1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/bitfield.h> 11 #include <linux/bitops.h> 12 #include <linux/coresight-pmu.h> 13 #include <linux/err.h> 14 #include <linux/log2.h> 15 #include <linux/types.h> 16 #include <linux/zalloc.h> 17 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include "tsc.h" 39 #include <tools/libc_compat.h> 40 #include "util/synthetic-events.h" 41 #include "util/util.h" 42 43 struct cs_etm_auxtrace { 44 struct auxtrace auxtrace; 45 struct auxtrace_queues queues; 46 struct auxtrace_heap heap; 47 struct itrace_synth_opts synth_opts; 48 struct perf_session *session; 49 struct perf_tsc_conversion tc; 50 51 /* 52 * Timeless has no timestamps in the trace so overlapping mmap lookups 53 * are less accurate but produces smaller trace data. We use context IDs 54 * in the trace instead of matching timestamps with fork records so 55 * they're not really needed in the general case. Overlapping mmaps 56 * happen in cases like between a fork and an exec. 57 */ 58 bool timeless_decoding; 59 60 /* 61 * Per-thread ignores the trace channel ID and instead assumes that 62 * everything in a buffer comes from the same process regardless of 63 * which CPU it ran on. It also implies no context IDs so the TID is 64 * taken from the auxtrace buffer. 65 */ 66 bool per_thread_decoding; 67 bool snapshot_mode; 68 bool data_queued; 69 bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ 70 71 int num_cpu; 72 u64 latest_kernel_timestamp; 73 u32 auxtrace_type; 74 u64 branches_sample_type; 75 u64 branches_id; 76 u64 instructions_sample_type; 77 u64 instructions_sample_period; 78 u64 instructions_id; 79 u64 **metadata; 80 unsigned int pmu_type; 81 enum cs_etm_pid_fmt pid_fmt; 82 }; 83 84 struct cs_etm_traceid_queue { 85 u8 trace_chan_id; 86 u64 period_instructions; 87 size_t last_branch_pos; 88 union perf_event *event_buf; 89 struct thread *thread; 90 struct thread *prev_packet_thread; 91 ocsd_ex_level prev_packet_el; 92 ocsd_ex_level el; 93 struct branch_stack *last_branch; 94 struct branch_stack *last_branch_rb; 95 struct cs_etm_packet *prev_packet; 96 struct cs_etm_packet *packet; 97 struct cs_etm_packet_queue packet_queue; 98 }; 99 100 struct cs_etm_queue { 101 struct cs_etm_auxtrace *etm; 102 struct cs_etm_decoder *decoder; 103 struct auxtrace_buffer *buffer; 104 unsigned int queue_nr; 105 u8 pending_timestamp_chan_id; 106 u64 offset; 107 const unsigned char *buf; 108 size_t buf_len, buf_used; 109 /* Conversion between traceID and index in traceid_queues array */ 110 struct intlist *traceid_queues_list; 111 struct cs_etm_traceid_queue **traceid_queues; 112 }; 113 114 /* RB tree for quick conversion between traceID and metadata pointers */ 115 static struct intlist *traceid_list; 116 117 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm); 118 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 119 pid_t tid); 120 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 121 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 122 123 /* PTMs ETMIDR [11:8] set to b0011 */ 124 #define ETMIDR_PTM_VERSION 0x00000300 125 126 /* 127 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 128 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 129 * encode the etm queue number as the upper 16 bit and the channel as 130 * the lower 16 bit. 131 */ 132 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 133 (queue_nr << 16 | trace_chan_id) 134 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 135 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 136 137 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 138 { 139 etmidr &= ETMIDR_PTM_VERSION; 140 141 if (etmidr == ETMIDR_PTM_VERSION) 142 return CS_ETM_PROTO_PTM; 143 144 return CS_ETM_PROTO_ETMV3; 145 } 146 147 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 148 { 149 struct int_node *inode; 150 u64 *metadata; 151 152 inode = intlist__find(traceid_list, trace_chan_id); 153 if (!inode) 154 return -EINVAL; 155 156 metadata = inode->priv; 157 *magic = metadata[CS_ETM_MAGIC]; 158 return 0; 159 } 160 161 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 162 { 163 struct int_node *inode; 164 u64 *metadata; 165 166 inode = intlist__find(traceid_list, trace_chan_id); 167 if (!inode) 168 return -EINVAL; 169 170 metadata = inode->priv; 171 *cpu = (int)metadata[CS_ETM_CPU]; 172 return 0; 173 } 174 175 /* 176 * The returned PID format is presented as an enum: 177 * 178 * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced. 179 * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced. 180 * CS_ETM_PIDFMT_NONE: No context IDs 181 * 182 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 183 * are enabled at the same time when the session runs on an EL2 kernel. 184 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 185 * recorded in the trace data, the tool will selectively use 186 * CONTEXTIDR_EL2 as PID. 187 * 188 * The result is cached in etm->pid_fmt so this function only needs to be called 189 * when processing the aux info. 190 */ 191 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata) 192 { 193 u64 val; 194 195 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 196 val = metadata[CS_ETM_ETMCR]; 197 /* CONTEXTIDR is traced */ 198 if (val & BIT(ETM_OPT_CTXTID)) 199 return CS_ETM_PIDFMT_CTXTID; 200 } else { 201 val = metadata[CS_ETMV4_TRCCONFIGR]; 202 /* CONTEXTIDR_EL2 is traced */ 203 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 204 return CS_ETM_PIDFMT_CTXTID2; 205 /* CONTEXTIDR_EL1 is traced */ 206 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 207 return CS_ETM_PIDFMT_CTXTID; 208 } 209 210 return CS_ETM_PIDFMT_NONE; 211 } 212 213 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq) 214 { 215 return etmq->etm->pid_fmt; 216 } 217 218 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 219 { 220 struct int_node *inode; 221 222 /* Get an RB node for this CPU */ 223 inode = intlist__findnew(traceid_list, trace_chan_id); 224 225 /* Something went wrong, no need to continue */ 226 if (!inode) 227 return -ENOMEM; 228 229 /* 230 * The node for that CPU should not be taken. 231 * Back out if that's the case. 232 */ 233 if (inode->priv) 234 return -EINVAL; 235 236 /* All good, associate the traceID with the metadata pointer */ 237 inode->priv = cpu_metadata; 238 239 return 0; 240 } 241 242 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) 243 { 244 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 245 246 switch (cs_etm_magic) { 247 case __perf_cs_etmv3_magic: 248 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & 249 CORESIGHT_TRACE_ID_VAL_MASK); 250 break; 251 case __perf_cs_etmv4_magic: 252 case __perf_cs_ete_magic: 253 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & 254 CORESIGHT_TRACE_ID_VAL_MASK); 255 break; 256 default: 257 return -EINVAL; 258 } 259 return 0; 260 } 261 262 /* 263 * update metadata trace ID from the value found in the AUX_HW_INFO packet. 264 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. 265 */ 266 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 267 { 268 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 269 270 switch (cs_etm_magic) { 271 case __perf_cs_etmv3_magic: 272 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; 273 break; 274 case __perf_cs_etmv4_magic: 275 case __perf_cs_ete_magic: 276 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; 277 break; 278 279 default: 280 return -EINVAL; 281 } 282 return 0; 283 } 284 285 /* 286 * Get a metadata index for a specific cpu from an array. 287 * 288 */ 289 static int get_cpu_data_idx(struct cs_etm_auxtrace *etm, int cpu) 290 { 291 int i; 292 293 for (i = 0; i < etm->num_cpu; i++) { 294 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) { 295 return i; 296 } 297 } 298 299 return -1; 300 } 301 302 /* 303 * Get a metadata for a specific cpu from an array. 304 * 305 */ 306 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu) 307 { 308 int idx = get_cpu_data_idx(etm, cpu); 309 310 return (idx != -1) ? etm->metadata[idx] : NULL; 311 } 312 313 /* 314 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. 315 * 316 * The payload associates the Trace ID and the CPU. 317 * The routine is tolerant of seeing multiple packets with the same association, 318 * but a CPU / Trace ID association changing during a session is an error. 319 */ 320 static int cs_etm__process_aux_output_hw_id(struct perf_session *session, 321 union perf_event *event) 322 { 323 struct cs_etm_auxtrace *etm; 324 struct perf_sample sample; 325 struct int_node *inode; 326 struct evsel *evsel; 327 u64 *cpu_data; 328 u64 hw_id; 329 int cpu, version, err; 330 u8 trace_chan_id, curr_chan_id; 331 332 /* extract and parse the HW ID */ 333 hw_id = event->aux_output_hw_id.hw_id; 334 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); 335 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); 336 337 /* check that we can handle this version */ 338 if (version > CS_AUX_HW_ID_CURR_VERSION) 339 return -EINVAL; 340 341 /* get access to the etm metadata */ 342 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); 343 if (!etm || !etm->metadata) 344 return -EINVAL; 345 346 /* parse the sample to get the CPU */ 347 evsel = evlist__event2evsel(session->evlist, event); 348 if (!evsel) 349 return -EINVAL; 350 err = evsel__parse_sample(evsel, event, &sample); 351 if (err) 352 return err; 353 cpu = sample.cpu; 354 if (cpu == -1) { 355 /* no CPU in the sample - possibly recorded with an old version of perf */ 356 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); 357 return -EINVAL; 358 } 359 360 /* See if the ID is mapped to a CPU, and it matches the current CPU */ 361 inode = intlist__find(traceid_list, trace_chan_id); 362 if (inode) { 363 cpu_data = inode->priv; 364 if ((int)cpu_data[CS_ETM_CPU] != cpu) { 365 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); 366 return -EINVAL; 367 } 368 369 /* check that the mapped ID matches */ 370 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); 371 if (err) 372 return err; 373 if (curr_chan_id != trace_chan_id) { 374 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); 375 return -EINVAL; 376 } 377 378 /* mapped and matched - return OK */ 379 return 0; 380 } 381 382 cpu_data = get_cpu_data(etm, cpu); 383 if (cpu_data == NULL) 384 return err; 385 386 /* not one we've seen before - lets map it */ 387 err = cs_etm__map_trace_id(trace_chan_id, cpu_data); 388 if (err) 389 return err; 390 391 /* 392 * if we are picking up the association from the packet, need to plug 393 * the correct trace ID into the metadata for setting up decoders later. 394 */ 395 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); 396 return err; 397 } 398 399 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 400 u8 trace_chan_id) 401 { 402 /* 403 * When a timestamp packet is encountered the backend code 404 * is stopped so that the front end has time to process packets 405 * that were accumulated in the traceID queue. Since there can 406 * be more than one channel per cs_etm_queue, we need to specify 407 * what traceID queue needs servicing. 408 */ 409 etmq->pending_timestamp_chan_id = trace_chan_id; 410 } 411 412 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 413 u8 *trace_chan_id) 414 { 415 struct cs_etm_packet_queue *packet_queue; 416 417 if (!etmq->pending_timestamp_chan_id) 418 return 0; 419 420 if (trace_chan_id) 421 *trace_chan_id = etmq->pending_timestamp_chan_id; 422 423 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 424 etmq->pending_timestamp_chan_id); 425 if (!packet_queue) 426 return 0; 427 428 /* Acknowledge pending status */ 429 etmq->pending_timestamp_chan_id = 0; 430 431 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 432 return packet_queue->cs_timestamp; 433 } 434 435 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 436 { 437 int i; 438 439 queue->head = 0; 440 queue->tail = 0; 441 queue->packet_count = 0; 442 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 443 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 444 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 445 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 446 queue->packet_buffer[i].instr_count = 0; 447 queue->packet_buffer[i].last_instr_taken_branch = false; 448 queue->packet_buffer[i].last_instr_size = 0; 449 queue->packet_buffer[i].last_instr_type = 0; 450 queue->packet_buffer[i].last_instr_subtype = 0; 451 queue->packet_buffer[i].last_instr_cond = 0; 452 queue->packet_buffer[i].flags = 0; 453 queue->packet_buffer[i].exception_number = UINT32_MAX; 454 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 455 queue->packet_buffer[i].cpu = INT_MIN; 456 } 457 } 458 459 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 460 { 461 int idx; 462 struct int_node *inode; 463 struct cs_etm_traceid_queue *tidq; 464 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 465 466 intlist__for_each_entry(inode, traceid_queues_list) { 467 idx = (int)(intptr_t)inode->priv; 468 tidq = etmq->traceid_queues[idx]; 469 cs_etm__clear_packet_queue(&tidq->packet_queue); 470 } 471 } 472 473 