace_chan_id);
137 	if (!inode)
138 		return -EINVAL;
139 
140 	metadata = inode->priv;
141 	*magic = metadata[CS_ETM_MAGIC];
142 	return 0;
143 }
144 
145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147 	struct int_node *inode;
148 	u64 *metadata;
149 
150 	inode = intlist__find(traceid_list, trace_chan_id);
151 	if (!inode)
152 		return -EINVAL;
153 
154 	metadata = inode->priv;
155 	*cpu = (int)metadata[CS_ETM_CPU];
156 	return 0;
157 }
158 
159 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
160 					      u8 trace_chan_id)
161 {
162 	/*
163 	 * Wnen a timestamp packet is encountered the backend code
164 	 * is stopped so that the front end has time to process packets
165 	 * that were accumulated in the traceID queue.  Since there can
166 	 * be more than one channel per cs_etm_queue, we need to specify
167 	 * what traceID queue needs servicing.
168 	 */
169 	etmq->pending_timestamp = trace_chan_id;
170 }
171 
172 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
173 				      u8 *trace_chan_id)
174 {
175 	struct cs_etm_packet_queue *packet_queue;
176 
177 	if (!etmq->pending_timestamp)
178 		return 0;
179 
180 	if (trace_chan_id)
181 		*trace_chan_id = etmq->pending_timestamp;
182 
183 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
184 						     etmq->pending_timestamp);
185 	if (!packet_queue)
186 		return 0;
187 
188 	/* Acknowledge pending status */
189 	etmq->pending_timestamp = 0;
190 
191 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
192 	return packet_queue->timestamp;
193 }
194 
195 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
196 {
197 	int i;
198 
199 	queue->head = 0;
200 	queue->tail = 0;
201 	queue->packet_count = 0;
202 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
203 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
204 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
205 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
206 		queue->packet_buffer[i].instr_count = 0;
207 		queue->packet_buffer[i].last_instr_taken_branch = false;
208 		queue->packet_buffer[i].last_instr_size = 0;
209 		queue->packet_buffer[i].last_instr_type = 0;
210 		queue->packet_buffer[i].last_instr_subtype = 0;
211 		queue->packet_buffer[i].last_instr_cond = 0;
212 		queue->packet_buffer[i].flags = 0;
213 		queue->packet_buffer[i].exception_number = UINT32_MAX;
214 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
215 		queue->packet_buffer[i].cpu = INT_MIN;
216 	}
217 }
218 
219 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
220 {
221 	int idx;
222 	struct int_node *inode;
223 	struct cs_etm_traceid_queue *tidq;
224 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
225 
226 	intlist__for_each_entry(inode, traceid_queues_list) {
227 		idx = (int)(intptr_t)inode->priv;
228 		tidq = etmq->traceid_queues[idx];
229 		cs_etm__clear_packet_queue(&tidq->packet_queue);
230 	}
231 }
232 
233 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
234 				      struct cs_etm_traceid_queue *tidq,
235 				      u8 trace_chan_id)
236 {
237 	int rc = -ENOMEM;
238 	struct auxtrace_queue *queue;
239 	struct cs_etm_auxtrace *etm = etmq->etm;
240 
241 	cs_etm__clear_packet_queue(&tidq->packet_queue);
242 
243 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
244 	tidq->tid = queue->tid;
245 	tidq->pid = -1;
246 	tidq->trace_chan_id = trace_chan_id;
247 
248 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
249 	if (!tidq->packet)
250 		goto out;
251 
252 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
253 	if (!tidq->prev_packet)
254 		goto out_free;
255 
256 	if (etm->synth_opts.last_branch) {
257 		size_t sz = sizeof(struct branch_stack);
258 
259 		sz += etm->synth_opts.last_branch_sz *
260 		      sizeof(struct branch_entry);
261 		tidq->last_branch = zalloc(sz);
262 		if (!tidq->last_branch)
263 			goto out_free;
264 		tidq->last_branch_rb = zalloc(sz);
265 		if (!tidq->last_branch_rb)
266 			goto out_free;
267 	}
268 
269 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
270 	if (!tidq->event_buf)
271 		goto out_free;
272 
273 	return 0;
274 
275 out_free:
276 	zfree(&tidq->last_branch_rb);
277 	zfree(&tidq->last_branch);
278 	zfree(&tidq->prev_packet);
279 	zfree(&tidq->packet);
280 out:
281 	return rc;
282 }
283 
284 static struct cs_etm_traceid_queue
285 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
286 {
287 	int idx;
288 	struct int_node *inode;
289 	struct intlist *traceid_queues_list;
290 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
291 	struct cs_etm_auxtrace *etm = etmq->etm;
292 
293 	if (etm->timeless_decoding)
294 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
295 
296 	traceid_queues_list = etmq->traceid_queues_list;
297 
298 	/*
299 	 * Check if the traceid_queue exist for this traceID by looking
300 	 * in the queue list.
301 	 */
302 	inode = intlist__find(traceid_queues_list, trace_chan_id);
303 	if (inode) {
304 		idx = (int)(intptr_t)inode->priv;
305 		return etmq->traceid_queues[idx];
306 	}
307 
308 	/* We couldn't find a traceid_queue for this traceID, allocate one */
309 	tidq = malloc(sizeof(*tidq));
310 	if (!tidq)
311 		return NULL;
312 
313 	memset(tidq, 0, sizeof(*tidq));
314 
315 	/* Get a valid index for the new traceid_queue */
316 	idx = intlist__nr_entries(traceid_queues_list);
317 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
318 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
319 	if (!inode)
320 		goto out_free;
321 
322 	/* Associate this traceID with this index */
323 	inode->priv = (void *)(intptr_t)idx;
324 
325 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
326 		goto out_free;
327 
328 	/* Grow the traceid_queues array by one unit */
329 	traceid_queues = etmq->traceid_queues;
330 	traceid_queues = reallocarray(traceid_queues,
331 				      idx + 1,
332 				      sizeof(*traceid_queues));
333 
334 	/*
335 	 * On failure reallocarray() returns NULL and the original block of
336 	 * memory is left untouched.
337 	 */
338 	if (!traceid_queues)
339 		goto out_free;
340 
341 	traceid_queues[idx] = tidq;
342 	etmq->traceid_queues = traceid_queues;
343 
344 	return etmq->traceid_queues[idx];
345 
346 out_free:
347 	/*
348 	 * Function intlist__remove() removes the inode from the list
349 	 * and delete the memory associated to it.
350 	 */
351 	intlist__remove(traceid_queues_list, inode);
352 	free(tidq);
353 
354 	return NULL;
355 }
356 
357 struct cs_etm_packet_queue
358 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
359 {
360 	struct cs_etm_traceid_queue *tidq;
361 
362 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
363 	if (tidq)
364 		return &tidq->packet_queue;
365 
366 	return NULL;
367 }
368 
369 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
370 				struct cs_etm_traceid_queue *tidq)
371 {
372 	struct cs_etm_packet *tmp;
373 
374 	if (etm->sample_branches || etm->synth_opts.last_branch ||
375 	    etm->sample_instructions) {
376 		/*
377 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
378 		 * the next incoming packet.
