xref: /linux/tools/perf/util/cs-etm.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  *
4  * Copyright(C) 2015-2018 Linaro Limited.
5  *
6  * Author: Tor Jeremiassen <tor@ti.com>
7  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 
16 #include <stdlib.h>
17 
18 #include "auxtrace.h"
19 #include "color.h"
20 #include "cs-etm.h"
21 #include "cs-etm-decoder/cs-etm-decoder.h"
22 #include "debug.h"
23 #include "evlist.h"
24 #include "intlist.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "perf.h"
28 #include "thread.h"
29 #include "thread_map.h"
30 #include "thread-stack.h"
31 #include "util.h"
32 
33 #define MAX_TIMESTAMP (~0ULL)
34 
35 /*
36  * A64 instructions are always 4 bytes
37  *
38  * Only A64 is supported, so can use this constant for converting between
39  * addresses and instruction counts, calculting offsets etc
40  */
41 #define A64_INSTR_SIZE 4
42 
43 struct cs_etm_auxtrace {
44 	struct auxtrace auxtrace;
45 	struct auxtrace_queues queues;
46 	struct auxtrace_heap heap;
47 	struct itrace_synth_opts synth_opts;
48 	struct perf_session *session;
49 	struct machine *machine;
50 	struct thread *unknown_thread;
51 
52 	u8 timeless_decoding;
53 	u8 snapshot_mode;
54 	u8 data_queued;
55 	u8 sample_branches;
56 	u8 sample_instructions;
57 
58 	int num_cpu;
59 	u32 auxtrace_type;
60 	u64 branches_sample_type;
61 	u64 branches_id;
62 	u64 instructions_sample_type;
63 	u64 instructions_sample_period;
64 	u64 instructions_id;
65 	u64 **metadata;
66 	u64 kernel_start;
67 	unsigned int pmu_type;
68 };
69 
70 struct cs_etm_queue {
71 	struct cs_etm_auxtrace *etm;
72 	struct thread *thread;
73 	struct cs_etm_decoder *decoder;
74 	struct auxtrace_buffer *buffer;
75 	const struct cs_etm_state *state;
76 	union perf_event *event_buf;
77 	unsigned int queue_nr;
78 	pid_t pid, tid;
79 	int cpu;
80 	u64 time;
81 	u64 timestamp;
82 	u64 offset;
83 	u64 period_instructions;
84 	struct branch_stack *last_branch;
85 	struct branch_stack *last_branch_rb;
86 	size_t last_branch_pos;
87 	struct cs_etm_packet *prev_packet;
88 	struct cs_etm_packet *packet;
89 };
90 
91 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
92 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
93 					   pid_t tid, u64 time_);
94 
95 static void cs_etm__packet_dump(const char *pkt_string)
96 {
97 	const char *color = PERF_COLOR_BLUE;
98 	int len = strlen(pkt_string);
99 
100 	if (len && (pkt_string[len-1] == '\n'))
101 		color_fprintf(stdout, color, "	%s", pkt_string);
102 	else
103 		color_fprintf(stdout, color, "	%s\n", pkt_string);
104 
105 	fflush(stdout);
106 }
107 
108 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
109 			       struct auxtrace_buffer *buffer)
110 {
111 	int i, ret;
112 	const char *color = PERF_COLOR_BLUE;
113 	struct cs_etm_decoder_params d_params;
114 	struct cs_etm_trace_params *t_params;
115 	struct cs_etm_decoder *decoder;
116 	size_t buffer_used = 0;
117 
118 	fprintf(stdout, "\n");
119 	color_fprintf(stdout, color,
120 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
121 		     buffer->size);
122 
123 	/* Use metadata to fill in trace parameters for trace decoder */
124 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
125 	for (i = 0; i < etm->num_cpu; i++) {
126 		t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
127 		t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
128 		t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
129 		t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
130 		t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
131 		t_params[i].etmv4.reg_configr =
132 					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
133 		t_params[i].etmv4.reg_traceidr =
134 					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
135 	}
136 
137 	/* Set decoder parameters to simply print the trace packets */
138 	d_params.packet_printer = cs_etm__packet_dump;
139 	d_params.operation = CS_ETM_OPERATION_PRINT;
140 	d_params.formatted = true;
141 	d_params.fsyncs = false;
142 	d_params.hsyncs = false;
143 	d_params.frame_aligned = true;
144 
145 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
146 
147 	zfree(&t_params);
148 
149 	if (!decoder)
150 		return;
151 	do {
152 		size_t consumed;
153 
154 		ret = cs_etm_decoder__process_data_block(
155 				decoder, buffer->offset,
156 				&((u8 *)buffer->data)[buffer_used],
157 				buffer->size - buffer_used, &consumed);
158 		if (ret)
159 			break;
160 
161 		buffer_used += consumed;
162 	} while (buffer_used < buffer->size);
163 
164 	cs_etm_decoder__free(decoder);
165 }
166 
167 static int cs_etm__flush_events(struct perf_session *session,
168 				struct perf_tool *tool)
169 {
170 	int ret;
171 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
172 						   struct cs_etm_auxtrace,
173 						   auxtrace);
174 	if (dump_trace)
175 		return 0;
176 
177 	if (!tool->ordered_events)
178 		return -EINVAL;
179 
180 	if (!etm->timeless_decoding)
181 		return -EINVAL;
182 
183 	ret = cs_etm__update_queues(etm);
184 
185 	if (ret < 0)
186 		return ret;
187 
188 	return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
189 }
190 
191 static void cs_etm__free_queue(void *priv)
