1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include <opencsd/ocsd_if_types.h> 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include "tsc.h" 39 #include <tools/libc_compat.h> 40 #include "util/synthetic-events.h" 41 #include "util/util.h" 42 43 struct cs_etm_auxtrace { 44 struct auxtrace auxtrace; 45 struct auxtrace_queues queues; 46 struct auxtrace_heap heap; 47 struct itrace_synth_opts synth_opts; 48 struct perf_session *session; 49 struct machine *machine; 50 struct thread *unknown_thread; 51 struct perf_tsc_conversion tc; 52 53 u8 timeless_decoding; 54 u8 snapshot_mode; 55 u8 data_queued; 56 u8 has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ 57 58 int num_cpu; 59 u64 latest_kernel_timestamp; 60 u32 auxtrace_type; 61 u64 branches_sample_type; 62 u64 branches_id; 63 u64 instructions_sample_type; 64 u64 instructions_sample_period; 65 u64 instructions_id; 66 u64 **metadata; 67 unsigned int pmu_type; 68 }; 69 70 struct cs_etm_traceid_queue { 71 u8 trace_chan_id; 72 pid_t pid, tid; 73 u64 period_instructions; 74 size_t last_branch_pos; 75 union perf_event *event_buf; 76 struct thread *thread; 77 struct branch_stack *last_branch; 78 struct branch_stack *last_branch_rb; 79 struct cs_etm_packet *prev_packet; 80 struct cs_etm_packet *packet; 81 struct cs_etm_packet_queue packet_queue; 82 }; 83 84 struct cs_etm_queue { 85 struct cs_etm_auxtrace *etm; 86 struct cs_etm_decoder *decoder; 87 struct auxtrace_buffer *buffer; 88 unsigned int queue_nr; 89 u8 pending_timestamp_chan_id; 90 u64 offset; 91 const unsigned char *buf; 92 size_t buf_len, buf_used; 93 /* Conversion between traceID and index in traceid_queues array */ 94 struct intlist *traceid_queues_list; 95 struct cs_etm_traceid_queue **traceid_queues; 96 }; 97 98 /* RB tree for quick conversion between traceID and metadata pointers */ 99 static struct intlist *traceid_list; 100 101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 103 pid_t tid); 104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 106 107 /* PTMs ETMIDR [11:8] set to b0011 */ 108 #define ETMIDR_PTM_VERSION 0x00000300 109 110 /* 111 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 112 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 113 * encode the etm queue number as the upper 16 bit and the channel as 114 * the lower 16 bit. 115 */ 116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 117 (queue_nr << 16 | trace_chan_id) 118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 120 121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 122 { 123 etmidr &= ETMIDR_PTM_VERSION; 124 125 if (etmidr == ETMIDR_PTM_VERSION) 126 return CS_ETM_PROTO_PTM; 127 128 return CS_ETM_PROTO_ETMV3; 129 } 130 131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 132 { 133 struct int_node *inode; 134 u64 *metadata; 135 136 inode = intlist__find(traceid_list, trace_chan_id); 137 if (!inode) 138 return -EINVAL; 139 140 metadata = inode->priv; 141 *magic = metadata[CS_ETM_MAGIC]; 142 return 0; 143 } 144 145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 146 { 147 struct int_node *inode; 148 u64 *metadata; 149 150 inode = intlist__find(traceid_list, trace_chan_id); 151 if (!inode) 152 return -EINVAL; 153 154 metadata = inode->priv; 155 *cpu = (int)metadata[CS_ETM_CPU]; 156 return 0; 157 } 158 159 /* 160 * The returned PID format is presented by two bits: 161 * 162 * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; 163 * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. 164 * 165 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 166 * are enabled at the same time when the session runs on an EL2 kernel. 167 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 168 * recorded in the trace data, the tool will selectively use 169 * CONTEXTIDR_EL2 as PID. 170 */ 171 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) 172 { 173 struct int_node *inode; 174 u64 *metadata, val; 175 176 inode = intlist__find(traceid_list, trace_chan_id); 177 if (!inode) 178 return -EINVAL; 179 180 metadata = inode->priv; 181 182 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 183 val = metadata[CS_ETM_ETMCR]; 184 /* CONTEXTIDR is traced */ 185 if (val & BIT(ETM_OPT_CTXTID)) 186 *pid_fmt = BIT(ETM_OPT_CTXTID); 187 } else { 188 val = metadata[CS_ETMV4_TRCCONFIGR]; 189 /* CONTEXTIDR_EL2 is traced */ 190 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 191 *pid_fmt = BIT(ETM_OPT_CTXTID2); 192 /* CONTEXTIDR_EL1 is traced */ 193 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 194 *pid_fmt = BIT(ETM_OPT_CTXTID); 195 } 196 197 return 0; 198 } 199 200 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 201 { 202 struct int_node *inode; 203 204 /* Get an RB node for this CPU */ 205 inode = intlist__findnew(traceid_list, trace_chan_id); 206 207 /* Something went wrong, no need to continue */ 208 if (!inode) 209 return -ENOMEM; 210 211 /* 212 * The node for that CPU should not be taken. 213 * Back out if that's the case. 214 */ 215 if (inode->priv) 216 return -EINVAL; 217 218 /* All good, associate the traceID with the metadata pointer */ 219 inode->priv = cpu_metadata; 220 221 return 0; 222 } 223 224 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) 225 { 226 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 227 228 switch (cs_etm_magic) { 229 case __perf_cs_etmv3_magic: 230 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & 231 CORESIGHT_TRACE_ID_VAL_MASK); 232 break; 233 case __perf_cs_etmv4_magic: 234 case __perf_cs_ete_magic: 235 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & 236 CORESIGHT_TRACE_ID_VAL_MASK); 237 break; 238 default: 239 return -EINVAL; 240 } 241 return 0; 242 } 243 244 /* 245 * update metadata trace ID from the value found in the AUX_HW_INFO packet. 246 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. 247 */ 248 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 249 { 250 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 251 252 switch (cs_etm_magic) { 253 case __perf_cs_etmv3_magic: 254 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; 255 break; 256 case __perf_cs_etmv4_magic: 257 case __perf_cs_ete_magic: 258 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; 259 break; 260 261 default: 262 return -EINVAL; 263 } 264 return 0; 265 } 266 267 /* 268 * FIELD_GET (linux/bitfield.h) not available outside kernel code, 269 * and the header contains too many dependencies to just copy over, 270 * so roll our own based on the original 271 */ 272 #define __bf_shf(x) (__builtin_ffsll(x) - 1) 273 #define FIELD_GET(_mask, _reg) \ 274 ({ \ 275 (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ 276 }) 277 278 /* 279 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. 280 * 281 * The payload associates the Trace ID and the CPU. 282 * The routine is tolerant of seeing multiple packets with the same association, 283 * but a CPU / Trace ID association changing during a session is an error. 284 */ 285 static int cs_etm__process_aux_output_hw_id(struct perf_session *session, 286 union perf_event *event) 287 { 288 struct cs_etm_auxtrace *etm; 289 struct perf_sample sample; 290 struct int_node *inode; 291 struct evsel *evsel; 292 u64 *cpu_data; 293 u64 hw_id; 294 int cpu, version, err; 295 u8 trace_chan_id, curr_chan_id; 296 297 /* extract and parse the HW ID */ 298 hw_id = event->aux_output_hw_id.hw_id; 299 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); 300 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); 301 302 /* check that we can handle this version */ 303 if (version > CS_AUX_HW_ID_CURR_VERSION) 304 return -EINVAL; 305 306 /* get access to the etm metadata */ 307 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); 308 if (!etm || !etm->metadata) 309 return -EINVAL; 310 311 /* parse the sample to get the CPU */ 312 evsel = evlist__event2evsel(session->evlist, event); 313 if (!evsel) 314 return -EINVAL; 315 err = evsel__parse_sample(evsel, event, &sample); 316 if (err) 317 return err; 318 cpu = sample.cpu; 319 if (cpu == -1) { 320 /* no CPU in the sample - possibly recorded with an old version of perf */ 321 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); 322 return -EINVAL; 323 } 324 325 /* See if the ID is mapped to a CPU, and it matches the current CPU */ 326 inode = intlist__find(traceid_list, trace_chan_id); 327 if (inode) { 328 cpu_data = inode->priv; 329 if ((int)cpu_data[CS_ETM_CPU] != cpu) { 330 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); 331 return -EINVAL; 332 } 333 334 /* check that the mapped ID matches */ 335 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); 336 if (err) 337 return err; 338 if (curr_chan_id != trace_chan_id) { 339 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); 340 return -EINVAL; 341 } 342 343 /* mapped and matched - return OK */ 344 return 0; 345 } 346 347 /* not one we've seen before - lets map it */ 348 cpu_data = etm->metadata[cpu]; 349 err = cs_etm__map_trace_id(trace_chan_id, cpu_data); 350 if (err) 351 return err; 352 353 /* 354 * if we are picking up the association from the packet, need to plug 355 * the correct trace ID into the metadata for setting up decoders later. 356 */ 357 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); 358 return err; 359 } 360 361 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 362 u8 trace_chan_id) 363 { 364 /* 365 * When a timestamp packet is encountered the backend code 366 * is stopped so that the front end has time to process packets 367 * that were accumulated in the traceID queue. Since there can 368 * be more than one channel per cs_etm_queue, we need to specify 369 * what traceID queue needs servicing. 370 */ 371 etmq->pending_timestamp_chan_id = trace_chan_id; 372 } 373 374 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 375 u8 *trace_chan_id) 376 { 377 struct cs_etm_packet_queue *packet_queue; 378 379 if (!etmq->pending_timestamp_chan_id) 380 return 0; 381 382 if (trace_chan_id) 383 *trace_chan_id = etmq->pending_timestamp_chan_id; 384 385 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 386 etmq->pending_timestamp_chan_id); 387 if (!packet_queue) 388 return 0; 389 390 /* Acknowledge pending status */ 391 etmq->pending_timestamp_chan_id = 0; 392 393 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 394 return packet_queue->cs_timestamp; 395 } 396 397 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 398 { 399 int i; 400 401 queue->head = 0; 402 queue->tail = 0; 403 queue->packet_count = 0; 404 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 405 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 406 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 407 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 408 queue->packet_buffer[i].instr_count = 0; 409 queue->packet_buffer[i].last_instr_taken_branch = false; 410 queue->packet_buffer[i].last_instr_size = 0; 411 queue->packet_buffer[i].last_instr_type = 0; 412 queue->packet_buffer[i].last_instr_subtype = 0; 413 queue->packet_buffer[i].last_instr_cond = 0; 414 queue->packet_buffer[i].flags = 0; 415 queue->packet_buffer[i].exception_number = UINT32_MAX; 416 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 417 queue->packet_buffer[i].cpu = INT_MIN; 418 } 419 } 420 421 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 422 { 423 int idx; 424 struct int_node *inode; 425 struct cs_etm_traceid_queue *tidq; 426 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 427 428 intlist__for_each_entry(inode, traceid_queues_list) { 429 idx = (int)(intptr_t)inode->priv; 430 tidq = etmq->traceid_queues[idx]; 431 cs_etm__clear_packet_queue(&tidq->packet_queue); 432 } 433 } 434 435 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 436 struct cs_etm_traceid_queue *tidq, 437 u8 trace_chan_id) 438 { 439 int rc = -ENOMEM; 440 struct auxtrace_queue *queue; 441 struct cs_etm_auxtrace *etm = etmq->etm; 442 443 cs_etm__clear_packet_queue(&tidq->packet_queue); 444 445 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 446 tidq->tid = queue->tid; 447 tidq->pid = -1; 448 tidq->trace_chan_id = trace_chan_id; 449 450 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 451 if (!tidq->packet) 452 goto