1 /* 2 * SPDX-License-Identifier: GPL-2.0 3 * 4 * Copyright(C) 2015-2018 Linaro Limited. 5 * 6 * Author: Tor Jeremiassen <tor@ti.com> 7 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 16 #include <stdlib.h> 17 18 #include "auxtrace.h" 19 #include "color.h" 20 #include "cs-etm.h" 21 #include "cs-etm-decoder/cs-etm-decoder.h" 22 #include "debug.h" 23 #include "evlist.h" 24 #include "intlist.h" 25 #include "machine.h" 26 #include "map.h" 27 #include "perf.h" 28 #include "thread.h" 29 #include "thread_map.h" 30 #include "thread-stack.h" 31 #include "util.h" 32 33 #define MAX_TIMESTAMP (~0ULL) 34 35 /* 36 * A64 instructions are always 4 bytes 37 * 38 * Only A64 is supported, so can use this constant for converting between 39 * addresses and instruction counts, calculting offsets etc 40 */ 41 #define A64_INSTR_SIZE 4 42 43 struct cs_etm_auxtrace { 44 struct auxtrace auxtrace; 45 struct auxtrace_queues queues; 46 struct auxtrace_heap heap; 47 struct itrace_synth_opts synth_opts; 48 struct perf_session *session; 49 struct machine *machine; 50 struct thread *unknown_thread; 51 52 u8 timeless_decoding; 53 u8 snapshot_mode; 54 u8 data_queued; 55 u8 sample_branches; 56 u8 sample_instructions; 57 58 int num_cpu; 59 u32 auxtrace_type; 60 u64 branches_sample_type; 61 u64 branches_id; 62 u64 instructions_sample_type; 63 u64 instructions_sample_period; 64 u64 instructions_id; 65 u64 **metadata; 66 u64 kernel_start; 67 unsigned int pmu_type; 68 }; 69 70 struct cs_etm_queue { 71 struct cs_etm_auxtrace *etm; 72 struct thread *thread; 73 struct cs_etm_decoder *decoder; 74 struct auxtrace_buffer *buffer; 75 const struct cs_etm_state *state; 76 union perf_event *event_buf; 77 unsigned int queue_nr; 78 pid_t pid, tid; 79 int cpu; 80 u64 time; 81 u64 timestamp; 82 u64 offset; 83 u64 period_instructions; 84 struct branch_stack *last_branch; 85 struct branch_stack *last_branch_rb; 86 size_t last_branch_pos; 87 struct cs_etm_packet *prev_packet; 88 struct cs_etm_packet *packet; 89 }; 90 91 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); 92 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 93 pid_t tid, u64 time_); 94 95 static void cs_etm__packet_dump(const char *pkt_string) 96 { 97 const char *color = PERF_COLOR_BLUE; 98 int len = strlen(pkt_string); 99 100 if (len && (pkt_string[len-1] == '\n')) 101 color_fprintf(stdout, color, " %s", pkt_string); 102 else 103 color_fprintf(stdout, color, " %s\n", pkt_string); 104 105 fflush(stdout); 106 } 107 108 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, 109 struct auxtrace_buffer *buffer) 110 { 111 int i, ret; 112 const char *color = PERF_COLOR_BLUE; 113 struct cs_etm_decoder_params d_params; 114 struct cs_etm_trace_params *t_params; 115 struct cs_etm_decoder *decoder; 116 size_t buffer_used = 0; 117 118 fprintf(stdout, "\n"); 119 color_fprintf(stdout, color, 120 ". ... CoreSight ETM Trace data: size %zu bytes\n", 121 buffer->size); 122 123 /* Use metadata to fill in trace parameters for trace decoder */ 124 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 125 for (i = 0; i < etm->num_cpu; i++) { 126 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 127 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 128 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 129 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 130 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 131 t_params[i].etmv4.reg_configr = 132 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 133 t_params[i].etmv4.reg_traceidr = 134 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 135 } 136 137 /* Set decoder parameters to simply print the trace packets */ 138 d_params.packet_printer = cs_etm__packet_dump; 139 d_params.operation = CS_ETM_OPERATION_PRINT; 140 d_params.formatted = true; 141 d_params.fsyncs = false; 142 d_params.hsyncs = false; 143 d_params.frame_aligned = true; 144 145 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 146 147 zfree(&t_params); 148 149 if (!decoder) 150 return; 151 do { 152 size_t consumed; 153 154 ret = cs_etm_decoder__process_data_block( 155 decoder, buffer->offset, 156 &((u8 *)buffer->data)[buffer_used], 157 buffer->size - buffer_used, &consumed); 158 if (ret) 159 break; 160 161 buffer_used += consumed; 162 } while (buffer_used < buffer->size); 163 164 cs_etm_decoder__free(decoder); 165 } 166 167 static int cs_etm__flush_events(struct perf_session *session, 168 struct perf_tool *tool) 169 { 170 int ret; 171 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 172 struct cs_etm_auxtrace, 173 auxtrace); 174 if (dump_trace) 175 return 0; 176 177 if (!tool->ordered_events) 178 return -EINVAL; 179 180 if (!etm->timeless_decoding) 181 return -EINVAL; 182 183 ret = cs_etm__update_queues(etm); 184 185 if (ret < 0) 186 return ret; 187 188 return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1); 189 } 