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 474 struct cs_etm_traceid_queue *tidq, 475 u8 trace_chan_id) 476 { 477 int rc = -ENOMEM; 478 struct auxtrace_queue *queue; 479 struct cs_etm_auxtrace *etm = etmq->etm; 480 481 cs_etm__clear_packet_queue(&tidq->packet_queue); 482 483 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 484 tidq->trace_chan_id = trace_chan_id; 485 tidq->el = tidq->prev_packet_el = ocsd_EL_unknown; 486 tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1, 487 queue->tid); 488 tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host); 489 490 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 491 if (!tidq->packet) 492 goto out; 493 494 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 495 if (!tidq->prev_packet) 496 goto out_free; 497 498 if (etm->synth_opts.last_branch) { 499 size_t sz = sizeof(struct branch_stack); 500 501 sz += etm->synth_opts.last_branch_sz * 502 sizeof(struct branch_entry); 503 tidq->last_branch = zalloc(sz); 504 if (!tidq->last_branch) 505 goto out_free; 506 tidq->last_branch_rb = zalloc(sz); 507 if (!tidq->last_branch_rb) 508 goto out_free; 509 } 510 511 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 512 if (!tidq->event_buf) 513 goto out_free; 514 515 return 0; 516 517 out_free: 518 zfree(&tidq->last_branch_rb); 519 zfree(&tidq->last_branch); 520 zfree(&tidq->prev_packet); 521 zfree(&tidq->packet); 522 out: 523 return rc; 524 } 525 526 static struct cs_etm_traceid_queue 527 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 528 { 529 int idx; 530 struct int_node *inode; 531 struct intlist *traceid_queues_list; 532 struct cs_etm_traceid_queue *tidq, **traceid_queues; 533 struct cs_etm_auxtrace *etm = etmq->etm; 534 535 if (etm->per_thread_decoding) 536 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 537 538 traceid_queues_list = etmq->traceid_queues_list; 539 540 /* 541 * Check if the traceid_queue exist for this traceID by looking 542 * in the queue list. 543 */ 544 inode = intlist__find(traceid_queues_list, trace_chan_id); 545 if (inode) { 546 idx = (int)(intptr_t)inode->priv; 547 return etmq->traceid_queues[idx]; 548 } 549 550 /* We couldn't find a traceid_queue for this traceID, allocate one */ 551 tidq = malloc(sizeof(*tidq)); 552 if (!tidq) 553 return NULL; 554 555 memset(tidq, 0, sizeof(*tidq)); 556 557 /* Get a valid index for the new traceid_queue */ 558 idx = intlist__nr_entries(traceid_queues_list); 559 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 560 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 561 if (!inode) 562 goto out_free; 563 564 /* Associate this traceID with this index */ 565 inode->priv = (void *)(intptr_t)idx; 566 567 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 568 goto out_free; 569 570 /* Grow the traceid_queues array by one unit */ 571 traceid_queues = etmq->traceid_queues; 572 traceid_queues = reallocarray(traceid_queues, 573 idx + 1, 574 sizeof(*traceid_queues)); 575 576 /* 577 * On failure reallocarray() returns NULL and the original block of 578 * memory is left untouched. 579 */ 580 if (!traceid_queues) 581 goto out_free; 582 583 traceid_queues[idx] = tidq; 584 etmq->traceid_queues = traceid_queues; 585 586 return etmq->traceid_queues[idx]; 587 588 out_free: 589 /* 590 * Function intlist__remove() removes the inode from the list 591 * and delete the memory associated to it. 592 */ 593 intlist__remove(traceid_queues_list, inode); 594 free(tidq); 595 596 return NULL; 597 } 598 599 struct cs_etm_packet_queue 600 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 601 { 602 struct cs_etm_traceid_queue *tidq; 603 604 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 605 if (tidq) 606 return &tidq->packet_queue; 607 608 return NULL; 609 } 610 611 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 612 struct cs_etm_traceid_queue *tidq) 613 { 614 struct cs_etm_packet *tmp; 615 616 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 617 etm->synth_opts.instructions) { 618 /* 619 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 620 * the next incoming packet. 621 * 622 * Threads and exception levels are also tracked for both the 623 * previous and current packets. This is because the previous 624 * packet is used for the 'from' IP for branch samples, so the 625 * thread at that time must also be assigned to that sample. 626 * Across discontinuity packets the thread can change, so by 627 * tracking the thread for the previous packet the branch sample 628 * will have the correct info. 629 */ 630 tmp = tidq->packet; 631 tidq->packet = tidq->prev_packet; 632 tidq->prev_packet = tmp; 633 tidq->prev_packet_el = tidq->el; 634 thread__put(tidq->prev_packet_thread); 635 tidq->prev_packet_thread = thread__get(tidq->thread); 636 } 637 } 638 639 static void cs_etm__packet_dump(const char *pkt_string) 640 { 641 const char *color = PERF_COLOR_BLUE; 642 int len = strlen(pkt_string); 643 644 if (len && (pkt_string[len-1] == '\n')) 645 color_fprintf(stdout, color, " %s", pkt_string); 646 else 647 color_fprintf(stdout, color, " %s\n", pkt_string); 648 649 fflush(stdout); 650 } 651 652 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 653 struct cs_etm_auxtrace *etm, int t_idx, 654 int m_idx, u32 etmidr) 655 { 656 u64 **metadata = etm->metadata; 657 658 t_params[t_idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 659 t_params[t_idx].etmv3.reg_ctrl = metadata[m_idx][CS_ETM_ETMCR]; 660 t_params[t_idx].etmv3.reg_trc_id = metadata[m_idx][CS_ETM_ETMTRACEIDR]; 661 } 662 663 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 664 struct cs_etm_auxtrace *etm, int t_idx, 665 int m_idx) 666 { 667 u64 **metadata = etm->metadata; 668 669 t_params[t_idx].protocol = CS_ETM_PROTO_ETMV4i; 670 t_params[t_idx].etmv4.reg_idr0 = metadata[m_idx][CS_ETMV4_TRCIDR0]; 671 t_params[t_idx].etmv4.reg_idr1 = metadata[m_idx][CS_ETMV4_TRCIDR1]; 672 t_params[t_idx].etmv4.reg_idr2 = metadata[m_idx][CS_ETMV4_TRCIDR2]; 673 t_params[t_idx].etmv4.reg_idr8 = metadata[m_idx][CS_ETMV4_TRCIDR8]; 674 t_params[t_idx].etmv4.reg_configr = metadata[m_idx][CS_ETMV4_TRCCONFIGR]; 675 t_params[t_idx].etmv4.reg_traceidr = metadata[m_idx][CS_ETMV4_TRCTRACEIDR]; 676 } 677 678 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 679 struct cs_etm_auxtrace *etm, int t_idx, 680 int m_idx) 681 { 682 u64 **metadata = etm->metadata; 683 684 t_params[t_idx].protocol = CS_ETM_PROTO_ETE; 685 t_params[t_idx].ete.reg_idr0 = metadata[m_idx][CS_ETE_TRCIDR0]; 686 t_params[t_idx].ete.reg_idr1 = metadata[m_idx][CS_ETE_TRCIDR1]; 687 t_params[t_idx].ete.reg_idr2 = metadata[m_idx][CS_ETE_TRCIDR2]; 688 t_params[t_idx].ete.reg_idr8 = metadata[m_idx][CS_ETE_TRCIDR8]; 689 t_params[t_idx].ete.reg_configr = metadata[m_idx][CS_ETE_TRCCONFIGR]; 690 t_params[t_idx].ete.reg_traceidr = metadata[m_idx][CS_ETE_TRCTRACEIDR]; 691 t_params[t_idx].ete.reg_devarch = metadata[m_idx][CS_ETE_TRCDEVARCH]; 692 } 693 694 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 695 struct cs_etm_auxtrace *etm, 696 bool formatted, 697 int sample_cpu, 698 int decoders) 699 { 700 int t_idx, m_idx; 701 u32 etmidr; 702 u64 architecture; 703 704 for (t_idx = 0; t_idx < decoders; t_idx++) { 705 if (formatted) 706 m_idx = t_idx; 707 else { 708 m_idx = get_cpu_data_idx(etm, sample_cpu); 709 if (m_idx == -1) { 710 pr_warning("CS_ETM: unknown CPU, falling back to first metadata\n"); 711 m_idx = 0; 712 } 713 } 714 715 architecture = etm->metadata[m_idx][CS_ETM_MAGIC]; 716 717 switch (architecture) { 718 case __perf_cs_etmv3_magic: 719 etmidr = etm->metadata[m_idx][CS_ETM_ETMIDR]; 720 cs_etm__set_trace_param_etmv3(t_params, etm, t_idx, m_idx, etmidr); 721 break; 722 case __perf_cs_etmv4_magic: 723 cs_etm__set_trace_param_etmv4(t_params, etm, t_idx, m_idx); 724 break; 725 case __perf_cs_ete_magic: 726 cs_etm__set_trace_param_ete(t_params, etm, t_idx, m_idx); 727 break; 728 default: 729 return -EINVAL; 730 } 731 } 732 733 return 0; 734 } 735 736 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 737 struct cs_etm_queue *etmq, 738 enum cs_etm_decoder_operation mode, 739 bool formatted) 740 { 741 int ret = -EINVAL; 742 743 if (!(mode < CS_ETM_OPERATION_MAX)) 744 goto out; 745 746 d_params->packet_printer = cs_etm__packet_dump; 747 d_params->operation = mode; 748 d_params->data = etmq; 749 d_params->formatted = formatted; 750 d_params->fsyncs = false; 751 d_params->hsyncs = false; 752 d_params->frame_aligned = true; 753 754 ret = 0; 755 out: 756 return ret; 757 } 758 759 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 760 struct auxtrace_buffer *buffer) 761 { 762 int ret; 763 const char *color = PERF_COLOR_BLUE; 764 size_t buffer_used = 0; 765 766 fprintf(stdout, "\n"); 767 color_fprintf(stdout, color, 768 ". ... CoreSight %s Trace data: size %#zx bytes\n", 769 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 770 771 do { 772 size_t consumed; 773 774 ret = cs_etm_decoder__process_data_block( 775 etmq->decoder, buffer->offset, 776 &((u8 *)buffer->data)[buffer_used], 777 buffer->size - buffer_used, &consumed); 778 if (ret) 779 break; 780 781 buffer_used += consumed; 782 } while (buffer_used < buffer->size); 783 784 cs_etm_decoder__reset(etmq->decoder); 785 } 786 787 static int cs_etm__flush_events(struct perf_session *session, 788 struct perf_tool *tool) 789 { 790 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 791 struct cs_etm_auxtrace, 792 auxtrace); 793 if (dump_trace) 794 return 0; 795 796 if (!tool->ordered_events) 797 return -EINVAL; 798 799 if (etm->timeless_decoding) { 800 /* 801 * Pass tid = -1 to process all queues. But likely they will have 802 * already been processed on PERF_RECORD_EXIT anyway. 803 */ 804 return cs_etm__process_timeless_queues(etm, -1); 805 } 806 807 return cs_etm__process_timestamped_queues(etm); 808 } 809 810 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 811 { 812 int idx; 813 uintptr_t priv; 814 struct int_node *inode, *tmp; 815 struct cs_etm_traceid_queue *tidq; 816 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 817 818 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 819 priv = (uintptr_t)inode->priv; 820 idx = priv; 821 822 /* Free this traceid_queue from the array */ 823 tidq = etmq->traceid_queues[idx]; 824 thread__zput(tidq->thread); 825 thread__zput(tidq->prev_packet_thread); 826 zfree(&tidq->event_buf); 827 zfree(&tidq->last_branch); 828 zfree(&tidq->last_branch_rb); 829 zfree(&tidq->prev_packet); 830 zfree(&tidq->packet); 831 zfree(&tidq); 832 833 /* 834 * Function intlist__remove() removes the inode from the list 835 * and delete the memory associated to it. 836 */ 837 intlist__remove(traceid_queues_list, inode); 838 } 839 840 /* Then the RB tree itself */ 841 intlist__delete(traceid_queues_list); 842 etmq->traceid_queues_list = NULL; 843 844 /* finally free the traceid_queues array */ 845 zfree(&etmq->traceid_queues); 846 } 847 848 static void cs_etm__free_queue(void *priv) 849 { 850 struct cs_etm_queue *etmq = priv; 851 852 if (!etmq) 853 return; 854 855 cs_etm_decoder__free(etmq->decoder); 856 cs_etm__free_traceid_queues(etmq); 857 free(etmq); 858 } 859 860 static void cs_etm__free_events(struct perf_session *session) 861 { 862 unsigned int i; 863 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 864 struct cs_etm_auxtrace, 865 auxtrace); 866 struct auxtrace_queues *queues = &aux->queues; 867 868 for (i = 0; i < queues->nr_queues; i++) { 869 cs_etm__free_queue(queues->queue_array[i].priv); 870 queues->queue_array[i].priv = NULL; 871 } 872 873 auxtrace_queues__free(queues); 874 } 875 876 static void cs_etm__free(struct perf_session *session) 877 { 878 int i; 879 struct int_node *inode, *tmp; 880 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 881 struct cs_etm_auxtrace, 882 auxtrace); 883 cs_etm__free_events(session); 884 session->auxtrace = NULL; 885 886 /* First remove all traceID/metadata nodes for the RB tree */ 887 intlist__for_each_entry_safe(inode, tmp, traceid_list) 888 intlist__remove(traceid_list, inode); 889 /* Then the RB tree itself */ 890 intlist__delete(traceid_list); 891 892 for (i = 0; i < aux->num_cpu; i++) 893 zfree(&aux->metadata[i]); 894 895 zfree(&aux->metadata); 896 zfree(&aux); 897 } 898 899 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 900 struct evsel *evsel) 901 { 902 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 903 struct cs_etm_auxtrace, 904 auxtrace); 905 906 return evsel->core.attr.type == aux->pmu_type; 907 } 908 909 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq, 910 ocsd_ex_level el) 911 { 912 enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq); 913 914 /* 915 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels 916 * running at EL1 assume everything is the host. 917 */ 918 if (pid_fmt == CS_ETM_PIDFMT_CTXTID) 919 return &etmq->etm->session->machines.host; 920 921 /* 922 * Not perfect, but otherwise assume anything in EL1 is the default 923 * guest, and everything else is the host. Distinguishing between guest 924 * and host userspaces isn't currently supported either. Neither is 925 * multiple guest support. All this does is reduce the likeliness of 926 * decode errors where we look into the host kernel maps when it should 927 * have been the guest maps. 928 */ 929 switch (el) { 930 case ocsd_EL1: 931 return machines__find_guest(&etmq->etm->session->machines, 932 DEFAULT_GUEST_KERNEL_ID); 933 case ocsd_EL3: 934 case ocsd_EL2: 935 case ocsd_EL0: 936 case ocsd_EL_unknown: 937 default: 938 return &etmq->etm->session->machines.host; 939 } 940 } 941 942 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address, 943 ocsd_ex_level el) 944 { 945 struct machine *machine = cs_etm__get_machine(etmq, el); 946 947 if (address >= machine__kernel_start(machine)) { 948 if (machine__is_host(machine)) 949 return PERF_RECORD_MISC_KERNEL; 950 else 951 return PERF_RECORD_MISC_GUEST_KERNEL; 952 } else { 953 if (machine__is_host(machine)) 954 return PERF_RECORD_MISC_USER; 955 else { 956 /* 957 * Can't really happen at the moment because 958 * cs_etm__get_machine() will always return 959 * machines.host for any non EL1 trace. 