out; 453 454 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 455 if (!tidq->prev_packet) 456 goto out_free; 457 458 if (etm->synth_opts.last_branch) { 459 size_t sz = sizeof(struct branch_stack); 460 461 sz += etm->synth_opts.last_branch_sz * 462 sizeof(struct branch_entry); 463 tidq->last_branch = zalloc(sz); 464 if (!tidq->last_branch) 465 goto out_free; 466 tidq->last_branch_rb = zalloc(sz); 467 if (!tidq->last_branch_rb) 468 goto out_free; 469 } 470 471 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 472 if (!tidq->event_buf) 473 goto out_free; 474 475 return 0; 476 477 out_free: 478 zfree(&tidq->last_branch_rb); 479 zfree(&tidq->last_branch); 480 zfree(&tidq->prev_packet); 481 zfree(&tidq->packet); 482 out: 483 return rc; 484 } 485 486 static struct cs_etm_traceid_queue 487 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 488 { 489 int idx; 490 struct int_node *inode; 491 struct intlist *traceid_queues_list; 492 struct cs_etm_traceid_queue *tidq, **traceid_queues; 493 struct cs_etm_auxtrace *etm = etmq->etm; 494 495 if (etm->timeless_decoding) 496 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 497 498 traceid_queues_list = etmq->traceid_queues_list; 499 500 /* 501 * Check if the traceid_queue exist for this traceID by looking 502 * in the queue list. 503 */ 504 inode = intlist__find(traceid_queues_list, trace_chan_id); 505 if (inode) { 506 idx = (int)(intptr_t)inode->priv; 507 return etmq->traceid_queues[idx]; 508 } 509 510 /* We couldn't find a traceid_queue for this traceID, allocate one */ 511 tidq = malloc(sizeof(*tidq)); 512 if (!tidq) 513 return NULL; 514 515 memset(tidq, 0, sizeof(*tidq)); 516 517 /* Get a valid index for the new traceid_queue */ 518 idx = intlist__nr_entries(traceid_queues_list); 519 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 520 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 521 if (!inode) 522 goto out_free; 523 524 /* Associate this traceID with this index */ 525 inode->priv = (void *)(intptr_t)idx; 526 527 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 528 goto out_free; 529 530 /* Grow the traceid_queues array by one unit */ 531 traceid_queues = etmq->traceid_queues; 532 traceid_queues = reallocarray(traceid_queues, 533 idx + 1, 534 sizeof(*traceid_queues)); 535 536 /* 537 * On failure reallocarray() returns NULL and the original block of 538 * memory is left untouched. 539 */ 540 if (!traceid_queues) 541 goto out_free; 542 543 traceid_queues[idx] = tidq; 544 etmq->traceid_queues = traceid_queues; 545 546 return etmq->traceid_queues[idx]; 547 548 out_free: 549 /* 550 * Function intlist__remove() removes the inode from the list 551 * and delete the memory associated to it. 552 */ 553 intlist__remove(traceid_queues_list, inode); 554 free(tidq); 555 556 return NULL; 557 } 558 559 struct cs_etm_packet_queue 560 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 561 { 562 struct cs_etm_traceid_queue *tidq; 563 564 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 565 if (tidq) 566 return &tidq->packet_queue; 567 568 return NULL; 569 } 570 571 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 572 struct cs_etm_traceid_queue *tidq) 573 { 574 struct cs_etm_packet *tmp; 575 576 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 577 etm->synth_opts.instructions) { 578 /* 579 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 580 * the next incoming packet. 581 */ 582 tmp = tidq->packet; 583 tidq->packet = tidq->prev_packet; 584 tidq->prev_packet = tmp; 585 } 586 } 587 588 static void cs_etm__packet_dump(const char *pkt_string) 589 { 590 const char *color = PERF_COLOR_BLUE; 591 int len = strlen(pkt_string); 592 593 if (len && (pkt_string[len-1] == '\n')) 594 color_fprintf(stdout, color, " %s", pkt_string); 595 else 596 color_fprintf(stdout, color, " %s\n", pkt_string); 597 598 fflush(stdout); 599 } 600 601 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 602 struct cs_etm_auxtrace *etm, int idx, 603 u32 etmidr) 604 { 605 u64 **metadata = etm->metadata; 606 607 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 608 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 609 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 610 } 611 612 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 613 struct cs_etm_auxtrace *etm, int idx) 614 { 615 u64 **metadata = etm->metadata; 616 617 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 618 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 619 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 620 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 621 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 622 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 623 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 624 } 625 626 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 627 struct cs_etm_auxtrace *etm, int idx) 628 { 629 u64 **metadata = etm->metadata; 630 631 t_params[idx].protocol = CS_ETM_PROTO_ETE; 632 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0]; 633 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1]; 634 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2]; 635 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8]; 636 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR]; 637 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR]; 638 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 639 } 640 641 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 642 struct cs_etm_auxtrace *etm, 643 int decoders) 644 { 645 int i; 646 u32 etmidr; 647 u64 architecture; 648 649 for (i = 0; i < decoders; i++) { 650 architecture = etm->metadata[i][CS_ETM_MAGIC]; 651 652 switch (architecture) { 653 case __perf_cs_etmv3_magic: 654 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 655 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 656 break; 657 case __perf_cs_etmv4_magic: 658 cs_etm__set_trace_param_etmv4(t_params, etm, i); 659 break; 660 case __perf_cs_ete_magic: 661 cs_etm__set_trace_param_ete(t_params, etm, i); 662 break; 663 default: 664 return -EINVAL; 665 } 666 } 667 668 return 0; 669 } 670 671 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 672 struct cs_etm_queue *etmq, 673 enum cs_etm_decoder_operation mode, 674 bool formatted) 675 { 676 int ret = -EINVAL; 677 678 if (!(mode < CS_ETM_OPERATION_MAX)) 679 goto out; 680 681 d_params->packet_printer = cs_etm__packet_dump; 682 d_params->operation = mode; 683 d_params->data = etmq; 684 d_params->formatted = formatted; 685 d_params->fsyncs = false; 686 d_params->hsyncs = false; 687 d_params->frame_aligned = true; 688 689 ret = 0; 690 out: 691 return ret; 692 } 693 694 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 695 struct auxtrace_buffer *buffer) 696 { 697 int ret; 698 const char *color = PERF_COLOR_BLUE; 699 size_t buffer_used = 0; 700 701 fprintf(stdout, "\n"); 702 color_fprintf(stdout, color, 703 ". ... CoreSight %s Trace data: size %#zx bytes\n", 704 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 705 706 do { 707 size_t consumed; 708 709 ret = cs_etm_decoder__process_data_block( 710 etmq->decoder, buffer->offset, 711 &((u8 *)buffer->data)[buffer_used], 712 buffer->size - buffer_used, &consumed); 713 if (ret) 714 break; 715 716 buffer_used += consumed; 717 } while (buffer_used < buffer->size); 718 719 cs_etm_decoder__reset(etmq->decoder); 720 } 721 722 static int cs_etm__flush_events(struct perf_session *session, 723 struct perf_tool *tool) 724 { 725 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 726 struct cs_etm_auxtrace, 727 auxtrace); 728 if (dump_trace) 729 return 0; 730 731 if (!tool->ordered_events) 732 return -EINVAL; 733 734 if (etm->timeless_decoding) 735 return cs_etm__process_timeless_queues(etm, -1); 736 737 return cs_etm__process_queues(etm); 738 } 739 740 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 741 { 742 int idx; 743 uintptr_t priv; 744 struct int_node *inode, *tmp; 745 struct cs_etm_traceid_queue *tidq; 746 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 747 748 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 749 priv = (uintptr_t)inode->priv; 750 idx = priv; 751 752 /* Free this traceid_queue from the array */ 753 tidq = etmq->traceid_queues[idx]; 754 thread__zput(tidq->thread); 755 zfree(&tidq->event_buf); 756 zfree(&tidq->last_branch); 757 zfree(&tidq->last_branch_rb); 758 zfree(&tidq->prev_packet); 759 zfree(&tidq->packet); 760 zfree(&tidq); 761 762 /* 763 * Function intlist__remove() removes the inode from the list 764 * and delete the memory associated to it. 765 */ 766 intlist__remove(traceid_queues_list, inode); 767 } 768 769 /* Then the RB tree itself */ 770 intlist__delete(traceid_queues_list); 771 etmq->traceid_queues_list = NULL; 772 773 /* finally free the traceid_queues array */ 774 zfree(&etmq->traceid_queues); 775 } 776 777 static void cs_etm__free_queue(void *priv) 778 { 779 struct cs_etm_queue *etmq = priv; 780 781 if (!etmq) 782 return; 783 784 cs_etm_decoder__free(etmq->decoder); 785 cs_etm__free_traceid_queues(etmq); 786 free(etmq); 787 } 788 789 static void cs_etm__free_events(struct perf_session *session) 790 { 791 unsigned int i; 792 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 793 struct cs_etm_auxtrace, 794 auxtrace); 795 struct auxtrace_queues *queues = &aux->queues; 796 797 for (i = 0; i < queues->nr_queues; i++) { 798 cs_etm__free_queue(queues->queue_array[i].priv); 799 queues->queue_array[i].priv = NULL; 800 } 801 802 auxtrace_queues__free(queues); 803 } 804 805 static void cs_etm__free(struct perf_session *session) 806 { 807 int i; 808 struct int_node *inode, *tmp; 809 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 810 struct cs_etm_auxtrace, 811 auxtrace); 812 cs_etm__free_events(session); 813 session->auxtrace = NULL; 814 815 /* First remove all traceID/metadata nodes for the RB tree */ 816 intlist__for_each_entry_safe(inode, tmp, traceid_list) 817 intlist__remove(traceid_list, inode); 818 /* Then the RB tree itself */ 819 intlist__delete(traceid_list); 820 821 for (i = 0; i < aux->num_cpu; i++) 822 zfree(&aux->metadata[i]); 823 824 thread__zput(aux->unknown_thread); 825 zfree(&aux->metadata); 826 zfree(&aux); 827 } 828 829 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 830 struct evsel *evsel) 831 { 832 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 833 struct cs_etm_auxtrace, 834 auxtrace); 835 836 return evsel->core.attr.type == aux->pmu_type; 837 } 838 839 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 840 { 841 struct machine *machine; 842 843 machine = etmq->etm->machine; 844 845 if (address >= machine__kernel_start(machine)) { 846 if (machine__is_host(machine)) 847 return PERF_RECORD_MISC_KERNEL; 848 else 849 return PERF_RECORD_MISC_GUEST_KERNEL; 850 } else { 851 if (machine__is_host(machine)) 852 return PERF_RECORD_MISC_USER; 853 else if (perf_guest) 854 return PERF_RECORD_MISC_GUEST_USER; 855 else 856 return PERF_RECORD_MISC_HYPERVISOR; 857 } 858 } 859 860 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 861 u64 address, size_t size, u8 *buffer) 862 { 863 u8 cpumode; 864 u64 offset; 865 int len; 866 struct thread *thread; 867 struct machine *machine; 868 struct addr_location al; 869 struct dso *dso; 870 struct cs_etm_traceid_queue *tidq; 871 872 if (!etmq) 873 return 0; 874 875 machine = etmq->etm->machine; 876 cpumode = cs_etm__cpu_mode(etmq, address); 877 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 878 if (!tidq) 879 return 0; 880 881 thread = tidq->thread; 882 if (!thread) { 883 if (cpumode != PERF_RECORD_MISC_KERNEL) 884 return 0; 885 thread = etmq->etm->unknown_thread; 886 } 887 888 dso = map__dso(al.map); 889 890 if (!thread__find_map(thread, cpumode, address, &al) || !dso) 891 return 0; 892 893 if (dso->data.status == DSO_DATA_STATUS_ERROR && 894 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) 895 return 0; 896 897 offset = map__map_ip(al.map, address); 898 899 map__load(al.map); 900 901 len = dso__data_read_offset(dso, machine, offset, buffer, size); 902 903 if (len <= 0) { 904 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 905 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 906 if (!dso->auxtrace_warned) { 907 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 908 address, 909 dso->long_name ? dso->long_name : "Unknown"); 910 dso->auxtrace_warned = true; 911 } 912 return 0; 913 } 914 915 return len; 916 } 917 918 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 919 bool formatted) 920 { 921 struct cs_etm_decoder_params d_params; 922 struct cs_etm_trace_params *t_params = NULL; 923 struct cs_etm_queue *etmq; 924 /* 925 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 926 * needed. 