190 191 static void cs_etm__free_queue(void *priv) 192 { 193 struct cs_etm_queue *etmq = priv; 194 195 if (!etmq) 196 return; 197 198 thread__zput(etmq->thread); 199 cs_etm_decoder__free(etmq->decoder); 200 zfree(&etmq->event_buf); 201 zfree(&etmq->last_branch); 202 zfree(&etmq->last_branch_rb); 203 zfree(&etmq->prev_packet); 204 zfree(&etmq->packet); 205 free(etmq); 206 } 207 208 static void cs_etm__free_events(struct perf_session *session) 209 { 210 unsigned int i; 211 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 212 struct cs_etm_auxtrace, 213 auxtrace); 214 struct auxtrace_queues *queues = &aux->queues; 215 216 for (i = 0; i < queues->nr_queues; i++) { 217 cs_etm__free_queue(queues->queue_array[i].priv); 218 queues->queue_array[i].priv = NULL; 219 } 220 221 auxtrace_queues__free(queues); 222 } 223 224 static void cs_etm__free(struct perf_session *session) 225 { 226 int i; 227 struct int_node *inode, *tmp; 228 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 229 struct cs_etm_auxtrace, 230 auxtrace); 231 cs_etm__free_events(session); 232 session->auxtrace = NULL; 233 234 /* First remove all traceID/CPU# nodes for the RB tree */ 235 intlist__for_each_entry_safe(inode, tmp, traceid_list) 236 intlist__remove(traceid_list, inode); 237 /* Then the RB tree itself */ 238 intlist__delete(traceid_list); 239 240 for (i = 0; i < aux->num_cpu; i++) 241 zfree(&aux->metadata[i]); 242 243 zfree(&aux->metadata); 244 zfree(&aux); 245 } 246 247 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address, 248 size_t size, u8 *buffer) 249 { 250 u8 cpumode; 251 u64 offset; 252 int len; 253 struct thread *thread; 254 struct machine *machine; 255 struct addr_location al; 256 257 if (!etmq) 258 return -1; 259 260 machine = etmq->etm->machine; 261 if (address >= etmq->etm->kernel_start) 262 cpumode = PERF_RECORD_MISC_KERNEL; 263 else 264 cpumode = PERF_RECORD_MISC_USER; 265 266 thread = etmq->thread; 267 if (!thread) { 268 if (cpumode != PERF_RECORD_MISC_KERNEL) 269 return -EINVAL; 270 thread = etmq->etm->unknown_thread; 271 } 272 273 thread__find_addr_map(thread, cpumode, MAP__FUNCTION, address, &al); 274 275 if (!al.map || !al.map->dso) 276 return 0; 277 278 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 279 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 280 return 0; 281 282 offset = al.map->map_ip(al.map, address); 283 284 map__load(al.map); 285 286 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 287 288 if (len <= 0) 289 return 0; 290 291 return len; 292 } 293 294 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 295 unsigned int queue_nr) 296 { 297 int i; 298 struct cs_etm_decoder_params d_params; 299 struct cs_etm_trace_params *t_params; 300 struct cs_etm_queue *etmq; 301 size_t szp = sizeof(struct cs_etm_packet); 302 303 etmq = zalloc(sizeof(*etmq)); 304 if (!etmq) 305 return NULL; 306 307 etmq->packet = zalloc(szp); 308 if (!etmq->packet) 309 goto out_free; 310 311 if (etm->synth_opts.last_branch || etm->sample_branches) { 312 etmq->prev_packet = zalloc(szp); 313 if (!etmq->prev_packet) 314 goto out_free; 315 } 316 317 if (etm->synth_opts.last_branch) { 318 size_t sz = sizeof(struct branch_stack); 319 320 sz += etm->synth_opts.last_branch_sz * 321 sizeof(struct branch_entry); 322 etmq->last_branch = zalloc(sz); 323 if (!etmq->last_branch) 324 goto out_free; 325 etmq->last_branch_rb = zalloc(sz); 326 if (!etmq->last_branch_rb) 327 goto out_free; 328 } 329 330 etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 331 if (!etmq->event_buf) 332 goto out_free; 333 334 etmq->etm = etm; 335 etmq->queue_nr = queue_nr; 336 etmq->pid = -1; 337 etmq->tid = -1; 338 etmq->cpu = -1; 339 340 /* Use metadata to fill in trace parameters for trace decoder */ 341 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 342 343 if (!t_params) 344 goto out_free; 345 346 for (i = 0; i < etm->num_cpu; i++) { 347 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 348 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 349 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 350 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 351 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 352 t_params[i].etmv4.reg_configr = 353 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 354 t_params[i].etmv4.reg_traceidr = 355 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 356 } 357 358 /* Set decoder parameters to simply print the trace packets */ 359 d_params.packet_printer = cs_etm__packet_dump; 360 d_params.operation = CS_ETM_OPERATION_DECODE; 361 d_params.formatted = true; 362 d_params.fsyncs = false; 363 d_params.hsyncs = false; 364 d_params.frame_aligned = true; 365 d_params.data = etmq; 366 367 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 368 369 zfree(&t_params); 370 371 if (!etmq->decoder) 372 goto out_free; 373 374 /* 375 * Register a function to handle all memory accesses required by 376 * the trace decoder library. 