379 		 */
380 		tmp = tidq->packet;
381 		tidq->packet = tidq->prev_packet;
382 		tidq->prev_packet = tmp;
383 	}
384 }
385 
386 static void cs_etm__packet_dump(const char *pkt_string)
387 {
388 	const char *color = PERF_COLOR_BLUE;
389 	int len = strlen(pkt_string);
390 
391 	if (len && (pkt_string[len-1] == '\n'))
392 		color_fprintf(stdout, color, "	%s", pkt_string);
393 	else
394 		color_fprintf(stdout, color, "	%s\n", pkt_string);
395 
396 	fflush(stdout);
397 }
398 
399 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
400 					  struct cs_etm_auxtrace *etm, int idx,
401 					  u32 etmidr)
402 {
403 	u64 **metadata = etm->metadata;
404 
405 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
406 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
407 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
408 }
409 
410 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
411 					  struct cs_etm_auxtrace *etm, int idx)
412 {
413 	u64 **metadata = etm->metadata;
414 
415 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
416 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
417 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
418 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
419 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
420 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
421 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
422 }
423 
424 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
425 				     struct cs_etm_auxtrace *etm)
426 {
427 	int i;
428 	u32 etmidr;
429 	u64 architecture;
430 
431 	for (i = 0; i < etm->num_cpu; i++) {
432 		architecture = etm->metadata[i][CS_ETM_MAGIC];
433 
434 		switch (architecture) {
435 		case __perf_cs_etmv3_magic:
436 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
437 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
438 			break;
439 		case __perf_cs_etmv4_magic:
440 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
441 			break;
442 		default:
443 			return -EINVAL;
444 		}
445 	}
446 
447 	return 0;
448 }
449 
450 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
451 				       struct cs_etm_queue *etmq,
452 				       enum cs_etm_decoder_operation mode)
453 {
454 	int ret = -EINVAL;
455 
456 	if (!(mode < CS_ETM_OPERATION_MAX))
457 		goto out;
458 
459 	d_params->packet_printer = cs_etm__packet_dump;
460 	d_params->operation = mode;
461 	d_params->data = etmq;
462 	d_params->formatted = true;
463 	d_params->fsyncs = false;
464 	d_params->hsyncs = false;
465 	d_params->frame_aligned = true;
466 
467 	ret = 0;
468 out:
469 	return ret;
470 }
471 
472 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
473 			       struct auxtrace_buffer *buffer)
474 {
475 	int ret;
476 	const char *color = PERF_COLOR_BLUE;
477 	struct cs_etm_decoder_params d_params;
478 	struct cs_etm_trace_params *t_params;
479 	struct cs_etm_decoder *decoder;
480 	size_t buffer_used = 0;
481 
482 	fprintf(stdout, "\n");
483 	color_fprintf(stdout, color,
484 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
485 		     buffer->size);
486 
487 	/* Use metadata to fill in trace parameters for trace decoder */
488 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
489 
490 	if (!t_params)
491 		return;
492 
493 	if (cs_etm__init_trace_params(t_params, etm))
494 		goto out_free;
495 
496 	/* Set decoder parameters to simply print the trace packets */
497 	if (cs_etm__init_decoder_params(&d_params, NULL,
498 					CS_ETM_OPERATION_PRINT))
499 		goto out_free;
500 
501 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
502 
503 	if (!decoder)
504 		goto out_free;
505 	do {
506 		size_t consumed;
507 
508 		ret = cs_etm_decoder__process_data_block(
509 				decoder, buffer->offset,
510 				&((u8 *)buffer->data)[buffer_used],
511 				buffer->size - buffer_used, &consumed);
512 		if (ret)
513 			break;
514 
515 		buffer_used += consumed;
516 	} while (buffer_used < buffer->size);
517 
518 	cs_etm_decoder__free(decoder);
519 
520 out_free:
521 	zfree(&t_params);
522 }
523 
524 static int cs_etm__flush_events(struct perf_session *session,
525 				struct perf_tool *tool)
526 {
527 	int ret;
528 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
529 						   struct cs_etm_auxtrace,
530 						   auxtrace);
531 	if (dump_trace)
532 		return 0;
533 
534 	if (!tool->ordered_events)
535 		return -EINVAL;
536 
537 	ret = cs_etm__update_queues(etm);
538 
539 	if (ret < 0)
540 		return ret;
541 
542 	if (etm->timeless_decoding)
543 		return cs_etm__process_timeless_queues(etm, -1);
544 
545 	return cs_etm__process_queues(etm);
546 }
547 
548 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
549 {
550 	int idx;
551 	uintptr_t priv;
552 	struct int_node *inode, *tmp;
553 	struct cs_etm_traceid_queue *tidq;
554 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
555 
556 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
557 		priv = (uintptr_t)inode->priv;
558 		idx = priv;
559 
560 		/* Free this traceid_queue from the array */
561 		tidq = etmq->traceid_queues[idx];
562 		thread__zput(tidq->thread);
563 		zfree(&tidq->event_buf);
564 		zfree(&tidq->last_branch);
565 		zfree(&tidq->last_branch_rb);
566 		zfree(&tidq->prev_packet);
567 		zfree(&tidq->packet);
568 		zfree(&tidq);
569 
570 		/*
571 		 * Function intlist__remove() removes the inode from the list
572 		 * and delete the memory associated to it.
573 		 */
574 		intlist__remove(traceid_queues_list, inode);
575 	}
576 
577 	/* Then the RB tree itself */
578 	intlist__delete(traceid_queues_list);
579 	etmq->traceid_queues_list = NULL;
580 
581 	/* finally free the traceid_queues array */
582 	zfree(&etmq->traceid_queues);
583 }
584 
585 static void cs_etm__free_queue(void *priv)
586 {
587 	struct cs_etm_queue *etmq = priv;
588 
589 	if (!etmq)
590 		return;
591 
592 	cs_etm_decoder__free(etmq->decoder);
593 	cs_etm__free_traceid_queues(etmq);
594 	free(etmq);
595 }
596 
597 static void cs_etm__free_events(struct perf_session *session)
598 {
599 	unsigned int i;
600 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
601 						   struct cs_etm_auxtrace,
602 						   auxtrace);
603 	struct auxtrace_queues *queues = &aux->queues;
604 
605 	for (i = 0; i < queues->nr_queues; i++) {
606 		cs_etm__free_queue(queues->queue_array[i].priv);
607 		queues->queue_array[i].priv = NULL;
608 	}
609 
610 	auxtrace_queues__free(queues);
611 }
612 
613 static void cs_etm__free(struct perf_session *session)
614 {
615 	int i;
616 	struct int_node *inode, *tmp;
617 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
618 						   struct cs_etm_auxtrace,
619 						   auxtrace);
620 	cs_etm__free_events(session);
621 	session->auxtrace = NULL;
622 
623 	/* First remove all traceID/metadata nodes for the RB tree */
624 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
625 		intlist__remove(traceid_list, inode);
626 	/* Then the RB tree itself */
627 	intlist__delete(traceid_list);
628 
629 	for (i = 0; i < aux->num_cpu; i++)
630 		zfree(&aux->metadata[i]);
631 
632 	thread__zput(aux->unknown_thread);
633 	zfree(&aux->metadata);
634 	zfree(&aux);
635 }
636 
637 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
638 				      struct evsel *evsel)
639 {
640 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
641 						   struct cs_etm_auxtrace,
642 						   auxtrace);
643 
644 	return evsel->core.attr.type == aux->pmu_type;
645 }
646 
647 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
648 {
649 	struct machine *machine;
650 
651 	machine = etmq->etm->machine;
652 
653 	if (address >= etmq->etm->kernel_start) {
654 		if (machine__is_host(machine))
655 			return PERF_RECORD_MISC_KERNEL;
656 		else
657 			return PERF_RECORD_MISC_GUEST_KERNEL;
658 	} else {
659 		if (machine__is_host(machine))
660 			return PERF_RECORD_MISC_USER;
661 		else if (perf_guest)
662 			return PERF_RECORD_MISC_GUEST_USER;
663 		else
664 			return PERF_RECORD_MISC_HYPERVISOR;
665 	}
666 }
667 
668 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
669 			      u64 address, size_t size, u8 *buffer)
670 {
671 	u8  cpumode;
672 	u64 offset;
673 	int len;
674 	struct thread *thread;
675 	struct machine *machine;
676 	struct addr_location al;
677 	struct cs_etm_traceid_queue *tidq;
678 
679 	if (!etmq)
680 		return 0;
681 
682 	machine = etmq->etm->machine;
683 	cpumode = cs_etm__cpu_mode(etmq, address);
684 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
685 	if (!tidq)
686 		return 0;
687 
688 	thread = tidq->thread;
689 	if (!thread) {
690 		if (cpumode != PERF_RECORD_MISC_KERNEL)
691 			return 0;
692 		thread = etmq->etm->unknown_thread;
693 	}
694 
695 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
696 		return 0;
697 
698 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
699 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
700 		return 0;
701 
702 	offset = al.map->map_ip(al.map, address);
703 
704 	map__load(al.map);
705 
706 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
707 
708 	if (len <= 0)
709 		return 0;
710 
711 	return len;
712 }
713 
714 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
715 {
716 	struct cs_etm_decoder_params d_params;
717 	struct cs_etm_trace_params  *t_params = NULL;
718 	struct cs_etm_queue *etmq;
719 
720 	etmq = zalloc(sizeof(*etmq));
721 	if (!etmq)
722 		return NULL;
723 
724 	etmq->traceid_queues_list = intlist__new(NULL);
725 	if (!etmq->traceid_queues_list)
726 		goto out_free;
727 
728 	/* Use metadata to fill in trace parameters for trace decoder */
729 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
730 
731 	if (!t_params)
732 		goto out_free;
733 
734 	if (cs_etm__init_trace_params(t_params, etm))
735 		goto out_free;
736 
737 	/* Set decoder parameters to decode trace packets */
738 	if (cs_etm__init_decoder_params(&d_params, etmq,
739 					CS_ETM_OPERATION_DECODE))
740 		goto out_free;
741 
742 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
743 
744 	if (!etmq->decoder)
745 		goto out_free;
746 
747 	/*
748 	 * Register a function to handle all memory accesses required by
749 	 * the trace decoder library.
750 	 */
751 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
752 					      0x0L, ((u64) -1L),
753 					      cs_etm__mem_access))
754 		goto out_free_decoder;
755 
756 	zfree(&t_params);
757 	return etmq;
758 
759 out_free_decoder:
760 	cs_etm_decoder__free(etmq->decoder);
761 out_free:
762 	intlist__delete(etmq->traceid_queues_list);
763 	free(etmq);
764 
765 	return NULL;
766 }
767 
768 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
769 			       struct auxtrace_queue *queue,
770 			       unsigned int queue_nr)
771 {
772 	int ret = 0;
773 	unsigned int cs_queue_nr;
774 	u8 trace_chan_id;
775 	u64 timestamp;
776 	struct cs_etm_queue *etmq = queue->priv;
777 
778 	if (list_empty(&queue->head) || etmq)
779 		goto out;
780 
781 	etmq = cs_etm__alloc_queue(etm);
782 
783 	if (!etmq) {
784 		ret = -ENOMEM;
785 		goto out;
786 	}
787 
788 	queue->priv = etmq;
789 	etmq->etm = etm;
790 	etmq->queue_nr = queue_nr;
791 	etmq->offset = 0;
792 
793 	if (etm->timeless_decoding)
794 		goto out;
795 
796 	/*
797 	 * We are under a CPU-wide trace scenario.  As such we need to know
798 	 * when the code that generated the traces started to execute so that
799 	 * it can be correlated with execution on other CPUs.  So we get a
800 	 * handle on the beginning of traces and decode until we find a
801 	 * timestamp.  The timestamp is then added to the auxtrace min heap
802 	 * in order to know what nibble (of all the etmqs) to decode first.
803 	 */
804 	while (1) {
805 		/*
806 		 * Fetch an aux_buffer from this etmq.  Bail if no more
807 		 * blocks or an error has been encountered.