927 */ 928 int decoders = formatted ? etm->num_cpu : 1; 929 930 etmq = zalloc(sizeof(*etmq)); 931 if (!etmq) 932 return NULL; 933 934 etmq->traceid_queues_list = intlist__new(NULL); 935 if (!etmq->traceid_queues_list) 936 goto out_free; 937 938 /* Use metadata to fill in trace parameters for trace decoder */ 939 t_params = zalloc(sizeof(*t_params) * decoders); 940 941 if (!t_params) 942 goto out_free; 943 944 if (cs_etm__init_trace_params(t_params, etm, decoders)) 945 goto out_free; 946 947 /* Set decoder parameters to decode trace packets */ 948 if (cs_etm__init_decoder_params(&d_params, etmq, 949 dump_trace ? CS_ETM_OPERATION_PRINT : 950 CS_ETM_OPERATION_DECODE, 951 formatted)) 952 goto out_free; 953 954 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 955 t_params); 956 957 if (!etmq->decoder) 958 goto out_free; 959 960 /* 961 * Register a function to handle all memory accesses required by 962 * the trace decoder library. 963 */ 964 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 965 0x0L, ((u64) -1L), 966 cs_etm__mem_access)) 967 goto out_free_decoder; 968 969 zfree(&t_params); 970 return etmq; 971 972 out_free_decoder: 973 cs_etm_decoder__free(etmq->decoder); 974 out_free: 975 intlist__delete(etmq->traceid_queues_list); 976 free(etmq); 977 978 return NULL; 979 } 980 981 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 982 struct auxtrace_queue *queue, 983 unsigned int queue_nr, 984 bool formatted) 985 { 986 struct cs_etm_queue *etmq = queue->priv; 987 988 if (list_empty(&queue->head) || etmq) 989 return 0; 990 991 etmq = cs_etm__alloc_queue(etm, formatted); 992 993 if (!etmq) 994 return -ENOMEM; 995 996 queue->priv = etmq; 997 etmq->etm = etm; 998 etmq->queue_nr = queue_nr; 999 etmq->offset = 0; 1000 1001 return 0; 1002 } 1003 1004 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 1005 struct cs_etm_queue *etmq, 1006 unsigned int queue_nr) 1007 { 1008 int ret = 0; 1009 unsigned int cs_queue_nr; 1010 u8 trace_chan_id; 1011 u64 cs_timestamp; 1012 1013 /* 1014 * We are under a CPU-wide trace scenario. As such we need to know 1015 * when the code that generated the traces started to execute so that 1016 * it can be correlated with execution on other CPUs. So we get a 1017 * handle on the beginning of traces and decode until we find a 1018 * timestamp. The timestamp is then added to the auxtrace min heap 1019 * in order to know what nibble (of all the etmqs) to decode first. 1020 */ 1021 while (1) { 1022 /* 1023 * Fetch an aux_buffer from this etmq. Bail if no more 1024 * blocks or an error has been encountered. 1025 */ 1026 ret = cs_etm__get_data_block(etmq); 1027 if (ret <= 0) 1028 goto out; 1029 1030 /* 1031 * Run decoder on the trace block. The decoder will stop when 1032 * encountering a CS timestamp, a full packet queue or the end of 1033 * trace for that block. 1034 */ 1035 ret = cs_etm__decode_data_block(etmq); 1036 if (ret) 1037 goto out; 1038 1039 /* 1040 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 1041 * the timestamp calculation for us. 1042 */ 1043 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 1044 1045 /* We found a timestamp, no need to continue. */ 1046 if (cs_timestamp) 1047 break; 1048 1049 /* 1050 * We didn't find a timestamp so empty all the traceid packet 1051 * queues before looking for another timestamp packet, either 1052 * in the current data block or a new one. Packets that were 1053 * just decoded are useless since no timestamp has been 1054 * associated with them. As such simply discard them. 1055 */ 1056 cs_etm__clear_all_packet_queues(etmq); 1057 } 1058 1059 /* 1060 * We have a timestamp. Add it to the min heap to reflect when 1061 * instructions conveyed by the range packets of this traceID queue 1062 * started to execute. Once the same has been done for all the traceID 1063 * queues of each etmq, redenring and decoding can start in 1064 * chronological order. 1065 * 1066 * Note that packets decoded above are still in the traceID's packet 1067 * queue and will be processed in cs_etm__process_queues(). 1068 */ 1069 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 1070 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 1071 out: 1072 return ret; 1073 } 1074 1075 static inline 1076 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 1077 struct cs_etm_traceid_queue *tidq) 1078 { 1079 struct branch_stack *bs_src = tidq->last_branch_rb; 1080 struct branch_stack *bs_dst = tidq->last_branch; 1081 size_t nr = 0; 1082 1083 /* 1084 * Set the number of records before early exit: ->nr is used to 1085 * determine how many branches to copy from ->entries. 1086 */ 1087 bs_dst->nr = bs_src->nr; 1088 1089 /* 1090 * Early exit when there is nothing to copy. 1091 */ 1092 if (!bs_src->nr) 1093 return; 1094 1095 /* 1096 * As bs_src->entries is a circular buffer, we need to copy from it in 1097 * two steps. First, copy the branches from the most recently inserted 1098 * branch ->last_branch_pos until the end of bs_src->entries buffer. 1099 */ 1100 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 1101 memcpy(&bs_dst->entries[0], 1102 &bs_src->entries[tidq->last_branch_pos], 1103 sizeof(struct branch_entry) * nr); 1104 1105 /* 1106 * If we wrapped around at least once, the branches from the beginning 1107 * of the bs_src->entries buffer and until the ->last_branch_pos element 1108 * are older valid branches: copy them over. The total number of 1109 * branches copied over will be equal to the number of branches asked by 1110 * the user in last_branch_sz. 1111 */ 1112 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 1113 memcpy(&bs_dst->entries[nr], 1114 &bs_src->entries[0], 1115 sizeof(struct branch_entry) * tidq->last_branch_pos); 1116 } 1117 } 1118 1119 static inline 1120 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 1121 { 1122 tidq->last_branch_pos = 0; 1123 tidq->last_branch_rb->nr = 0; 1124 } 1125 1126 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 1127 u8 trace_chan_id, u64 addr) 1128 { 1129 u8 instrBytes[2]; 1130 1131 cs_etm__mem_access(etmq, trace_chan_id, addr, 1132 ARRAY_SIZE(instrBytes), instrBytes); 1133 /* 1134 * T32 instruction size is indicated by bits[15:11] of the first 1135 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 1136 * denote a 32-bit instruction. 1137 */ 1138 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 1139 } 1140 1141 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 1142 { 1143 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1144 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1145 return 0; 1146 1147 return packet->start_addr; 1148 } 1149 1150 static inline 1151 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 1152 { 1153 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1154 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1155 return 0; 1156 1157 return packet->end_addr - packet->last_instr_size; 1158 } 1159 1160 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 1161 u64 trace_chan_id, 1162 const struct cs_etm_packet *packet, 1163 u64 offset) 1164 { 1165 if (packet->isa == CS_ETM_ISA_T32) { 1166 u64 addr = packet->start_addr; 1167 1168 while (offset) { 1169 addr += cs_etm__t32_instr_size(etmq, 1170 trace_chan_id, addr); 1171 offset--; 1172 } 1173 return addr; 1174 } 1175 1176 /* Assume a 4 byte instruction size (A32/A64) */ 1177 return packet->start_addr + offset * 4; 1178 } 1179 1180 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1181 struct cs_etm_traceid_queue *tidq) 1182 { 1183 struct branch_stack *bs = tidq->last_branch_rb; 1184 struct branch_entry *be; 1185 1186 /* 1187 * The branches are recorded in a circular buffer in reverse 1188 * chronological order: we start recording from the last element of the 1189 * buffer down. After writing the first element of the stack, move the 1190 * insert position back to the end of the buffer. 1191 */ 1192 if (!tidq->last_branch_pos) 1193 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1194 1195 tidq->last_branch_pos -= 1; 1196 1197 be = &bs->entries[tidq->last_branch_pos]; 1198 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1199 be->to = cs_etm__first_executed_instr(tidq->packet); 1200 /* No support for mispredict */ 1201 be->flags.mispred = 0; 1202 be->flags.predicted = 1; 1203 1204 /* 1205 * Increment bs->nr until reaching the number of last branches asked by 1206 * the user on the command line. 1207 */ 1208 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1209 bs->nr += 1; 1210 } 1211 1212 static int cs_etm__inject_event(union perf_event *event, 1213 struct perf_sample *sample, u64 type) 1214 { 1215 event->header.size = perf_event__sample_event_size(sample, type, 0); 1216 return perf_event__synthesize_sample(event, type, 0, sample); 1217 } 1218 1219 1220 static int 1221 cs_etm__get_trace(struct cs_etm_queue *etmq) 1222 { 1223 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1224 struct auxtrace_buffer *old_buffer = aux_buffer; 1225 struct auxtrace_queue *queue; 1226 1227 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1228 1229 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1230 1231 /* If no more data, drop the previous auxtrace_buffer and return */ 1232 if (!aux_buffer) { 1233 if (old_buffer) 1234 auxtrace_buffer__drop_data(old_buffer); 1235 etmq->buf_len = 0; 1236 return 0; 1237 } 1238 1239 etmq->buffer = aux_buffer; 1240 1241 /* If the aux_buffer doesn't have data associated, try to load it */ 1242 if (!aux_buffer->data) { 1243 /* get the file desc associated with the perf data file */ 1244 int fd = perf_data__fd(etmq->etm->session->data); 1245 1246 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1247 if (!aux_buffer->data) 1248 return -ENOMEM; 1249 } 1250 1251 /* If valid, drop the previous buffer */ 1252 if (old_buffer) 1253 auxtrace_buffer__drop_data(old_buffer); 1254 1255 etmq->buf_used = 0; 1256 etmq->buf_len = aux_buffer->size; 1257 etmq->buf = aux_buffer->data; 1258 1259 return etmq->buf_len; 1260 } 1261 1262 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1263 struct cs_etm_traceid_queue *tidq) 1264 { 1265 if ((!tidq->thread) && (tidq->tid != -1)) 1266 tidq->thread = machine__find_thread(etm->machine, -1, 1267 tidq->tid); 1268 1269 if (tidq->thread) 1270 tidq->pid = tidq->thread->pid_; 1271 } 1272 1273 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1274 pid_t tid, u8 trace_chan_id) 1275 { 1276 int cpu, err = -EINVAL; 1277 struct cs_etm_auxtrace *etm = etmq->etm; 1278 struct cs_etm_traceid_queue *tidq; 1279 1280 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1281 if (!tidq) 1282 return err; 1283 1284 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1285 return err; 1286 1287 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1288 if (err) 1289 return err; 1290 1291 tidq->tid = tid; 1292 thread__zput(tidq->thread); 1293 1294 cs_etm__set_pid_tid_cpu(etm, tidq); 1295 return 0; 1296 } 1297 1298 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1299 { 1300 return !!etmq->etm->timeless_decoding; 1301 } 1302 1303 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1304 u64 trace_chan_id, 1305 const struct cs_etm_packet *packet, 1306 struct perf_sample *sample) 1307 { 1308 /* 1309 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1310 * packet, so directly bail out with 'insn_len' = 0. 1311 */ 1312 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1313 sample->insn_len = 0; 1314 return; 1315 } 1316 1317 /* 1318 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1319 * cs_etm__t32_instr_size(). 