xref: /linux/tools/perf/util/cs-etm.c (revision 8a94d3bfaf45e7995ef12be1a51ec47684c7cb64)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/coresight-pmu.h>
13 #include <linux/err.h>
14 #include <linux/log2.h>
15 #include <linux/types.h>
16 #include <linux/zalloc.h>
17 
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include "tsc.h"
39 #include <tools/libc_compat.h>
40 #include "util/synthetic-events.h"
41 #include "util/util.h"
42 
43 struct cs_etm_auxtrace {
44 	struct auxtrace auxtrace;
45 	struct auxtrace_queues queues;
46 	struct auxtrace_heap heap;
47 	struct itrace_synth_opts synth_opts;
48 	struct perf_session *session;
49 	struct perf_tsc_conversion tc;
50 
51 	/*
52 	 * Timeless has no timestamps in the trace so overlapping mmap lookups
53 	 * are less accurate but produces smaller trace data. We use context IDs
54 	 * in the trace instead of matching timestamps with fork records so
55 	 * they're not really needed in the general case. Overlapping mmaps
56 	 * happen in cases like between a fork and an exec.
57 	 */
58 	bool timeless_decoding;
59 
60 	/*
61 	 * Per-thread ignores the trace channel ID and instead assumes that
62 	 * everything in a buffer comes from the same process regardless of
63 	 * which CPU it ran on. It also implies no context IDs so the TID is
64 	 * taken from the auxtrace buffer.
65 	 */
66 	bool per_thread_decoding;
67 	bool snapshot_mode;
68 	bool data_queued;
69 	bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
70 
71 	int num_cpu;
72 	u64 latest_kernel_timestamp;
73 	u32 auxtrace_type;
74 	u64 branches_sample_type;
75 	u64 branches_id;
76 	u64 instructions_sample_type;
77 	u64 instructions_sample_period;
78 	u64 instructions_id;
79 	u64 **metadata;
80 	unsigned int pmu_type;
81 	enum cs_etm_pid_fmt pid_fmt;
82 };
83 
84 struct cs_etm_traceid_queue {
85 	u8 trace_chan_id;
86 	u64 period_instructions;
87 	size_t last_branch_pos;
88 	union perf_event *event_buf;
89 	struct thread *thread;
90 	struct thread *prev_packet_thread;
91 	ocsd_ex_level prev_packet_el;
92 	ocsd_ex_level el;
93 	struct branch_stack *last_branch;
94 	struct branch_stack *last_branch_rb;
95 	struct cs_etm_packet *prev_packet;
96 	struct cs_etm_packet *packet;
97 	struct cs_etm_packet_queue packet_queue;
98 };
99 
100 struct cs_etm_queue {
101 	struct cs_etm_auxtrace *etm;
102 	struct cs_etm_decoder *decoder;
103 	struct auxtrace_buffer *buffer;
104 	unsigned int queue_nr;
105 	u8 pending_timestamp_chan_id;
106 	u64 offset;
107 	const unsigned char *buf;
108 	size_t buf_len, buf_used;
109 	/* Conversion between traceID and index in traceid_queues array */
110 	struct intlist *traceid_queues_list;
111 	struct cs_etm_traceid_queue **traceid_queues;
112 };
113 
114 /* RB tree for quick conversion between traceID and metadata pointers */
115 static struct intlist *traceid_list;
116 
117 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm);
118 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
119 					   pid_t tid);
120 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
121 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
122 
123 /* PTMs ETMIDR [11:8] set to b0011 */
124 #define ETMIDR_PTM_VERSION 0x00000300
125 
126 /*
127  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
128  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
129  * encode the etm queue number as the upper 16 bit and the channel as
130  * the lower 16 bit.
131  */
132 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
133 		      (queue_nr << 16 | trace_chan_id)
134 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
135 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
136 
137 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
138 {
139 	etmidr &= ETMIDR_PTM_VERSION;
140 
141 	if (etmidr == ETMIDR_PTM_VERSION)
142 		return CS_ETM_PROTO_PTM;
143 
144 	return CS_ETM_PROTO_ETMV3;
145 }
146 
147 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
148 {
149 	struct int_node *inode;
150 	u64 *metadata;
151 
152 	inode = intlist__find(traceid_list, trace_chan_id);
153 	if (!inode)
154 		return -EINVAL;
155 
156 	metadata = inode->priv;
157 	*magic = metadata[CS_ETM_MAGIC];
158 	return 0;
159 }
160 
161 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
162 {
163 	struct int_node *inode;
164 	u64 *metadata;
165 
166 	inode = intlist__find(traceid_list, trace_chan_id);
167 	if (!inode)
168 		return -EINVAL;
169 
170 	metadata = inode->priv;
171 	*cpu = (int)metadata[CS_ETM_CPU];
172 	return 0;
173 }
174 
175 /*
176  * The returned PID format is presented as an enum:
177  *
178  *   CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced.
179  *   CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced.
180  *   CS_ETM_PIDFMT_NONE: No context IDs
181  *
182  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
183  * are enabled at the same time when the session runs on an EL2 kernel.