960 */ 961 return PERF_RECORD_MISC_GUEST_USER; 962 } 963 } 964 } 965 966 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 967 u64 address, size_t size, u8 *buffer, 968 const ocsd_mem_space_acc_t mem_space) 969 { 970 u8 cpumode; 971 u64 offset; 972 int len; 973 struct addr_location al; 974 struct dso *dso; 975 struct cs_etm_traceid_queue *tidq; 976 int ret = 0; 977 978 if (!etmq) 979 return 0; 980 981 addr_location__init(&al); 982 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 983 if (!tidq) 984 goto out; 985 986 /* 987 * We've already tracked EL along side the PID in cs_etm__set_thread() 988 * so double check that it matches what OpenCSD thinks as well. It 989 * doesn't distinguish between EL0 and EL1 for this mem access callback 990 * so we had to do the extra tracking. Skip validation if it's any of 991 * the 'any' values. 992 */ 993 if (!(mem_space == OCSD_MEM_SPACE_ANY || 994 mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) { 995 if (mem_space & OCSD_MEM_SPACE_EL1N) { 996 /* Includes both non secure EL1 and EL0 */ 997 assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0); 998 } else if (mem_space & OCSD_MEM_SPACE_EL2) 999 assert(tidq->el == ocsd_EL2); 1000 else if (mem_space & OCSD_MEM_SPACE_EL3) 1001 assert(tidq->el == ocsd_EL3); 1002 } 1003 1004 cpumode = cs_etm__cpu_mode(etmq, address, tidq->el); 1005 1006 if (!thread__find_map(tidq->thread, cpumode, address, &al)) 1007 goto out; 1008 1009 dso = map__dso(al.map); 1010 if (!dso) 1011 goto out; 1012 1013 if (dso->data.status == DSO_DATA_STATUS_ERROR && 1014 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) 1015 goto out; 1016 1017 offset = map__map_ip(al.map, address); 1018 1019 map__load(al.map); 1020 1021 len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)), 1022 offset, buffer, size); 1023 1024 if (len <= 0) { 1025 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 1026 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 1027 if (!dso->auxtrace_warned) { 1028 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 1029 address, 1030 dso->long_name ? dso->long_name : "Unknown"); 1031 dso->auxtrace_warned = true; 1032 } 1033 goto out; 1034 } 1035 ret = len; 1036 out: 1037 addr_location__exit(&al); 1038 return ret; 1039 } 1040 1041 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 1042 bool formatted, int sample_cpu) 1043 { 1044 struct cs_etm_decoder_params d_params; 1045 struct cs_etm_trace_params *t_params = NULL; 1046 struct cs_etm_queue *etmq; 1047 /* 1048 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 1049 * needed. 1050 */ 1051 int decoders = formatted ? etm->num_cpu : 1; 1052 1053 etmq = zalloc(sizeof(*etmq)); 1054 if (!etmq) 1055 return NULL; 1056 1057 etmq->traceid_queues_list = intlist__new(NULL); 1058 if (!etmq->traceid_queues_list) 1059 goto out_free; 1060 1061 /* Use metadata to fill in trace parameters for trace decoder */ 1062 t_params = zalloc(sizeof(*t_params) * decoders); 1063 1064 if (!t_params) 1065 goto out_free; 1066 1067 if (cs_etm__init_trace_params(t_params, etm, formatted, sample_cpu, decoders)) 1068 goto out_free; 1069 1070 /* Set decoder parameters to decode trace packets */ 1071 if (cs_etm__init_decoder_params(&d_params, etmq, 1072 dump_trace ? CS_ETM_OPERATION_PRINT : 1073 CS_ETM_OPERATION_DECODE, 1074 formatted)) 1075 goto out_free; 1076 1077 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 1078 t_params); 1079 1080 if (!etmq->decoder) 1081 goto out_free; 1082 1083 /* 1084 * Register a function to handle all memory accesses required by 1085 * the trace decoder library. 1086 */ 1087 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 1088 0x0L, ((u64) -1L), 1089 cs_etm__mem_access)) 1090 goto out_free_decoder; 1091 1092 zfree(&t_params); 1093 return etmq; 1094 1095 out_free_decoder: 1096 cs_etm_decoder__free(etmq->decoder); 1097 out_free: 1098 intlist__delete(etmq->traceid_queues_list); 1099 free(etmq); 1100 1101 return NULL; 1102 } 1103 1104 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 1105 struct auxtrace_queue *queue, 1106 unsigned int queue_nr, 1107 bool formatted, 1108 int sample_cpu) 1109 { 1110 struct cs_etm_queue *etmq = queue->priv; 1111 1112 if (list_empty(&queue->head) || etmq) 1113 return 0; 1114 1115 etmq = cs_etm__alloc_queue(etm, formatted, sample_cpu); 1116 1117 if (!etmq) 1118 return -ENOMEM; 1119 1120 queue->priv = etmq; 1121 etmq->etm = etm; 1122 etmq->queue_nr = queue_nr; 1123 etmq->offset = 0; 1124 1125 return 0; 1126 } 1127 1128 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 1129 struct cs_etm_queue *etmq, 1130 unsigned int queue_nr) 1131 { 1132 int ret = 0; 1133 unsigned int cs_queue_nr; 1134 u8 trace_chan_id; 1135 u64 cs_timestamp; 1136 1137 /* 1138 * We are under a CPU-wide trace scenario. As such we need to know 1139 * when the code that generated the traces started to execute so that 1140 * it can be correlated with execution on other CPUs. So we get a 1141 * handle on the beginning of traces and decode until we find a 1142 * timestamp. The timestamp is then added to the auxtrace min heap 1143 * in order to know what nibble (of all the etmqs) to decode first. 1144 */ 1145 while (1) { 1146 /* 1147 * Fetch an aux_buffer from this etmq. Bail if no more 1148 * blocks or an error has been encountered. 1149 */ 1150 ret = cs_etm__get_data_block(etmq); 1151 if (ret <= 0) 1152 goto out; 1153 1154 /* 1155 * Run decoder on the trace block. The decoder will stop when 1156 * encountering a CS timestamp, a full packet queue or the end of 1157 * trace for that block. 1158 */ 1159 ret = cs_etm__decode_data_block(etmq); 1160 if (ret) 1161 goto out; 1162 1163 /* 1164 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 1165 * the timestamp calculation for us. 1166 */ 1167 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 1168 1169 /* We found a timestamp, no need to continue. */ 1170 if (cs_timestamp) 1171 break; 1172 1173 /* 1174 * We didn't find a timestamp so empty all the traceid packet 1175 * queues before looking for another timestamp packet, either 1176 * in the current data block or a new one. Packets that were 1177 * just decoded are useless since no timestamp has been 1178 * associated with them. As such simply discard them. 1179 */ 1180 cs_etm__clear_all_packet_queues(etmq); 1181 } 1182 1183 /* 1184 * We have a timestamp. Add it to the min heap to reflect when 1185 * instructions conveyed by the range packets of this traceID queue 1186 * started to execute. Once the same has been done for all the traceID 1187 * queues of each etmq, redenring and decoding can start in 1188 * chronological order. 1189 * 1190 * Note that packets decoded above are still in the traceID's packet 1191 * queue and will be processed in cs_etm__process_timestamped_queues(). 1192 */ 1193 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 1194 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 1195 out: 1196 return ret; 1197 } 1198 1199 static inline 1200 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 1201 struct cs_etm_traceid_queue *tidq) 1202 { 1203 struct branch_stack *bs_src = tidq->last_branch_rb; 1204 struct branch_stack *bs_dst = tidq->last_branch; 1205 size_t nr = 0; 1206 1207 /* 1208 * Set the number of records before early exit: ->nr is used to 1209 * determine how many branches to copy from ->entries. 1210 */ 1211 bs_dst->nr = bs_src->nr; 1212 1213 /* 1214 * Early exit when there is nothing to copy. 1215 */ 1216 if (!bs_src->nr) 1217 return; 1218 1219 /* 1220 * As bs_src->entries is a circular buffer, we need to copy from it in 1221 * two steps. First, copy the branches from the most recently inserted 1222 * branch ->last_branch_pos until the end of bs_src->entries buffer. 1223 */ 1224 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 1225 memcpy(&bs_dst->entries[0], 1226 &bs_src->entries[tidq->last_branch_pos], 1227 sizeof(struct branch_entry) * nr); 1228 1229 /* 1230 * If we wrapped around at least once, the branches from the beginning 1231 * of the bs_src->entries buffer and until the ->last_branch_pos element 1232 * are older valid branches: copy them over. The total number of 1233 * branches copied over will be equal to the number of branches asked by 1234 * the user in last_branch_sz. 1235 */ 1236 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 1237 memcpy(&bs_dst->entries[nr], 1238 &bs_src->entries[0], 1239 sizeof(struct branch_entry) * tidq->last_branch_pos); 1240 } 1241 } 1242 1243 static inline 1244 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 1245 { 1246 tidq->last_branch_pos = 0; 1247 tidq->last_branch_rb->nr = 0; 1248 } 1249 1250 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 1251 u8 trace_chan_id, u64 addr) 1252 { 1253 u8 instrBytes[2]; 1254 1255 cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes), 1256 instrBytes, 0); 1257 /* 1258 * T32 instruction size is indicated by bits[15:11] of the first 1259 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 1260 * denote a 32-bit instruction. 1261 */ 1262 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 1263 } 1264 1265 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 1266 { 1267 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1268 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1269 return 0; 1270 1271 return packet->start_addr; 1272 } 1273 1274 static inline 1275 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 1276 { 1277 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1278 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1279 return 0; 1280 1281 return packet->end_addr - packet->last_instr_size; 1282 } 1283 1284 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 1285 u64 trace_chan_id, 1286 const struct cs_etm_packet *packet, 1287 u64 offset) 1288 { 1289 if (packet->isa == CS_ETM_ISA_T32) { 1290 u64 addr = packet->start_addr; 1291 1292 while (offset) { 1293 addr += cs_etm__t32_instr_size(etmq, 1294 trace_chan_id, addr); 1295 offset--; 1296 } 1297 return addr; 1298 } 1299 1300 /* Assume a 4 byte instruction size (A32/A64) */ 1301 return packet->start_addr + offset * 4; 1302 } 1303 1304 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1305 struct cs_etm_traceid_queue *tidq) 1306 { 1307 struct branch_stack *bs = tidq->last_branch_rb; 1308 struct branch_entry *be; 1309 1310 /* 1311 * The branches are recorded in a circular buffer in reverse 1312 * chronological order: we start recording from the last element of the 1313 * buffer down. After writing the first element of the stack, move the 1314 * insert position back to the end of the buffer. 