377 */ 378 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 379 0x0L, ((u64) -1L), 380 cs_etm__mem_access)) 381 goto out_free_decoder; 382 383 etmq->offset = 0; 384 etmq->period_instructions = 0; 385 386 return etmq; 387 388 out_free_decoder: 389 cs_etm_decoder__free(etmq->decoder); 390 out_free: 391 zfree(&etmq->event_buf); 392 zfree(&etmq->last_branch); 393 zfree(&etmq->last_branch_rb); 394 zfree(&etmq->prev_packet); 395 zfree(&etmq->packet); 396 free(etmq); 397 398 return NULL; 399 } 400 401 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 402 struct auxtrace_queue *queue, 403 unsigned int queue_nr) 404 { 405 struct cs_etm_queue *etmq = queue->priv; 406 407 if (list_empty(&queue->head) || etmq) 408 return 0; 409 410 etmq = cs_etm__alloc_queue(etm, queue_nr); 411 412 if (!etmq) 413 return -ENOMEM; 414 415 queue->priv = etmq; 416 417 if (queue->cpu != -1) 418 etmq->cpu = queue->cpu; 419 420 etmq->tid = queue->tid; 421 422 return 0; 423 } 424 425 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) 426 { 427 unsigned int i; 428 int ret; 429 430 for (i = 0; i < etm->queues.nr_queues; i++) { 431 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); 432 if (ret) 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) 440 { 441 if (etm->queues.new_data) { 442 etm->queues.new_data = false; 443 return cs_etm__setup_queues(etm); 444 } 445 446 return 0; 447 } 448 449 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq) 450 { 451 struct branch_stack *bs_src = etmq->last_branch_rb; 452 struct branch_stack *bs_dst = etmq->last_branch; 453 size_t nr = 0; 454 455 /* 456 * Set the number of records before early exit: ->nr is used to 457 * determine how many branches to copy from ->entries. 458 */ 459 bs_dst->nr = bs_src->nr; 460 461 /* 462 * Early exit when there is nothing to copy. 463 */ 464 if (!bs_src->nr) 465 return; 466 467 /* 468 * As bs_src->entries is a circular buffer, we need to copy from it in 469 * two steps. First, copy the branches from the most recently inserted 470 * branch ->last_branch_pos until the end of bs_src->entries buffer. 471 */ 472 nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos; 473 memcpy(&bs_dst->entries[0], 474 &bs_src->entries[etmq->last_branch_pos], 475 sizeof(struct branch_entry) * nr); 476 477 /* 478 * If we wrapped around at least once, the branches from the beginning 479 * of the bs_src->entries buffer and until the ->last_branch_pos element 480 * are older valid branches: copy them over. The total number of 481 * branches copied over will be equal to the number of branches asked by 482 * the user in last_branch_sz. 483 */ 484 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 485 memcpy(&bs_dst->entries[nr], 486 &bs_src->entries[0], 487 sizeof(struct branch_entry) * etmq->last_branch_pos); 488 } 489 } 490 491 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq) 492 { 493 etmq->last_branch_pos = 0; 494 etmq->last_branch_rb->nr = 0; 495 } 496 497 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet) 498 { 499 /* 500 * The packet records the execution range with an exclusive end address 501 * 502 * A64 instructions are constant size, so the last executed 503 * instruction is A64_INSTR_SIZE before the end address 504 * Will need to do instruction level decode for T32 instructions as 505 * they can be variable size (not yet supported). 506 */ 507 return packet->end_addr - A64_INSTR_SIZE; 508 } 509 510 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet) 511 { 512 /* 513 * Only A64 instructions are currently supported, so can get 514 * instruction count by dividing. 515 * Will need to do instruction level decode for T32 instructions as 516 * they can be variable size (not yet supported). 517 */ 518 return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE; 519 } 520 521 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet, 522 u64 offset) 523 { 524 /* 525 * Only A64 instructions are currently supported, so can get 526 * instruction address by muliplying. 527 * Will need to do instruction level decode for T32 instructions as 528 * they can be variable size (not yet supported). 529 */ 530 return packet->start_addr + offset * A64_INSTR_SIZE; 531 } 532 533 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq) 534 { 535 struct branch_stack *bs = etmq->last_branch_rb; 536 struct branch_entry *be; 537 538 /* 539 * The branches are recorded in a circular buffer in reverse 540 * chronological order: we start recording from the last element of the 541 * buffer down. After writing the first element of the stack, move the 542 * insert position back to the end of the buffer. 