192 {
193 	struct cs_etm_queue *etmq = priv;
194 
195 	if (!etmq)
196 		return;
197 
198 	thread__zput(etmq->thread);
199 	cs_etm_decoder__free(etmq->decoder);
200 	zfree(&etmq->event_buf);
201 	zfree(&etmq->last_branch);
202 	zfree(&etmq->last_branch_rb);
203 	zfree(&etmq->prev_packet);
204 	zfree(&etmq->packet);
205 	free(etmq);
206 }
207 
208 static void cs_etm__free_events(struct perf_session *session)
209 {
210 	unsigned int i;
211 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
212 						   struct cs_etm_auxtrace,
213 						   auxtrace);
214 	struct auxtrace_queues *queues = &aux->queues;
215 
216 	for (i = 0; i < queues->nr_queues; i++) {
217 		cs_etm__free_queue(queues->queue_array[i].priv);
218 		queues->queue_array[i].priv = NULL;
219 	}
220 
221 	auxtrace_queues__free(queues);
222 }
223 
224 static void cs_etm__free(struct perf_session *session)
225 {
226 	int i;
227 	struct int_node *inode, *tmp;
228 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
229 						   struct cs_etm_auxtrace,
230 						   auxtrace);
231 	cs_etm__free_events(session);
232 	session->auxtrace = NULL;
233 
234 	/* First remove all traceID/CPU# nodes for the RB tree */
235 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
236 		intlist__remove(traceid_list, inode);
237 	/* Then the RB tree itself */
238 	intlist__delete(traceid_list);
239 
240 	for (i = 0; i < aux->num_cpu; i++)
241 		zfree(&aux->metadata[i]);
242 
243 	zfree(&aux->metadata);
244 	zfree(&aux);
245 }
246 
247 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
248 			      size_t size, u8 *buffer)
249 {
250 	u8  cpumode;
251 	u64 offset;
252 	int len;
253 	struct	 thread *thread;
254 	struct	 machine *machine;
255 	struct	 addr_location al;
256 
257 	if (!etmq)
258 		return -1;
259 
260 	machine = etmq->etm->machine;
261 	if (address >= etmq->etm->kernel_start)
262 		cpumode = PERF_RECORD_MISC_KERNEL;
263 	else
264 		cpumode = PERF_RECORD_MISC_USER;
265 
266 	thread = etmq->thread;
267 	if (!thread) {
268 		if (cpumode != PERF_RECORD_MISC_KERNEL)
269 			return -EINVAL;
270 		thread = etmq->etm->unknown_thread;
271 	}
272 
273 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, address, &al);
274 
275 	if (!al.map || !al.map->dso)
276 		return 0;
277 
278 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
279 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
280 		return 0;
281 
282 	offset = al.map->map_ip(al.map, address);
283 
284 	map__load(al.map);
285 
286 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
287 
288 	if (len <= 0)
289 		return 0;
290 
291 	return len;
292 }
293 
294 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
295 						unsigned int queue_nr)
296 {
297 	int i;
298 	struct cs_etm_decoder_params d_params;
299 	struct cs_etm_trace_params  *t_params;
300 	struct cs_etm_queue *etmq;
301 	size_t szp = sizeof(struct cs_etm_packet);
302 
303 	etmq = zalloc(sizeof(*etmq));
304 	if (!etmq)
305 		return NULL;
306 
307 	etmq->packet = zalloc(szp);
308 	if (!etmq->packet)
309 		goto out_free;
310 
311 	if (etm->synth_opts.last_branch || etm->sample_branches) {
312 		etmq->prev_packet = zalloc(szp);
313 		if (!etmq->prev_packet)
314 			goto out_free;
315 	}
316 
317 	if (etm->synth_opts.last_branch) {
318 		size_t sz = sizeof(struct branch_stack);
319 
320 		sz += etm->synth_opts.last_branch_sz *
321 		      sizeof(struct branch_entry);
322 		etmq->last_branch = zalloc(sz);
323 		if (!etmq->last_branch)
324 			goto out_free;
325 		etmq->last_branch_rb = zalloc(sz);
326 		if (!etmq->last_branch_rb)
327 			goto out_free;
328 	}
329 
330 	etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
331 	if (!etmq->event_buf)
332 		goto out_free;
333 
334 	etmq->etm = etm;
335 	etmq->queue_nr = queue_nr;
336 	etmq->pid = -1;
337 	etmq->tid = -1;
338 	etmq->cpu = -1;
339 
340 	/* Use metadata to fill in trace parameters for trace decoder */
341 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
342 
343 	if (!t_params)
344 		goto out_free;
345 
346 	for (i = 0; i < etm->num_cpu; i++) {
347 		t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
348 		t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
349 		t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
350 		t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
351 		t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
352 		t_params[i].etmv4.reg_configr =
353 					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
354 		t_params[i].etmv4.reg_traceidr =
355 					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
356 	}
357 
358 	/* Set decoder parameters to simply print the trace packets */
359 	d_params.packet_printer = cs_etm__packet_dump;
360 	d_params.operation = CS_ETM_OPERATION_DECODE;
361 	d_params.formatted = true;
362 	d_params.fsyncs = false;
363 	d_params.hsyncs = false;
364 	d_params.frame_aligned = true;
365 	d_params.data = etmq;
366 
367 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
368 
369 	zfree(&t_params);
370 
371 	if (!etmq->decoder)
372 		goto out_free;
373 
374 	/*
375 	 * Register a function to handle all memory accesses required by
376 	 * the trace decoder library.