1315 */ 1316 if (!tidq->last_branch_pos) 1317 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1318 1319 tidq->last_branch_pos -= 1; 1320 1321 be = &bs->entries[tidq->last_branch_pos]; 1322 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1323 be->to = cs_etm__first_executed_instr(tidq->packet); 1324 /* No support for mispredict */ 1325 be->flags.mispred = 0; 1326 be->flags.predicted = 1; 1327 1328 /* 1329 * Increment bs->nr until reaching the number of last branches asked by 1330 * the user on the command line. 1331 */ 1332 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1333 bs->nr += 1; 1334 } 1335 1336 static int cs_etm__inject_event(union perf_event *event, 1337 struct perf_sample *sample, u64 type) 1338 { 1339 event->header.size = perf_event__sample_event_size(sample, type, 0); 1340 return perf_event__synthesize_sample(event, type, 0, sample); 1341 } 1342 1343 1344 static int 1345 cs_etm__get_trace(struct cs_etm_queue *etmq) 1346 { 1347 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1348 struct auxtrace_buffer *old_buffer = aux_buffer; 1349 struct auxtrace_queue *queue; 1350 1351 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1352 1353 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1354 1355 /* If no more data, drop the previous auxtrace_buffer and return */ 1356 if (!aux_buffer) { 1357 if (old_buffer) 1358 auxtrace_buffer__drop_data(old_buffer); 1359 etmq->buf_len = 0; 1360 return 0; 1361 } 1362 1363 etmq->buffer = aux_buffer; 1364 1365 /* If the aux_buffer doesn't have data associated, try to load it */ 1366 if (!aux_buffer->data) { 1367 /* get the file desc associated with the perf data file */ 1368 int fd = perf_data__fd(etmq->etm->session->data); 1369 1370 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1371 if (!aux_buffer->data) 1372 return -ENOMEM; 1373 } 1374 1375 /* If valid, drop the previous buffer */ 1376 if (old_buffer) 1377 auxtrace_buffer__drop_data(old_buffer); 1378 1379 etmq->buf_used = 0; 1380 etmq->buf_len = aux_buffer->size; 1381 etmq->buf = aux_buffer->data; 1382 1383 return etmq->buf_len; 1384 } 1385 1386 static void cs_etm__set_thread(struct cs_etm_queue *etmq, 1387 struct cs_etm_traceid_queue *tidq, pid_t tid, 1388 ocsd_ex_level el) 1389 { 1390 struct machine *machine = cs_etm__get_machine(etmq, el); 1391 1392 if (tid != -1) { 1393 thread__zput(tidq->thread); 1394 tidq->thread = machine__find_thread(machine, -1, tid); 1395 } 1396 1397 /* Couldn't find a known thread */ 1398 if (!tidq->thread) 1399 tidq->thread = machine__idle_thread(machine); 1400 1401 tidq->el = el; 1402 } 1403 1404 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid, 1405 u8 trace_chan_id, ocsd_ex_level el) 1406 { 1407 struct cs_etm_traceid_queue *tidq; 1408 1409 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1410 if (!tidq) 1411 return -EINVAL; 1412 1413 cs_etm__set_thread(etmq, tidq, tid, el); 1414 return 0; 1415 } 1416 1417 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1418 { 1419 return !!etmq->etm->timeless_decoding; 1420 } 1421 1422 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1423 u64 trace_chan_id, 1424 const struct cs_etm_packet *packet, 1425 struct perf_sample *sample) 1426 { 1427 /* 1428 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1429 * packet, so directly bail out with 'insn_len' = 0. 1430 */ 1431 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1432 sample->insn_len = 0; 1433 return; 1434 } 1435 1436 /* 1437 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1438 * cs_etm__t32_instr_size(). 1439 */ 1440 if (packet->isa == CS_ETM_ISA_T32) 1441 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1442 sample->ip); 1443 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1444 else 1445 sample->insn_len = 4; 1446 1447 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len, 1448 (void *)sample->insn, 0); 1449 } 1450 1451 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) 1452 { 1453 struct cs_etm_auxtrace *etm = etmq->etm; 1454 1455 if (etm->has_virtual_ts) 1456 return tsc_to_perf_time(cs_timestamp, &etm->tc); 1457 else 1458 return cs_timestamp; 1459 } 1460 1461 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, 1462 struct cs_etm_traceid_queue *tidq) 1463 { 1464 struct cs_etm_auxtrace *etm = etmq->etm; 1465 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; 1466 1467 if (!etm->timeless_decoding && etm->has_virtual_ts) 1468 return packet_queue->cs_timestamp; 1469 else 1470 return etm->latest_kernel_timestamp; 1471 } 1472 1473 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1474 struct cs_etm_traceid_queue *tidq, 1475 u64 addr, u64 period) 1476 { 1477 int ret = 0; 1478 struct cs_etm_auxtrace *etm = etmq->etm; 1479 union perf_event *event = tidq->event_buf; 1480 struct perf_sample sample = {.ip = 0,}; 1481 1482 event->sample.header.type = PERF_RECORD_SAMPLE; 1483 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el); 1484 event->sample.header.size = sizeof(struct perf_event_header); 1485 1486 /* Set time field based on etm auxtrace config. */ 1487 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1488 1489 sample.ip = addr; 1490 sample.pid = thread__pid(tidq->thread); 1491 sample.tid = thread__tid(tidq->thread); 1492 sample.id = etmq->etm->instructions_id; 1493 sample.stream_id = etmq->etm->instructions_id; 1494 sample.period = period; 1495 sample.cpu = tidq->packet->cpu; 1496 sample.flags = tidq->prev_packet->flags; 1497 sample.cpumode = event->sample.header.misc; 1498 1499 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1500 1501 if (etm->synth_opts.last_branch) 1502 sample.branch_stack = tidq->last_branch; 1503 1504 if (etm->synth_opts.inject) { 1505 ret = cs_etm__inject_event(event, &sample, 1506 etm->instructions_sample_type); 1507 if (ret) 1508 return ret; 1509 } 1510 1511 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1512 1513 if (ret) 1514 pr_err( 1515 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1516 ret); 1517 1518 return ret; 1519 } 1520 1521 /* 1522 * The cs etm packet encodes an instruction range between a branch target 1523 * and the next taken branch. Generate sample accordingly. 1524 */ 1525 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1526 struct cs_etm_traceid_queue *tidq) 1527 { 1528 int ret = 0; 1529 struct cs_etm_auxtrace *etm = etmq->etm; 1530 struct perf_sample sample = {.ip = 0,}; 1531 union perf_event *event = tidq->event_buf; 1532 struct dummy_branch_stack { 1533 u64 nr; 1534 u64 hw_idx; 1535 struct branch_entry entries; 1536 } dummy_bs; 1537 u64 ip; 1538 1539 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1540 1541 event->sample.header.type = PERF_RECORD_SAMPLE; 1542 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip, 1543 tidq->prev_packet_el); 1544 event->sample.header.size = sizeof(struct perf_event_header); 1545 1546 /* Set time field based on etm auxtrace config. */ 1547 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1548 1549 sample.ip = ip; 1550 sample.pid = thread__pid(tidq->prev_packet_thread); 1551 sample.tid = thread__tid(tidq->prev_packet_thread); 1552 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1553 sample.id = etmq->etm->branches_id; 1554 sample.stream_id = etmq->etm->branches_id; 1555 sample.period = 1; 1556 sample.cpu = tidq->packet->cpu; 1557 sample.flags = tidq->prev_packet->flags; 1558 sample.cpumode = event->sample.header.misc; 1559 1560 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1561 &sample); 1562 1563 /* 1564 * perf report cannot handle events without a branch stack 1565 */ 1566 if (etm->synth_opts.last_branch) { 1567 dummy_bs = (struct dummy_branch_stack){ 1568 .nr = 1, 1569 .hw_idx = -1ULL, 1570 .entries = { 1571 .from = sample.ip, 1572 .to = sample.addr, 1573 }, 1574 }; 1575 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1576 } 1577 1578 if (etm->synth_opts.inject) { 1579 ret = cs_etm__inject_event(event, &sample, 1580 etm->branches_sample_type); 1581 if (ret) 1582 return ret; 1583 } 1584 1585 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1586 1587 if (ret) 1588 pr_err( 1589 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1590 ret); 1591 1592 return ret; 1593 } 1594 1595 struct cs_etm_synth { 1596 struct perf_tool dummy_tool; 1597 struct perf_session *session; 1598 }; 1599 1600 static int cs_etm__event_synth(struct perf_tool *tool, 1601 union perf_event *event, 1602 struct perf_sample *sample __maybe_unused, 1603 struct machine *machine __maybe_unused) 1604 { 1605 struct cs_etm_synth *cs_etm_synth = 1606 container_of(tool, struct cs_etm_synth, dummy_tool); 1607 1608 return perf_session__deliver_synth_event(cs_etm_synth->session, 1609 event, NULL); 1610 } 1611 1612 static int cs_etm__synth_event(struct perf_session *session, 1613 struct perf_event_attr *attr, u64 id) 1614 { 1615 struct cs_etm_synth cs_etm_synth; 1616 1617 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1618 cs_etm_synth.session = session; 1619 1620 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1621 &id, cs_etm__event_synth); 1622 } 1623 1624 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1625 struct perf_session *session) 1626 { 1627 struct evlist *evlist = session->evlist; 1628 struct evsel *evsel; 1629 struct perf_event_attr attr; 1630 bool found = false; 1631 u64 id; 1632 int err; 1633 1634 evlist__for_each_entry(evlist, evsel) { 1635 if (evsel->core.attr.type == etm->pmu_type) { 1636 found = true; 1637 break; 1638 } 1639 } 1640 1641 if (!found) { 1642 pr_debug("No selected events with CoreSight Trace data\n"); 1643 return 0; 1644 } 1645 1646 memset(&attr, 0, sizeof(struct perf_event_attr)); 1647 attr.size = sizeof(struct perf_event_attr); 1648 attr.type = PERF_TYPE_HARDWARE; 1649 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1650 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1651 PERF_SAMPLE_PERIOD; 1652 if (etm->timeless_decoding) 1653 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1654 else 1655 attr.sample_type |= PERF_SAMPLE_TIME; 1656 1657 attr.exclude_user = evsel->core.attr.exclude_user; 1658 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1659 attr.exclude_hv = evsel->core.attr.exclude_hv; 1660 attr.exclude_host = evsel->core.attr.exclude_host; 1661 attr.exclude_guest = evsel->core.attr.exclude_guest; 1662 attr.sample_id_all = evsel->core.attr.sample_id_all; 1663 attr.read_format = evsel->core.attr.read_format; 1664 1665 /* create new id val to be a fixed offset from evsel id */ 1666 id = evsel->core.id[0] + 1000000000; 1667 1668 if (!id) 1669 id = 1; 1670 1671 if (etm->synth_opts.branches) { 1672 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1673 attr.sample_period = 1; 1674 attr.sample_type |= PERF_SAMPLE_ADDR; 1675 err = cs_etm__synth_event(session, &attr, id); 1676 if (err) 1677 return err; 1678 etm->branches_sample_type = attr.sample_type; 1679 etm->branches_id = id; 1680 id += 1; 1681 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1682 } 1683 1684 if (etm->synth_opts.last_branch) { 1685 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1686 /* 1687 * We don't use the hardware index, but the sample generation 1688 * code uses the new format branch_stack with this field, 1689 * so the event attributes must indicate that it's present. 1690 */ 1691 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1692 } 1693 1694 if (etm->synth_opts.instructions) { 1695 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1696 attr.sample_period = etm->synth_opts.period; 1697 etm->instructions_sample_period = attr.sample_period; 1698 err = cs_etm__synth_event(session, &attr, id); 1699 if (err) 1700 return err; 1701 etm->instructions_sample_type = attr.sample_type; 1702 etm->instructions_id = id; 1703 id += 1; 1704 } 1705 1706 return 0; 1707 } 1708 1709 static int cs_etm__sample(struct cs_etm_queue *etmq, 1710 struct cs_etm_traceid_queue *tidq) 1711 { 1712 struct cs_etm_auxtrace *etm = etmq->etm; 1713 int ret; 1714 u8 trace_chan_id = tidq->trace_chan_id; 1715 u64 instrs_prev; 1716 1717 /* Get instructions remainder from previous packet */ 1718 instrs_prev = tidq->period_instructions; 1719 1720 tidq->period_instructions += tidq->packet->instr_count; 1721 1722 /* 1723 * Record a branch when the last instruction in 1724 * PREV_PACKET is a branch. 1725 */ 1726 if (etm->synth_opts.last_branch && 1727 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1728 tidq->prev_packet->last_instr_taken_branch) 1729 cs_etm__update_last_branch_rb(etmq, tidq); 1730 1731 if (etm->synth_opts.instructions && 1732 tidq->period_instructions >= etm->instructions_sample_period) { 1733 /* 1734 * Emit instruction sample periodically 1735 * TODO: allow period to be defined in cycles and clock time 1736 */ 1737 1738 /* 1739 * Below diagram demonstrates the instruction samples 1740 * generation flows: 1741 * 1742 * Instrs Instrs Instrs Instrs 1743 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1744 * | | | | 1745 * V V V V 1746 * -------------------------------------------------- 1747 * ^ ^ 1748 * | | 1749 * Period Period 1750 * instructions(Pi) instructions(Pi') 1751 * 1752 * | | 1753 * \---------------- -----------------/ 1754 * V 1755 * tidq->packet->instr_count 1756 * 1757 * Instrs Sample(n...) are the synthesised samples occurring 1758 * every etm->instructions_sample_period instructions - as 1759 * defined on the perf command line. Sample(n) is being the 1760 * last sample before the current etm packet, n+1 to n+3 1761 * samples are generated from the current etm packet. 1762 * 1763 * tidq->packet->instr_count represents the number of 1764 * instructions in the current etm packet. 1765 * 1766 * Period instructions (Pi) contains the number of 1767 * instructions executed after the sample point(n) from the 1768 * previous etm packet. This will always be less than 1769 * etm->instructions_sample_period. 1770 * 1771 * When generate new samples, it combines with two parts 1772 * instructions, one is the tail of the old packet and another 1773 * is the head of the new coming packet, to generate 1774 * sample(n+1); sample(n+2) and sample(n+3) consume the 1775 * instructions with sample period. After sample(n+3), the rest 1776 * instructions will be used by later packet and it is assigned 1777 * to tidq->period_instructions for next round calculation. 1778 */ 1779 1780 /* 1781 * Get the initial offset into the current packet instructions; 1782 * entry conditions ensure that instrs_prev is less than 1783 * etm->instructions_sample_period. 