1320 */ 1321 if (packet->isa == CS_ETM_ISA_T32) 1322 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1323 sample->ip); 1324 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1325 else 1326 sample->insn_len = 4; 1327 1328 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1329 sample->insn_len, (void *)sample->insn); 1330 } 1331 1332 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) 1333 { 1334 struct cs_etm_auxtrace *etm = etmq->etm; 1335 1336 if (etm->has_virtual_ts) 1337 return tsc_to_perf_time(cs_timestamp, &etm->tc); 1338 else 1339 return cs_timestamp; 1340 } 1341 1342 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, 1343 struct cs_etm_traceid_queue *tidq) 1344 { 1345 struct cs_etm_auxtrace *etm = etmq->etm; 1346 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; 1347 1348 if (etm->timeless_decoding) 1349 return 0; 1350 else if (etm->has_virtual_ts) 1351 return packet_queue->cs_timestamp; 1352 else 1353 return etm->latest_kernel_timestamp; 1354 } 1355 1356 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1357 struct cs_etm_traceid_queue *tidq, 1358 u64 addr, u64 period) 1359 { 1360 int ret = 0; 1361 struct cs_etm_auxtrace *etm = etmq->etm; 1362 union perf_event *event = tidq->event_buf; 1363 struct perf_sample sample = {.ip = 0,}; 1364 1365 event->sample.header.type = PERF_RECORD_SAMPLE; 1366 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1367 event->sample.header.size = sizeof(struct perf_event_header); 1368 1369 /* Set time field based on etm auxtrace config. */ 1370 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1371 1372 sample.ip = addr; 1373 sample.pid = tidq->pid; 1374 sample.tid = tidq->tid; 1375 sample.id = etmq->etm->instructions_id; 1376 sample.stream_id = etmq->etm->instructions_id; 1377 sample.period = period; 1378 sample.cpu = tidq->packet->cpu; 1379 sample.flags = tidq->prev_packet->flags; 1380 sample.cpumode = event->sample.header.misc; 1381 1382 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1383 1384 if (etm->synth_opts.last_branch) 1385 sample.branch_stack = tidq->last_branch; 1386 1387 if (etm->synth_opts.inject) { 1388 ret = cs_etm__inject_event(event, &sample, 1389 etm->instructions_sample_type); 1390 if (ret) 1391 return ret; 1392 } 1393 1394 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1395 1396 if (ret) 1397 pr_err( 1398 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1399 ret); 1400 1401 return ret; 1402 } 1403 1404 /* 1405 * The cs etm packet encodes an instruction range between a branch target 1406 * and the next taken branch. Generate sample accordingly. 1407 */ 1408 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1409 struct cs_etm_traceid_queue *tidq) 1410 { 1411 int ret = 0; 1412 struct cs_etm_auxtrace *etm = etmq->etm; 1413 struct perf_sample sample = {.ip = 0,}; 1414 union perf_event *event = tidq->event_buf; 1415 struct dummy_branch_stack { 1416 u64 nr; 1417 u64 hw_idx; 1418 struct branch_entry entries; 1419 } dummy_bs; 1420 u64 ip; 1421 1422 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1423 1424 event->sample.header.type = PERF_RECORD_SAMPLE; 1425 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1426 event->sample.header.size = sizeof(struct perf_event_header); 1427 1428 /* Set time field based on etm auxtrace config. */ 1429 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1430 1431 sample.ip = ip; 1432 sample.pid = tidq->pid; 1433 sample.tid = tidq->tid; 1434 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1435 sample.id = etmq->etm->branches_id; 1436 sample.stream_id = etmq->etm->branches_id; 1437 sample.period = 1; 1438 sample.cpu = tidq->packet->cpu; 1439 sample.flags = tidq->prev_packet->flags; 1440 sample.cpumode = event->sample.header.misc; 1441 1442 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1443 &sample); 1444 1445 /* 1446 * perf report cannot handle events without a branch stack 1447 */ 1448 if (etm->synth_opts.last_branch) { 1449 dummy_bs = (struct dummy_branch_stack){ 1450 .nr = 1, 1451 .hw_idx = -1ULL, 1452 .entries = { 1453 .from = sample.ip, 1454 .to = sample.addr, 1455 }, 1456 }; 1457 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1458 } 1459 1460 if (etm->synth_opts.inject) { 1461 ret = cs_etm__inject_event(event, &sample, 1462 etm->branches_sample_type); 1463 if (ret) 1464 return ret; 1465 } 1466 1467 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1468 1469 if (ret) 1470 pr_err( 1471 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1472 ret); 1473 1474 return ret; 1475 } 1476 1477 struct cs_etm_synth { 1478 struct perf_tool dummy_tool; 1479 struct perf_session *session; 1480 }; 1481 1482 static int cs_etm__event_synth(struct perf_tool *tool, 1483 union perf_event *event, 1484 struct perf_sample *sample __maybe_unused, 1485 struct machine *machine __maybe_unused) 1486 { 1487 struct cs_etm_synth *cs_etm_synth = 1488 container_of(tool, struct cs_etm_synth, dummy_tool); 1489 1490 return perf_session__deliver_synth_event(cs_etm_synth->session, 1491 event, NULL); 1492 } 1493 1494 static int cs_etm__synth_event(struct perf_session *session, 1495 struct perf_event_attr *attr, u64 id) 1496 { 1497 struct cs_etm_synth cs_etm_synth; 1498 1499 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1500 cs_etm_synth.session = session; 1501 1502 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1503 &id, cs_etm__event_synth); 1504 } 1505 1506 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1507 struct perf_session *session) 1508 { 1509 struct evlist *evlist = session->evlist; 1510 struct evsel *evsel; 1511 struct perf_event_attr attr; 1512 bool found = false; 1513 u64 id; 1514 int err; 1515 1516 evlist__for_each_entry(evlist, evsel) { 1517 if (evsel->core.attr.type == etm->pmu_type) { 1518 found = true; 1519 break; 1520 } 1521 } 1522 1523 if (!found) { 1524 pr_debug("No selected events with CoreSight Trace data\n"); 1525 return 0; 1526 } 1527 1528 memset(&attr, 0, sizeof(struct perf_event_attr)); 1529 attr.size = sizeof(struct perf_event_attr); 1530 attr.type = PERF_TYPE_HARDWARE; 1531 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1532 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1533 PERF_SAMPLE_PERIOD; 1534 if (etm->timeless_decoding) 1535 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1536 else 1537 attr.sample_type |= PERF_SAMPLE_TIME; 1538 1539 attr.exclude_user = evsel->core.attr.exclude_user; 1540 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1541 attr.exclude_hv = evsel->core.attr.exclude_hv; 1542 attr.exclude_host = evsel->core.attr.exclude_host; 1543 attr.exclude_guest = evsel->core.attr.exclude_guest; 1544 attr.sample_id_all = evsel->core.attr.sample_id_all; 1545 attr.read_format = evsel->core.attr.read_format; 1546 1547 /* create new id val to be a fixed offset from evsel id */ 1548 id = evsel->core.id[0] + 1000000000; 1549 1550 if (!id) 1551 id = 1; 1552 1553 if (etm->synth_opts.branches) { 1554 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1555 attr.sample_period = 1; 1556 attr.sample_type |= PERF_SAMPLE_ADDR; 1557 err = cs_etm__synth_event(session, &attr, id); 1558 if (err) 1559 return err; 1560 etm->branches_sample_type = attr.sample_type; 1561 etm->branches_id = id; 1562 id += 1; 1563 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1564 } 1565 1566 if (etm->synth_opts.last_branch) { 1567 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1568 /* 1569 * We don't use the hardware index, but the sample generation 1570 * code uses the new format branch_stack with this field, 1571 * so the event attributes must indicate that it's present. 1572 */ 1573 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1574 } 1575 1576 if (etm->synth_opts.instructions) { 1577 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1578 attr.sample_period = etm->synth_opts.period; 1579 etm->instructions_sample_period = attr.sample_period; 1580 err = cs_etm__synth_event(session, &attr, id); 1581 if (err) 1582 return err; 1583 etm->instructions_sample_type = attr.sample_type; 1584 etm->instructions_id = id; 1585 id += 1; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int cs_etm__sample(struct cs_etm_queue *etmq, 1592 struct cs_etm_traceid_queue *tidq) 1593 { 1594 struct cs_etm_auxtrace *etm = etmq->etm; 1595 int ret; 1596 u8 trace_chan_id = tidq->trace_chan_id; 1597 u64 instrs_prev; 1598 1599 /* Get instructions remainder from previous packet */ 1600 instrs_prev = tidq->period_instructions; 1601 1602 tidq->period_instructions += tidq->packet->instr_count; 1603 1604 /* 1605 * Record a branch when the last instruction in 1606 * PREV_PACKET is a branch. 1607 */ 1608 if (etm->synth_opts.last_branch && 1609 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1610 tidq->prev_packet->last_instr_taken_branch) 1611 cs_etm__update_last_branch_rb(etmq, tidq); 1612 1613 if (etm->synth_opts.instructions && 1614 tidq->period_instructions >= etm->instructions_sample_period) { 1615 /* 1616 * Emit instruction sample periodically 1617 * TODO: allow period to be defined in cycles and clock time 1618 */ 1619 1620 /* 1621 * Below diagram demonstrates the instruction samples 1622 * generation flows: 1623 * 1624 * Instrs Instrs Instrs Instrs 1625 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1626 * | | | | 1627 * V V V V 1628 * -------------------------------------------------- 1629 * ^ ^ 1630 * | | 1631 * Period Period 1632 * instructions(Pi) instructions(Pi') 1633 * 1634 * | | 1635 * \---------------- -----------------/ 1636 * V 1637 * tidq->packet->instr_count 1638 * 1639 * Instrs Sample(n...) are the synthesised samples occurring 1640 * every etm->instructions_sample_period instructions - as 1641 * defined on the perf command line. Sample(n) is being the 1642 * last sample before the current etm packet, n+1 to n+3 1643 * samples are generated from the current etm packet. 1644 * 1645 * tidq->packet->instr_count represents the number of 1646 * instructions in the current etm packet. 1647 * 1648 * Period instructions (Pi) contains the number of 1649 * instructions executed after the sample point(n) from the 1650 * previous etm packet. This will always be less than 1651 * etm->instructions_sample_period. 1652 * 1653 * When generate new samples, it combines with two parts 1654 * instructions, one is the tail of the old packet and another 1655 * is the head of the new coming packet, to generate 1656 * sample(n+1); sample(n+2) and sample(n+3) consume the 1657 * instructions with sample period. After sample(n+3), the rest 1658 * instructions will be used by later packet and it is assigned 1659 * to tidq->period_instructions for next round calculation. 1660 */ 1661 1662 /* 1663 * Get the initial offset into the current packet instructions; 1664 * entry conditions ensure that instrs_prev is less than 1665 * etm->instructions_sample_period. 1666 */ 1667 u64 offset = etm->instructions_sample_period - instrs_prev; 1668 u64 addr; 1669 1670 /* Prepare last branches for instruction sample */ 1671 if (etm->synth_opts.last_branch) 1672 cs_etm__copy_last_branch_rb(etmq, tidq); 1673 1674 while (tidq->period_instructions >= 1675 etm->instructions_sample_period) { 1676 /* 1677 * Calculate the address of the sampled instruction (-1 1678 * as sample is reported as though instruction has just 1679 * been executed, but PC has not advanced to next 1680 * instruction) 1681 */ 1682 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1683 tidq->packet, offset - 1); 1684 ret = cs_etm__synth_instruction_sample( 1685 etmq, tidq, addr, 1686 etm->instructions_sample_period); 1687 if (ret) 1688 return ret; 1689 1690 offset += etm->instructions_sample_period; 1691 tidq->period_instructions -= 1692 etm->instructions_sample_period; 1693 } 1694 } 1695 1696 if (etm->synth_opts.branches) { 1697 bool generate_sample = false; 1698 1699 /* Generate sample for tracing on packet */ 1700 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1701 generate_sample = true; 1702 1703 /* Generate sample for branch taken packet */ 1704 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1705 tidq->prev_packet->last_instr_taken_branch) 1706 generate_sample = true; 1707 1708 if (generate_sample) { 1709 ret = cs_etm__synth_branch_sample(etmq, tidq); 1710 if (ret) 1711 return ret; 1712 } 1713 } 1714 1715 cs_etm__packet_swap(etm, tidq); 1716 1717 return 0; 1718 } 1719 1720 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1721 { 1722 /* 1723 * When the exception packet is inserted, whether the last instruction 1724 * in previous range packet is taken branch or not, we need to force 1725 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1726 * to generate branch sample for the instruction range before the 1727 * exception is trapped to kernel or before the exception returning. 