808 		 */
809 		ret = cs_etm__get_data_block(etmq);
810 		if (ret <= 0)
811 			goto out;
812 
813 		/*
814 		 * Run decoder on the trace block.  The decoder will stop when
815 		 * encountering a timestamp, a full packet queue or the end of
816 		 * trace for that block.
817 		 */
818 		ret = cs_etm__decode_data_block(etmq);
819 		if (ret)
820 			goto out;
821 
822 		/*
823 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
824 		 * the timestamp calculation for us.
825 		 */
826 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
827 
828 		/* We found a timestamp, no need to continue. */
829 		if (timestamp)
830 			break;
831 
832 		/*
833 		 * We didn't find a timestamp so empty all the traceid packet
834 		 * queues before looking for another timestamp packet, either
835 		 * in the current data block or a new one.  Packets that were
836 		 * just decoded are useless since no timestamp has been
837 		 * associated with them.  As such simply discard them.
838 		 */
839 		cs_etm__clear_all_packet_queues(etmq);
840 	}
841 
842 	/*
843 	 * We have a timestamp.  Add it to the min heap to reflect when
844 	 * instructions conveyed by the range packets of this traceID queue
845 	 * started to execute.  Once the same has been done for all the traceID
846 	 * queues of each etmq, redenring and decoding can start in
847 	 * chronological order.
848 	 *
849 	 * Note that packets decoded above are still in the traceID's packet
850 	 * queue and will be processed in cs_etm__process_queues().
851 	 */
852 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
853 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
854 out:
855 	return ret;
856 }
857 
858 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
859 {
860 	unsigned int i;
861 	int ret;
862 
863 	if (!etm->kernel_start)
864 		etm->kernel_start = machine__kernel_start(etm->machine);
865 
866 	for (i = 0; i < etm->queues.nr_queues; i++) {
867 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
868 		if (ret)
869 			return ret;
870 	}
871 
872 	return 0;
873 }
874 
875 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
876 {
877 	if (etm->queues.new_data) {
878 		etm->queues.new_data = false;
879 		return cs_etm__setup_queues(etm);
880 	}
881 
882 	return 0;
883 }
884 
885 static inline
886 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
887 				 struct cs_etm_traceid_queue *tidq)
888 {
889 	struct branch_stack *bs_src = tidq->last_branch_rb;
890 	struct branch_stack *bs_dst = tidq->last_branch;
891 	size_t nr = 0;
892 
893 	/*
894 	 * Set the number of records before early exit: ->nr is used to
895 	 * determine how many branches to copy from ->entries.
896 	 */
897 	bs_dst->nr = bs_src->nr;
898 
899 	/*
900 	 * Early exit when there is nothing to copy.
901 	 */
902 	if (!bs_src->nr)
903 		return;
904 
905 	/*
906 	 * As bs_src->entries is a circular buffer, we need to copy from it in
907 	 * two steps.  First, copy the branches from the most recently inserted
908 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
909 	 */
910 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
911 	memcpy(&bs_dst->entries[0],
912 	       &bs_src->entries[tidq->last_branch_pos],
913 	       sizeof(struct branch_entry) * nr);
914 
915 	/*
916 	 * If we wrapped around at least once, the branches from the beginning
917 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
918 	 * are older valid branches: copy them over.  The total number of
919 	 * branches copied over will be equal to the number of branches asked by
920 	 * the user in last_branch_sz.
921 	 */
922 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
923 		memcpy(&bs_dst->entries[nr],
924 		       &bs_src->entries[0],
925 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
926 	}
927 }
928 
929 static inline
930 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
931 {
932 	tidq->last_branch_pos = 0;
933 	tidq->last_branch_rb->nr = 0;
934 }
935 
936 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
937 					 u8 trace_chan_id, u64 addr)
938 {
939 	u8 instrBytes[2];
940 
941 	cs_etm__mem_access(etmq, trace_chan_id, addr,
942 			   ARRAY_SIZE(instrBytes), instrBytes);
943 	/*
944 	 * T32 instruction size is indicated by bits[15:11] of the first
945 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
946 	 * denote a 32-bit instruction.
947 	 */
948 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
949 }
950 
951 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
952 {
953 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
954 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
955 		return 0;
956 
957 	return packet->start_addr;
958 }
959 
960 static inline
961 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
962 {
963 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
964 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
965 		return 0;
966 
967 	return packet->end_addr - packet->last_instr_size;
968 }
969 
970 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
971 				     u64 trace_chan_id,
972 				     const struct cs_etm_packet *packet,
973 				     u64 offset)
974 {
975 	if (packet->isa == CS_ETM_ISA_T32) {
976 		u64 addr = packet->start_addr;
977 
978 		while (offset) {
979 			addr += cs_etm__t32_instr_size(etmq,
980 						       trace_chan_id, addr);
981 			offset--;
982 		}
983 		return addr;
984 	}
985 
986 	/* Assume a 4 byte instruction size (A32/A64) */
987 	return packet->start_addr + offset * 4;
988 }
989 
990 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
991 					  struct cs_etm_traceid_queue *tidq)
992 {
993 	struct branch_stack *bs = tidq->last_branch_rb;
994 	struct branch_entry *be;
995 
996 	/*
997 	 * The branches are recorded in a circular buffer in reverse
998 	 * chronological order: we start recording from the last element of the
999 	 * buffer down.  After writing the first element of the stack, move the
1000 	 * insert position back to the end of the buffer.
1001 	 */
1002 	if (!tidq->last_branch_pos)
1003 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1004 
1005 	tidq->last_branch_pos -= 1;
1006 
1007 	be       = &bs->entries[tidq->last_branch_pos];
1008 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1009 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1010 	/* No support for mispredict */
1011 	be->flags.mispred = 0;
1012 	be->flags.predicted = 1;
1013 
1014 	/*
1015 	 * Increment bs->nr until reaching the number of last branches asked by
1016 	 * the user on the command line.
1017 	 */
1018 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1019 		bs->nr += 1;
1020 }
1021 
1022 static int cs_etm__inject_event(union perf_event *event,
1023 			       struct perf_sample *sample, u64 type)
1024 {
1025 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1026 	return perf_event__synthesize_sample(event, type, 0, sample);
1027 }
1028 
1029 
1030 static int
1031 cs_etm__get_trace(struct cs_etm_queue *etmq)
1032 {
1033 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1034 	struct auxtrace_buffer *old_buffer = aux_buffer;
1035 	struct auxtrace_queue *queue;
1036 
1037 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1038 
1039 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1040 
1041 	/* If no more data, drop the previous auxtrace_buffer and return */
1042 	if (!aux_buffer) {
1043 		if (old_buffer)
1044 			auxtrace_buffer__drop_data(old_buffer);
1045 		etmq->buf_len = 0;
1046 		return 0;
1047 	}
1048 
1049 	etmq->buffer = aux_buffer;
1050 
1051 	/* If the aux_buffer doesn't have data associated, try to load it */
1052 	if (!aux_buffer->data) {
1053 		/* get the file desc associated with the perf data file */
1054 		int fd = perf_data__fd(etmq->etm->session->data);
1055 
1056 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1057 		if (!aux_buffer->data)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	/* If valid, drop the previous buffer */
1062 	if (old_buffer)
1063 		auxtrace_buffer__drop_data(old_buffer);
1064 
1065 	etmq->buf_used = 0;
1066 	etmq->buf_len = aux_buffer->size;
1067 	etmq->buf = aux_buffer->data;
1068 
1069 	return etmq->buf_len;
1070 }
1071 
1072 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1073 				    struct cs_etm_traceid_queue *tidq)
1074 {
1075 	if ((!tidq->thread) && (tidq->tid != -1))
1076 		tidq->thread = machine__find_thread(etm->machine, -1,
1077 						    tidq->tid);
1078 
1079 	if (tidq->thread)
1080 		tidq->pid = tidq->thread->pid_;
1081 }
1082 
1083 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1084 			 pid_t tid, u8 trace_chan_id)
1085 {
1086 	int cpu, err = -EINVAL;
1087 	struct cs_etm_auxtrace *etm = etmq->etm;
1088 	struct cs_etm_traceid_queue *tidq;
1089 
1090 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1091 	if (!tidq)
1092 		return err;
1093 
1094 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1095 		return err;
1096 
1097 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1098 	if (err)
1099 		return err;
1100 
1101 	tidq->tid = tid;
1102 	thread__zput(tidq->thread);
1103 
1104 	cs_etm__set_pid_tid_cpu(etm, tidq);
1105 	return 0;
1106 }
1107 
1108 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1109 {
1110 	return !!etmq->etm->timeless_decoding;
1111 }
1112 
1113 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1114 			      u64 trace_chan_id,
1115 			      const struct cs_etm_packet *packet,
1116 			      struct perf_sample *sample)
1117 {
1118 	/*
1119 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1120 	 * packet, so directly bail out with 'insn_len' = 0.
1121 	 */
1122 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1123 		sample->insn_len = 0;
1124 		return;
1125 	}
1126 
1127 	/*
1128 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1129 	 * cs_etm__t32_instr_size().