1784 */ 1785 u64 offset = etm->instructions_sample_period - instrs_prev; 1786 u64 addr; 1787 1788 /* Prepare last branches for instruction sample */ 1789 if (etm->synth_opts.last_branch) 1790 cs_etm__copy_last_branch_rb(etmq, tidq); 1791 1792 while (tidq->period_instructions >= 1793 etm->instructions_sample_period) { 1794 /* 1795 * Calculate the address of the sampled instruction (-1 1796 * as sample is reported as though instruction has just 1797 * been executed, but PC has not advanced to next 1798 * instruction) 1799 */ 1800 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1801 tidq->packet, offset - 1); 1802 ret = cs_etm__synth_instruction_sample( 1803 etmq, tidq, addr, 1804 etm->instructions_sample_period); 1805 if (ret) 1806 return ret; 1807 1808 offset += etm->instructions_sample_period; 1809 tidq->period_instructions -= 1810 etm->instructions_sample_period; 1811 } 1812 } 1813 1814 if (etm->synth_opts.branches) { 1815 bool generate_sample = false; 1816 1817 /* Generate sample for tracing on packet */ 1818 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1819 generate_sample = true; 1820 1821 /* Generate sample for branch taken packet */ 1822 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1823 tidq->prev_packet->last_instr_taken_branch) 1824 generate_sample = true; 1825 1826 if (generate_sample) { 1827 ret = cs_etm__synth_branch_sample(etmq, tidq); 1828 if (ret) 1829 return ret; 1830 } 1831 } 1832 1833 cs_etm__packet_swap(etm, tidq); 1834 1835 return 0; 1836 } 1837 1838 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1839 { 1840 /* 1841 * When the exception packet is inserted, whether the last instruction 1842 * in previous range packet is taken branch or not, we need to force 1843 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1844 * to generate branch sample for the instruction range before the 1845 * exception is trapped to kernel or before the exception returning. 1846 * 1847 * The exception packet includes the dummy address values, so don't 1848 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1849 * for generating instruction and branch samples. 1850 */ 1851 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1852 tidq->prev_packet->last_instr_taken_branch = true; 1853 1854 return 0; 1855 } 1856 1857 static int cs_etm__flush(struct cs_etm_queue *etmq, 1858 struct cs_etm_traceid_queue *tidq) 1859 { 1860 int err = 0; 1861 struct cs_etm_auxtrace *etm = etmq->etm; 1862 1863 /* Handle start tracing packet */ 1864 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1865 goto swap_packet; 1866 1867 if (etmq->etm->synth_opts.last_branch && 1868 etmq->etm->synth_opts.instructions && 1869 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1870 u64 addr; 1871 1872 /* Prepare last branches for instruction sample */ 1873 cs_etm__copy_last_branch_rb(etmq, tidq); 1874 1875 /* 1876 * Generate a last branch event for the branches left in the 1877 * circular buffer at the end of the trace. 1878 * 1879 * Use the address of the end of the last reported execution 1880 * range 1881 */ 1882 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1883 1884 err = cs_etm__synth_instruction_sample( 1885 etmq, tidq, addr, 1886 tidq->period_instructions); 1887 if (err) 1888 return err; 1889 1890 tidq->period_instructions = 0; 1891 1892 } 1893 1894 if (etm->synth_opts.branches && 1895 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1896 err = cs_etm__synth_branch_sample(etmq, tidq); 1897 if (err) 1898 return err; 1899 } 1900 1901 swap_packet: 1902 cs_etm__packet_swap(etm, tidq); 1903 1904 /* Reset last branches after flush the trace */ 1905 if (etm->synth_opts.last_branch) 1906 cs_etm__reset_last_branch_rb(tidq); 1907 1908 return err; 1909 } 1910 1911 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1912 struct cs_etm_traceid_queue *tidq) 1913 { 1914 int err; 1915 1916 /* 1917 * It has no new packet coming and 'etmq->packet' contains the stale 1918 * packet which was set at the previous time with packets swapping; 1919 * so skip to generate branch sample to avoid stale packet. 1920 * 1921 * For this case only flush branch stack and generate a last branch 1922 * event for the branches left in the circular buffer at the end of 1923 * the trace. 1924 */ 1925 if (etmq->etm->synth_opts.last_branch && 1926 etmq->etm->synth_opts.instructions && 1927 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1928 u64 addr; 1929 1930 /* Prepare last branches for instruction sample */ 1931 cs_etm__copy_last_branch_rb(etmq, tidq); 1932 1933 /* 1934 * Use the address of the end of the last reported execution 1935 * range. 1936 */ 1937 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1938 1939 err = cs_etm__synth_instruction_sample( 1940 etmq, tidq, addr, 1941 tidq->period_instructions); 1942 if (err) 1943 return err; 1944 1945 tidq->period_instructions = 0; 1946 } 1947 1948 return 0; 1949 } 1950 /* 1951 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1952 * if need be. 1953 * Returns: < 0 if error 1954 * = 0 if no more auxtrace_buffer to read 1955 * > 0 if the current buffer isn't empty yet 1956 */ 1957 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1958 { 1959 int ret; 1960 1961 if (!etmq->buf_len) { 1962 ret = cs_etm__get_trace(etmq); 1963 if (ret <= 0) 1964 return ret; 1965 /* 1966 * We cannot assume consecutive blocks in the data file 1967 * are contiguous, reset the decoder to force re-sync. 1968 */ 1969 ret = cs_etm_decoder__reset(etmq->decoder); 1970 if (ret) 1971 return ret; 1972 } 1973 1974 return etmq->buf_len; 1975 } 1976 1977 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1978 struct cs_etm_packet *packet, 1979 u64 end_addr) 1980 { 1981 /* Initialise to keep compiler happy */ 1982 u16 instr16 = 0; 1983 u32 instr32 = 0; 1984 u64 addr; 1985 1986 switch (packet->isa) { 1987 case CS_ETM_ISA_T32: 1988 /* 1989 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1990 * 1991 * b'15 b'8 1992 * +-----------------+--------+ 1993 * | 1 1 0 1 1 1 1 1 | imm8 | 1994 * +-----------------+--------+ 1995 * 1996 * According to the specification, it only defines SVC for T32 1997 * with 16 bits instruction and has no definition for 32bits; 1998 * so below only read 2 bytes as instruction size for T32. 1999 */ 2000 addr = end_addr - 2; 2001 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16), 2002 (u8 *)&instr16, 0); 2003 if ((instr16 & 0xFF00) == 0xDF00) 2004 return true; 2005 2006 break; 2007 case CS_ETM_ISA_A32: 2008 /* 2009 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 2010 * 2011 * b'31 b'28 b'27 b'24 2012 * +---------+---------+-------------------------+ 2013 * | !1111 | 1 1 1 1 | imm24 | 2014 * +---------+---------+-------------------------+ 2015 */ 2016 addr = end_addr - 4; 2017 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 2018 (u8 *)&instr32, 0); 2019 if ((instr32 & 0x0F000000) == 0x0F000000 && 2020 (instr32 & 0xF0000000) != 0xF0000000) 2021 return true; 2022 2023 break; 2024 case CS_ETM_ISA_A64: 2025 /* 2026 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 2027 * 2028 * b'31 b'21 b'4 b'0 2029 * +-----------------------+---------+-----------+ 2030 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 2031 * +-----------------------+---------+-----------+ 2032 */ 2033 addr = end_addr - 4; 2034 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 2035 (u8 *)&instr32, 0); 2036 if ((instr32 & 0xFFE0001F) == 0xd4000001) 2037 return true; 2038 2039 break; 2040 case CS_ETM_ISA_UNKNOWN: 2041 default: 2042 break; 2043 } 2044 2045 return false; 2046 } 2047 2048 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 2049 struct cs_etm_traceid_queue *tidq, u64 magic) 2050 { 2051 u8 trace_chan_id = tidq->trace_chan_id; 2052 struct cs_etm_packet *packet = tidq->packet; 2053 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2054 2055 if (magic == __perf_cs_etmv3_magic) 2056 if (packet->exception_number == CS_ETMV3_EXC_SVC) 2057 return true; 2058 2059 /* 2060 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 2061 * HVC cases; need to check if it's SVC instruction based on 2062 * packet address. 2063 */ 2064 if (magic == __perf_cs_etmv4_magic) { 2065 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2066 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2067 prev_packet->end_addr)) 2068 return true; 2069 } 2070 2071 return false; 2072 } 2073 2074 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 2075 u64 magic) 2076 { 2077 struct cs_etm_packet *packet = tidq->packet; 2078 2079 if (magic == __perf_cs_etmv3_magic) 2080 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 2081 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 2082 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 2083 packet->exception_number == CS_ETMV3_EXC_IRQ || 2084 packet->exception_number == CS_ETMV3_EXC_FIQ) 2085 return true; 2086 2087 if (magic == __perf_cs_etmv4_magic) 2088 if (packet->exception_number == CS_ETMV4_EXC_RESET || 2089 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 2090 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 2091 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 2092 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 2093 packet->exception_number == CS_ETMV4_EXC_IRQ || 2094 packet->exception_number == CS_ETMV4_EXC_FIQ) 2095 return true; 2096 2097 return false; 2098 } 2099 2100 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 2101 struct cs_etm_traceid_queue *tidq, 2102 u64 magic) 2103 { 2104 u8 trace_chan_id = tidq->trace_chan_id; 2105 struct cs_etm_packet *packet = tidq->packet; 2106 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2107 2108 if (magic == __perf_cs_etmv3_magic) 2109 if (packet->exception_number == CS_ETMV3_EXC_SMC || 2110 packet->exception_number == CS_ETMV3_EXC_HYP || 2111 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 2112 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 2113 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 2114 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 2115 packet->exception_number == CS_ETMV3_EXC_GENERIC) 2116 return true; 2117 2118 if (magic == __perf_cs_etmv4_magic) { 2119 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 2120 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 2121 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 2122 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 2123 return true; 2124 2125 /* 2126 * For CS_ETMV4_EXC_CALL, except SVC other instructions 2127 * (SMC, HVC) are taken as sync exceptions. 2128 */ 2129 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2130 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2131 prev_packet->end_addr)) 2132 return true; 2133 2134 /* 2135 * ETMv4 has 5 bits for exception number; if the numbers 2136 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 2137 * they are implementation defined exceptions. 2138 * 2139 * For this case, simply take it as sync exception. 2140 */ 2141 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 2142 packet->exception_number <= CS_ETMV4_EXC_END) 2143 return true; 2144 } 2145 2146 return false; 2147 } 2148 2149 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 2150 struct cs_etm_traceid_queue *tidq) 2151 { 2152 struct cs_etm_packet *packet = tidq->packet; 2153 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2154 u8 trace_chan_id = tidq->trace_chan_id; 2155 u64 magic; 2156 int ret; 2157 2158 switch (packet->sample_type) { 2159 case CS_ETM_RANGE: 2160 /* 2161 * Immediate branch instruction without neither link nor 2162 * return flag, it's normal branch instruction within 2163 * the function. 2164 */ 2165 if (packet->last_instr_type == OCSD_INSTR_BR && 2166 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 2167 packet->flags = PERF_IP_FLAG_BRANCH; 2168 2169 if (packet->last_instr_cond) 2170 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 2171 } 2172 2173 /* 2174 * Immediate branch instruction with link (e.g. BL), this is 2175 * branch instruction for function call. 2176 */ 2177 if (packet->last_instr_type == OCSD_INSTR_BR && 2178 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2179 packet->flags = PERF_IP_FLAG_BRANCH | 2180 PERF_IP_FLAG_CALL; 2181 2182 /* 2183 * Indirect branch instruction with link (e.g. BLR), this is 2184 * branch instruction for function call. 2185 */ 2186 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2187 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2188 packet->flags = PERF_IP_FLAG_BRANCH | 2189 PERF_IP_FLAG_CALL; 2190 2191 /* 2192 * Indirect branch instruction with subtype of 2193 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 2194 * function return for A32/T32. 