1728 * 1729 * The exception packet includes the dummy address values, so don't 1730 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1731 * for generating instruction and branch samples. 1732 */ 1733 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1734 tidq->prev_packet->last_instr_taken_branch = true; 1735 1736 return 0; 1737 } 1738 1739 static int cs_etm__flush(struct cs_etm_queue *etmq, 1740 struct cs_etm_traceid_queue *tidq) 1741 { 1742 int err = 0; 1743 struct cs_etm_auxtrace *etm = etmq->etm; 1744 1745 /* Handle start tracing packet */ 1746 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1747 goto swap_packet; 1748 1749 if (etmq->etm->synth_opts.last_branch && 1750 etmq->etm->synth_opts.instructions && 1751 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1752 u64 addr; 1753 1754 /* Prepare last branches for instruction sample */ 1755 cs_etm__copy_last_branch_rb(etmq, tidq); 1756 1757 /* 1758 * Generate a last branch event for the branches left in the 1759 * circular buffer at the end of the trace. 1760 * 1761 * Use the address of the end of the last reported execution 1762 * range 1763 */ 1764 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1765 1766 err = cs_etm__synth_instruction_sample( 1767 etmq, tidq, addr, 1768 tidq->period_instructions); 1769 if (err) 1770 return err; 1771 1772 tidq->period_instructions = 0; 1773 1774 } 1775 1776 if (etm->synth_opts.branches && 1777 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1778 err = cs_etm__synth_branch_sample(etmq, tidq); 1779 if (err) 1780 return err; 1781 } 1782 1783 swap_packet: 1784 cs_etm__packet_swap(etm, tidq); 1785 1786 /* Reset last branches after flush the trace */ 1787 if (etm->synth_opts.last_branch) 1788 cs_etm__reset_last_branch_rb(tidq); 1789 1790 return err; 1791 } 1792 1793 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1794 struct cs_etm_traceid_queue *tidq) 1795 { 1796 int err; 1797 1798 /* 1799 * It has no new packet coming and 'etmq->packet' contains the stale 1800 * packet which was set at the previous time with packets swapping; 1801 * so skip to generate branch sample to avoid stale packet. 1802 * 1803 * For this case only flush branch stack and generate a last branch 1804 * event for the branches left in the circular buffer at the end of 1805 * the trace. 1806 */ 1807 if (etmq->etm->synth_opts.last_branch && 1808 etmq->etm->synth_opts.instructions && 1809 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1810 u64 addr; 1811 1812 /* Prepare last branches for instruction sample */ 1813 cs_etm__copy_last_branch_rb(etmq, tidq); 1814 1815 /* 1816 * Use the address of the end of the last reported execution 1817 * range. 1818 */ 1819 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1820 1821 err = cs_etm__synth_instruction_sample( 1822 etmq, tidq, addr, 1823 tidq->period_instructions); 1824 if (err) 1825 return err; 1826 1827 tidq->period_instructions = 0; 1828 } 1829 1830 return 0; 1831 } 1832 /* 1833 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1834 * if need be. 1835 * Returns: < 0 if error 1836 * = 0 if no more auxtrace_buffer to read 1837 * > 0 if the current buffer isn't empty yet 1838 */ 1839 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1840 { 1841 int ret; 1842 1843 if (!etmq->buf_len) { 1844 ret = cs_etm__get_trace(etmq); 1845 if (ret <= 0) 1846 return ret; 1847 /* 1848 * We cannot assume consecutive blocks in the data file 1849 * are contiguous, reset the decoder to force re-sync. 1850 */ 1851 ret = cs_etm_decoder__reset(etmq->decoder); 1852 if (ret) 1853 return ret; 1854 } 1855 1856 return etmq->buf_len; 1857 } 1858 1859 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1860 struct cs_etm_packet *packet, 1861 u64 end_addr) 1862 { 1863 /* Initialise to keep compiler happy */ 1864 u16 instr16 = 0; 1865 u32 instr32 = 0; 1866 u64 addr; 1867 1868 switch (packet->isa) { 1869 case CS_ETM_ISA_T32: 1870 /* 1871 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1872 * 1873 * b'15 b'8 1874 * +-----------------+--------+ 1875 * | 1 1 0 1 1 1 1 1 | imm8 | 1876 * +-----------------+--------+ 1877 * 1878 * According to the specification, it only defines SVC for T32 1879 * with 16 bits instruction and has no definition for 32bits; 1880 * so below only read 2 bytes as instruction size for T32. 1881 */ 1882 addr = end_addr - 2; 1883 cs_etm__mem_access(etmq, trace_chan_id, addr, 1884 sizeof(instr16), (u8 *)&instr16); 1885 if ((instr16 & 0xFF00) == 0xDF00) 1886 return true; 1887 1888 break; 1889 case CS_ETM_ISA_A32: 1890 /* 1891 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1892 * 1893 * b'31 b'28 b'27 b'24 1894 * +---------+---------+-------------------------+ 1895 * | !1111 | 1 1 1 1 | imm24 | 1896 * +---------+---------+-------------------------+ 1897 */ 1898 addr = end_addr - 4; 1899 cs_etm__mem_access(etmq, trace_chan_id, addr, 1900 sizeof(instr32), (u8 *)&instr32); 1901 if ((instr32 & 0x0F000000) == 0x0F000000 && 1902 (instr32 & 0xF0000000) != 0xF0000000) 1903 return true; 1904 1905 break; 1906 case CS_ETM_ISA_A64: 1907 /* 1908 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1909 * 1910 * b'31 b'21 b'4 b'0 1911 * +-----------------------+---------+-----------+ 1912 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1913 * +-----------------------+---------+-----------+ 1914 */ 1915 addr = end_addr - 4; 1916 cs_etm__mem_access(etmq, trace_chan_id, addr, 1917 sizeof(instr32), (u8 *)&instr32); 1918 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1919 return true; 1920 1921 break; 1922 case CS_ETM_ISA_UNKNOWN: 1923 default: 1924 break; 1925 } 1926 1927 return false; 1928 } 1929 1930 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1931 struct cs_etm_traceid_queue *tidq, u64 magic) 1932 { 1933 u8 trace_chan_id = tidq->trace_chan_id; 1934 struct cs_etm_packet *packet = tidq->packet; 1935 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1936 1937 if (magic == __perf_cs_etmv3_magic) 1938 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1939 return true; 1940 1941 /* 1942 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1943 * HVC cases; need to check if it's SVC instruction based on 1944 * packet address. 1945 */ 1946 if (magic == __perf_cs_etmv4_magic) { 1947 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1948 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1949 prev_packet->end_addr)) 1950 return true; 1951 } 1952 1953 return false; 1954 } 1955 1956 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1957 u64 magic) 1958 { 1959 struct cs_etm_packet *packet = tidq->packet; 1960 1961 if (magic == __perf_cs_etmv3_magic) 1962 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1963 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1964 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1965 packet->exception_number == CS_ETMV3_EXC_IRQ || 1966 packet->exception_number == CS_ETMV3_EXC_FIQ) 1967 return true; 1968 1969 if (magic == __perf_cs_etmv4_magic) 1970 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1971 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1972 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1973 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1974 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1975 packet->exception_number == CS_ETMV4_EXC_IRQ || 1976 packet->exception_number == CS_ETMV4_EXC_FIQ) 1977 return true; 1978 1979 return false; 1980 } 1981 1982 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1983 struct cs_etm_traceid_queue *tidq, 1984 u64 magic) 1985 { 1986 u8 trace_chan_id = tidq->trace_chan_id; 1987 struct cs_etm_packet *packet = tidq->packet; 1988 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1989 1990 if (magic == __perf_cs_etmv3_magic) 1991 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1992 packet->exception_number == CS_ETMV3_EXC_HYP || 1993 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1994 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1995 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1996 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1997 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1998 return true; 1999 2000 if (magic == __perf_cs_etmv4_magic) { 2001 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 2002 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 2003 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 2004 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 2005 return true; 2006 2007 /* 2008 * For CS_ETMV4_EXC_CALL, except SVC other instructions 2009 * (SMC, HVC) are taken as sync exceptions. 2010 */ 2011 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2012 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2013 prev_packet->end_addr)) 2014 return true; 2015 2016 /* 2017 * ETMv4 has 5 bits for exception number; if the numbers 2018 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 2019 * they are implementation defined exceptions. 2020 * 2021 * For this case, simply take it as sync exception. 2022 */ 2023 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 2024 packet->exception_number <= CS_ETMV4_EXC_END) 2025 return true; 2026 } 2027 2028 return false; 2029 } 2030 2031 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 2032 struct cs_etm_traceid_queue *tidq) 2033 { 2034 struct cs_etm_packet *packet = tidq->packet; 2035 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2036 u8 trace_chan_id = tidq->trace_chan_id; 2037 u64 magic; 2038 int ret; 2039 2040 switch (packet->sample_type) { 2041 case CS_ETM_RANGE: 2042 /* 2043 * Immediate branch instruction without neither link nor 2044 * return flag, it's normal branch instruction within 2045 * the function. 2046 */ 2047 if (packet->last_instr_type == OCSD_INSTR_BR && 2048 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 2049 packet->flags = PERF_IP_FLAG_BRANCH; 2050 2051 if (packet->last_instr_cond) 2052 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 2053 } 2054 2055 /* 2056 * Immediate branch instruction with link (e.g. BL), this is 2057 * branch instruction for function call. 2058 */ 2059 if (packet->last_instr_type == OCSD_INSTR_BR && 2060 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2061 packet->flags = PERF_IP_FLAG_BRANCH | 2062 PERF_IP_FLAG_CALL; 2063 2064 /* 2065 * Indirect branch instruction with link (e.g. BLR), this is 2066 * branch instruction for function call. 2067 */ 2068 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2069 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2070 packet->flags = PERF_IP_FLAG_BRANCH | 2071 PERF_IP_FLAG_CALL; 2072 2073 /* 2074 * Indirect branch instruction with subtype of 2075 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 2076 * function return for A32/T32. 2077 */ 2078 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2079 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 2080 packet->flags = PERF_IP_FLAG_BRANCH | 2081 PERF_IP_FLAG_RETURN; 2082 2083 /* 2084 * Indirect branch instruction without link (e.g. BR), usually 2085 * this is used for function return, especially for functions 2086 * within dynamic link lib. 2087 */ 2088 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2089 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 2090 packet->flags = PERF_IP_FLAG_BRANCH | 2091 PERF_IP_FLAG_RETURN; 2092 2093 /* Return instruction for function return. */ 2094 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2095 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 2096 packet->flags = PERF_IP_FLAG_BRANCH | 2097 PERF_IP_FLAG_RETURN; 2098 2099 /* 2100 * Decoder might insert a discontinuity in the middle of 2101 * instruction packets, fixup prev_packet with flag 2102 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 2103 */ 2104 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 2105 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2106 PERF_IP_FLAG_TRACE_BEGIN; 2107 2108 /* 2109 * If the previous packet is an exception return packet 2110 * and the return address just follows SVC instruction, 2111 * it needs to calibrate the previous packet sample flags 2112 * as PERF_IP_FLAG_SYSCALLRET. 