1130 	 */
1131 	if (packet->isa == CS_ETM_ISA_T32)
1132 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1133 							  sample->ip);
1134 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1135 	else
1136 		sample->insn_len = 4;
1137 
1138 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1139 			   sample->insn_len, (void *)sample->insn);
1140 }
1141 
1142 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1143 					    struct cs_etm_traceid_queue *tidq,
1144 					    u64 addr, u64 period)
1145 {
1146 	int ret = 0;
1147 	struct cs_etm_auxtrace *etm = etmq->etm;
1148 	union perf_event *event = tidq->event_buf;
1149 	struct perf_sample sample = {.ip = 0,};
1150 
1151 	event->sample.header.type = PERF_RECORD_SAMPLE;
1152 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1153 	event->sample.header.size = sizeof(struct perf_event_header);
1154 
1155 	sample.ip = addr;
1156 	sample.pid = tidq->pid;
1157 	sample.tid = tidq->tid;
1158 	sample.id = etmq->etm->instructions_id;
1159 	sample.stream_id = etmq->etm->instructions_id;
1160 	sample.period = period;
1161 	sample.cpu = tidq->packet->cpu;
1162 	sample.flags = tidq->prev_packet->flags;
1163 	sample.cpumode = event->sample.header.misc;
1164 
1165 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1166 
1167 	if (etm->synth_opts.last_branch)
1168 		sample.branch_stack = tidq->last_branch;
1169 
1170 	if (etm->synth_opts.inject) {
1171 		ret = cs_etm__inject_event(event, &sample,
1172 					   etm->instructions_sample_type);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 
1177 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1178 
1179 	if (ret)
1180 		pr_err(
1181 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1182 			ret);
1183 
1184 	return ret;
1185 }
1186 
1187 /*
1188  * The cs etm packet encodes an instruction range between a branch target
1189  * and the next taken branch. Generate sample accordingly.
1190  */
1191 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1192 				       struct cs_etm_traceid_queue *tidq)
1193 {
1194 	int ret = 0;
1195 	struct cs_etm_auxtrace *etm = etmq->etm;
1196 	struct perf_sample sample = {.ip = 0,};
1197 	union perf_event *event = tidq->event_buf;
1198 	struct dummy_branch_stack {
1199 		u64			nr;
1200 		u64			hw_idx;
1201 		struct branch_entry	entries;
1202 	} dummy_bs;
1203 	u64 ip;
1204 
1205 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1206 
1207 	event->sample.header.type = PERF_RECORD_SAMPLE;
1208 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1209 	event->sample.header.size = sizeof(struct perf_event_header);
1210 
1211 	sample.ip = ip;
1212 	sample.pid = tidq->pid;
1213 	sample.tid = tidq->tid;
1214 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1215 	sample.id = etmq->etm->branches_id;
1216 	sample.stream_id = etmq->etm->branches_id;
1217 	sample.period = 1;
1218 	sample.cpu = tidq->packet->cpu;
1219 	sample.flags = tidq->prev_packet->flags;
1220 	sample.cpumode = event->sample.header.misc;
1221 
1222 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1223 			  &sample);
1224 
1225 	/*
1226 	 * perf report cannot handle events without a branch stack
1227 	 */
1228 	if (etm->synth_opts.last_branch) {
1229 		dummy_bs = (struct dummy_branch_stack){
1230 			.nr = 1,
1231 			.hw_idx = -1ULL,
1232 			.entries = {
1233 				.from = sample.ip,
1234 				.to = sample.addr,
1235 			},
1236 		};
1237 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1238 	}
1239 
1240 	if (etm->synth_opts.inject) {
1241 		ret = cs_etm__inject_event(event, &sample,
1242 					   etm->branches_sample_type);
1243 		if (ret)
1244 			return ret;
1245 	}
1246 
1247 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1248 
1249 	if (ret)
1250 		pr_err(
1251 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1252 		ret);
1253 
1254 	return ret;
1255 }
1256 
1257 struct cs_etm_synth {
1258 	struct perf_tool dummy_tool;
1259 	struct perf_session *session;
1260 };
1261 
1262 static int cs_etm__event_synth(struct perf_tool *tool,
1263 			       union perf_event *event,
1264 			       struct perf_sample *sample __maybe_unused,
1265 			       struct machine *machine __maybe_unused)
1266 {
1267 	struct cs_etm_synth *cs_etm_synth =
1268 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1269 
1270 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1271 						 event, NULL);
1272 }
1273 
1274 static int cs_etm__synth_event(struct perf_session *session,
1275 			       struct perf_event_attr *attr, u64 id)
1276 {
1277 	struct cs_etm_synth cs_etm_synth;
1278 
1279 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1280 	cs_etm_synth.session = session;
1281 
1282 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1283 					   &id, cs_etm__event_synth);
1284 }
1285 
1286 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1287 				struct perf_session *session)
1288 {
1289 	struct evlist *evlist = session->evlist;
1290 	struct evsel *evsel;
1291 	struct perf_event_attr attr;
1292 	bool found = false;
1293 	u64 id;
1294 	int err;
1295 
1296 	evlist__for_each_entry(evlist, evsel) {
1297 		if (evsel->core.attr.type == etm->pmu_type) {
1298 			found = true;
1299 			break;
1300 		}
1301 	}
1302 
1303 	if (!found) {
1304 		pr_debug("No selected events with CoreSight Trace data\n");
1305 		return 0;
1306 	}
1307 
1308 	memset(&attr, 0, sizeof(struct perf_event_attr));
1309 	attr.size = sizeof(struct perf_event_attr);
1310 	attr.type = PERF_TYPE_HARDWARE;
1311 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1312 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1313 			    PERF_SAMPLE_PERIOD;
1314 	if (etm->timeless_decoding)
1315 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1316 	else
1317 		attr.sample_type |= PERF_SAMPLE_TIME;
1318 
1319 	attr.exclude_user = evsel->core.attr.exclude_user;
1320 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1321 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1322 	attr.exclude_host = evsel->core.attr.exclude_host;
1323 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1324 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1325 	attr.read_format = evsel->core.attr.read_format;
1326 
1327 	/* create new id val to be a fixed offset from evsel id */
1328 	id = evsel->core.id[0] + 1000000000;
1329 
1330 	if (!id)
1331 		id = 1;
1332 
1333 	if (etm->synth_opts.branches) {
1334 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1335 		attr.sample_period = 1;
1336 		attr.sample_type |= PERF_SAMPLE_ADDR;
1337 		err = cs_etm__synth_event(session, &attr, id);
1338 		if (err)
1339 			return err;
1340 		etm->sample_branches = true;
1341 		etm->branches_sample_type = attr.sample_type;
1342 		etm->branches_id = id;
1343 		id += 1;
1344 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1345 	}
1346 
1347 	if (etm->synth_opts.last_branch)
1348 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1349 
1350 	if (etm->synth_opts.instructions) {
1351 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1352 		attr.sample_period = etm->synth_opts.period;
1353 		etm->instructions_sample_period = attr.sample_period;
1354 		err = cs_etm__synth_event(session, &attr, id);
1355 		if (err)
1356 			return err;
1357 		etm->sample_instructions = true;
1358 		etm->instructions_sample_type = attr.sample_type;
1359 		etm->instructions_id = id;
1360 		id += 1;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int cs_etm__sample(struct cs_etm_queue *etmq,
1367 			  struct cs_etm_traceid_queue *tidq)
1368 {
1369 	struct cs_etm_auxtrace *etm = etmq->etm;
1370 	int ret;
1371 	u8 trace_chan_id = tidq->trace_chan_id;
1372 	u64 instrs_prev;
1373 
1374 	/* Get instructions remainder from previous packet */
1375 	instrs_prev = tidq->period_instructions;
1376 
1377 	tidq->period_instructions += tidq->packet->instr_count;
1378 
1379 	/*
1380 	 * Record a branch when the last instruction in
1381 	 * PREV_PACKET is a branch.
1382 	 */
1383 	if (etm->synth_opts.last_branch &&
1384 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1385 	    tidq->prev_packet->last_instr_taken_branch)
1386 		cs_etm__update_last_branch_rb(etmq, tidq);
1387 
1388 	if (etm->sample_instructions &&
1389 	    tidq->period_instructions >= etm->instructions_sample_period) {
1390 		/*
1391 		 * Emit instruction sample periodically
1392 		 * TODO: allow period to be defined in cycles and clock time
1393 		 */
1394 
1395 		/*
1396 		 * Below diagram demonstrates the instruction samples
1397 		 * generation flows:
1398 		 *
1399 		 *    Instrs     Instrs       Instrs       Instrs
1400 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1401 		 *    |            |            |            |
1402 		 *    V            V            V            V
1403 		 *   --------------------------------------------------
1404 		 *            ^                                  ^
1405 		 *            |                                  |
1406 		 *         Period                             Period
1407 		 *    instructions(Pi)                   instructions(Pi')
1408 		 *
1409 		 *            |                                  |
1410 		 *            \---------------- -----------------/
1411 		 *                             V
1412 		 *                 tidq->packet->instr_count
1413 		 *
1414 		 * Instrs Sample(n...) are the synthesised samples occurring
1415 		 * every etm->instructions_sample_period instructions - as
1416 		 * defined on the perf command line.  Sample(n) is being the
1417 		 * last sample before the current etm packet, n+1 to n+3
1418 		 * samples are generated from the current etm packet.
1419 		 *
1420 		 * tidq->packet->instr_count represents the number of
1421 		 * instructions in the current etm packet.
1422 		 *
1423 		 * Period instructions (Pi) contains the the number of
1424 		 * instructions executed after the sample point(n) from the
1425 		 * previous etm packet.  This will always be less than
1426 		 * etm->instructions_sample_period.
1427 		 *
1428 		 * When generate new samples, it combines with two parts
1429 		 * instructions, one is the tail of the old packet and another
1430 		 * is the head of the new coming packet, to generate
1431 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1432 		 * instructions with sample period.  After sample(n+3), the rest
1433 		 * instructions will be used by later packet and it is assigned
1434 		 * to tidq->period_instructions for next round calculation.
1435 		 */
1436 
1437 		/*
1438 		 * Get the initial offset into the current packet instructions;
1439 		 * entry conditions ensure that instrs_prev is less than
1440 		 * etm->instructions_sample_period.