377 	 */
378 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
379 					      0x0L, ((u64) -1L),
380 					      cs_etm__mem_access))
381 		goto out_free_decoder;
382 
383 	etmq->offset = 0;
384 	etmq->period_instructions = 0;
385 
386 	return etmq;
387 
388 out_free_decoder:
389 	cs_etm_decoder__free(etmq->decoder);
390 out_free:
391 	zfree(&etmq->event_buf);
392 	zfree(&etmq->last_branch);
393 	zfree(&etmq->last_branch_rb);
394 	zfree(&etmq->prev_packet);
395 	zfree(&etmq->packet);
396 	free(etmq);
397 
398 	return NULL;
399 }
400 
401 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
402 			       struct auxtrace_queue *queue,
403 			       unsigned int queue_nr)
404 {
405 	struct cs_etm_queue *etmq = queue->priv;
406 
407 	if (list_empty(&queue->head) || etmq)
408 		return 0;
409 
410 	etmq = cs_etm__alloc_queue(etm, queue_nr);
411 
412 	if (!etmq)
413 		return -ENOMEM;
414 
415 	queue->priv = etmq;
416 
417 	if (queue->cpu != -1)
418 		etmq->cpu = queue->cpu;
419 
420 	etmq->tid = queue->tid;
421 
422 	return 0;
423 }
424 
425 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
426 {
427 	unsigned int i;
428 	int ret;
429 
430 	for (i = 0; i < etm->queues.nr_queues; i++) {
431 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
432 		if (ret)
433 			return ret;
434 	}
435 
436 	return 0;
437 }
438 
439 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
440 {
441 	if (etm->queues.new_data) {
442 		etm->queues.new_data = false;
443 		return cs_etm__setup_queues(etm);
444 	}
445 
446 	return 0;
447 }
448 
449 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
450 {
451 	struct branch_stack *bs_src = etmq->last_branch_rb;
452 	struct branch_stack *bs_dst = etmq->last_branch;
453 	size_t nr = 0;
454 
455 	/*
456 	 * Set the number of records before early exit: ->nr is used to
457 	 * determine how many branches to copy from ->entries.
458 	 */
459 	bs_dst->nr = bs_src->nr;
460 
461 	/*
462 	 * Early exit when there is nothing to copy.
463 	 */
464 	if (!bs_src->nr)
465 		return;
466 
467 	/*
468 	 * As bs_src->entries is a circular buffer, we need to copy from it in
469 	 * two steps.  First, copy the branches from the most recently inserted
470 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
471 	 */
472 	nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
473 	memcpy(&bs_dst->entries[0],
474 	       &bs_src->entries[etmq->last_branch_pos],
475 	       sizeof(struct branch_entry) * nr);
476 
477 	/*
478 	 * If we wrapped around at least once, the branches from the beginning
479 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
480 	 * are older valid branches: copy them over.  The total number of
481 	 * branches copied over will be equal to the number of branches asked by
482 	 * the user in last_branch_sz.
483 	 */
484 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
485 		memcpy(&bs_dst->entries[nr],
486 		       &bs_src->entries[0],
487 		       sizeof(struct branch_entry) * etmq->last_branch_pos);
488 	}
489 }
490 
491 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
492 {
493 	etmq->last_branch_pos = 0;
494 	etmq->last_branch_rb->nr = 0;
495 }
496 
497 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet)
498 {
499 	/*
500 	 * The packet records the execution range with an exclusive end address
501 	 *
502 	 * A64 instructions are constant size, so the last executed
503 	 * instruction is A64_INSTR_SIZE before the end address
504 	 * Will need to do instruction level decode for T32 instructions as
505 	 * they can be variable size (not yet supported).
506 	 */
507 	return packet->end_addr - A64_INSTR_SIZE;
508 }
509 
510 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet)
511 {
512 	/*
513 	 * Only A64 instructions are currently supported, so can get
514 	 * instruction count by dividing.
515 	 * Will need to do instruction level decode for T32 instructions as
516 	 * they can be variable size (not yet supported).
517 	 */
518 	return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE;
519 }
520 
521 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet,
522 				     u64 offset)
523 {
524 	/*
525 	 * Only A64 instructions are currently supported, so can get
526 	 * instruction address by muliplying.
527 	 * Will need to do instruction level decode for T32 instructions as
528 	 * they can be variable size (not yet supported).
529 	 */
530 	return packet->start_addr + offset * A64_INSTR_SIZE;
531 }
532 
533 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
534 {
535 	struct branch_stack *bs = etmq->last_branch_rb;
536 	struct branch_entry *be;
537 
538 	/*
539 	 * The branches are recorded in a circular buffer in reverse
540 	 * chronological order: we start recording from the last element of the
541 	 * buffer down.  After writing the first element of the stack, move the
542 	 * insert position back to the end of the buffer.
543 	 */
544 	if (!etmq->last_branch_pos)
545 		etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
546 
547 	etmq->last_branch_pos -= 1;
548 
549 	be       = &bs->entries[etmq->last_branch_pos];
550 	be->from = cs_etm__last_executed_instr(etmq->prev_packet);
551 	be->to	 = etmq->packet->start_addr;
552 	/* No support for mispredict */
553 	be->flags.mispred = 0;
554 	be->flags.predicted = 1;
555 
556 	/*
557 	 * Increment bs->nr until reaching the number of last branches asked by
558 	 * the user on the command line.