543 */ 544 if (!etmq->last_branch_pos) 545 etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 546 547 etmq->last_branch_pos -= 1; 548 549 be = &bs->entries[etmq->last_branch_pos]; 550 be->from = cs_etm__last_executed_instr(etmq->prev_packet); 551 be->to = etmq->packet->start_addr; 552 /* No support for mispredict */ 553 be->flags.mispred = 0; 554 be->flags.predicted = 1; 555 556 /* 557 * Increment bs->nr until reaching the number of last branches asked by 558 * the user on the command line. 559 */ 560 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 561 bs->nr += 1; 562 } 563 564 static int cs_etm__inject_event(union perf_event *event, 565 struct perf_sample *sample, u64 type) 566 { 567 event->header.size = perf_event__sample_event_size(sample, type, 0); 568 return perf_event__synthesize_sample(event, type, 0, sample); 569 } 570 571 572 static int 573 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq) 574 { 575 struct auxtrace_buffer *aux_buffer = etmq->buffer; 576 struct auxtrace_buffer *old_buffer = aux_buffer; 577 struct auxtrace_queue *queue; 578 579 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 580 581 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 582 583 /* If no more data, drop the previous auxtrace_buffer and return */ 584 if (!aux_buffer) { 585 if (old_buffer) 586 auxtrace_buffer__drop_data(old_buffer); 587 buff->len = 0; 588 return 0; 589 } 590 591 etmq->buffer = aux_buffer; 592 593 /* If the aux_buffer doesn't have data associated, try to load it */ 594 if (!aux_buffer->data) { 595 /* get the file desc associated with the perf data file */ 596 int fd = perf_data__fd(etmq->etm->session->data); 597 598 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 599 if (!aux_buffer->data) 600 return -ENOMEM; 601 } 602 603 /* If valid, drop the previous buffer */ 604 if (old_buffer) 605 auxtrace_buffer__drop_data(old_buffer); 606 607 buff->offset = aux_buffer->offset; 608 buff->len = aux_buffer->size; 609 buff->buf = aux_buffer->data; 610 611 buff->ref_timestamp = aux_buffer->reference; 612 613 return buff->len; 614 } 615 616 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 617 struct auxtrace_queue *queue) 618 { 619 struct cs_etm_queue *etmq = queue->priv; 620 621 /* CPU-wide tracing isn't supported yet */ 622 if (queue->tid == -1) 623 return; 624 625 if ((!etmq->thread) && (etmq->tid != -1)) 626 etmq->thread = machine__find_thread(etm->machine, -1, 627 etmq->tid); 628 629 if (etmq->thread) { 630 etmq->pid = etmq->thread->pid_; 631 if (queue->cpu == -1) 632 etmq->cpu = etmq->thread->cpu; 633 } 634 } 635 636 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 637 u64 addr, u64 period) 638 { 639 int ret = 0; 640 struct cs_etm_auxtrace *etm = etmq->etm; 641 union perf_event *event = etmq->event_buf; 642 struct perf_sample sample = {.ip = 0,}; 643 644 event->sample.header.type = PERF_RECORD_SAMPLE; 645 event->sample.header.misc = PERF_RECORD_MISC_USER; 646 event->sample.header.size = sizeof(struct perf_event_header); 647 648 sample.ip = addr; 649 sample.pid = etmq->pid; 650 sample.tid = etmq->tid; 651 sample.id = etmq->etm->instructions_id; 652 sample.stream_id = etmq->etm->instructions_id; 653 sample.period = period; 654 sample.cpu = etmq->packet->cpu; 655 sample.flags = 0; 656 sample.insn_len = 1; 657 sample.cpumode = event->header.misc; 658 659 if (etm->synth_opts.last_branch) { 660 cs_etm__copy_last_branch_rb(etmq); 661 sample.branch_stack = etmq->last_branch; 662 } 663 664 if (etm->synth_opts.inject) { 665 ret = cs_etm__inject_event(event, &sample, 666 etm->instructions_sample_type); 667 if (ret) 668 return ret; 669 } 670 671 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 672 673 if (ret) 674 pr_err( 675 "CS ETM Trace: failed to deliver instruction event, error %d\n", 676 ret); 677 678 if (etm->synth_opts.last_branch) 679 cs_etm__reset_last_branch_rb(etmq); 680 681 return ret; 682 } 683 684 /* 685 * The cs etm packet encodes an instruction range between a branch target 686 * and the next taken branch. Generate sample accordingly. 687 */ 688 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq) 689 { 690 int ret = 0; 691 struct cs_etm_auxtrace *etm = etmq->etm; 692 struct perf_sample sample = {.ip = 0,}; 693 union perf_event *event = etmq->event_buf; 694 struct dummy_branch_stack { 695 u64 nr; 696 struct branch_entry entries; 697 } dummy_bs; 698 699 event->sample.header.type = PERF_RECORD_SAMPLE; 700 event->sample.header.misc = PERF_RECORD_MISC_USER; 701 event->sample.header.size = sizeof(struct perf_event_header); 702 703 sample.ip = cs_etm__last_executed_instr(etmq->prev_packet); 704 sample.pid = etmq->pid; 705 sample.tid = etmq->tid; 706 sample.addr = etmq->packet->start_addr; 707 sample.id = etmq->etm->branches_id; 708 sample.stream_id = etmq->etm->branches_id; 709 sample.period = 1; 710 sample.cpu = etmq->packet->cpu; 711 sample.flags = 0; 712 sample.cpumode = PERF_RECORD_MISC_USER; 713 714 /* 715 * perf report cannot handle events without a branch stack 716 */ 717 if (etm->synth_opts.last_branch) { 718 dummy_bs = (struct dummy_branch_stack){ 719 .nr = 1, 720 .entries = { 721 .from = sample.ip, 722 .to = sample.addr, 723 }, 724 }; 725 sample.branch_stack = (struct branch_stack *)&dummy_bs; 726 } 727 728 if (etm->synth_opts.inject) { 729 ret = cs_etm__inject_event(event, &sample, 730 etm->branches_sample_type); 731 if (ret) 732 return ret; 733 } 734 735 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 736 737 if (ret) 738 pr_err( 739 "CS ETM Trace: failed to deliver instruction event, error %d\n", 740 ret); 741 742 return ret; 743 } 744 745 struct cs_etm_synth { 746 struct perf_tool dummy_tool; 747 struct perf_session *session; 748 }; 749 750 static int cs_etm__event_synth(struct perf_tool *tool, 751 union perf_event *event, 752 struct perf_sample *sample __maybe_unused, 753 struct machine *machine __maybe_unused) 754 { 755 struct cs_etm_synth *cs_etm_synth = 756 container_of(tool, struct cs_etm_synth, dummy_tool); 757 758 return perf_session__deliver_synth_event(cs_etm_synth->session, 759 event, NULL); 760 } 761 762 static int cs_etm__synth_event(struct perf_session *session, 763 struct perf_event_attr *attr, u64 id) 764 { 765 struct cs_etm_synth cs_etm_synth; 766 767 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 768 cs_etm_synth.session = session; 769 770 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 771 &id, cs_etm__event_synth); 772 } 773 774 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 775 struct perf_session *session) 776 { 777 struct perf_evlist *evlist = session->evlist; 778 struct perf_evsel *evsel; 779 struct perf_event_attr attr; 780 bool found = false; 781 u64 id; 782 int err; 783 784 evlist__for_each_entry(evlist, evsel) { 785 if (evsel->attr.type == etm->pmu_type) { 786 found = true; 787 break; 788 } 789 } 790 791 if (!found) { 792 pr_debug("No selected events with CoreSight Trace data\n"); 793 return 0; 794 } 795 796 memset(&attr, 0, sizeof(struct perf_event_attr)); 797 attr.size = sizeof(struct perf_event_attr); 798 attr.type = PERF_TYPE_HARDWARE; 799 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; 800 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 801 PERF_SAMPLE_PERIOD; 802 if (etm->timeless_decoding) 803 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 804 else 805 attr.sample_type |= PERF_SAMPLE_TIME; 806 807 attr.exclude_user = evsel->attr.exclude_user; 808 attr.exclude_kernel = evsel->attr.exclude_kernel; 809 attr.exclude_hv = evsel->attr.exclude_hv; 810 attr.exclude_host = evsel->attr.exclude_host; 811 attr.exclude_guest = evsel->attr.exclude_guest; 812 attr.sample_id_all = evsel->attr.sample_id_all; 813 attr.read_format = evsel->attr.read_format; 814 815 /* create new id val to be a fixed offset from evsel id */ 816 id = evsel->id[0] + 1000000000; 817 818 if (!id) 819 id = 1; 820 821 if (etm->synth_opts.branches) { 822 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 823 attr.sample_period = 1; 824 attr.sample_type |= PERF_SAMPLE_ADDR; 825 err = cs_etm__synth_event(session, &attr, id); 826 if (err) 827 return err; 828 etm->sample_branches = true; 829 etm->branches_sample_type = attr.sample_type; 830 etm->branches_id = id; 831 id += 1; 832 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 833 } 834 835 if (etm->synth_opts.last_branch) 836 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 837 838 if (etm->synth_opts.instructions) { 839 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 840 attr.sample_period = etm->synth_opts.period; 841 etm->instructions_sample_period = attr.sample_period; 842 err = cs_etm__synth_event(session, &attr, id); 843 if (err) 844 return err; 845 etm->sample_instructions = true; 846 etm->instructions_sample_type = attr.sample_type; 847 etm->instructions_id = id; 848 id += 1; 849 } 850 851 return 0; 852 } 853 854 static int cs_etm__sample(struct cs_etm_queue *etmq) 855 { 856 struct cs_etm_auxtrace *etm = etmq->etm; 857 struct cs_etm_packet *tmp; 858 int ret; 859 u64 instrs_executed; 860 861 instrs_executed = cs_etm__instr_count(etmq->packet); 862 etmq->period_instructions += instrs_executed; 863 864 /* 865 * Record a branch when the last instruction in 866 * PREV_PACKET is a branch. 