2195 */ 2196 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2197 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 2198 packet->flags = PERF_IP_FLAG_BRANCH | 2199 PERF_IP_FLAG_RETURN; 2200 2201 /* 2202 * Indirect branch instruction without link (e.g. BR), usually 2203 * this is used for function return, especially for functions 2204 * within dynamic link lib. 2205 */ 2206 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2207 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 2208 packet->flags = PERF_IP_FLAG_BRANCH | 2209 PERF_IP_FLAG_RETURN; 2210 2211 /* Return instruction for function return. */ 2212 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2213 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 2214 packet->flags = PERF_IP_FLAG_BRANCH | 2215 PERF_IP_FLAG_RETURN; 2216 2217 /* 2218 * Decoder might insert a discontinuity in the middle of 2219 * instruction packets, fixup prev_packet with flag 2220 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 2221 */ 2222 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 2223 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2224 PERF_IP_FLAG_TRACE_BEGIN; 2225 2226 /* 2227 * If the previous packet is an exception return packet 2228 * and the return address just follows SVC instruction, 2229 * it needs to calibrate the previous packet sample flags 2230 * as PERF_IP_FLAG_SYSCALLRET. 2231 */ 2232 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 2233 PERF_IP_FLAG_RETURN | 2234 PERF_IP_FLAG_INTERRUPT) && 2235 cs_etm__is_svc_instr(etmq, trace_chan_id, 2236 packet, packet->start_addr)) 2237 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2238 PERF_IP_FLAG_RETURN | 2239 PERF_IP_FLAG_SYSCALLRET; 2240 break; 2241 case CS_ETM_DISCONTINUITY: 2242 /* 2243 * The trace is discontinuous, if the previous packet is 2244 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 2245 * for previous packet. 2246 */ 2247 if (prev_packet->sample_type == CS_ETM_RANGE) 2248 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2249 PERF_IP_FLAG_TRACE_END; 2250 break; 2251 case CS_ETM_EXCEPTION: 2252 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 2253 if (ret) 2254 return ret; 2255 2256 /* The exception is for system call. */ 2257 if (cs_etm__is_syscall(etmq, tidq, magic)) 2258 packet->flags = PERF_IP_FLAG_BRANCH | 2259 PERF_IP_FLAG_CALL | 2260 PERF_IP_FLAG_SYSCALLRET; 2261 /* 2262 * The exceptions are triggered by external signals from bus, 2263 * interrupt controller, debug module, PE reset or halt. 2264 */ 2265 else if (cs_etm__is_async_exception(tidq, magic)) 2266 packet->flags = PERF_IP_FLAG_BRANCH | 2267 PERF_IP_FLAG_CALL | 2268 PERF_IP_FLAG_ASYNC | 2269 PERF_IP_FLAG_INTERRUPT; 2270 /* 2271 * Otherwise, exception is caused by trap, instruction & 2272 * data fault, or alignment errors. 2273 */ 2274 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 2275 packet->flags = PERF_IP_FLAG_BRANCH | 2276 PERF_IP_FLAG_CALL | 2277 PERF_IP_FLAG_INTERRUPT; 2278 2279 /* 2280 * When the exception packet is inserted, since exception 2281 * packet is not used standalone for generating samples 2282 * and it's affiliation to the previous instruction range 2283 * packet; so set previous range packet flags to tell perf 2284 * it is an exception taken branch. 2285 */ 2286 if (prev_packet->sample_type == CS_ETM_RANGE) 2287 prev_packet->flags = packet->flags; 2288 break; 2289 case CS_ETM_EXCEPTION_RET: 2290 /* 2291 * When the exception return packet is inserted, since 2292 * exception return packet is not used standalone for 2293 * generating samples and it's affiliation to the previous 2294 * instruction range packet; so set previous range packet 2295 * flags to tell perf it is an exception return branch. 2296 * 2297 * The exception return can be for either system call or 2298 * other exception types; unfortunately the packet doesn't 2299 * contain exception type related info so we cannot decide 2300 * the exception type purely based on exception return packet. 2301 * If we record the exception number from exception packet and 2302 * reuse it for exception return packet, this is not reliable 2303 * due the trace can be discontinuity or the interrupt can 2304 * be nested, thus the recorded exception number cannot be 2305 * used for exception return packet for these two cases. 2306 * 2307 * For exception return packet, we only need to distinguish the 2308 * packet is for system call or for other types. Thus the 2309 * decision can be deferred when receive the next packet which 2310 * contains the return address, based on the return address we 2311 * can read out the previous instruction and check if it's a 2312 * system call instruction and then calibrate the sample flag 2313 * as needed. 2314 */ 2315 if (prev_packet->sample_type == CS_ETM_RANGE) 2316 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2317 PERF_IP_FLAG_RETURN | 2318 PERF_IP_FLAG_INTERRUPT; 2319 break; 2320 case CS_ETM_EMPTY: 2321 default: 2322 break; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2329 { 2330 int ret = 0; 2331 size_t processed = 0; 2332 2333 /* 2334 * Packets are decoded and added to the decoder's packet queue 2335 * until the decoder packet processing callback has requested that 2336 * processing stops or there is nothing left in the buffer. Normal 2337 * operations that stop processing are a timestamp packet or a full 2338 * decoder buffer queue. 2339 */ 2340 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2341 etmq->offset, 2342 &etmq->buf[etmq->buf_used], 2343 etmq->buf_len, 2344 &processed); 2345 if (ret) 2346 goto out; 2347 2348 etmq->offset += processed; 2349 etmq->buf_used += processed; 2350 etmq->buf_len -= processed; 2351 2352 out: 2353 return ret; 2354 } 2355 2356 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2357 struct cs_etm_traceid_queue *tidq) 2358 { 2359 int ret; 2360 struct cs_etm_packet_queue *packet_queue; 2361 2362 packet_queue = &tidq->packet_queue; 2363 2364 /* Process each packet in this chunk */ 2365 while (1) { 2366 ret = cs_etm_decoder__get_packet(packet_queue, 2367 tidq->packet); 2368 if (ret <= 0) 2369 /* 2370 * Stop processing this chunk on 2371 * end of data or error 2372 */ 2373 break; 2374 2375 /* 2376 * Since packet addresses are swapped in packet 2377 * handling within below switch() statements, 2378 * thus setting sample flags must be called 2379 * prior to switch() statement to use address 2380 * information before packets swapping. 2381 */ 2382 ret = cs_etm__set_sample_flags(etmq, tidq); 2383 if (ret < 0) 2384 break; 2385 2386 switch (tidq->packet->sample_type) { 2387 case CS_ETM_RANGE: 2388 /* 2389 * If the packet contains an instruction 2390 * range, generate instruction sequence 2391 * events. 2392 */ 2393 cs_etm__sample(etmq, tidq); 2394 break; 2395 case CS_ETM_EXCEPTION: 2396 case CS_ETM_EXCEPTION_RET: 2397 /* 2398 * If the exception packet is coming, 2399 * make sure the previous instruction 2400 * range packet to be handled properly. 2401 */ 2402 cs_etm__exception(tidq); 2403 break; 2404 case CS_ETM_DISCONTINUITY: 2405 /* 2406 * Discontinuity in trace, flush 2407 * previous branch stack 2408 */ 2409 cs_etm__flush(etmq, tidq); 2410 break; 2411 case CS_ETM_EMPTY: 2412 /* 2413 * Should not receive empty packet, 2414 * report error. 2415 */ 2416 pr_err("CS ETM Trace: empty packet\n"); 2417 return -EINVAL; 2418 default: 2419 break; 2420 } 2421 } 2422 2423 return ret; 2424 } 2425 2426 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2427 { 2428 int idx; 2429 struct int_node *inode; 2430 struct cs_etm_traceid_queue *tidq; 2431 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2432 2433 intlist__for_each_entry(inode, traceid_queues_list) { 2434 idx = (int)(intptr_t)inode->priv; 2435 tidq = etmq->traceid_queues[idx]; 2436 2437 /* Ignore return value */ 2438 cs_etm__process_traceid_queue(etmq, tidq); 2439 2440 /* 2441 * Generate an instruction sample with the remaining 2442 * branchstack entries. 2443 */ 2444 cs_etm__flush(etmq, tidq); 2445 } 2446 } 2447 2448 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq) 2449 { 2450 int err = 0; 2451 struct cs_etm_traceid_queue *tidq; 2452 2453 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2454 if (!tidq) 2455 return -EINVAL; 2456 2457 /* Go through each buffer in the queue and decode them one by one */ 2458 while (1) { 2459 err = cs_etm__get_data_block(etmq); 2460 if (err <= 0) 2461 return err; 2462 2463 /* Run trace decoder until buffer consumed or end of trace */ 2464 do { 2465 err = cs_etm__decode_data_block(etmq); 2466 if (err) 2467 return err; 2468 2469 /* 2470 * Process each packet in this chunk, nothing to do if 2471 * an error occurs other than hoping the next one will 2472 * be better. 2473 */ 2474 err = cs_etm__process_traceid_queue(etmq, tidq); 2475 2476 } while (etmq->buf_len); 2477 2478 if (err == 0) 2479 /* Flush any remaining branch stack entries */ 2480 err = cs_etm__end_block(etmq, tidq); 2481 } 2482 2483 return err; 2484 } 2485 2486 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq) 2487 { 2488 int idx, err = 0; 2489 struct cs_etm_traceid_queue *tidq; 2490 struct int_node *inode; 2491 2492 /* Go through each buffer in the queue and decode them one by one */ 2493 while (1) { 2494 err = cs_etm__get_data_block(etmq); 2495 if (err <= 0) 2496 return err; 2497 2498 /* Run trace decoder until buffer consumed or end of trace */ 2499 do { 2500 err = cs_etm__decode_data_block(etmq); 2501 if (err) 2502 return err; 2503 2504 /* 2505 * cs_etm__run_per_thread_timeless_decoder() runs on a 2506 * single traceID queue because each TID has a separate 2507 * buffer. But here in per-cpu mode we need to iterate 2508 * over each channel instead. 2509 */ 2510 intlist__for_each_entry(inode, 2511 etmq->traceid_queues_list) { 2512 idx = (int)(intptr_t)inode->priv; 2513 tidq = etmq->traceid_queues[idx]; 2514 cs_etm__process_traceid_queue(etmq, tidq); 2515 } 2516 } while (etmq->buf_len); 2517 2518 intlist__for_each_entry(inode, etmq->traceid_queues_list) { 2519 idx = (int)(intptr_t)inode->priv; 2520 tidq = etmq->traceid_queues[idx]; 2521 /* Flush any remaining branch stack entries */ 2522 err = cs_etm__end_block(etmq, tidq); 2523 if (err) 2524 return err; 2525 } 2526 } 2527 2528 return err; 2529 } 2530 2531 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2532 pid_t tid) 2533 { 2534 unsigned int i; 2535 struct auxtrace_queues *queues = &etm->queues; 2536 2537 for (i = 0; i < queues->nr_queues; i++) { 2538 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2539 struct cs_etm_queue *etmq = queue->priv; 2540 struct cs_etm_traceid_queue *tidq; 2541 2542 if (!etmq) 2543 continue; 2544 2545 if (etm->per_thread_decoding) { 2546 tidq = cs_etm__etmq_get_traceid_queue( 2547 etmq, CS_ETM_PER_THREAD_TRACEID); 2548 2549 if (!tidq) 2550 continue; 2551 2552 if (tid == -1 || thread__tid(tidq->thread) == tid) 2553 cs_etm__run_per_thread_timeless_decoder(etmq); 2554 } else 2555 cs_etm__run_per_cpu_timeless_decoder(etmq); 2556 } 2557 2558 return 0; 2559 } 2560 2561 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm) 2562 { 2563 int ret = 0; 2564 unsigned int cs_queue_nr, queue_nr, i; 2565 u8 trace_chan_id; 2566 u64 cs_timestamp; 2567 struct auxtrace_queue *queue; 2568 struct cs_etm_queue *etmq; 2569 struct cs_etm_traceid_queue *tidq; 2570 2571 /* 2572 * Pre-populate the heap with one entry from each queue so that we can 2573 * start processing in time order across all queues. 2574 */ 2575 for (i = 0; i < etm->queues.nr_queues; i++) { 2576 etmq = etm->queues.queue_array[i].priv; 2577 if (!etmq) 2578 continue; 2579 2580 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2581 if (ret) 2582 return ret; 2583 } 2584 2585 while (1) { 2586 if (!etm->heap.heap_cnt) 2587 goto out; 2588 2589 /* Take the entry at the top of the min heap */ 2590 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2591 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2592 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2593 queue = &etm->queues.queue_array[queue_nr]; 2594 etmq = queue->priv; 2595 2596 /* 2597 * Remove the top entry from the heap since we are about 2598 * to process it. 2599 */ 2600 auxtrace_heap__pop(&etm->heap); 2601 2602 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2603 if (!tidq) { 2604 /* 2605 * No traceID queue has been allocated for this traceID, 2606 * which means something somewhere went very wrong. No 2607 * other choice than simply exit. 2608 */ 2609 ret = -EINVAL; 2610 goto out; 2611 } 2612 2613 /* 2614 * Packets associated with this timestamp are already in 2615 * the etmq's traceID queue, so process them. 2616 */ 2617 ret = cs_etm__process_traceid_queue(etmq, tidq); 2618 if (ret < 0) 2619 goto out; 2620 2621 /* 2622 * Packets for this timestamp have been processed, time to 2623 * move on to the next timestamp, fetching a new auxtrace_buffer 2624 * if need be. 2625 */ 2626 refetch: 2627 ret = cs_etm__get_data_block(etmq); 2628 if (ret < 0) 2629 goto out; 2630 2631 /* 2632 * No more auxtrace_buffers to process in this etmq, simply 2633 * move on to another entry in the auxtrace_heap. 2634 */ 2635 if (!ret) 2636 continue; 2637 2638 ret = cs_etm__decode_data_block(etmq); 2639 if (ret) 2640 goto out; 2641 2642 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2643 2644 if (!cs_timestamp) { 2645 /* 2646 * Function cs_etm__decode_data_block() returns when 2647 * there is no more traces to decode in the current 2648 * auxtrace_buffer OR when a timestamp has been 2649 * encountered on any of the traceID queues. Since we 2650 * did not get a timestamp, there is no more traces to 2651 * process in this auxtrace_buffer. As such empty and 2652 * flush all traceID queues. 