559 	 */
560 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
561 		bs->nr += 1;
562 }
563 
564 static int cs_etm__inject_event(union perf_event *event,
565 			       struct perf_sample *sample, u64 type)
566 {
567 	event->header.size = perf_event__sample_event_size(sample, type, 0);
568 	return perf_event__synthesize_sample(event, type, 0, sample);
569 }
570 
571 
572 static int
573 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
574 {
575 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
576 	struct auxtrace_buffer *old_buffer = aux_buffer;
577 	struct auxtrace_queue *queue;
578 
579 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
580 
581 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
582 
583 	/* If no more data, drop the previous auxtrace_buffer and return */
584 	if (!aux_buffer) {
585 		if (old_buffer)
586 			auxtrace_buffer__drop_data(old_buffer);
587 		buff->len = 0;
588 		return 0;
589 	}
590 
591 	etmq->buffer = aux_buffer;
592 
593 	/* If the aux_buffer doesn't have data associated, try to load it */
594 	if (!aux_buffer->data) {
595 		/* get the file desc associated with the perf data file */
596 		int fd = perf_data__fd(etmq->etm->session->data);
597 
598 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
599 		if (!aux_buffer->data)
600 			return -ENOMEM;
601 	}
602 
603 	/* If valid, drop the previous buffer */
604 	if (old_buffer)
605 		auxtrace_buffer__drop_data(old_buffer);
606 
607 	buff->offset = aux_buffer->offset;
608 	buff->len = aux_buffer->size;
609 	buff->buf = aux_buffer->data;
610 
611 	buff->ref_timestamp = aux_buffer->reference;
612 
613 	return buff->len;
614 }
615 
616 static void  cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
617 				     struct auxtrace_queue *queue)
618 {
619 	struct cs_etm_queue *etmq = queue->priv;
620 
621 	/* CPU-wide tracing isn't supported yet */
622 	if (queue->tid == -1)
623 		return;
624 
625 	if ((!etmq->thread) && (etmq->tid != -1))
626 		etmq->thread = machine__find_thread(etm->machine, -1,
627 						    etmq->tid);
628 
629 	if (etmq->thread) {
630 		etmq->pid = etmq->thread->pid_;
631 		if (queue->cpu == -1)
632 			etmq->cpu = etmq->thread->cpu;
633 	}
634 }
635 
636 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
637 					    u64 addr, u64 period)
638 {
639 	int ret = 0;
640 	struct cs_etm_auxtrace *etm = etmq->etm;
641 	union perf_event *event = etmq->event_buf;
642 	struct perf_sample sample = {.ip = 0,};
643 
644 	event->sample.header.type = PERF_RECORD_SAMPLE;
645 	event->sample.header.misc = PERF_RECORD_MISC_USER;
646 	event->sample.header.size = sizeof(struct perf_event_header);
647 
648 	sample.ip = addr;
649 	sample.pid = etmq->pid;
650 	sample.tid = etmq->tid;
651 	sample.id = etmq->etm->instructions_id;
652 	sample.stream_id = etmq->etm->instructions_id;
653 	sample.period = period;
654 	sample.cpu = etmq->packet->cpu;
655 	sample.flags = 0;
656 	sample.insn_len = 1;
657 	sample.cpumode = event->header.misc;
658 
659 	if (etm->synth_opts.last_branch) {
660 		cs_etm__copy_last_branch_rb(etmq);
661 		sample.branch_stack = etmq->last_branch;
662 	}
663 
664 	if (etm->synth_opts.inject) {
665 		ret = cs_etm__inject_event(event, &sample,
666 					   etm->instructions_sample_type);
667 		if (ret)
668 			return ret;
669 	}
670 
671 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
672 
673 	if (ret)
674 		pr_err(
675 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
676 			ret);
677 
678 	if (etm->synth_opts.last_branch)
679 		cs_etm__reset_last_branch_rb(etmq);
680 
681 	return ret;
682 }
683 
684 /*
685  * The cs etm packet encodes an instruction range between a branch target
686  * and the next taken branch. Generate sample accordingly.