867 */ 868 if (etm->synth_opts.last_branch && 869 etmq->prev_packet && 870 etmq->prev_packet->sample_type == CS_ETM_RANGE && 871 etmq->prev_packet->last_instr_taken_branch) 872 cs_etm__update_last_branch_rb(etmq); 873 874 if (etm->sample_instructions && 875 etmq->period_instructions >= etm->instructions_sample_period) { 876 /* 877 * Emit instruction sample periodically 878 * TODO: allow period to be defined in cycles and clock time 879 */ 880 881 /* Get number of instructions executed after the sample point */ 882 u64 instrs_over = etmq->period_instructions - 883 etm->instructions_sample_period; 884 885 /* 886 * Calculate the address of the sampled instruction (-1 as 887 * sample is reported as though instruction has just been 888 * executed, but PC has not advanced to next instruction) 889 */ 890 u64 offset = (instrs_executed - instrs_over - 1); 891 u64 addr = cs_etm__instr_addr(etmq->packet, offset); 892 893 ret = cs_etm__synth_instruction_sample( 894 etmq, addr, etm->instructions_sample_period); 895 if (ret) 896 return ret; 897 898 /* Carry remaining instructions into next sample period */ 899 etmq->period_instructions = instrs_over; 900 } 901 902 if (etm->sample_branches && 903 etmq->prev_packet && 904 etmq->prev_packet->sample_type == CS_ETM_RANGE && 905 etmq->prev_packet->last_instr_taken_branch) { 906 ret = cs_etm__synth_branch_sample(etmq); 907 if (ret) 908 return ret; 909 } 910 911 if (etm->sample_branches || etm->synth_opts.last_branch) { 912 /* 913 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 914 * the next incoming packet. 915 */ 916 tmp = etmq->packet; 917 etmq->packet = etmq->prev_packet; 918 etmq->prev_packet = tmp; 919 } 920 921 return 0; 922 } 923 924 static int cs_etm__flush(struct cs_etm_queue *etmq) 925 { 926 int err = 0; 927 struct cs_etm_packet *tmp; 928 929 if (etmq->etm->synth_opts.last_branch && 930 etmq->prev_packet && 931 etmq->prev_packet->sample_type == CS_ETM_RANGE) { 932 /* 933 * Generate a last branch event for the branches left in the 934 * circular buffer at the end of the trace. 935 * 936 * Use the address of the end of the last reported execution 937 * range 938 */ 939 u64 addr = cs_etm__last_executed_instr(etmq->prev_packet); 940 941 err = cs_etm__synth_instruction_sample( 942 etmq, addr, 943 etmq->period_instructions); 944 etmq->period_instructions = 0; 945 946 /* 947 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 948 * the next incoming packet. 949 */ 950 tmp = etmq->packet; 951 etmq->packet = etmq->prev_packet; 952 etmq->prev_packet = tmp; 953 } 954 955 return err; 956 } 957 958 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 959 { 960 struct cs_etm_auxtrace *etm = etmq->etm; 961 struct cs_etm_buffer buffer; 962 size_t buffer_used, processed; 963 int err = 0; 964 965 if (!etm->kernel_start) 966 etm->kernel_start = machine__kernel_start(etm->machine); 967 968 /* Go through each buffer in the queue and decode them one by one */ 969 while (1) { 970 buffer_used = 0; 971 memset(&buffer, 0, sizeof(buffer)); 972 err = cs_etm__get_trace(&buffer, etmq); 973 if (err <= 0) 974 return err; 975 /* 976 * We cannot assume consecutive blocks in the data file are 977 * contiguous, reset the decoder to force re-sync. 978 */ 979 err = cs_etm_decoder__reset(etmq->decoder); 980 if (err != 0) 981 return err; 982 983 /* Run trace decoder until buffer consumed or end of trace */ 984 do { 985 processed = 0; 986 err = cs_etm_decoder__process_data_block( 987 etmq->decoder, 988 etmq->offset, 989 &buffer.buf[buffer_used], 990 buffer.len - buffer_used, 991 &processed); 992 if (err) 993 return err; 994 995 etmq->offset += processed; 996 buffer_used += processed; 997 998 /* Process each packet in this chunk */ 999 while (1) { 1000 err = cs_etm_decoder__get_packet(etmq->decoder, 1001 etmq->packet); 1002 if (err <= 0) 1003 /* 1004 * Stop processing this chunk on 1005 * end of data or error 1006 */ 1007 break; 1008 1009 switch (etmq->packet->sample_type) { 1010 case CS_ETM_RANGE: 1011 /* 1012 * If the packet contains an instruction 1013 * range, generate instruction sequence 1014 * events. 1015 */ 1016 cs_etm__sample(etmq); 1017 break; 1018 case CS_ETM_TRACE_ON: 1019 /* 1020 * Discontinuity in trace, flush 1021 * previous branch stack 1022 */ 1023 cs_etm__flush(etmq); 1024 break; 1025 default: 1026 break; 1027 } 1028 } 1029 } while (buffer.len > buffer_used); 1030 1031 if (err == 0) 1032 /* Flush any remaining branch stack entries */ 1033 err = cs_etm__flush(etmq); 1034 } 1035 1036 return err; 1037 } 1038 1039 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 1040 pid_t tid, u64 time_) 1041 { 1042 unsigned int i; 1043 struct auxtrace_queues *queues = &etm->queues; 1044 1045 for (i = 0; i < queues->nr_queues; i++) { 1046 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 1047 struct cs_etm_queue *etmq = queue->priv; 1048 1049 if (etmq && ((tid == -1) || (etmq->tid == tid))) { 1050 etmq->time = time_; 1051 cs_etm__set_pid_tid_cpu(etm, queue); 1052 cs_etm__run_decoder(etmq); 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 static int cs_etm__process_event(struct perf_session *session, 1060 union perf_event *event, 1061 struct perf_sample *sample, 1062 struct perf_tool *tool) 1063 { 1064 int err = 0; 1065 u64 timestamp; 1066 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1067 struct cs_etm_auxtrace, 1068 auxtrace); 1069 1070 if (dump_trace) 1071 return 0; 1072 1073 if (!tool->ordered_events) { 1074 pr_err("CoreSight ETM Trace requires ordered events\n"); 1075 return -EINVAL; 