2653 */ 2654 cs_etm__clear_all_traceid_queues(etmq); 2655 2656 /* Fetch another auxtrace_buffer for this etmq */ 2657 goto refetch; 2658 } 2659 2660 /* 2661 * Add to the min heap the timestamp for packets that have 2662 * just been decoded. They will be processed and synthesized 2663 * during the next call to cs_etm__process_traceid_queue() for 2664 * this queue/traceID. 2665 */ 2666 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2667 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2668 } 2669 2670 out: 2671 return ret; 2672 } 2673 2674 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2675 union perf_event *event) 2676 { 2677 struct thread *th; 2678 2679 if (etm->timeless_decoding) 2680 return 0; 2681 2682 /* 2683 * Add the tid/pid to the log so that we can get a match when we get a 2684 * contextID from the decoder. Only track for the host: only kernel 2685 * trace is supported for guests which wouldn't need pids so this should 2686 * be fine. 2687 */ 2688 th = machine__findnew_thread(&etm->session->machines.host, 2689 event->itrace_start.pid, 2690 event->itrace_start.tid); 2691 if (!th) 2692 return -ENOMEM; 2693 2694 thread__put(th); 2695 2696 return 0; 2697 } 2698 2699 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2700 union perf_event *event) 2701 { 2702 struct thread *th; 2703 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2704 2705 /* 2706 * Context switch in per-thread mode are irrelevant since perf 2707 * will start/stop tracing as the process is scheduled. 2708 */ 2709 if (etm->timeless_decoding) 2710 return 0; 2711 2712 /* 2713 * SWITCH_IN events carry the next process to be switched out while 2714 * SWITCH_OUT events carry the process to be switched in. As such 2715 * we don't care about IN events. 2716 */ 2717 if (!out) 2718 return 0; 2719 2720 /* 2721 * Add the tid/pid to the log so that we can get a match when we get a 2722 * contextID from the decoder. Only track for the host: only kernel 2723 * trace is supported for guests which wouldn't need pids so this should 2724 * be fine. 2725 */ 2726 th = machine__findnew_thread(&etm->session->machines.host, 2727 event->context_switch.next_prev_pid, 2728 event->context_switch.next_prev_tid); 2729 if (!th) 2730 return -ENOMEM; 2731 2732 thread__put(th); 2733 2734 return 0; 2735 } 2736 2737 static int cs_etm__process_event(struct perf_session *session, 2738 union perf_event *event, 2739 struct perf_sample *sample, 2740 struct perf_tool *tool) 2741 { 2742 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2743 struct cs_etm_auxtrace, 2744 auxtrace); 2745 2746 if (dump_trace) 2747 return 0; 2748 2749 if (!tool->ordered_events) { 2750 pr_err("CoreSight ETM Trace requires ordered events\n"); 2751 return -EINVAL; 2752 } 2753 2754 switch (event->header.type) { 2755 case PERF_RECORD_EXIT: 2756 /* 2757 * Don't need to wait for cs_etm__flush_events() in per-thread mode to 2758 * start the decode because we know there will be no more trace from 2759 * this thread. All this does is emit samples earlier than waiting for 2760 * the flush in other modes, but with timestamps it makes sense to wait 2761 * for flush so that events from different threads are interleaved 2762 * properly. 2763 */ 2764 if (etm->per_thread_decoding && etm->timeless_decoding) 2765 return cs_etm__process_timeless_queues(etm, 2766 event->fork.tid); 2767 break; 2768 2769 case PERF_RECORD_ITRACE_START: 2770 return cs_etm__process_itrace_start(etm, event); 2771 2772 case PERF_RECORD_SWITCH_CPU_WIDE: 2773 return cs_etm__process_switch_cpu_wide(etm, event); 2774 2775 case PERF_RECORD_AUX: 2776 /* 2777 * Record the latest kernel timestamp available in the header 2778 * for samples so that synthesised samples occur from this point 2779 * onwards. 2780 */ 2781 if (sample->time && (sample->time != (u64)-1)) 2782 etm->latest_kernel_timestamp = sample->time; 2783 break; 2784 2785 default: 2786 break; 2787 } 2788 2789 return 0; 2790 } 2791 2792 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2793 struct perf_record_auxtrace *event) 2794 { 2795 struct auxtrace_buffer *buf; 2796 unsigned int i; 2797 /* 2798 * Find all buffers with same reference in the queues and dump them. 2799 * This is because the queues can contain multiple entries of the same 2800 * buffer that were split on aux records. 2801 */ 2802 for (i = 0; i < etm->queues.nr_queues; ++i) 2803 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2804 if (buf->reference == event->reference) 2805 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2806 } 2807 2808 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2809 union perf_event *event, 2810 struct perf_tool *tool __maybe_unused) 2811 { 2812 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2813 struct cs_etm_auxtrace, 2814 auxtrace); 2815 if (!etm->data_queued) { 2816 struct auxtrace_buffer *buffer; 2817 off_t data_offset; 2818 int fd = perf_data__fd(session->data); 2819 bool is_pipe = perf_data__is_pipe(session->data); 2820 int err; 2821 int idx = event->auxtrace.idx; 2822 2823 if (is_pipe) 2824 data_offset = 0; 2825 else { 2826 data_offset = lseek(fd, 0, SEEK_CUR); 2827 if (data_offset == -1) 2828 return -errno; 2829 } 2830 2831 err = auxtrace_queues__add_event(&etm->queues, session, 2832 event, data_offset, &buffer); 2833 if (err) 2834 return err; 2835 2836 /* 2837 * Knowing if the trace is formatted or not requires a lookup of 2838 * the aux record so only works in non-piped mode where data is 2839 * queued in cs_etm__queue_aux_records(). Always assume 2840 * formatted in piped mode (true). 2841 */ 2842 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2843 idx, true, -1); 2844 if (err) 2845 return err; 2846 2847 if (dump_trace) 2848 if (auxtrace_buffer__get_data(buffer, fd)) { 2849 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2850 auxtrace_buffer__put_data(buffer); 2851 } 2852 } else if (dump_trace) 2853 dump_queued_data(etm, &event->auxtrace); 2854 2855 return 0; 2856 } 2857 2858 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm) 2859 { 2860 struct evsel *evsel; 2861 struct evlist *evlist = etm->session->evlist; 2862 2863 /* Override timeless mode with user input from --itrace=Z */ 2864 if (etm->synth_opts.timeless_decoding) { 2865 etm->timeless_decoding = true; 2866 return 0; 2867 } 2868 2869 /* 2870 * Find the cs_etm evsel and look at what its timestamp setting was 2871 */ 2872 evlist__for_each_entry(evlist, evsel) 2873 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) { 2874 etm->timeless_decoding = 2875 !(evsel->core.attr.config & BIT(ETM_OPT_TS)); 2876 return 0; 2877 } 2878 2879 pr_err("CS ETM: Couldn't find ETM evsel\n"); 2880 return -EINVAL; 2881 } 2882 2883 /* 2884 * Read a single cpu parameter block from the auxtrace_info priv block. 2885 * 2886 * For version 1 there is a per cpu nr_params entry. If we are handling 2887 * version 1 file, then there may be less, the same, or more params 2888 * indicated by this value than the compile time number we understand. 2889 * 2890 * For a version 0 info block, there are a fixed number, and we need to 2891 * fill out the nr_param value in the metadata we create. 2892 */ 2893 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2894 int out_blk_size, int nr_params_v0) 2895 { 2896 u64 *metadata = NULL; 2897 int hdr_version; 2898 int nr_in_params, nr_out_params, nr_cmn_params; 2899 int i, k; 2900 2901 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2902 if (!metadata) 2903 return NULL; 2904 2905 /* read block current index & version */ 2906 i = *buff_in_offset; 2907 hdr_version = buff_in[CS_HEADER_VERSION]; 2908 2909 if (!hdr_version) { 2910 /* read version 0 info block into a version 1 metadata block */ 2911 nr_in_params = nr_params_v0; 2912 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2913 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2914 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2915 /* remaining block params at offset +1 from source */ 2916 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2917 metadata[k + 1] = buff_in[i + k]; 2918 /* version 0 has 2 common params */ 2919 nr_cmn_params = 2; 2920 } else { 2921 /* read version 1 info block - input and output nr_params may differ */ 2922 /* version 1 has 3 common params */ 2923 nr_cmn_params = 3; 2924 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2925 2926 /* if input has more params than output - skip excess */ 2927 nr_out_params = nr_in_params + nr_cmn_params; 2928 if (nr_out_params > out_blk_size) 2929 nr_out_params = out_blk_size; 2930 2931 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2932 metadata[k] = buff_in[i + k]; 2933 2934 /* record the actual nr params we copied */ 2935 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2936 } 2937 2938 /* adjust in offset by number of in params used */ 2939 i += nr_in_params + nr_cmn_params; 2940 *buff_in_offset = i; 2941 return metadata; 2942 } 2943 2944 /** 2945 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2946 * on the bounds of aux_event, if it matches with the buffer that's at 2947 * file_offset. 2948 * 2949 * Normally, whole auxtrace buffers would be added to the queue. But we 2950 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2951 * is reset across each buffer, so splitting the buffers up in advance has 2952 * the same effect. 2953 */ 2954 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2955 struct perf_record_aux *aux_event, struct perf_sample *sample) 2956 { 2957 int err; 2958 char buf[PERF_SAMPLE_MAX_SIZE]; 2959 union perf_event *auxtrace_event_union; 2960 struct perf_record_auxtrace *auxtrace_event; 2961 union perf_event auxtrace_fragment; 2962 __u64 aux_offset, aux_size; 2963 __u32 idx; 2964 bool formatted; 2965 2966 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2967 struct cs_etm_auxtrace, 2968 auxtrace); 2969 2970 /* 2971 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2972 * from looping through the auxtrace index. 2973 */ 2974 err = perf_session__peek_event(session, file_offset, buf, 2975 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2976 if (err) 2977 return err; 2978 auxtrace_event = &auxtrace_event_union->auxtrace; 2979 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2980 return -EINVAL; 2981 2982 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2983 auxtrace_event->header.size != sz) { 2984 return -EINVAL; 2985 } 2986 2987 /* 2988 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See 2989 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a 2990 * CPU as we set this always for the AUX_OUTPUT_HW_ID event. 2991 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. 2992 * Return 'not found' if mismatch. 2993 */ 2994 if (auxtrace_event->cpu == (__u32) -1) { 2995 etm->per_thread_decoding = true; 2996 if (auxtrace_event->tid != sample->tid) 2997 return 1; 2998 } else if (auxtrace_event->cpu != sample->cpu) { 2999 if (etm->per_thread_decoding) { 3000 /* 3001 * Found a per-cpu buffer after a per-thread one was 3002 * already found 3003 */ 3004 pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n"); 3005 return -EINVAL; 3006 } 3007 return 1; 3008 } 3009 3010 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 3011 /* 3012 * Clamp size in snapshot mode. The buffer size is clamped in 3013 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 3014 * the buffer size. 3015 */ 3016 aux_size = min(aux_event->aux_size, auxtrace_event->size); 3017 3018 /* 3019 * In this mode, the head also points to the end of the buffer so aux_offset 3020 * needs to have the size subtracted so it points to the beginning as in normal mode 3021 */ 3022 aux_offset = aux_event->aux_offset - aux_size; 3023 } else { 3024 aux_size = aux_event->aux_size; 3025 aux_offset = aux_event->aux_offset; 3026 } 3027 3028 if (aux_offset >= auxtrace_event->offset && 3029 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 3030 /* 3031 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 3032 * based on the sizes of the aux event, and queue that fragment. 