687  */
688 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
689 {
690 	int ret = 0;
691 	struct cs_etm_auxtrace *etm = etmq->etm;
692 	struct perf_sample sample = {.ip = 0,};
693 	union perf_event *event = etmq->event_buf;
694 	struct dummy_branch_stack {
695 		u64			nr;
696 		struct branch_entry	entries;
697 	} dummy_bs;
698 
699 	event->sample.header.type = PERF_RECORD_SAMPLE;
700 	event->sample.header.misc = PERF_RECORD_MISC_USER;
701 	event->sample.header.size = sizeof(struct perf_event_header);
702 
703 	sample.ip = cs_etm__last_executed_instr(etmq->prev_packet);
704 	sample.pid = etmq->pid;
705 	sample.tid = etmq->tid;
706 	sample.addr = etmq->packet->start_addr;
707 	sample.id = etmq->etm->branches_id;
708 	sample.stream_id = etmq->etm->branches_id;
709 	sample.period = 1;
710 	sample.cpu = etmq->packet->cpu;
711 	sample.flags = 0;
712 	sample.cpumode = PERF_RECORD_MISC_USER;
713 
714 	/*
715 	 * perf report cannot handle events without a branch stack
716 	 */
717 	if (etm->synth_opts.last_branch) {
718 		dummy_bs = (struct dummy_branch_stack){
719 			.nr = 1,
720 			.entries = {
721 				.from = sample.ip,
722 				.to = sample.addr,
723 			},
724 		};
725 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
726 	}
727 
728 	if (etm->synth_opts.inject) {
729 		ret = cs_etm__inject_event(event, &sample,
730 					   etm->branches_sample_type);
731 		if (ret)
732 			return ret;
733 	}
734 
735 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
736 
737 	if (ret)
738 		pr_err(
739 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
740 		ret);
741 
742 	return ret;
743 }
744 
745 struct cs_etm_synth {
746 	struct perf_tool dummy_tool;
747 	struct perf_session *session;
748 };
749 
750 static int cs_etm__event_synth(struct perf_tool *tool,
751 			       union perf_event *event,
752 			       struct perf_sample *sample __maybe_unused,
753 			       struct machine *machine __maybe_unused)
754 {
755 	struct cs_etm_synth *cs_etm_synth =
756 		      container_of(tool, struct cs_etm_synth, dummy_tool);
757 
758 	return perf_session__deliver_synth_event(cs_etm_synth->session,
759 						 event, NULL);
760 }
761 
762 static int cs_etm__synth_event(struct perf_session *session,
763 			       struct perf_event_attr *attr, u64 id)
764 {
765 	struct cs_etm_synth cs_etm_synth;
766 
767 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
768 	cs_etm_synth.session = session;
769 
770 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
771 					   &id, cs_etm__event_synth);
772 }
773 
774 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
775 				struct perf_session *session)
776 {
777 	struct perf_evlist *evlist = session->evlist;
778 	struct perf_evsel *evsel;
779 	struct perf_event_attr attr;
780 	bool found = false;
781 	u64 id;
782 	int err;
783 
784 	evlist__for_each_entry(evlist, evsel) {
785 		if (evsel->attr.type == etm->pmu_type) {
786 			found = true;
787 			break;
788 		}
789 	}
790 
791 	if (!found) {
792 		pr_debug("No selected events with CoreSight Trace data\n");
793 		return 0;
794 	}
795 
796 	memset(&attr, 0, sizeof(struct perf_event_attr));
797 	attr.size = sizeof(struct perf_event_attr);
798 	attr.type = PERF_TYPE_HARDWARE;
799 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
800 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
801 			    PERF_SAMPLE_PERIOD;
802 	if (etm->timeless_decoding)
803 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
804 	else
805 		attr.sample_type |= PERF_SAMPLE_TIME;
806 
807 	attr.exclude_user = evsel->attr.exclude_user;
808 	attr.exclude_kernel = evsel->attr.exclude_kernel;
809 	attr.exclude_hv = evsel->attr.exclude_hv;
810 	attr.exclude_host = evsel->attr.exclude_host;
811 	attr.exclude_guest = evsel->attr.exclude_guest;
812 	attr.sample_id_all = evsel->attr.sample_id_all;
813 	attr.read_format = evsel->attr.read_format;
814 
815 	/* create new id val to be a fixed offset from evsel id */
816 	id = evsel->id[0] + 1000000000;
817 
818 	if (!id)
819 		id = 1;
820 
821 	if (etm->synth_opts.branches) {
822 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
823 		attr.sample_period = 1;
824 		attr.sample_type |= PERF_SAMPLE_ADDR;
825 		err = cs_etm__synth_event(session, &attr, id);
826 		if (err)
827 			return err;
828 		etm->sample_branches = true;
829 		etm->branches_sample_type = attr.sample_type;
830 		etm->branches_id = id;
831 		id += 1;
832 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
833 	}
834 
835 	if (etm->synth_opts.last_branch)
836 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
837 
838 	if (etm->synth_opts.instructions) {
839 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
840 		attr.sample_period = etm->synth_opts.period;
841 		etm->instructions_sample_period = attr.sample_period;
842 		err = cs_etm__synth_event(session, &attr, id);
843 		if (err)
844 			return err;
845 		etm->sample_instructions = true;
846 		etm->instructions_sample_type = attr.sample_type;
847 		etm->instructions_id = id;
848 		id += 1;
849 	}
850 
851 	return 0;
852 }
853 
854 static int cs_etm__sample(struct cs_etm_queue *etmq)
855 {
856 	struct cs_etm_auxtrace *etm = etmq->etm;
857 	struct cs_etm_packet *tmp;
858 	int ret;
859 	u64 instrs_executed;
860 
861 	instrs_executed = cs_etm__instr_count(etmq->packet);
862 	etmq->period_instructions += instrs_executed;
863 
864 	/*
865 	 * Record a branch when the last instruction in
866 	 * PREV_PACKET is a branch.