2113 */ 2114 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 2115 PERF_IP_FLAG_RETURN | 2116 PERF_IP_FLAG_INTERRUPT) && 2117 cs_etm__is_svc_instr(etmq, trace_chan_id, 2118 packet, packet->start_addr)) 2119 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2120 PERF_IP_FLAG_RETURN | 2121 PERF_IP_FLAG_SYSCALLRET; 2122 break; 2123 case CS_ETM_DISCONTINUITY: 2124 /* 2125 * The trace is discontinuous, if the previous packet is 2126 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 2127 * for previous packet. 2128 */ 2129 if (prev_packet->sample_type == CS_ETM_RANGE) 2130 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2131 PERF_IP_FLAG_TRACE_END; 2132 break; 2133 case CS_ETM_EXCEPTION: 2134 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 2135 if (ret) 2136 return ret; 2137 2138 /* The exception is for system call. */ 2139 if (cs_etm__is_syscall(etmq, tidq, magic)) 2140 packet->flags = PERF_IP_FLAG_BRANCH | 2141 PERF_IP_FLAG_CALL | 2142 PERF_IP_FLAG_SYSCALLRET; 2143 /* 2144 * The exceptions are triggered by external signals from bus, 2145 * interrupt controller, debug module, PE reset or halt. 2146 */ 2147 else if (cs_etm__is_async_exception(tidq, magic)) 2148 packet->flags = PERF_IP_FLAG_BRANCH | 2149 PERF_IP_FLAG_CALL | 2150 PERF_IP_FLAG_ASYNC | 2151 PERF_IP_FLAG_INTERRUPT; 2152 /* 2153 * Otherwise, exception is caused by trap, instruction & 2154 * data fault, or alignment errors. 2155 */ 2156 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 2157 packet->flags = PERF_IP_FLAG_BRANCH | 2158 PERF_IP_FLAG_CALL | 2159 PERF_IP_FLAG_INTERRUPT; 2160 2161 /* 2162 * When the exception packet is inserted, since exception 2163 * packet is not used standalone for generating samples 2164 * and it's affiliation to the previous instruction range 2165 * packet; so set previous range packet flags to tell perf 2166 * it is an exception taken branch. 2167 */ 2168 if (prev_packet->sample_type == CS_ETM_RANGE) 2169 prev_packet->flags = packet->flags; 2170 break; 2171 case CS_ETM_EXCEPTION_RET: 2172 /* 2173 * When the exception return packet is inserted, since 2174 * exception return packet is not used standalone for 2175 * generating samples and it's affiliation to the previous 2176 * instruction range packet; so set previous range packet 2177 * flags to tell perf it is an exception return branch. 2178 * 2179 * The exception return can be for either system call or 2180 * other exception types; unfortunately the packet doesn't 2181 * contain exception type related info so we cannot decide 2182 * the exception type purely based on exception return packet. 2183 * If we record the exception number from exception packet and 2184 * reuse it for exception return packet, this is not reliable 2185 * due the trace can be discontinuity or the interrupt can 2186 * be nested, thus the recorded exception number cannot be 2187 * used for exception return packet for these two cases. 2188 * 2189 * For exception return packet, we only need to distinguish the 2190 * packet is for system call or for other types. Thus the 2191 * decision can be deferred when receive the next packet which 2192 * contains the return address, based on the return address we 2193 * can read out the previous instruction and check if it's a 2194 * system call instruction and then calibrate the sample flag 2195 * as needed. 2196 */ 2197 if (prev_packet->sample_type == CS_ETM_RANGE) 2198 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2199 PERF_IP_FLAG_RETURN | 2200 PERF_IP_FLAG_INTERRUPT; 2201 break; 2202 case CS_ETM_EMPTY: 2203 default: 2204 break; 2205 } 2206 2207 return 0; 2208 } 2209 2210 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2211 { 2212 int ret = 0; 2213 size_t processed = 0; 2214 2215 /* 2216 * Packets are decoded and added to the decoder's packet queue 2217 * until the decoder packet processing callback has requested that 2218 * processing stops or there is nothing left in the buffer. Normal 2219 * operations that stop processing are a timestamp packet or a full 2220 * decoder buffer queue. 2221 */ 2222 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2223 etmq->offset, 2224 &etmq->buf[etmq->buf_used], 2225 etmq->buf_len, 2226 &processed); 2227 if (ret) 2228 goto out; 2229 2230 etmq->offset += processed; 2231 etmq->buf_used += processed; 2232 etmq->buf_len -= processed; 2233 2234 out: 2235 return ret; 2236 } 2237 2238 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2239 struct cs_etm_traceid_queue *tidq) 2240 { 2241 int ret; 2242 struct cs_etm_packet_queue *packet_queue; 2243 2244 packet_queue = &tidq->packet_queue; 2245 2246 /* Process each packet in this chunk */ 2247 while (1) { 2248 ret = cs_etm_decoder__get_packet(packet_queue, 2249 tidq->packet); 2250 if (ret <= 0) 2251 /* 2252 * Stop processing this chunk on 2253 * end of data or error 2254 */ 2255 break; 2256 2257 /* 2258 * Since packet addresses are swapped in packet 2259 * handling within below switch() statements, 2260 * thus setting sample flags must be called 2261 * prior to switch() statement to use address 2262 * information before packets swapping. 2263 */ 2264 ret = cs_etm__set_sample_flags(etmq, tidq); 2265 if (ret < 0) 2266 break; 2267 2268 switch (tidq->packet->sample_type) { 2269 case CS_ETM_RANGE: 2270 /* 2271 * If the packet contains an instruction 2272 * range, generate instruction sequence 2273 * events. 2274 */ 2275 cs_etm__sample(etmq, tidq); 2276 break; 2277 case CS_ETM_EXCEPTION: 2278 case CS_ETM_EXCEPTION_RET: 2279 /* 2280 * If the exception packet is coming, 2281 * make sure the previous instruction 2282 * range packet to be handled properly. 2283 */ 2284 cs_etm__exception(tidq); 2285 break; 2286 case CS_ETM_DISCONTINUITY: 2287 /* 2288 * Discontinuity in trace, flush 2289 * previous branch stack 2290 */ 2291 cs_etm__flush(etmq, tidq); 2292 break; 2293 case CS_ETM_EMPTY: 2294 /* 2295 * Should not receive empty packet, 2296 * report error. 2297 */ 2298 pr_err("CS ETM Trace: empty packet\n"); 2299 return -EINVAL; 2300 default: 2301 break; 2302 } 2303 } 2304 2305 return ret; 2306 } 2307 2308 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2309 { 2310 int idx; 2311 struct int_node *inode; 2312 struct cs_etm_traceid_queue *tidq; 2313 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2314 2315 intlist__for_each_entry(inode, traceid_queues_list) { 2316 idx = (int)(intptr_t)inode->priv; 2317 tidq = etmq->traceid_queues[idx]; 2318 2319 /* Ignore return value */ 2320 cs_etm__process_traceid_queue(etmq, tidq); 2321 2322 /* 2323 * Generate an instruction sample with the remaining 2324 * branchstack entries. 2325 */ 2326 cs_etm__flush(etmq, tidq); 2327 } 2328 } 2329 2330 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2331 { 2332 int err = 0; 2333 struct cs_etm_traceid_queue *tidq; 2334 2335 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2336 if (!tidq) 2337 return -EINVAL; 2338 2339 /* Go through each buffer in the queue and decode them one by one */ 2340 while (1) { 2341 err = cs_etm__get_data_block(etmq); 2342 if (err <= 0) 2343 return err; 2344 2345 /* Run trace decoder until buffer consumed or end of trace */ 2346 do { 2347 err = cs_etm__decode_data_block(etmq); 2348 if (err) 2349 return err; 2350 2351 /* 2352 * Process each packet in this chunk, nothing to do if 2353 * an error occurs other than hoping the next one will 2354 * be better. 2355 */ 2356 err = cs_etm__process_traceid_queue(etmq, tidq); 2357 2358 } while (etmq->buf_len); 2359 2360 if (err == 0) 2361 /* Flush any remaining branch stack entries */ 2362 err = cs_etm__end_block(etmq, tidq); 2363 } 2364 2365 return err; 2366 } 2367 2368 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2369 pid_t tid) 2370 { 2371 unsigned int i; 2372 struct auxtrace_queues *queues = &etm->queues; 2373 2374 for (i = 0; i < queues->nr_queues; i++) { 2375 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2376 struct cs_etm_queue *etmq = queue->priv; 2377 struct cs_etm_traceid_queue *tidq; 2378 2379 if (!etmq) 2380 continue; 2381 2382 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2383 CS_ETM_PER_THREAD_TRACEID); 2384 2385 if (!tidq) 2386 continue; 2387 2388 if ((tid == -1) || (tidq->tid == tid)) { 2389 cs_etm__set_pid_tid_cpu(etm, tidq); 2390 cs_etm__run_decoder(etmq); 2391 } 2392 } 2393 2394 return 0; 2395 } 2396 2397 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2398 { 2399 int ret = 0; 2400 unsigned int cs_queue_nr, queue_nr, i; 2401 u8 trace_chan_id; 2402 u64 cs_timestamp; 2403 struct auxtrace_queue *queue; 2404 struct cs_etm_queue *etmq; 2405 struct cs_etm_traceid_queue *tidq; 2406 2407 /* 2408 * Pre-populate the heap with one entry from each queue so that we can 2409 * start processing in time order across all queues. 2410 */ 2411 for (i = 0; i < etm->queues.nr_queues; i++) { 2412 etmq = etm->queues.queue_array[i].priv; 2413 if (!etmq) 2414 continue; 2415 2416 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2417 if (ret) 2418 return ret; 2419 } 2420 2421 while (1) { 2422 if (!etm->heap.heap_cnt) 2423 goto out; 2424 2425 /* Take the entry at the top of the min heap */ 2426 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2427 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2428 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2429 queue = &etm->queues.queue_array[queue_nr]; 2430 etmq = queue->priv; 2431 2432 /* 2433 * Remove the top entry from the heap since we are about 2434 * to process it. 2435 */ 2436 auxtrace_heap__pop(&etm->heap); 2437 2438 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2439 if (!tidq) { 2440 /* 2441 * No traceID queue has been allocated for this traceID, 2442 * which means something somewhere went very wrong. No 2443 * other choice than simply exit. 2444 */ 2445 ret = -EINVAL; 2446 goto out; 2447 } 2448 2449 /* 2450 * Packets associated with this timestamp are already in 2451 * the etmq's traceID queue, so process them. 2452 */ 2453 ret = cs_etm__process_traceid_queue(etmq, tidq); 2454 if (ret < 0) 2455 goto out; 2456 2457 /* 2458 * Packets for this timestamp have been processed, time to 2459 * move on to the next timestamp, fetching a new auxtrace_buffer 2460 * if need be. 2461 */ 2462 refetch: 2463 ret = cs_etm__get_data_block(etmq); 2464 if (ret < 0) 2465 goto out; 2466 2467 /* 2468 * No more auxtrace_buffers to process in this etmq, simply 2469 * move on to another entry in the auxtrace_heap. 2470 */ 2471 if (!ret) 2472 continue; 2473 2474 ret = cs_etm__decode_data_block(etmq); 2475 if (ret) 2476 goto out; 2477 2478 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2479 2480 if (!cs_timestamp) { 2481 /* 2482 * Function cs_etm__decode_data_block() returns when 2483 * there is no more traces to decode in the current 2484 * auxtrace_buffer OR when a timestamp has been 2485 * encountered on any of the traceID queues. Since we 2486 * did not get a timestamp, there is no more traces to 2487 * process in this auxtrace_buffer. As such empty and 2488 * flush all traceID queues. 2489 */ 2490 cs_etm__clear_all_traceid_queues(etmq); 2491 2492 /* Fetch another auxtrace_buffer for this etmq */ 2493 goto refetch; 2494 } 2495 2496 /* 2497 * Add to the min heap the timestamp for packets that have 2498 * just been decoded. They will be processed and synthesized 2499 * during the next call to cs_etm__process_traceid_queue() for 2500 * this queue/traceID. 2501 */ 2502 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2503 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2504 } 2505 2506 out: 2507 return ret; 2508 } 2509 2510 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2511 union perf_event *event) 2512 { 2513 struct thread *th; 2514 2515 if (etm->timeless_decoding) 2516 return 0; 2517 2518 /* 2519 * Add the tid/pid to the log so that we can get a match when 2520 * we get a contextID from the decoder. 