1076 } 1077 1078 if (!etm->timeless_decoding) 1079 return -EINVAL; 1080 1081 if (sample->time && (sample->time != (u64) -1)) 1082 timestamp = sample->time; 1083 else 1084 timestamp = 0; 1085 1086 if (timestamp || etm->timeless_decoding) { 1087 err = cs_etm__update_queues(etm); 1088 if (err) 1089 return err; 1090 } 1091 1092 if (event->header.type == PERF_RECORD_EXIT) 1093 return cs_etm__process_timeless_queues(etm, 1094 event->fork.tid, 1095 sample->time); 1096 1097 return 0; 1098 } 1099 1100 static int cs_etm__process_auxtrace_event(struct perf_session *session, 1101 union perf_event *event, 1102 struct perf_tool *tool __maybe_unused) 1103 { 1104 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1105 struct cs_etm_auxtrace, 1106 auxtrace); 1107 if (!etm->data_queued) { 1108 struct auxtrace_buffer *buffer; 1109 off_t data_offset; 1110 int fd = perf_data__fd(session->data); 1111 bool is_pipe = perf_data__is_pipe(session->data); 1112 int err; 1113 1114 if (is_pipe) 1115 data_offset = 0; 1116 else { 1117 data_offset = lseek(fd, 0, SEEK_CUR); 1118 if (data_offset == -1) 1119 return -errno; 1120 } 1121 1122 err = auxtrace_queues__add_event(&etm->queues, session, 1123 event, data_offset, &buffer); 1124 if (err) 1125 return err; 1126 1127 if (dump_trace) 1128 if (auxtrace_buffer__get_data(buffer, fd)) { 1129 cs_etm__dump_event(etm, buffer); 1130 auxtrace_buffer__put_data(buffer); 1131 } 1132 } 1133 1134 return 0; 1135 } 1136 1137 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 1138 { 1139 struct perf_evsel *evsel; 1140 struct perf_evlist *evlist = etm->session->evlist; 1141 bool timeless_decoding = true; 1142 1143 /* 1144 * Circle through the list of event and complain if we find one 1145 * with the time bit set. 1146 */ 1147 evlist__for_each_entry(evlist, evsel) { 1148 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME)) 1149 timeless_decoding = false; 1150 } 1151 1152 return timeless_decoding; 1153 } 1154 1155 static const char * const cs_etm_global_header_fmts[] = { 1156 [CS_HEADER_VERSION_0] = " Header version %llx\n", 1157 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 1158 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 1159 }; 1160 1161 static const char * const cs_etm_priv_fmts[] = { 1162 [CS_ETM_MAGIC] = " Magic number %llx\n", 1163 [CS_ETM_CPU] = " CPU %lld\n", 1164 [CS_ETM_ETMCR] = " ETMCR %llx\n", 1165 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 1166 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 1167 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 1168 }; 1169 1170 static const char * const cs_etmv4_priv_fmts[] = { 1171 [CS_ETM_MAGIC] = " Magic number %llx\n", 1172 [CS_ETM_CPU] = " CPU %lld\n", 1173 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 1174 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 1175 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 1176 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 1177 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 1178 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 1179 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 1180 }; 1181 1182 static void cs_etm__print_auxtrace_info(u64 *val, int num) 1183 { 1184 int i, j, cpu = 0; 1185 1186 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1187 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 1188 1189 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { 1190 if (val[i] == __perf_cs_etmv3_magic) 1191 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) 1192 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 1193 else if (val[i] == __perf_cs_etmv4_magic) 1194 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) 1195 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 1196 else 1197 /* failure.. return */ 1198 return; 1199 } 1200 } 1201 1202 int cs_etm__process_auxtrace_info(union perf_event *event, 1203 struct perf_session *session) 1204 { 1205 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; 1206 struct cs_etm_auxtrace *etm = NULL; 1207 struct int_node *inode; 1208 unsigned int pmu_type; 1209 int event_header_size = sizeof(struct perf_event_header); 1210 int info_header_size; 1211 int total_size = auxtrace_info->header.size; 1212 int priv_size = 0; 1213 int num_cpu; 1214 int err = 0, idx = -1; 1215 int i, j, k; 1216 u64 *ptr, *hdr = NULL; 1217 u64 **metadata = NULL; 1218 1219 /* 1220 * sizeof(auxtrace_info_event::type) + 1221 * sizeof(auxtrace_info_event::reserved) == 8 1222 */ 1223 info_header_size = 8; 1224 1225 if (total_size < (event_header_size + info_header_size)) 1226 return -EINVAL; 1227 1228 priv_size = total_size - event_header_size - info_header_size; 1229 1230 /* First the global part */ 1231 ptr = (u64 *) auxtrace_info->priv; 1232 1233 /* Look for version '0' of the header */ 1234 if (ptr[0] != 0) 1235 return -EINVAL; 1236 1237 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); 1238 if (!hdr) 1239 return -ENOMEM; 1240 1241 /* Extract header information - see cs-etm.h for format */ 1242 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1243 hdr[i] = ptr[i]; 1244 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 1245 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 1246 0xffffffff); 1247 1248 /* 1249 * Create an RB tree for traceID-CPU# tuple. Since the conversion has 1250 * to be made for each packet that gets decoded, optimizing access in 1251 * anything other than a sequential array is worth doing. 