867 	 */
868 	if (etm->synth_opts.last_branch &&
869 	    etmq->prev_packet &&
870 	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
871 	    etmq->prev_packet->last_instr_taken_branch)
872 		cs_etm__update_last_branch_rb(etmq);
873 
874 	if (etm->sample_instructions &&
875 	    etmq->period_instructions >= etm->instructions_sample_period) {
876 		/*
877 		 * Emit instruction sample periodically
878 		 * TODO: allow period to be defined in cycles and clock time
879 		 */
880 
881 		/* Get number of instructions executed after the sample point */
882 		u64 instrs_over = etmq->period_instructions -
883 			etm->instructions_sample_period;
884 
885 		/*
886 		 * Calculate the address of the sampled instruction (-1 as
887 		 * sample is reported as though instruction has just been
888 		 * executed, but PC has not advanced to next instruction)
889 		 */
890 		u64 offset = (instrs_executed - instrs_over - 1);
891 		u64 addr = cs_etm__instr_addr(etmq->packet, offset);
892 
893 		ret = cs_etm__synth_instruction_sample(
894 			etmq, addr, etm->instructions_sample_period);
895 		if (ret)
896 			return ret;
897 
898 		/* Carry remaining instructions into next sample period */
899 		etmq->period_instructions = instrs_over;
900 	}
901 
902 	if (etm->sample_branches &&
903 	    etmq->prev_packet &&
904 	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
905 	    etmq->prev_packet->last_instr_taken_branch) {
906 		ret = cs_etm__synth_branch_sample(etmq);
907 		if (ret)
908 			return ret;
909 	}
910 
911 	if (etm->sample_branches || etm->synth_opts.last_branch) {
912 		/*
913 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
914 		 * the next incoming packet.
915 		 */
916 		tmp = etmq->packet;
917 		etmq->packet = etmq->prev_packet;
918 		etmq->prev_packet = tmp;
919 	}
920 
921 	return 0;
922 }
923 
924 static int cs_etm__flush(struct cs_etm_queue *etmq)
925 {
926 	int err = 0;
927 	struct cs_etm_packet *tmp;
928 
929 	if (etmq->etm->synth_opts.last_branch &&
930 	    etmq->prev_packet &&
931 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
932 		/*
933 		 * Generate a last branch event for the branches left in the
934 		 * circular buffer at the end of the trace.
935 		 *
936 		 * Use the address of the end of the last reported execution
937 		 * range
938 		 */
939 		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
940 
941 		err = cs_etm__synth_instruction_sample(
942 			etmq, addr,
943 			etmq->period_instructions);
944 		etmq->period_instructions = 0;
945 
946 		/*
947 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
948 		 * the next incoming packet.
949 		 */
950 		tmp = etmq->packet;
951 		etmq->packet = etmq->prev_packet;
952 		etmq->prev_packet = tmp;
953 	}
954 
955 	return err;
956 }
957 
958 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
959 {
960 	struct cs_etm_auxtrace *etm = etmq->etm;
961 	struct cs_etm_buffer buffer;
962 	size_t buffer_used, processed;
963 	int err = 0;
964 
965 	if (!etm->kernel_start)
966 		etm->kernel_start = machine__kernel_start(etm->machine);
967 
968 	/* Go through each buffer in the queue and decode them one by one */
969 	while (1) {
970 		buffer_used = 0;
971 		memset(&buffer, 0, sizeof(buffer));
972 		err = cs_etm__get_trace(&buffer, etmq);
973 		if (err <= 0)
974 			return err;
975 		/*
976 		 * We cannot assume consecutive blocks in the data file are
977 		 * contiguous, reset the decoder to force re-sync.
978 		 */
979 		err = cs_etm_decoder__reset(etmq->decoder);
980 		if (err != 0)
981 			return err;
982 
983 		/* Run trace decoder until buffer consumed or end of trace */
984 		do {
985 			processed = 0;
986 			err = cs_etm_decoder__process_data_block(
987 				etmq->decoder,
988 				etmq->offset,
989 				&buffer.buf[buffer_used],
990 				buffer.len - buffer_used,
991 				&processed);
992 			if (err)
993 				return err;
994 
995 			etmq->offset += processed;
996 			buffer_used += processed;
997 
998 			/* Process each packet in this chunk */
999 			while (1) {
1000 				err = cs_etm_decoder__get_packet(etmq->decoder,
1001 								 etmq->packet);
1002 				if (err <= 0)
1003 					/*
1004 					 * Stop processing this chunk on
1005 					 * end of data or error
1006 					 */
1007 					break;
1008 
1009 				switch (etmq->packet->sample_type) {
1010 				case CS_ETM_RANGE:
1011 					/*
1012 					 * If the packet contains an instruction
1013 					 * range, generate instruction sequence
1014 					 * events.