2521 */ 2522 th = machine__findnew_thread(etm->machine, 2523 event->itrace_start.pid, 2524 event->itrace_start.tid); 2525 if (!th) 2526 return -ENOMEM; 2527 2528 thread__put(th); 2529 2530 return 0; 2531 } 2532 2533 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2534 union perf_event *event) 2535 { 2536 struct thread *th; 2537 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2538 2539 /* 2540 * Context switch in per-thread mode are irrelevant since perf 2541 * will start/stop tracing as the process is scheduled. 2542 */ 2543 if (etm->timeless_decoding) 2544 return 0; 2545 2546 /* 2547 * SWITCH_IN events carry the next process to be switched out while 2548 * SWITCH_OUT events carry the process to be switched in. As such 2549 * we don't care about IN events. 2550 */ 2551 if (!out) 2552 return 0; 2553 2554 /* 2555 * Add the tid/pid to the log so that we can get a match when 2556 * we get a contextID from the decoder. 2557 */ 2558 th = machine__findnew_thread(etm->machine, 2559 event->context_switch.next_prev_pid, 2560 event->context_switch.next_prev_tid); 2561 if (!th) 2562 return -ENOMEM; 2563 2564 thread__put(th); 2565 2566 return 0; 2567 } 2568 2569 static int cs_etm__process_event(struct perf_session *session, 2570 union perf_event *event, 2571 struct perf_sample *sample, 2572 struct perf_tool *tool) 2573 { 2574 u64 sample_kernel_timestamp; 2575 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2576 struct cs_etm_auxtrace, 2577 auxtrace); 2578 2579 if (dump_trace) 2580 return 0; 2581 2582 if (!tool->ordered_events) { 2583 pr_err("CoreSight ETM Trace requires ordered events\n"); 2584 return -EINVAL; 2585 } 2586 2587 if (sample->time && (sample->time != (u64) -1)) 2588 sample_kernel_timestamp = sample->time; 2589 else 2590 sample_kernel_timestamp = 0; 2591 2592 /* 2593 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We 2594 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because 2595 * ETM_OPT_CTXTID is not enabled. 2596 */ 2597 if (etm->timeless_decoding && 2598 event->header.type == PERF_RECORD_EXIT) 2599 return cs_etm__process_timeless_queues(etm, 2600 event->fork.tid); 2601 2602 if (event->header.type == PERF_RECORD_ITRACE_START) 2603 return cs_etm__process_itrace_start(etm, event); 2604 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2605 return cs_etm__process_switch_cpu_wide(etm, event); 2606 2607 if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { 2608 /* 2609 * Record the latest kernel timestamp available in the header 2610 * for samples so that synthesised samples occur from this point 2611 * onwards. 2612 */ 2613 etm->latest_kernel_timestamp = sample_kernel_timestamp; 2614 } 2615 2616 return 0; 2617 } 2618 2619 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2620 struct perf_record_auxtrace *event) 2621 { 2622 struct auxtrace_buffer *buf; 2623 unsigned int i; 2624 /* 2625 * Find all buffers with same reference in the queues and dump them. 2626 * This is because the queues can contain multiple entries of the same 2627 * buffer that were split on aux records. 2628 */ 2629 for (i = 0; i < etm->queues.nr_queues; ++i) 2630 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2631 if (buf->reference == event->reference) 2632 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2633 } 2634 2635 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2636 union perf_event *event, 2637 struct perf_tool *tool __maybe_unused) 2638 { 2639 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2640 struct cs_etm_auxtrace, 2641 auxtrace); 2642 if (!etm->data_queued) { 2643 struct auxtrace_buffer *buffer; 2644 off_t data_offset; 2645 int fd = perf_data__fd(session->data); 2646 bool is_pipe = perf_data__is_pipe(session->data); 2647 int err; 2648 int idx = event->auxtrace.idx; 2649 2650 if (is_pipe) 2651 data_offset = 0; 2652 else { 2653 data_offset = lseek(fd, 0, SEEK_CUR); 2654 if (data_offset == -1) 2655 return -errno; 2656 } 2657 2658 err = auxtrace_queues__add_event(&etm->queues, session, 2659 event, data_offset, &buffer); 2660 if (err) 2661 return err; 2662 2663 /* 2664 * Knowing if the trace is formatted or not requires a lookup of 2665 * the aux record so only works in non-piped mode where data is 2666 * queued in cs_etm__queue_aux_records(). Always assume 2667 * formatted in piped mode (true). 2668 */ 2669 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2670 idx, true); 2671 if (err) 2672 return err; 2673 2674 if (dump_trace) 2675 if (auxtrace_buffer__get_data(buffer, fd)) { 2676 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2677 auxtrace_buffer__put_data(buffer); 2678 } 2679 } else if (dump_trace) 2680 dump_queued_data(etm, &event->auxtrace); 2681 2682 return 0; 2683 } 2684 2685 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2686 { 2687 struct evsel *evsel; 2688 struct evlist *evlist = etm->session->evlist; 2689 bool timeless_decoding = true; 2690 2691 /* Override timeless mode with user input from --itrace=Z */ 2692 if (etm->synth_opts.timeless_decoding) 2693 return true; 2694 2695 /* 2696 * Circle through the list of event and complain if we find one 2697 * with the time bit set. 2698 */ 2699 evlist__for_each_entry(evlist, evsel) { 2700 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2701 timeless_decoding = false; 2702 } 2703 2704 return timeless_decoding; 2705 } 2706 2707 /* 2708 * Read a single cpu parameter block from the auxtrace_info priv block. 2709 * 2710 * For version 1 there is a per cpu nr_params entry. If we are handling 2711 * version 1 file, then there may be less, the same, or more params 2712 * indicated by this value than the compile time number we understand. 2713 * 2714 * For a version 0 info block, there are a fixed number, and we need to 2715 * fill out the nr_param value in the metadata we create. 2716 */ 2717 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2718 int out_blk_size, int nr_params_v0) 2719 { 2720 u64 *metadata = NULL; 2721 int hdr_version; 2722 int nr_in_params, nr_out_params, nr_cmn_params; 2723 int i, k; 2724 2725 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2726 if (!metadata) 2727 return NULL; 2728 2729 /* read block current index & version */ 2730 i = *buff_in_offset; 2731 hdr_version = buff_in[CS_HEADER_VERSION]; 2732 2733 if (!hdr_version) { 2734 /* read version 0 info block into a version 1 metadata block */ 2735 nr_in_params = nr_params_v0; 2736 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2737 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2738 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2739 /* remaining block params at offset +1 from source */ 2740 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2741 metadata[k + 1] = buff_in[i + k]; 2742 /* version 0 has 2 common params */ 2743 nr_cmn_params = 2; 2744 } else { 2745 /* read version 1 info block - input and output nr_params may differ */ 2746 /* version 1 has 3 common params */ 2747 nr_cmn_params = 3; 2748 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2749 2750 /* if input has more params than output - skip excess */ 2751 nr_out_params = nr_in_params + nr_cmn_params; 2752 if (nr_out_params > out_blk_size) 2753 nr_out_params = out_blk_size; 2754 2755 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2756 metadata[k] = buff_in[i + k]; 2757 2758 /* record the actual nr params we copied */ 2759 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2760 } 2761 2762 /* adjust in offset by number of in params used */ 2763 i += nr_in_params + nr_cmn_params; 2764 *buff_in_offset = i; 2765 return metadata; 2766 } 2767 2768 /** 2769 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2770 * on the bounds of aux_event, if it matches with the buffer that's at 2771 * file_offset. 2772 * 2773 * Normally, whole auxtrace buffers would be added to the queue. But we 2774 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2775 * is reset across each buffer, so splitting the buffers up in advance has 2776 * the same effect. 2777 */ 2778 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2779 struct perf_record_aux *aux_event, struct perf_sample *sample) 2780 { 2781 int err; 2782 char buf[PERF_SAMPLE_MAX_SIZE]; 2783 union perf_event *auxtrace_event_union; 2784 struct perf_record_auxtrace *auxtrace_event; 2785 union perf_event auxtrace_fragment; 2786 __u64 aux_offset, aux_size; 2787 __u32 idx; 2788 bool formatted; 2789 2790 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2791 struct cs_etm_auxtrace, 2792 auxtrace); 2793 2794 /* 2795 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2796 * from looping through the auxtrace index. 2797 */ 2798 err = perf_session__peek_event(session, file_offset, buf, 2799 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2800 if (err) 2801 return err; 2802 auxtrace_event = &auxtrace_event_union->auxtrace; 2803 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2804 return -EINVAL; 2805 2806 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2807 auxtrace_event->header.size != sz) { 2808 return -EINVAL; 2809 } 2810 2811 /* 2812 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See 2813 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a 2814 * CPU as we set this always for the AUX_OUTPUT_HW_ID event. 2815 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. 2816 * Return 'not found' if mismatch. 2817 */ 2818 if (auxtrace_event->cpu == (__u32) -1) { 2819 if (auxtrace_event->tid != sample->tid) 2820 return 1; 2821 } else if (auxtrace_event->cpu != sample->cpu) 2822 return 1; 2823 2824 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2825 /* 2826 * Clamp size in snapshot mode. The buffer size is clamped in 2827 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 2828 * the buffer size. 2829 */ 2830 aux_size = min(aux_event->aux_size, auxtrace_event->size); 2831 2832 /* 2833 * In this mode, the head also points to the end of the buffer so aux_offset 2834 * needs to have the size subtracted so it points to the beginning as in normal mode 2835 */ 2836 aux_offset = aux_event->aux_offset - aux_size; 2837 } else { 2838 aux_size = aux_event->aux_size; 2839 aux_offset = aux_event->aux_offset; 2840 } 2841 2842 if (aux_offset >= auxtrace_event->offset && 2843 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 2844 /* 2845 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 2846 * based on the sizes of the aux event, and queue that fragment. 2847 */ 2848 auxtrace_fragment.auxtrace = *auxtrace_event; 2849 auxtrace_fragment.auxtrace.size = aux_size; 2850 auxtrace_fragment.auxtrace.offset = aux_offset; 2851 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 2852 2853 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 2854 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 2855 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 2856 file_offset, NULL); 2857 if (err) 2858 return err; 2859 2860 idx = auxtrace_event->idx; 2861 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 2862 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2863 idx, formatted); 2864 } 2865 2866 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 2867 return 1; 2868 } 2869 2870 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, 2871 u64 offset __maybe_unused, void *data __maybe_unused) 2872 { 2873 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ 2874 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { 2875 (*(int *)data)++; /* increment found count */ 2876 return cs_etm__process_aux_output_hw_id(session, event); 2877 } 2878 return 0; 2879 } 2880 2881 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 2882 u64 offset __maybe_unused, void *data __maybe_unused) 2883 { 2884 struct perf_sample sample; 2885 int ret; 2886 struct auxtrace_index_entry *ent; 2887 struct auxtrace_index *auxtrace_index; 2888 struct evsel *evsel; 2889 size_t i; 2890 2891 /* Don't care about any other events, we're only queuing buffers for AUX events */ 2892 if (event->header.type != PERF_RECORD_AUX) 2893 return 0; 2894 2895 if (event->header.size < sizeof(struct perf_record_aux)) 2896 return -EINVAL; 2897 2898 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 2899 if (!event->aux.aux_size) 2900 return 0; 2901 2902 /* 2903 * Parse the sample, we need the sample_id_all data that comes after the event so that the 2904 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 2905 */ 2906 evsel = evlist__event2evsel(session->evlist, event); 2907 if (!evsel) 2908 return -EINVAL; 2909 ret = evsel__parse_sample(evsel, event, &sample); 2910 if (ret) 2911 return ret; 2912 2913 /* 2914 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 2915 */ 2916 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 2917 for (i = 0; i < auxtrace_index->nr; i++) { 2918 ent = &auxtrace_index->entries[i]; 2919 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 2920 ent->sz, &event->aux, &sample); 2921 /* 2922 * Stop search on error or successful values. Continue search on 2923 * 1 ('not found') 2924 */ 2925 if (ret != 1) 2926 return ret; 2927 } 2928 } 2929 2930 /* 2931 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 2932 * don't exit with an error because it will still be possible to decode other aux records. 