1441 		 */
1442 		u64 offset = etm->instructions_sample_period - instrs_prev;
1443 		u64 addr;
1444 
1445 		/* Prepare last branches for instruction sample */
1446 		if (etm->synth_opts.last_branch)
1447 			cs_etm__copy_last_branch_rb(etmq, tidq);
1448 
1449 		while (tidq->period_instructions >=
1450 				etm->instructions_sample_period) {
1451 			/*
1452 			 * Calculate the address of the sampled instruction (-1
1453 			 * as sample is reported as though instruction has just
1454 			 * been executed, but PC has not advanced to next
1455 			 * instruction)
1456 			 */
1457 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1458 						  tidq->packet, offset - 1);
1459 			ret = cs_etm__synth_instruction_sample(
1460 				etmq, tidq, addr,
1461 				etm->instructions_sample_period);
1462 			if (ret)
1463 				return ret;
1464 
1465 			offset += etm->instructions_sample_period;
1466 			tidq->period_instructions -=
1467 				etm->instructions_sample_period;
1468 		}
1469 	}
1470 
1471 	if (etm->sample_branches) {
1472 		bool generate_sample = false;
1473 
1474 		/* Generate sample for tracing on packet */
1475 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1476 			generate_sample = true;
1477 
1478 		/* Generate sample for branch taken packet */
1479 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1480 		    tidq->prev_packet->last_instr_taken_branch)
1481 			generate_sample = true;
1482 
1483 		if (generate_sample) {
1484 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1485 			if (ret)
1486 				return ret;
1487 		}
1488 	}
1489 
1490 	cs_etm__packet_swap(etm, tidq);
1491 
1492 	return 0;
1493 }
1494 
1495 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1496 {
1497 	/*
1498 	 * When the exception packet is inserted, whether the last instruction
1499 	 * in previous range packet is taken branch or not, we need to force
1500 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1501 	 * to generate branch sample for the instruction range before the
1502 	 * exception is trapped to kernel or before the exception returning.
1503 	 *
1504 	 * The exception packet includes the dummy address values, so don't
1505 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1506 	 * for generating instruction and branch samples.
1507 	 */
1508 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1509 		tidq->prev_packet->last_instr_taken_branch = true;
1510 
1511 	return 0;
1512 }
1513 
1514 static int cs_etm__flush(struct cs_etm_queue *etmq,
1515 			 struct cs_etm_traceid_queue *tidq)
1516 {
1517 	int err = 0;
1518 	struct cs_etm_auxtrace *etm = etmq->etm;
1519 
1520 	/* Handle start tracing packet */
1521 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1522 		goto swap_packet;
1523 
1524 	if (etmq->etm->synth_opts.last_branch &&
1525 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1526 		u64 addr;
1527 
1528 		/* Prepare last branches for instruction sample */
1529 		cs_etm__copy_last_branch_rb(etmq, tidq);
1530 
1531 		/*
1532 		 * Generate a last branch event for the branches left in the
1533 		 * circular buffer at the end of the trace.
1534 		 *
1535 		 * Use the address of the end of the last reported execution
1536 		 * range
1537 		 */
1538 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1539 
1540 		err = cs_etm__synth_instruction_sample(
1541 			etmq, tidq, addr,
1542 			tidq->period_instructions);
1543 		if (err)
1544 			return err;
1545 
1546 		tidq->period_instructions = 0;
1547 
1548 	}
1549 
1550 	if (etm->sample_branches &&
1551 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1552 		err = cs_etm__synth_branch_sample(etmq, tidq);
1553 		if (err)
1554 			return err;
1555 	}
1556 
1557 swap_packet:
1558 	cs_etm__packet_swap(etm, tidq);
1559 
1560 	/* Reset last branches after flush the trace */
1561 	if (etm->synth_opts.last_branch)
1562 		cs_etm__reset_last_branch_rb(tidq);
1563 
1564 	return err;
1565 }
1566 
1567 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1568 			     struct cs_etm_traceid_queue *tidq)
1569 {
1570 	int err;
1571 
1572 	/*
1573 	 * It has no new packet coming and 'etmq->packet' contains the stale
1574 	 * packet which was set at the previous time with packets swapping;
1575 	 * so skip to generate branch sample to avoid stale packet.
1576 	 *
1577 	 * For this case only flush branch stack and generate a last branch
1578 	 * event for the branches left in the circular buffer at the end of
1579 	 * the trace.
1580 	 */
1581 	if (etmq->etm->synth_opts.last_branch &&
1582 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1583 		u64 addr;
1584 
1585 		/* Prepare last branches for instruction sample */
1586 		cs_etm__copy_last_branch_rb(etmq, tidq);
1587 
1588 		/*
1589 		 * Use the address of the end of the last reported execution
1590 		 * range.
1591 		 */
1592 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1593 
1594 		err = cs_etm__synth_instruction_sample(
1595 			etmq, tidq, addr,
1596 			tidq->period_instructions);
1597 		if (err)
1598 			return err;
1599 
1600 		tidq->period_instructions = 0;
1601 	}
1602 
1603 	return 0;
1604 }
1605 /*
1606  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1607  *			   if need be.
1608  * Returns:	< 0	if error
1609  *		= 0	if no more auxtrace_buffer to read
1610  *		> 0	if the current buffer isn't empty yet
1611  */
1612 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1613 {
1614 	int ret;
1615 
1616 	if (!etmq->buf_len) {
1617 		ret = cs_etm__get_trace(etmq);
1618 		if (ret <= 0)
1619 			return ret;
1620 		/*
1621 		 * We cannot assume consecutive blocks in the data file
1622 		 * are contiguous, reset the decoder to force re-sync.
1623 		 */
1624 		ret = cs_etm_decoder__reset(etmq->decoder);
1625 		if (ret)
1626 			return ret;
1627 	}
1628 
1629 	return etmq->buf_len;
1630 }
1631 
1632 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1633 				 struct cs_etm_packet *packet,
1634 				 u64 end_addr)
1635 {
1636 	/* Initialise to keep compiler happy */
1637 	u16 instr16 = 0;
1638 	u32 instr32 = 0;
1639 	u64 addr;
1640 
1641 	switch (packet->isa) {
1642 	case CS_ETM_ISA_T32:
1643 		/*
1644 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1645 		 *
1646 		 *  b'15         b'8
1647 		 * +-----------------+--------+
1648 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1649 		 * +-----------------+--------+
1650 		 *
1651 		 * According to the specifiction, it only defines SVC for T32
1652 		 * with 16 bits instruction and has no definition for 32bits;
1653 		 * so below only read 2 bytes as instruction size for T32.
1654 		 */
1655 		addr = end_addr - 2;
1656 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1657 				   sizeof(instr16), (u8 *)&instr16);
1658 		if ((instr16 & 0xFF00) == 0xDF00)
1659 			return true;
1660 
1661 		break;
1662 	case CS_ETM_ISA_A32:
1663 		/*
1664 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1665 		 *
1666 		 *  b'31 b'28 b'27 b'24
1667 		 * +---------+---------+-------------------------+
1668 		 * |  !1111  | 1 1 1 1 |        imm24            |
1669 		 * +---------+---------+-------------------------+
1670 		 */
1671 		addr = end_addr - 4;
1672 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1673 				   sizeof(instr32), (u8 *)&instr32);
1674 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1675 		    (instr32 & 0xF0000000) != 0xF0000000)
1676 			return true;
1677 
1678 		break;
1679 	case CS_ETM_ISA_A64:
1680 		/*
1681 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1682 		 *
1683 		 *  b'31               b'21           b'4     b'0
1684 		 * +-----------------------+---------+-----------+
1685 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1686 		 * +-----------------------+---------+-----------+
1687 		 */
1688 		addr = end_addr - 4;
1689 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1690 				   sizeof(instr32), (u8 *)&instr32);
1691 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1692 			return true;
1693 
1694 		break;
1695 	case CS_ETM_ISA_UNKNOWN:
1696 	default:
1697 		break;
1698 	}
1699 
1700 	return false;
1701 }
1702 
1703 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1704 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1705 {
1706 	u8 trace_chan_id = tidq->trace_chan_id;
1707 	struct cs_etm_packet *packet = tidq->packet;
1708 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1709 
1710 	if (magic == __perf_cs_etmv3_magic)
1711 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1712 			return true;
1713 
1714 	/*
1715 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1716 	 * HVC cases; need to check if it's SVC instruction based on
1717 	 * packet address.
1718 	 */
1719 	if (magic == __perf_cs_etmv4_magic) {
1720 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1721 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1722 					 prev_packet->end_addr))
1723 			return true;
1724 	}
1725 
1726 	return false;
1727 }
1728 
1729 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1730 				       u64 magic)
1731 {
1732 	struct cs_etm_packet *packet = tidq->packet;
1733 
1734 	if (magic == __perf_cs_etmv3_magic)
1735 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1736 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1737 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1738 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1739 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1740 			return true;
1741 
1742 	if (magic == __perf_cs_etmv4_magic)
1743 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1744 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1745 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1746 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1747 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1748 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1749 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1750 			return true;
1751 
1752 	return false;
1753 }
1754 
1755 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1756 				      struct cs_etm_traceid_queue *tidq,
1757 				      u64 magic)
1758 {
1759 	u8 trace_chan_id = tidq->trace_chan_id;
1760 	struct cs_etm_packet *packet = tidq->packet;
1761 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1762 
1763 	if (magic == __perf_cs_etmv3_magic)
1764 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1765 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1766 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1767 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1768 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1769 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1770 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1771 			return true;
1772 
1773 	if (magic == __perf_cs_etmv4_magic) {
1774 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1775 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1776 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1777 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1778 			return true;
1779 
1780 		/*
1781 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1782 		 * (SMC, HVC) are taken as sync exceptions.