1252 */ 1253 traceid_list = intlist__new(NULL); 1254 if (!traceid_list) { 1255 err = -ENOMEM; 1256 goto err_free_hdr; 1257 } 1258 1259 metadata = zalloc(sizeof(*metadata) * num_cpu); 1260 if (!metadata) { 1261 err = -ENOMEM; 1262 goto err_free_traceid_list; 1263 } 1264 1265 /* 1266 * The metadata is stored in the auxtrace_info section and encodes 1267 * the configuration of the ARM embedded trace macrocell which is 1268 * required by the trace decoder to properly decode the trace due 1269 * to its highly compressed nature. 1270 */ 1271 for (j = 0; j < num_cpu; j++) { 1272 if (ptr[i] == __perf_cs_etmv3_magic) { 1273 metadata[j] = zalloc(sizeof(*metadata[j]) * 1274 CS_ETM_PRIV_MAX); 1275 if (!metadata[j]) { 1276 err = -ENOMEM; 1277 goto err_free_metadata; 1278 } 1279 for (k = 0; k < CS_ETM_PRIV_MAX; k++) 1280 metadata[j][k] = ptr[i + k]; 1281 1282 /* The traceID is our handle */ 1283 idx = metadata[j][CS_ETM_ETMTRACEIDR]; 1284 i += CS_ETM_PRIV_MAX; 1285 } else if (ptr[i] == __perf_cs_etmv4_magic) { 1286 metadata[j] = zalloc(sizeof(*metadata[j]) * 1287 CS_ETMV4_PRIV_MAX); 1288 if (!metadata[j]) { 1289 err = -ENOMEM; 1290 goto err_free_metadata; 1291 } 1292 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) 1293 metadata[j][k] = ptr[i + k]; 1294 1295 /* The traceID is our handle */ 1296 idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; 1297 i += CS_ETMV4_PRIV_MAX; 1298 } 1299 1300 /* Get an RB node for this CPU */ 1301 inode = intlist__findnew(traceid_list, idx); 1302 1303 /* Something went wrong, no need to continue */ 1304 if (!inode) { 1305 err = PTR_ERR(inode); 1306 goto err_free_metadata; 1307 } 1308 1309 /* 1310 * The node for that CPU should not be taken. 1311 * Back out if that's the case. 1312 */ 1313 if (inode->priv) { 1314 err = -EINVAL; 1315 goto err_free_metadata; 1316 } 1317 /* All good, associate the traceID with the CPU# */ 1318 inode->priv = &metadata[j][CS_ETM_CPU]; 1319 } 1320 1321 /* 1322 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and 1323 * CS_ETMV4_PRIV_MAX mark how many double words are in the 1324 * global metadata, and each cpu's metadata respectively. 1325 * The following tests if the correct number of double words was 1326 * present in the auxtrace info section. 1327 */ 1328 if (i * 8 != priv_size) { 1329 err = -EINVAL; 1330 goto err_free_metadata; 1331 } 1332 1333 etm = zalloc(sizeof(*etm)); 1334 1335 if (!etm) { 1336 err = -ENOMEM; 1337 goto err_free_metadata; 1338 } 1339 1340 err = auxtrace_queues__init(&etm->queues); 1341 if (err) 1342 goto err_free_etm; 1343 1344 etm->session = session; 1345 etm->machine = &session->machines.host; 1346 1347 etm->num_cpu = num_cpu; 1348 etm->pmu_type = pmu_type; 1349 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 1350 etm->metadata = metadata; 1351 etm->auxtrace_type = auxtrace_info->type; 1352 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 1353 1354 etm->auxtrace.process_event = cs_etm__process_event; 1355 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 1356 etm->auxtrace.flush_events = cs_etm__flush_events; 1357 etm->auxtrace.free_events = cs_etm__free_events; 1358 etm->auxtrace.free = cs_etm__free; 1359 session->auxtrace = &etm->auxtrace; 1360 1361 if (dump_trace) { 1362 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 1363 return 0; 1364 } 1365 1366 if (session->itrace_synth_opts && session->itrace_synth_opts->set) { 1367 etm->synth_opts = *session->itrace_synth_opts; 1368 } else { 1369 itrace_synth_opts__set_default(&etm->synth_opts); 1370 etm->synth_opts.callchain = false; 1371 } 1372 1373 err = cs_etm__synth_events(etm, session); 1374 if (err) 1375 goto err_free_queues; 1376 1377 err = auxtrace_queues__process_index(&etm->queues, session); 1378 if (err) 1379 goto err_free_queues; 1380 1381 etm->data_queued = etm->queues.populated; 1382 1383 return 0; 1384 1385 err_free_queues: 1386 auxtrace_queues__free(&etm->queues); 1387 session->auxtrace = NULL; 1388 err_free_etm: 1389 zfree(&etm); 1390 err_free_metadata: 1391 /* No need to check @metadata[j], free(NULL) is supported */ 1392 for (j = 0; j < num_cpu; j++) 1393 free(metadata[j]); 1394 zfree(&metadata); 1395 err_free_traceid_list: 1396 intlist__delete(traceid_list); 1397 err_free_hdr: 1398 zfree(&hdr); 1399 1400 return -EINVAL; 1401 } 1402