2933 */ 2934 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 2935 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 2936 return 0; 2937 } 2938 2939 static int cs_etm__queue_aux_records(struct perf_session *session) 2940 { 2941 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 2942 struct auxtrace_index, list); 2943 if (index && index->nr > 0) 2944 return perf_session__peek_events(session, session->header.data_offset, 2945 session->header.data_size, 2946 cs_etm__queue_aux_records_cb, NULL); 2947 2948 /* 2949 * We would get here if there are no entries in the index (either no auxtrace 2950 * buffers or no index at all). Fail silently as there is the possibility of 2951 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 2952 * false. 2953 * 2954 * In that scenario, buffers will not be split by AUX records. 2955 */ 2956 return 0; 2957 } 2958 2959 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ 2960 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) 2961 2962 /* 2963 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual 2964 * timestamps). 2965 */ 2966 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) 2967 { 2968 int j; 2969 2970 for (j = 0; j < num_cpu; j++) { 2971 switch (metadata[j][CS_ETM_MAGIC]) { 2972 case __perf_cs_etmv4_magic: 2973 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) 2974 return false; 2975 break; 2976 case __perf_cs_ete_magic: 2977 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) 2978 return false; 2979 break; 2980 default: 2981 /* Unknown / unsupported magic number. */ 2982 return false; 2983 } 2984 } 2985 return true; 2986 } 2987 2988 /* map trace ids to correct metadata block, from information in metadata */ 2989 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) 2990 { 2991 u64 cs_etm_magic; 2992 u8 trace_chan_id; 2993 int i, err; 2994 2995 for (i = 0; i < num_cpu; i++) { 2996 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 2997 switch (cs_etm_magic) { 2998 case __perf_cs_etmv3_magic: 2999 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3000 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); 3001 break; 3002 case __perf_cs_etmv4_magic: 3003 case __perf_cs_ete_magic: 3004 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3005 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); 3006 break; 3007 default: 3008 /* unknown magic number */ 3009 return -EINVAL; 3010 } 3011 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); 3012 if (err) 3013 return err; 3014 } 3015 return 0; 3016 } 3017 3018 /* 3019 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the 3020 * unused value to reduce the number of unneeded decoders created. 3021 */ 3022 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) 3023 { 3024 u64 cs_etm_magic; 3025 int i; 3026 3027 for (i = 0; i < num_cpu; i++) { 3028 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3029 switch (cs_etm_magic) { 3030 case __perf_cs_etmv3_magic: 3031 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3032 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3033 break; 3034 case __perf_cs_etmv4_magic: 3035 case __perf_cs_ete_magic: 3036 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3037 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3038 break; 3039 default: 3040 /* unknown magic number */ 3041 return -EINVAL; 3042 } 3043 } 3044 return 0; 3045 } 3046 3047 int cs_etm__process_auxtrace_info_full(union perf_event *event, 3048 struct perf_session *session) 3049 { 3050 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3051 struct cs_etm_auxtrace *etm = NULL; 3052 struct perf_record_time_conv *tc = &session->time_conv; 3053 int event_header_size = sizeof(struct perf_event_header); 3054 int total_size = auxtrace_info->header.size; 3055 int priv_size = 0; 3056 int num_cpu; 3057 int err = 0; 3058 int aux_hw_id_found; 3059 int i, j; 3060 u64 *ptr = NULL; 3061 u64 **metadata = NULL; 3062 3063 /* 3064 * Create an RB tree for traceID-metadata tuple. Since the conversion 3065 * has to be made for each packet that gets decoded, optimizing access 3066 * in anything other than a sequential array is worth doing. 3067 */ 3068 traceid_list = intlist__new(NULL); 3069 if (!traceid_list) 3070 return -ENOMEM; 3071 3072 /* First the global part */ 3073 ptr = (u64 *) auxtrace_info->priv; 3074 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; 3075 metadata = zalloc(sizeof(*metadata) * num_cpu); 3076 if (!metadata) { 3077 err = -ENOMEM; 3078 goto err_free_traceid_list; 3079 } 3080 3081 /* Start parsing after the common part of the header */ 3082 i = CS_HEADER_VERSION_MAX; 3083 3084 /* 3085 * The metadata is stored in the auxtrace_info section and encodes 3086 * the configuration of the ARM embedded trace macrocell which is 3087 * required by the trace decoder to properly decode the trace due 3088 * to its highly compressed nature. 3089 */ 3090 for (j = 0; j < num_cpu; j++) { 3091 if (ptr[i] == __perf_cs_etmv3_magic) { 3092 metadata[j] = 3093 cs_etm__create_meta_blk(ptr, &i, 3094 CS_ETM_PRIV_MAX, 3095 CS_ETM_NR_TRC_PARAMS_V0); 3096 } else if (ptr[i] == __perf_cs_etmv4_magic) { 3097 metadata[j] = 3098 cs_etm__create_meta_blk(ptr, &i, 3099 CS_ETMV4_PRIV_MAX, 3100 CS_ETMV4_NR_TRC_PARAMS_V0); 3101 } else if (ptr[i] == __perf_cs_ete_magic) { 3102 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 3103 } else { 3104 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 3105 ptr[i]); 3106 err = -EINVAL; 3107 goto err_free_metadata; 3108 } 3109 3110 if (!metadata[j]) { 3111 err = -ENOMEM; 3112 goto err_free_metadata; 3113 } 3114 } 3115 3116 /* 3117 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3118 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3119 * global metadata, and each cpu's metadata respectively. 3120 * The following tests if the correct number of double words was 3121 * present in the auxtrace info section. 3122 */ 3123 priv_size = total_size - event_header_size - INFO_HEADER_SIZE; 3124 if (i * 8 != priv_size) { 3125 err = -EINVAL; 3126 goto err_free_metadata; 3127 } 3128 3129 etm = zalloc(sizeof(*etm)); 3130 3131 if (!etm) { 3132 err = -ENOMEM; 3133 goto err_free_metadata; 3134 } 3135 3136 err = auxtrace_queues__init(&etm->queues); 3137 if (err) 3138 goto err_free_etm; 3139 3140 if (session->itrace_synth_opts->set) { 3141 etm->synth_opts = *session->itrace_synth_opts; 3142 } else { 3143 itrace_synth_opts__set_default(&etm->synth_opts, 3144 session->itrace_synth_opts->default_no_sample); 3145 etm->synth_opts.callchain = false; 3146 } 3147 3148 etm->session = session; 3149 etm->machine = &session->machines.host; 3150 3151 etm->num_cpu = num_cpu; 3152 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); 3153 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); 3154 etm->metadata = metadata; 3155 etm->auxtrace_type = auxtrace_info->type; 3156 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 3157 3158 /* Use virtual timestamps if all ETMs report ts_source = 1 */ 3159 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); 3160 3161 if (!etm->has_virtual_ts) 3162 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" 3163 "The time field of the samples will not be set accurately.\n\n"); 3164 3165 etm->auxtrace.process_event = cs_etm__process_event; 3166 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3167 etm->auxtrace.flush_events = cs_etm__flush_events; 3168 etm->auxtrace.free_events = cs_etm__free_events; 3169 etm->auxtrace.free = cs_etm__free; 3170 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3171 session->auxtrace = &etm->auxtrace; 3172 3173 etm->unknown_thread = thread__new(999999999, 999999999); 3174 if (!etm->unknown_thread) { 3175 err = -ENOMEM; 3176 goto err_free_queues; 3177 } 3178 3179 /* 3180 * Initialize list node so that at thread__zput() we can avoid 3181 * segmentation fault at list_del_init(). 3182 */ 3183 INIT_LIST_HEAD(&etm->unknown_thread->node); 3184 3185 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 3186 if (err) 3187 goto err_delete_thread; 3188 3189 if (thread__init_maps(etm->unknown_thread, etm->machine)) { 3190 err = -ENOMEM; 3191 goto err_delete_thread; 3192 } 3193 3194 etm->tc.time_shift = tc->time_shift; 3195 etm->tc.time_mult = tc->time_mult; 3196 etm->tc.time_zero = tc->time_zero; 3197 if (event_contains(*tc, time_cycles)) { 3198 etm->tc.time_cycles = tc->time_cycles; 3199 etm->tc.time_mask = tc->time_mask; 3200 etm->tc.cap_user_time_zero = tc->cap_user_time_zero; 3201 etm->tc.cap_user_time_short = tc->cap_user_time_short; 3202 } 3203 err = cs_etm__synth_events(etm, session); 3204 if (err) 3205 goto err_delete_thread; 3206 3207 /* 3208 * Map Trace ID values to CPU metadata. 3209 * 3210 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the 3211 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata 3212 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. 3213 * 3214 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use 3215 * the same IDs as the old algorithm as far as is possible, unless there are clashes 3216 * in which case a different value will be used. This means an older perf may still 3217 * be able to record and read files generate on a newer system. 3218 * 3219 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of 3220 * those packets. If they are there then the values will be mapped and plugged into 3221 * the metadata. We then set any remaining metadata values with the used flag to a 3222 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. 3223 * 3224 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel 3225 * then we map Trace ID values to CPU directly from the metadata - clearing any unused 3226 * flags if present. 3227 */ 3228 3229 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ 3230 aux_hw_id_found = 0; 3231 err = perf_session__peek_events(session, session->header.data_offset, 3232 session->header.data_size, 3233 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); 3234 if (err) 3235 goto err_delete_thread; 3236 3237 /* if HW ID found then clear any unused metadata ID values */ 3238 if (aux_hw_id_found) 3239 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); 3240 /* otherwise, this is a file with metadata values only, map from metadata */ 3241 else 3242 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); 3243 3244 if (err) 3245 goto err_delete_thread; 3246 3247 err = cs_etm__queue_aux_records(session); 3248 if (err) 3249 goto err_delete_thread; 3250 3251 etm->data_queued = etm->queues.populated; 3252 return 0; 3253 3254 err_delete_thread: 3255 thread__zput(etm->unknown_thread); 3256 err_free_queues: 3257 auxtrace_queues__free(&etm->queues); 3258 session->auxtrace = NULL; 3259 err_free_etm: 3260 zfree(&etm); 3261 err_free_metadata: 3262 /* No need to check @metadata[j], free(NULL) is supported */ 3263 for (j = 0; j < num_cpu; j++) 3264 zfree(&metadata[j]); 3265 zfree(&metadata); 3266 err_free_traceid_list: 3267 intlist__delete(traceid_list); 3268 return err; 3269 } 3270