1783 		 */
1784 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1785 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1786 					  prev_packet->end_addr))
1787 			return true;
1788 
1789 		/*
1790 		 * ETMv4 has 5 bits for exception number; if the numbers
1791 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1792 		 * they are implementation defined exceptions.
1793 		 *
1794 		 * For this case, simply take it as sync exception.
1795 		 */
1796 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1797 		    packet->exception_number <= CS_ETMV4_EXC_END)
1798 			return true;
1799 	}
1800 
1801 	return false;
1802 }
1803 
1804 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1805 				    struct cs_etm_traceid_queue *tidq)
1806 {
1807 	struct cs_etm_packet *packet = tidq->packet;
1808 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1809 	u8 trace_chan_id = tidq->trace_chan_id;
1810 	u64 magic;
1811 	int ret;
1812 
1813 	switch (packet->sample_type) {
1814 	case CS_ETM_RANGE:
1815 		/*
1816 		 * Immediate branch instruction without neither link nor
1817 		 * return flag, it's normal branch instruction within
1818 		 * the function.
1819 		 */
1820 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1821 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1822 			packet->flags = PERF_IP_FLAG_BRANCH;
1823 
1824 			if (packet->last_instr_cond)
1825 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1826 		}
1827 
1828 		/*
1829 		 * Immediate branch instruction with link (e.g. BL), this is
1830 		 * branch instruction for function call.
1831 		 */
1832 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1833 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1834 			packet->flags = PERF_IP_FLAG_BRANCH |
1835 					PERF_IP_FLAG_CALL;
1836 
1837 		/*
1838 		 * Indirect branch instruction with link (e.g. BLR), this is
1839 		 * branch instruction for function call.
1840 		 */
1841 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1842 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1843 			packet->flags = PERF_IP_FLAG_BRANCH |
1844 					PERF_IP_FLAG_CALL;
1845 
1846 		/*
1847 		 * Indirect branch instruction with subtype of
1848 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1849 		 * function return for A32/T32.
1850 		 */
1851 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1852 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1853 			packet->flags = PERF_IP_FLAG_BRANCH |
1854 					PERF_IP_FLAG_RETURN;
1855 
1856 		/*
1857 		 * Indirect branch instruction without link (e.g. BR), usually
1858 		 * this is used for function return, especially for functions
1859 		 * within dynamic link lib.
1860 		 */
1861 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1862 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1863 			packet->flags = PERF_IP_FLAG_BRANCH |
1864 					PERF_IP_FLAG_RETURN;
1865 
1866 		/* Return instruction for function return. */
1867 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1868 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1869 			packet->flags = PERF_IP_FLAG_BRANCH |
1870 					PERF_IP_FLAG_RETURN;
1871 
1872 		/*
1873 		 * Decoder might insert a discontinuity in the middle of
1874 		 * instruction packets, fixup prev_packet with flag
1875 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1876 		 */
1877 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1878 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1879 					      PERF_IP_FLAG_TRACE_BEGIN;
1880 
1881 		/*
1882 		 * If the previous packet is an exception return packet
1883 		 * and the return address just follows SVC instuction,
1884 		 * it needs to calibrate the previous packet sample flags
1885 		 * as PERF_IP_FLAG_SYSCALLRET.
1886 		 */
1887 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1888 					   PERF_IP_FLAG_RETURN |
1889 					   PERF_IP_FLAG_INTERRUPT) &&
1890 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1891 					 packet, packet->start_addr))
1892 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1893 					     PERF_IP_FLAG_RETURN |
1894 					     PERF_IP_FLAG_SYSCALLRET;
1895 		break;
1896 	case CS_ETM_DISCONTINUITY:
1897 		/*
1898 		 * The trace is discontinuous, if the previous packet is
1899 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1900 		 * for previous packet.
1901 		 */
1902 		if (prev_packet->sample_type == CS_ETM_RANGE)
1903 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1904 					      PERF_IP_FLAG_TRACE_END;
1905 		break;
1906 	case CS_ETM_EXCEPTION:
1907 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1908 		if (ret)
1909 			return ret;
1910 
1911 		/* The exception is for system call. */
1912 		if (cs_etm__is_syscall(etmq, tidq, magic))
1913 			packet->flags = PERF_IP_FLAG_BRANCH |
1914 					PERF_IP_FLAG_CALL |
1915 					PERF_IP_FLAG_SYSCALLRET;
1916 		/*
1917 		 * The exceptions are triggered by external signals from bus,
1918 		 * interrupt controller, debug module, PE reset or halt.
1919 		 */
1920 		else if (cs_etm__is_async_exception(tidq, magic))
1921 			packet->flags = PERF_IP_FLAG_BRANCH |
1922 					PERF_IP_FLAG_CALL |
1923 					PERF_IP_FLAG_ASYNC |
1924 					PERF_IP_FLAG_INTERRUPT;
1925 		/*
1926 		 * Otherwise, exception is caused by trap, instruction &
1927 		 * data fault, or alignment errors.
1928 		 */
1929 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1930 			packet->flags = PERF_IP_FLAG_BRANCH |
1931 					PERF_IP_FLAG_CALL |
1932 					PERF_IP_FLAG_INTERRUPT;
1933 
1934 		/*
1935 		 * When the exception packet is inserted, since exception
1936 		 * packet is not used standalone for generating samples
1937 		 * and it's affiliation to the previous instruction range
1938 		 * packet; so set previous range packet flags to tell perf
1939 		 * it is an exception taken branch.
1940 		 */
1941 		if (prev_packet->sample_type == CS_ETM_RANGE)
1942 			prev_packet->flags = packet->flags;
1943 		break;
1944 	case CS_ETM_EXCEPTION_RET:
1945 		/*
1946 		 * When the exception return packet is inserted, since
1947 		 * exception return packet is not used standalone for
1948 		 * generating samples and it's affiliation to the previous
1949 		 * instruction range packet; so set previous range packet
1950 		 * flags to tell perf it is an exception return branch.
1951 		 *
1952 		 * The exception return can be for either system call or
1953 		 * other exception types; unfortunately the packet doesn't
1954 		 * contain exception type related info so we cannot decide
1955 		 * the exception type purely based on exception return packet.
1956 		 * If we record the exception number from exception packet and
1957 		 * reuse it for excpetion return packet, this is not reliable
1958 		 * due the trace can be discontinuity or the interrupt can
1959 		 * be nested, thus the recorded exception number cannot be
1960 		 * used for exception return packet for these two cases.
1961 		 *
1962 		 * For exception return packet, we only need to distinguish the
1963 		 * packet is for system call or for other types.  Thus the
1964 		 * decision can be deferred when receive the next packet which
1965 		 * contains the return address, based on the return address we
1966 		 * can read out the previous instruction and check if it's a
1967 		 * system call instruction and then calibrate the sample flag
1968 		 * as needed.
1969 		 */
1970 		if (prev_packet->sample_type == CS_ETM_RANGE)
1971 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1972 					     PERF_IP_FLAG_RETURN |
1973 					     PERF_IP_FLAG_INTERRUPT;
1974 		break;
1975 	case CS_ETM_EMPTY:
1976 	default:
1977 		break;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1984 {
1985 	int ret = 0;
1986 	size_t processed = 0;
1987 
1988 	/*
1989 	 * Packets are decoded and added to the decoder's packet queue
1990 	 * until the decoder packet processing callback has requested that
1991 	 * processing stops or there is nothing left in the buffer.  Normal
1992 	 * operations that stop processing are a timestamp packet or a full
1993 	 * decoder buffer queue.
1994 	 */
1995 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1996 						 etmq->offset,
1997 						 &etmq->buf[etmq->buf_used],
1998 						 etmq->buf_len,
1999 						 &processed);
2000 	if (ret)
2001 		goto out;
2002 
2003 	etmq->offset += processed;
2004 	etmq->buf_used += processed;
2005 	etmq->buf_len -= processed;
2006 
2007 out:
2008 	return ret;
2009 }
2010 
2011 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2012 					 struct cs_etm_traceid_queue *tidq)
2013 {
2014 	int ret;
2015 	struct cs_etm_packet_queue *packet_queue;
2016 
2017 	packet_queue = &tidq->packet_queue;
2018 
2019 	/* Process each packet in this chunk */
2020 	while (1) {
2021 		ret = cs_etm_decoder__get_packet(packet_queue,
2022 						 tidq->packet);
2023 		if (ret <= 0)
2024 			/*
2025 			 * Stop processing this chunk on
2026 			 * end of data or error
2027 			 */
2028 			break;
2029 
2030 		/*
2031 		 * Since packet addresses are swapped in packet
2032 		 * handling within below switch() statements,
2033 		 * thus setting sample flags must be called
2034 		 * prior to switch() statement to use address
2035 		 * information before packets swapping.
2036 		 */
2037 		ret = cs_etm__set_sample_flags(etmq, tidq);
2038 		if (ret < 0)
2039 			break;
2040 
2041 		switch (tidq->packet->sample_type) {
2042 		case CS_ETM_RANGE:
2043 			/*
2044 			 * If the packet contains an instruction
2045 			 * range, generate instruction sequence
2046 			 * events.
2047 			 */
2048 			cs_etm__sample(etmq, tidq);
2049 			break;
2050 		case CS_ETM_EXCEPTION:
2051 		case CS_ETM_EXCEPTION_RET:
2052 			/*
2053 			 * If the exception packet is coming,
2054 			 * make sure the previous instruction
2055 			 * range packet to be handled properly.