1015 					 */
1016 					cs_etm__sample(etmq);
1017 					break;
1018 				case CS_ETM_TRACE_ON:
1019 					/*
1020 					 * Discontinuity in trace, flush
1021 					 * previous branch stack
1022 					 */
1023 					cs_etm__flush(etmq);
1024 					break;
1025 				default:
1026 					break;
1027 				}
1028 			}
1029 		} while (buffer.len > buffer_used);
1030 
1031 		if (err == 0)
1032 			/* Flush any remaining branch stack entries */
1033 			err = cs_etm__flush(etmq);
1034 	}
1035 
1036 	return err;
1037 }
1038 
1039 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1040 					   pid_t tid, u64 time_)
1041 {
1042 	unsigned int i;
1043 	struct auxtrace_queues *queues = &etm->queues;
1044 
1045 	for (i = 0; i < queues->nr_queues; i++) {
1046 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
1047 		struct cs_etm_queue *etmq = queue->priv;
1048 
1049 		if (etmq && ((tid == -1) || (etmq->tid == tid))) {
1050 			etmq->time = time_;
1051 			cs_etm__set_pid_tid_cpu(etm, queue);
1052 			cs_etm__run_decoder(etmq);
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static int cs_etm__process_event(struct perf_session *session,
1060 				 union perf_event *event,
1061 				 struct perf_sample *sample,
1062 				 struct perf_tool *tool)
1063 {
1064 	int err = 0;
1065 	u64 timestamp;
1066 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1067 						   struct cs_etm_auxtrace,
1068 						   auxtrace);
1069 
1070 	if (dump_trace)
1071 		return 0;
1072 
1073 	if (!tool->ordered_events) {
1074 		pr_err("CoreSight ETM Trace requires ordered events\n");
1075 		return -EINVAL;
1076 	}
1077 
1078 	if (!etm->timeless_decoding)
1079 		return -EINVAL;
1080 
1081 	if (sample->time && (sample->time != (u64) -1))
1082 		timestamp = sample->time;
1083 	else
1084 		timestamp = 0;
1085 
1086 	if (timestamp || etm->timeless_decoding) {
1087 		err = cs_etm__update_queues(etm);
1088 		if (err)
1089 			return err;
1090 	}
1091 
1092 	if (event->header.type == PERF_RECORD_EXIT)
1093 		return cs_etm__process_timeless_queues(etm,
1094 						       event->fork.tid,
1095 						       sample->time);
1096 
1097 	return 0;
1098 }
1099 
1100 static int cs_etm__process_auxtrace_event(struct perf_session *session,
1101 					  union perf_event *event,
1102 					  struct perf_tool *tool __maybe_unused)
1103 {
1104 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1105 						   struct cs_etm_auxtrace,
1106 						   auxtrace);
1107 	if (!etm->data_queued) {
1108 		struct auxtrace_buffer *buffer;
1109 		off_t  data_offset;
1110 		int fd = perf_data__fd(session->data);
1111 		bool is_pipe = perf_data__is_pipe(session->data);
1112 		int err;
1113 
1114 		if (is_pipe)
1115 			data_offset = 0;
1116 		else {
1117 			data_offset = lseek(fd, 0, SEEK_CUR);
1118 			if (data_offset == -1)
1119 				return -errno;
1120 		}
1121 
1122 		err = auxtrace_queues__add_event(&etm->queues, session,
1123 						 event, data_offset, &buffer);
1124 		if (err)
1125 			return err;
1126 
1127 		if (dump_trace)
1128 			if (auxtrace_buffer__get_data(buffer, fd)) {
1129 				cs_etm__dump_event(etm, buffer);
1130 				auxtrace_buffer__put_data(buffer);
1131 			}
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
1138 {
1139 	struct perf_evsel *evsel;
1140 	struct perf_evlist *evlist = etm->session->evlist;
1141 	bool timeless_decoding = true;
1142 
1143 	/*
1144 	 * Circle through the list of event and complain if we find one
1145 	 * with the time bit set.
1146 	 */
1147 	evlist__for_each_entry(evlist, evsel) {
1148 		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
1149 			timeless_decoding = false;
1150 	}
1151 
1152 	return timeless_decoding;
1153 }
1154 
1155 static const char * const cs_etm_global_header_fmts[] = {
1156 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
1157 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
1158 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
1159 };
1160 
1161 static const char * const cs_etm_priv_fmts[] = {
1162 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1163 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1164 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
1165 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
1166 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
1167 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
1168 };
1169 
1170 static const char * const cs_etmv4_priv_fmts[] = {
1171 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1172 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1173 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
1174 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
1175 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
1176 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
1177 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
1178 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
1179 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
1180 };
1181 
1182 static void cs_etm__print_auxtrace_info(u64 *val, int num)
1183 {
1184 	int i, j, cpu = 0;
1185 
1186 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1187 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
1188 
1189 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
1190 		if (val[i] == __perf_cs_etmv3_magic)
1191 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
1192 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
1193 		else if (val[i] == __perf_cs_etmv4_magic)
1194 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
1195 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
1196 		else
1197 			/* failure.. return */
1198 			return;
1199 	}
1200 }
1201 
1202 int cs_etm__process_auxtrace_info(union perf_event *event,
1203 				  struct perf_session *session)
1204 {
1205 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1206 	struct cs_etm_auxtrace *etm = NULL;
1207 	struct int_node *inode;
1208 	unsigned int pmu_type;
1209 	int event_header_size = sizeof(struct perf_event_header);
1210 	int info_header_size;
1211 	int total_size = auxtrace_info->header.size;
1212 	int priv_size = 0;
1213 	int num_cpu;
1214 	int err = 0, idx = -1;
1215 	int i, j, k;
1216 	u64 *ptr, *hdr = NULL;
1217 	u64 **metadata = NULL;
1218 
1219 	/*
1220 	 * sizeof(auxtrace_info_event::type) +
1221 	 * sizeof(auxtrace_info_event::reserved) == 8
1222 	 */
1223 	info_header_size = 8;
1224 
1225 	if (total_size < (event_header_size + info_header_size))
1226 		return -EINVAL;
1227 
1228 	priv_size = total_size - event_header_size - info_header_size;
1229 
1230 	/* First the global part */
1231 	ptr = (u64 *) auxtrace_info->priv;
1232 
1233 	/* Look for version '0' of the header */
1234 	if (ptr[0] != 0)
1235 		return -EINVAL;
1236 
1237 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
1238 	if (!hdr)
1239 		return -ENOMEM;
1240 
1241 	/* Extract header information - see cs-etm.h for format */
1242 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1243 		hdr[i] = ptr[i];
1244 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
1245 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
1246 				    0xffffffff);
1247 
1248 	/*
1249 	 * Create an RB tree for traceID-CPU# tuple. Since the conversion has
1250 	 * to be made for each packet that gets decoded, optimizing access in
1251 	 * anything other than a sequential array is worth doing.