3033 */ 3034 auxtrace_fragment.auxtrace = *auxtrace_event; 3035 auxtrace_fragment.auxtrace.size = aux_size; 3036 auxtrace_fragment.auxtrace.offset = aux_offset; 3037 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 3038 3039 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 3040 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 3041 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 3042 file_offset, NULL); 3043 if (err) 3044 return err; 3045 3046 idx = auxtrace_event->idx; 3047 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 3048 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 3049 idx, formatted, sample->cpu); 3050 } 3051 3052 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 3053 return 1; 3054 } 3055 3056 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, 3057 u64 offset __maybe_unused, void *data __maybe_unused) 3058 { 3059 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ 3060 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { 3061 (*(int *)data)++; /* increment found count */ 3062 return cs_etm__process_aux_output_hw_id(session, event); 3063 } 3064 return 0; 3065 } 3066 3067 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 3068 u64 offset __maybe_unused, void *data __maybe_unused) 3069 { 3070 struct perf_sample sample; 3071 int ret; 3072 struct auxtrace_index_entry *ent; 3073 struct auxtrace_index *auxtrace_index; 3074 struct evsel *evsel; 3075 size_t i; 3076 3077 /* Don't care about any other events, we're only queuing buffers for AUX events */ 3078 if (event->header.type != PERF_RECORD_AUX) 3079 return 0; 3080 3081 if (event->header.size < sizeof(struct perf_record_aux)) 3082 return -EINVAL; 3083 3084 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 3085 if (!event->aux.aux_size) 3086 return 0; 3087 3088 /* 3089 * Parse the sample, we need the sample_id_all data that comes after the event so that the 3090 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 3091 */ 3092 evsel = evlist__event2evsel(session->evlist, event); 3093 if (!evsel) 3094 return -EINVAL; 3095 ret = evsel__parse_sample(evsel, event, &sample); 3096 if (ret) 3097 return ret; 3098 3099 /* 3100 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 3101 */ 3102 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 3103 for (i = 0; i < auxtrace_index->nr; i++) { 3104 ent = &auxtrace_index->entries[i]; 3105 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 3106 ent->sz, &event->aux, &sample); 3107 /* 3108 * Stop search on error or successful values. Continue search on 3109 * 1 ('not found') 3110 */ 3111 if (ret != 1) 3112 return ret; 3113 } 3114 } 3115 3116 /* 3117 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 3118 * don't exit with an error because it will still be possible to decode other aux records. 3119 */ 3120 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 3121 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 3122 return 0; 3123 } 3124 3125 static int cs_etm__queue_aux_records(struct perf_session *session) 3126 { 3127 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 3128 struct auxtrace_index, list); 3129 if (index && index->nr > 0) 3130 return perf_session__peek_events(session, session->header.data_offset, 3131 session->header.data_size, 3132 cs_etm__queue_aux_records_cb, NULL); 3133 3134 /* 3135 * We would get here if there are no entries in the index (either no auxtrace 3136 * buffers or no index at all). Fail silently as there is the possibility of 3137 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 3138 * false. 3139 * 3140 * In that scenario, buffers will not be split by AUX records. 3141 */ 3142 return 0; 3143 } 3144 3145 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ 3146 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) 3147 3148 /* 3149 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual 3150 * timestamps). 3151 */ 3152 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) 3153 { 3154 int j; 3155 3156 for (j = 0; j < num_cpu; j++) { 3157 switch (metadata[j][CS_ETM_MAGIC]) { 3158 case __perf_cs_etmv4_magic: 3159 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) 3160 return false; 3161 break; 3162 case __perf_cs_ete_magic: 3163 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) 3164 return false; 3165 break; 3166 default: 3167 /* Unknown / unsupported magic number. */ 3168 return false; 3169 } 3170 } 3171 return true; 3172 } 3173 3174 /* map trace ids to correct metadata block, from information in metadata */ 3175 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) 3176 { 3177 u64 cs_etm_magic; 3178 u8 trace_chan_id; 3179 int i, err; 3180 3181 for (i = 0; i < num_cpu; i++) { 3182 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3183 switch (cs_etm_magic) { 3184 case __perf_cs_etmv3_magic: 3185 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3186 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); 3187 break; 3188 case __perf_cs_etmv4_magic: 3189 case __perf_cs_ete_magic: 3190 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3191 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); 3192 break; 3193 default: 3194 /* unknown magic number */ 3195 return -EINVAL; 3196 } 3197 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); 3198 if (err) 3199 return err; 3200 } 3201 return 0; 3202 } 3203 3204 /* 3205 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the 3206 * unused value to reduce the number of unneeded decoders created. 3207 */ 3208 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) 3209 { 3210 u64 cs_etm_magic; 3211 int i; 3212 3213 for (i = 0; i < num_cpu; i++) { 3214 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3215 switch (cs_etm_magic) { 3216 case __perf_cs_etmv3_magic: 3217 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3218 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3219 break; 3220 case __perf_cs_etmv4_magic: 3221 case __perf_cs_ete_magic: 3222 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3223 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3224 break; 3225 default: 3226 /* unknown magic number */ 3227 return -EINVAL; 3228 } 3229 } 3230 return 0; 3231 } 3232 3233 int cs_etm__process_auxtrace_info_full(union perf_event *event, 3234 struct perf_session *session) 3235 { 3236 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3237 struct cs_etm_auxtrace *etm = NULL; 3238 struct perf_record_time_conv *tc = &session->time_conv; 3239 int event_header_size = sizeof(struct perf_event_header); 3240 int total_size = auxtrace_info->header.size; 3241 int priv_size = 0; 3242 int num_cpu; 3243 int err = 0; 3244 int aux_hw_id_found; 3245 int i, j; 3246 u64 *ptr = NULL; 3247 u64 **metadata = NULL; 3248 3249 /* 3250 * Create an RB tree for traceID-metadata tuple. Since the conversion 3251 * has to be made for each packet that gets decoded, optimizing access 3252 * in anything other than a sequential array is worth doing. 3253 */ 3254 traceid_list = intlist__new(NULL); 3255 if (!traceid_list) 3256 return -ENOMEM; 3257 3258 /* First the global part */ 3259 ptr = (u64 *) auxtrace_info->priv; 3260 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; 3261 metadata = zalloc(sizeof(*metadata) * num_cpu); 3262 if (!metadata) { 3263 err = -ENOMEM; 3264 goto err_free_traceid_list; 3265 } 3266 3267 /* Start parsing after the common part of the header */ 3268 i = CS_HEADER_VERSION_MAX; 3269 3270 /* 3271 * The metadata is stored in the auxtrace_info section and encodes 3272 * the configuration of the ARM embedded trace macrocell which is 3273 * required by the trace decoder to properly decode the trace due 3274 * to its highly compressed nature. 3275 */ 3276 for (j = 0; j < num_cpu; j++) { 3277 if (ptr[i] == __perf_cs_etmv3_magic) { 3278 metadata[j] = 3279 cs_etm__create_meta_blk(ptr, &i, 3280 CS_ETM_PRIV_MAX, 3281 CS_ETM_NR_TRC_PARAMS_V0); 3282 } else if (ptr[i] == __perf_cs_etmv4_magic) { 3283 metadata[j] = 3284 cs_etm__create_meta_blk(ptr, &i, 3285 CS_ETMV4_PRIV_MAX, 3286 CS_ETMV4_NR_TRC_PARAMS_V0); 3287 } else if (ptr[i] == __perf_cs_ete_magic) { 3288 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 3289 } else { 3290 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 3291 ptr[i]); 3292 err = -EINVAL; 3293 goto err_free_metadata; 3294 } 3295 3296 if (!metadata[j]) { 3297 err = -ENOMEM; 3298 goto err_free_metadata; 3299 } 3300 } 3301 3302 /* 3303 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3304 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3305 * global metadata, and each cpu's metadata respectively. 3306 * The following tests if the correct number of double words was 3307 * present in the auxtrace info section. 3308 */ 3309 priv_size = total_size - event_header_size - INFO_HEADER_SIZE; 3310 if (i * 8 != priv_size) { 3311 err = -EINVAL; 3312 goto err_free_metadata; 3313 } 3314 3315 etm = zalloc(sizeof(*etm)); 3316 3317 if (!etm) { 3318 err = -ENOMEM; 3319 goto err_free_metadata; 3320 } 3321 3322 /* 3323 * As all the ETMs run at the same exception level, the system should 3324 * have the same PID format crossing CPUs. So cache the PID format 3325 * and reuse it for sequential decoding. 3326 */ 3327 etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]); 3328 3329 err = auxtrace_queues__init(&etm->queues); 3330 if (err) 3331 goto err_free_etm; 3332 3333 if (session->itrace_synth_opts->set) { 3334 etm->synth_opts = *session->itrace_synth_opts; 3335 } else { 3336 itrace_synth_opts__set_default(&etm->synth_opts, 3337 session->itrace_synth_opts->default_no_sample); 3338 etm->synth_opts.callchain = false; 3339 } 3340 3341 etm->session = session; 3342 3343 etm->num_cpu = num_cpu; 3344 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); 3345 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); 3346 etm->metadata = metadata; 3347 etm->auxtrace_type = auxtrace_info->type; 3348 3349 if (etm->synth_opts.use_timestamp) 3350 /* 3351 * Prior to Armv8.4, Arm CPUs don't support FEAT_TRF feature, 3352 * therefore the decoder cannot know if the timestamp trace is 3353 * same with the kernel time. 3354 * 3355 * If a user has knowledge for the working platform and can 3356 * specify itrace option 'T' to tell decoder to forcely use the 3357 * traced timestamp as the kernel time. 3358 */ 3359 etm->has_virtual_ts = true; 3360 else 3361 /* Use virtual timestamps if all ETMs report ts_source = 1 */ 3362 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); 3363 3364 if (!etm->has_virtual_ts) 3365 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" 3366 "The time field of the samples will not be set accurately.\n" 3367 "For Arm CPUs prior to Armv8.4 or without support FEAT_TRF,\n" 3368 "you can specify the itrace option 'T' for timestamp decoding\n" 3369 "if the Coresight timestamp on the platform is same with the kernel time.\n\n"); 3370 3371 etm->auxtrace.process_event = cs_etm__process_event; 3372 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3373 etm->auxtrace.flush_events = cs_etm__flush_events; 3374 etm->auxtrace.free_events = cs_etm__free_events; 3375 etm->auxtrace.free = cs_etm__free; 3376 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3377 session->auxtrace = &etm->auxtrace; 3378 3379 err = cs_etm__setup_timeless_decoding(etm); 3380 if (err) 3381 return err; 3382 3383 etm->tc.time_shift = tc->time_shift; 3384 etm->tc.time_mult = tc->time_mult; 3385 etm->tc.time_zero = tc->time_zero; 3386 if (event_contains(*tc, time_cycles)) { 3387 etm->tc.time_cycles = tc->time_cycles; 3388 etm->tc.time_mask = tc->time_mask; 3389 etm->tc.cap_user_time_zero = tc->cap_user_time_zero; 3390 etm->tc.cap_user_time_short = tc->cap_user_time_short; 3391 } 3392 err = cs_etm__synth_events(etm, session); 3393 if (err) 3394 goto err_free_queues; 3395 3396 /* 3397 * Map Trace ID values to CPU metadata. 3398 * 3399 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the 3400 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata 3401 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. 3402 * 3403 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use 3404 * the same IDs as the old algorithm as far as is possible, unless there are clashes 3405 * in which case a different value will be used. This means an older perf may still 3406 * be able to record and read files generate on a newer system. 3407 * 3408 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of 3409 * those packets. If they are there then the values will be mapped and plugged into 3410 * the metadata. We then set any remaining metadata values with the used flag to a 3411 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. 3412 * 3413 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel 3414 * then we map Trace ID values to CPU directly from the metadata - clearing any unused 3415 * flags if present. 3416 */ 3417 3418 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ 3419 aux_hw_id_found = 0; 3420 err = perf_session__peek_events(session, session->header.data_offset, 3421 session->header.data_size, 3422 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); 3423 if (err) 3424 goto err_free_queues; 3425 3426 /* if HW ID found then clear any unused metadata ID values */ 3427 if (aux_hw_id_found) 3428 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); 3429 /* otherwise, this is a file with metadata values only, map from metadata */ 3430 else 3431 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); 3432 3433 if (err) 3434 goto err_free_queues; 3435 3436 err = cs_etm__queue_aux_records(session); 3437 if (err) 3438 goto err_free_queues; 3439 3440 etm->data_queued = etm->queues.populated; 3441 return 0; 3442 3443 err_free_queues: 3444 auxtrace_queues__free(&etm->queues); 3445 session->auxtrace = NULL; 3446 err_free_etm: 3447 zfree(&etm); 3448 err_free_metadata: 3449 /* No need to check @metadata[j], free(NULL) is supported */ 3450 for (j = 0; j < num_cpu; j++) 3451 zfree(&metadata[j]); 3452 zfree(&metadata); 3453 err_free_traceid_list: 3454 intlist__delete(traceid_list); 3455 return err; 3456 } 3457