2056 			 */
2057 			cs_etm__exception(tidq);
2058 			break;
2059 		case CS_ETM_DISCONTINUITY:
2060 			/*
2061 			 * Discontinuity in trace, flush
2062 			 * previous branch stack
2063 			 */
2064 			cs_etm__flush(etmq, tidq);
2065 			break;
2066 		case CS_ETM_EMPTY:
2067 			/*
2068 			 * Should not receive empty packet,
2069 			 * report error.
2070 			 */
2071 			pr_err("CS ETM Trace: empty packet\n");
2072 			return -EINVAL;
2073 		default:
2074 			break;
2075 		}
2076 	}
2077 
2078 	return ret;
2079 }
2080 
2081 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2082 {
2083 	int idx;
2084 	struct int_node *inode;
2085 	struct cs_etm_traceid_queue *tidq;
2086 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2087 
2088 	intlist__for_each_entry(inode, traceid_queues_list) {
2089 		idx = (int)(intptr_t)inode->priv;
2090 		tidq = etmq->traceid_queues[idx];
2091 
2092 		/* Ignore return value */
2093 		cs_etm__process_traceid_queue(etmq, tidq);
2094 
2095 		/*
2096 		 * Generate an instruction sample with the remaining
2097 		 * branchstack entries.
2098 		 */
2099 		cs_etm__flush(etmq, tidq);
2100 	}
2101 }
2102 
2103 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2104 {
2105 	int err = 0;
2106 	struct cs_etm_traceid_queue *tidq;
2107 
2108 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2109 	if (!tidq)
2110 		return -EINVAL;
2111 
2112 	/* Go through each buffer in the queue and decode them one by one */
2113 	while (1) {
2114 		err = cs_etm__get_data_block(etmq);
2115 		if (err <= 0)
2116 			return err;
2117 
2118 		/* Run trace decoder until buffer consumed or end of trace */
2119 		do {
2120 			err = cs_etm__decode_data_block(etmq);
2121 			if (err)
2122 				return err;
2123 
2124 			/*
2125 			 * Process each packet in this chunk, nothing to do if
2126 			 * an error occurs other than hoping the next one will
2127 			 * be better.
2128 			 */
2129 			err = cs_etm__process_traceid_queue(etmq, tidq);
2130 
2131 		} while (etmq->buf_len);
2132 
2133 		if (err == 0)
2134 			/* Flush any remaining branch stack entries */
2135 			err = cs_etm__end_block(etmq, tidq);
2136 	}
2137 
2138 	return err;
2139 }
2140 
2141 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2142 					   pid_t tid)
2143 {
2144 	unsigned int i;
2145 	struct auxtrace_queues *queues = &etm->queues;
2146 
2147 	for (i = 0; i < queues->nr_queues; i++) {
2148 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2149 		struct cs_etm_queue *etmq = queue->priv;
2150 		struct cs_etm_traceid_queue *tidq;
2151 
2152 		if (!etmq)
2153 			continue;
2154 
2155 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2156 						CS_ETM_PER_THREAD_TRACEID);
2157 
2158 		if (!tidq)
2159 			continue;
2160 
2161 		if ((tid == -1) || (tidq->tid == tid)) {
2162 			cs_etm__set_pid_tid_cpu(etm, tidq);
2163 			cs_etm__run_decoder(etmq);
2164 		}
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2171 {
2172 	int ret = 0;
2173 	unsigned int cs_queue_nr, queue_nr;
2174 	u8 trace_chan_id;
2175 	u64 timestamp;
2176 	struct auxtrace_queue *queue;
2177 	struct cs_etm_queue *etmq;
2178 	struct cs_etm_traceid_queue *tidq;
2179 
2180 	while (1) {
2181 		if (!etm->heap.heap_cnt)
2182 			goto out;
2183 
2184 		/* Take the entry at the top of the min heap */
2185 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2186 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2187 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2188 		queue = &etm->queues.queue_array[queue_nr];
2189 		etmq = queue->priv;
2190 
2191 		/*
2192 		 * Remove the top entry from the heap since we are about
2193 		 * to process it.
2194 		 */
2195 		auxtrace_heap__pop(&etm->heap);
2196 
2197 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2198 		if (!tidq) {
2199 			/*
2200 			 * No traceID queue has been allocated for this traceID,
2201 			 * which means something somewhere went very wrong.  No
2202 			 * other choice than simply exit.
2203 			 */
2204 			ret = -EINVAL;
2205 			goto out;
2206 		}
2207 
2208 		/*
2209 		 * Packets associated with this timestamp are already in
2210 		 * the etmq's traceID queue, so process them.
2211 		 */
2212 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2213 		if (ret < 0)
2214 			goto out;
2215 
2216 		/*
2217 		 * Packets for this timestamp have been processed, time to
2218 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2219 		 * if need be.
2220 		 */
2221 refetch:
2222 		ret = cs_etm__get_data_block(etmq);
2223 		if (ret < 0)
2224 			goto out;
2225 
2226 		/*
2227 		 * No more auxtrace_buffers to process in this etmq, simply
2228 		 * move on to another entry in the auxtrace_heap.
2229 		 */
2230 		if (!ret)
2231 			continue;
2232 
2233 		ret = cs_etm__decode_data_block(etmq);
2234 		if (ret)
2235 			goto out;
2236 
2237 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2238 
2239 		if (!timestamp) {
2240 			/*
2241 			 * Function cs_etm__decode_data_block() returns when
2242 			 * there is no more traces to decode in the current
2243 			 * auxtrace_buffer OR when a timestamp has been
2244 			 * encountered on any of the traceID queues.  Since we
2245 			 * did not get a timestamp, there is no more traces to
2246 			 * process in this auxtrace_buffer.  As such empty and
2247 			 * flush all traceID queues.
2248 			 */
2249 			cs_etm__clear_all_traceid_queues(etmq);
2250 
2251 			/* Fetch another auxtrace_buffer for this etmq */
2252 			goto refetch;
2253 		}
2254 
2255 		/*
2256 		 * Add to the min heap the timestamp for packets that have
2257 		 * just been decoded.  They will be processed and synthesized
2258 		 * during the next call to cs_etm__process_traceid_queue() for
2259 		 * this queue/traceID.
2260 		 */
2261 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2262 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2263 	}
2264 
2265 out:
2266 	return ret;
2267 }
2268 
2269 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2270 					union perf_event *event)
2271 {
2272 	struct thread *th;
2273 
2274 	if (etm->timeless_decoding)
2275 		return 0;
2276 
2277 	/*
2278 	 * Add the tid/pid to the log so that we can get a match when
2279 	 * we get a contextID from the decoder.
2280 	 */
2281 	th = machine__findnew_thread(etm->machine,
2282 				     event->itrace_start.pid,
2283 				     event->itrace_start.tid);
2284 	if (!th)
2285 		return -ENOMEM;
2286 
2287 	thread__put(th);
2288 
2289 	return 0;
2290 }
2291 
2292 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2293 					   union perf_event *event)
2294 {
2295 	struct thread *th;
2296 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2297 
2298 	/*
2299 	 * Context switch in per-thread mode are irrelevant since perf
2300 	 * will start/stop tracing as the process is scheduled.
2301 	 */
2302 	if (etm->timeless_decoding)
2303 		return 0;
2304 
2305 	/*
2306 	 * SWITCH_IN events carry the next process to be switched out while
2307 	 * SWITCH_OUT events carry the process to be switched in.  As such
2308 	 * we don't care about IN events.
2309 	 */
2310 	if (!out)
2311 		return 0;
2312 
2313 	/*
2314 	 * Add the tid/pid to the log so that we can get a match when
2315 	 * we get a contextID from the decoder.
2316 	 */
2317 	th = machine__findnew_thread(etm->machine,
2318 				     event->context_switch.next_prev_pid,
2319 				     event->context_switch.next_prev_tid);
2320 	if (!th)
2321 		return -ENOMEM;
2322 
2323 	thread__put(th);
2324 
2325 	return 0;
2326 }
2327 
2328 static int cs_etm__process_event(struct perf_session *session,
2329 				 union perf_event *event,
2330 				 struct perf_sample *sample,
2331 				 struct perf_tool *tool)
2332 {
2333 	int err = 0;
2334 	u64 timestamp;
2335 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2336 						   struct cs_etm_auxtrace,
2337 						   auxtrace);
2338 
2339 	if (dump_trace)
2340 		return 0;
2341 
2342 	if (!tool->ordered_events) {
2343 		pr_err("CoreSight ETM Trace requires ordered events\n");
2344 		return -EINVAL;
2345 	}
2346 
2347 	if (sample->time && (sample->time != (u64) -1))
2348 		timestamp = sample->time;
2349 	else
2350 		timestamp = 0;
2351 
2352 	if (timestamp || etm->timeless_decoding) {
2353 		err = cs_etm__update_queues(etm);
2354 		if (err)
2355 			return err;
2356 	}
2357 
2358 	if (etm->timeless_decoding &&
2359 	    event->header.type == PERF_RECORD_EXIT)
2360 		return cs_etm__process_timeless_queues(etm,
2361 						       event->fork.tid);
2362 
2363 	if (event->header.type == PERF_RECORD_ITRACE_START)
2364 		return cs_etm__process_itrace_start(etm, event);
2365 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2366 		return cs_etm__process_switch_cpu_wide(etm, event);
2367 
2368 	if (!etm->timeless_decoding &&
2369 	    event->header.type == PERF_RECORD_AUX)
2370 		return cs_etm__process_queues(etm);
2371 
2372 	return 0;
2373 }
2374 
2375 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2376 					  union perf_event *event,
2377 					  struct perf_tool *tool __maybe_unused)
2378 {
2379 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2380 						   struct cs_etm_auxtrace,
2381 						   auxtrace);
2382 	if (!etm->data_queued) {
2383 		struct auxtrace_buffer *buffer;
2384 		off_t  data_offset;
2385 		int fd = perf_data__fd(session->data);
2386 		bool is_pipe = perf_data__is_pipe(session->data);
2387 		int err;
2388 
2389 		if (is_pipe)
2390 			data_offset = 0;
2391 		else {
2392 			data_offset = lseek(fd, 0, SEEK_CUR);
2393 			if (data_offset == -1)
2394 				return -errno;
2395 		}
2396 
2397 		err = auxtrace_queues__add_event(&etm->queues, session,
2398 						 event, data_offset, &buffer);
2399 		if (err)
2400 			return err;
2401 
2402 		if (dump_trace)
2403 			if (auxtrace_buffer__get_data(buffer, fd)) {
2404 				cs_etm__dump_event(etm, buffer);
2405 				auxtrace_buffer__put_data(buffer);
2406 			}
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2413 {
2414 	struct evsel *evsel;
2415 	struct evlist *evlist = etm->session->evlist;
2416 	bool timeless_decoding = true;
2417 
2418 	/*
2419 	 * Circle through the list of event and complain if we find one
2420 	 * with the time bit set.