1252 	 */
1253 	traceid_list = intlist__new(NULL);
1254 	if (!traceid_list) {
1255 		err = -ENOMEM;
1256 		goto err_free_hdr;
1257 	}
1258 
1259 	metadata = zalloc(sizeof(*metadata) * num_cpu);
1260 	if (!metadata) {
1261 		err = -ENOMEM;
1262 		goto err_free_traceid_list;
1263 	}
1264 
1265 	/*
1266 	 * The metadata is stored in the auxtrace_info section and encodes
1267 	 * the configuration of the ARM embedded trace macrocell which is
1268 	 * required by the trace decoder to properly decode the trace due
1269 	 * to its highly compressed nature.
1270 	 */
1271 	for (j = 0; j < num_cpu; j++) {
1272 		if (ptr[i] == __perf_cs_etmv3_magic) {
1273 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1274 					     CS_ETM_PRIV_MAX);
1275 			if (!metadata[j]) {
1276 				err = -ENOMEM;
1277 				goto err_free_metadata;
1278 			}
1279 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
1280 				metadata[j][k] = ptr[i + k];
1281 
1282 			/* The traceID is our handle */
1283 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
1284 			i += CS_ETM_PRIV_MAX;
1285 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
1286 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1287 					     CS_ETMV4_PRIV_MAX);
1288 			if (!metadata[j]) {
1289 				err = -ENOMEM;
1290 				goto err_free_metadata;
1291 			}
1292 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
1293 				metadata[j][k] = ptr[i + k];
1294 
1295 			/* The traceID is our handle */
1296 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
1297 			i += CS_ETMV4_PRIV_MAX;
1298 		}
1299 
1300 		/* Get an RB node for this CPU */
1301 		inode = intlist__findnew(traceid_list, idx);
1302 
1303 		/* Something went wrong, no need to continue */
1304 		if (!inode) {
1305 			err = PTR_ERR(inode);
1306 			goto err_free_metadata;
1307 		}
1308 
1309 		/*
1310 		 * The node for that CPU should not be taken.
1311 		 * Back out if that's the case.
1312 		 */
1313 		if (inode->priv) {
1314 			err = -EINVAL;
1315 			goto err_free_metadata;
1316 		}
1317 		/* All good, associate the traceID with the CPU# */
1318 		inode->priv = &metadata[j][CS_ETM_CPU];
1319 	}
1320 
1321 	/*
1322 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
1323 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
1324 	 * global metadata, and each cpu's metadata respectively.
1325 	 * The following tests if the correct number of double words was
1326 	 * present in the auxtrace info section.
1327 	 */
1328 	if (i * 8 != priv_size) {
1329 		err = -EINVAL;
1330 		goto err_free_metadata;
1331 	}
1332 
1333 	etm = zalloc(sizeof(*etm));
1334 
1335 	if (!etm) {
1336 		err = -ENOMEM;
1337 		goto err_free_metadata;
1338 	}
1339 
1340 	err = auxtrace_queues__init(&etm->queues);
1341 	if (err)
1342 		goto err_free_etm;
1343 
1344 	etm->session = session;
1345 	etm->machine = &session->machines.host;
1346 
1347 	etm->num_cpu = num_cpu;
1348 	etm->pmu_type = pmu_type;
1349 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
1350 	etm->metadata = metadata;
1351 	etm->auxtrace_type = auxtrace_info->type;
1352 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
1353 
1354 	etm->auxtrace.process_event = cs_etm__process_event;
1355 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
1356 	etm->auxtrace.flush_events = cs_etm__flush_events;
1357 	etm->auxtrace.free_events = cs_etm__free_events;
1358 	etm->auxtrace.free = cs_etm__free;
1359 	session->auxtrace = &etm->auxtrace;
1360 
1361 	if (dump_trace) {
1362 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1363 		return 0;
1364 	}
1365 
1366 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1367 		etm->synth_opts = *session->itrace_synth_opts;
1368 	} else {
1369 		itrace_synth_opts__set_default(&etm->synth_opts);
1370 		etm->synth_opts.callchain = false;
1371 	}
1372 
1373 	err = cs_etm__synth_events(etm, session);
1374 	if (err)
1375 		goto err_free_queues;
1376 
1377 	err = auxtrace_queues__process_index(&etm->queues, session);
1378 	if (err)
1379 		goto err_free_queues;
1380 
1381 	etm->data_queued = etm->queues.populated;
1382 
1383 	return 0;
1384 
1385 err_free_queues:
1386 	auxtrace_queues__free(&etm->queues);
1387 	session->auxtrace = NULL;
1388 err_free_etm:
1389 	zfree(&etm);
1390 err_free_metadata:
1391 	/* No need to check @metadata[j], free(NULL) is supported */
1392 	for (j = 0; j < num_cpu; j++)
1393 		free(metadata[j]);
1394 	zfree(&metadata);
1395 err_free_traceid_list:
1396 	intlist__delete(traceid_list);
1397 err_free_hdr:
1398 	zfree(&hdr);
1399 
1400 	return -EINVAL;
1401 }
1402