2421 	 */
2422 	evlist__for_each_entry(evlist, evsel) {
2423 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2424 			timeless_decoding = false;
2425 	}
2426 
2427 	return timeless_decoding;
2428 }
2429 
2430 static const char * const cs_etm_global_header_fmts[] = {
2431 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2432 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2433 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2434 };
2435 
2436 static const char * const cs_etm_priv_fmts[] = {
2437 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2438 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2439 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2440 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2441 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2442 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2443 };
2444 
2445 static const char * const cs_etmv4_priv_fmts[] = {
2446 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2447 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2448 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2449 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2450 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2451 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2452 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2453 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2454 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2455 };
2456 
2457 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2458 {
2459 	int i, j, cpu = 0;
2460 
2461 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2462 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2463 
2464 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2465 		if (val[i] == __perf_cs_etmv3_magic)
2466 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2467 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2468 		else if (val[i] == __perf_cs_etmv4_magic)
2469 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2470 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2471 		else
2472 			/* failure.. return */
2473 			return;
2474 	}
2475 }
2476 
2477 int cs_etm__process_auxtrace_info(union perf_event *event,
2478 				  struct perf_session *session)
2479 {
2480 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2481 	struct cs_etm_auxtrace *etm = NULL;
2482 	struct int_node *inode;
2483 	unsigned int pmu_type;
2484 	int event_header_size = sizeof(struct perf_event_header);
2485 	int info_header_size;
2486 	int total_size = auxtrace_info->header.size;
2487 	int priv_size = 0;
2488 	int num_cpu;
2489 	int err = 0, idx = -1;
2490 	int i, j, k;
2491 	u64 *ptr, *hdr = NULL;
2492 	u64 **metadata = NULL;
2493 
2494 	/*
2495 	 * sizeof(auxtrace_info_event::type) +
2496 	 * sizeof(auxtrace_info_event::reserved) == 8
2497 	 */
2498 	info_header_size = 8;
2499 
2500 	if (total_size < (event_header_size + info_header_size))
2501 		return -EINVAL;
2502 
2503 	priv_size = total_size - event_header_size - info_header_size;
2504 
2505 	/* First the global part */
2506 	ptr = (u64 *) auxtrace_info->priv;
2507 
2508 	/* Look for version '0' of the header */
2509 	if (ptr[0] != 0)
2510 		return -EINVAL;
2511 
2512 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2513 	if (!hdr)
2514 		return -ENOMEM;
2515 
2516 	/* Extract header information - see cs-etm.h for format */
2517 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2518 		hdr[i] = ptr[i];
2519 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2520 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2521 				    0xffffffff);
2522 
2523 	/*
2524 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2525 	 * has to be made for each packet that gets decoded, optimizing access
2526 	 * in anything other than a sequential array is worth doing.
2527 	 */
2528 	traceid_list = intlist__new(NULL);
2529 	if (!traceid_list) {
2530 		err = -ENOMEM;
2531 		goto err_free_hdr;
2532 	}
2533 
2534 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2535 	if (!metadata) {
2536 		err = -ENOMEM;
2537 		goto err_free_traceid_list;
2538 	}
2539 
2540 	/*
2541 	 * The metadata is stored in the auxtrace_info section and encodes
2542 	 * the configuration of the ARM embedded trace macrocell which is
2543 	 * required by the trace decoder to properly decode the trace due
2544 	 * to its highly compressed nature.
2545 	 */
2546 	for (j = 0; j < num_cpu; j++) {
2547 		if (ptr[i] == __perf_cs_etmv3_magic) {
2548 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2549 					     CS_ETM_PRIV_MAX);
2550 			if (!metadata[j]) {
2551 				err = -ENOMEM;
2552 				goto err_free_metadata;
2553 			}
2554 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2555 				metadata[j][k] = ptr[i + k];
2556 
2557 			/* The traceID is our handle */
2558 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2559 			i += CS_ETM_PRIV_MAX;
2560 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2561 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2562 					     CS_ETMV4_PRIV_MAX);
2563 			if (!metadata[j]) {
2564 				err = -ENOMEM;
2565 				goto err_free_metadata;
2566 			}
2567 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2568 				metadata[j][k] = ptr[i + k];
2569 
2570 			/* The traceID is our handle */
2571 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2572 			i += CS_ETMV4_PRIV_MAX;
2573 		}
2574 
2575 		/* Get an RB node for this CPU */
2576 		inode = intlist__findnew(traceid_list, idx);
2577 
2578 		/* Something went wrong, no need to continue */
2579 		if (!inode) {
2580 			err = -ENOMEM;
2581 			goto err_free_metadata;
2582 		}
2583 
2584 		/*
2585 		 * The node for that CPU should not be taken.
2586 		 * Back out if that's the case.
2587 		 */
2588 		if (inode->priv) {
2589 			err = -EINVAL;
2590 			goto err_free_metadata;
2591 		}
2592 		/* All good, associate the traceID with the metadata pointer */
2593 		inode->priv = metadata[j];
2594 	}
2595 
2596 	/*
2597 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2598 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2599 	 * global metadata, and each cpu's metadata respectively.
2600 	 * The following tests if the correct number of double words was
2601 	 * present in the auxtrace info section.
2602 	 */
2603 	if (i * 8 != priv_size) {
2604 		err = -EINVAL;
2605 		goto err_free_metadata;
2606 	}
2607 
2608 	etm = zalloc(sizeof(*etm));
2609 
2610 	if (!etm) {
2611 		err = -ENOMEM;
2612 		goto err_free_metadata;
2613 	}
2614 
2615 	err = auxtrace_queues__init(&etm->queues);
2616 	if (err)
2617 		goto err_free_etm;
2618 
2619 	etm->session = session;
2620 	etm->machine = &session->machines.host;
2621 
2622 	etm->num_cpu = num_cpu;
2623 	etm->pmu_type = pmu_type;
2624 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2625 	etm->metadata = metadata;
2626 	etm->auxtrace_type = auxtrace_info->type;
2627 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2628 
2629 	etm->auxtrace.process_event = cs_etm__process_event;
2630 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2631 	etm->auxtrace.flush_events = cs_etm__flush_events;
2632 	etm->auxtrace.free_events = cs_etm__free_events;
2633 	etm->auxtrace.free = cs_etm__free;
2634 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2635 	session->auxtrace = &etm->auxtrace;
2636 
2637 	etm->unknown_thread = thread__new(999999999, 999999999);
2638 	if (!etm->unknown_thread) {
2639 		err = -ENOMEM;
2640 		goto err_free_queues;
2641 	}
2642 
2643 	/*
2644 	 * Initialize list node so that at thread__zput() we can avoid
2645 	 * segmentation fault at list_del_init().
2646 	 */
2647 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2648 
2649 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2650 	if (err)
2651 		goto err_delete_thread;
2652 
2653 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2654 		err = -ENOMEM;
2655 		goto err_delete_thread;
2656 	}
2657 
2658 	if (dump_trace) {
2659 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2660 		return 0;
2661 	}
2662 
2663 	if (session->itrace_synth_opts->set) {
2664 		etm->synth_opts = *session->itrace_synth_opts;
2665 	} else {
2666 		itrace_synth_opts__set_default(&etm->synth_opts,
2667 				session->itrace_synth_opts->default_no_sample);
2668 		etm->synth_opts.callchain = false;
2669 	}
2670 
2671 	err = cs_etm__synth_events(etm, session);
2672 	if (err)
2673 		goto err_delete_thread;
2674 
2675 	err = auxtrace_queues__process_index(&etm->queues, session);
2676 	if (err)
2677 		goto err_delete_thread;
2678 
2679 	etm->data_queued = etm->queues.populated;
2680 
2681 	return 0;
2682 
2683 err_delete_thread:
2684 	thread__zput(etm->unknown_thread);
2685 err_free_queues:
2686 	auxtrace_queues__free(&etm->queues);
2687 	session->auxtrace = NULL;
2688 err_free_etm:
2689 	zfree(&etm);
2690 err_free_metadata:
2691 	/* No need to check @metadata[j], free(NULL) is supported */
2692 	for (j = 0; j < num_cpu; j++)
2693 		zfree(&metadata[j]);
2694 	zfree(&metadata);
2695 err_free_traceid_list:
2696 	intlist__delete(traceid_list);
2697 err_free_hdr:
2698 	zfree(&hdr);
2699 
2700 	return err;
2701 }
2702