184  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
185  * recorded in the trace data, the tool will selectively use
186  * CONTEXTIDR_EL2 as PID.
187  *
188  * The result is cached in etm->pid_fmt so this function only needs to be called
189  * when processing the aux info.
190  */
191 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata)
192 {
193 	u64 val;
194 
195 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
196 		val = metadata[CS_ETM_ETMCR];
197 		/* CONTEXTIDR is traced */
198 		if (val & BIT(ETM_OPT_CTXTID))
199 			return CS_ETM_PIDFMT_CTXTID;
200 	} else {
201 		val = metadata[CS_ETMV4_TRCCONFIGR];
202 		/* CONTEXTIDR_EL2 is traced */
203 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
204 			return CS_ETM_PIDFMT_CTXTID2;
205 		/* CONTEXTIDR_EL1 is traced */
206 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
207 			return CS_ETM_PIDFMT_CTXTID;
208 	}
209 
210 	return CS_ETM_PIDFMT_NONE;
211 }
212 
213 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq)
214 {
215 	return etmq->etm->pid_fmt;
216 }
217 
218 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
219 {
220 	struct int_node *inode;
221 
222 	/* Get an RB node for this CPU */
223 	inode = intlist__findnew(traceid_list, trace_chan_id);
224 
225 	/* Something went wrong, no need to continue */
226 	if (!inode)
227 		return -ENOMEM;
228 
229 	/*
230 	 * The node for that CPU should not be taken.
231 	 * Back out if that's the case.
232 	 */
233 	if (inode->priv)
234 		return -EINVAL;
235 
236 	/* All good, associate the traceID with the metadata pointer */
237 	inode->priv = cpu_metadata;
238 
239 	return 0;
240 }
241 
242 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata)
243 {
244 	u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
245 
246 	switch (cs_etm_magic) {
247 	case __perf_cs_etmv3_magic:
248 		*trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] &
249 				      CORESIGHT_TRACE_ID_VAL_MASK);
250 		break;
251 	case __perf_cs_etmv4_magic:
252 	case __perf_cs_ete_magic:
253 		*trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] &
254 				      CORESIGHT_TRACE_ID_VAL_MASK);
255 		break;
256 	default:
257 		return -EINVAL;
258 	}
259 	return 0;
260 }
261 
262 /*
263  * update metadata trace ID from the value found in the AUX_HW_INFO packet.
264  * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present.
265  */
266 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
267 {
268 	u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
269 
270 	switch (cs_etm_magic) {
271 	case __perf_cs_etmv3_magic:
272 		 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id;
273 		break;
274 	case __perf_cs_etmv4_magic:
275 	case __perf_cs_ete_magic:
276 		cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id;
277 		break;
278 
279 	default:
280 		return -EINVAL;
281 	}
282 	return 0;
283 }
284 
285 /*
286  * Get a metadata index for a specific cpu from an array.
287  *
288  */
289 static int get_cpu_data_idx(struct cs_etm_auxtrace *etm, int cpu)
290 {
291 	int i;
292 
293 	for (i = 0; i < etm->num_cpu; i++) {
294 		if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) {
295 			return i;
296 		}
297 	}
298 
299 	return -1;
300 }
301 
302 /*
303  * Get a metadata for a specific cpu from an array.
304  *
305  */
306 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu)
307 {
308 	int idx = get_cpu_data_idx(etm, cpu);
309 
310 	return (idx != -1) ? etm->metadata[idx] : NULL;
311 }
312 
313 /*
314  * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event.
315  *
316  * The payload associates the Trace ID and the CPU.
317  * The routine is tolerant of seeing multiple packets with the same association,
318  * but a CPU / Trace ID association changing during a session is an error.
319  */
320 static int cs_etm__process_aux_output_hw_id(struct perf_session *session,
321 					    union perf_event *event)
322 {
323 	struct cs_etm_auxtrace *etm;
324 	struct perf_sample sample;
325 	struct int_node *inode;
326 	struct evsel *evsel;
327 	u64 *cpu_data;
328 	u64 hw_id;
329 	int cpu, version, err;
330 	u8 trace_chan_id, curr_chan_id;
331 
332 	/* extract and parse the HW ID */
333 	hw_id = event->aux_output_hw_id.hw_id;
334 	version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id);
335 	trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id);
336 
337 	/* check that we can handle this version */
338 	if (version > CS_AUX_HW_ID_CURR_VERSION)
339 		return -EINVAL;
340 
341 	/* get access to the etm metadata */
342 	etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace);
343 	if (!etm || !etm->metadata)
344 		return -EINVAL;
345 
346 	/* parse the sample to get the CPU */
347 	evsel = evlist__event2evsel(session->evlist, event);
348 	if (!evsel)
349 		return -EINVAL;
350 	err = evsel__parse_sample(evsel, event, &sample);
351 	if (err)
352 		return err;
353 	cpu = sample.cpu;
354 	if (cpu == -1) {
355 		/* no CPU in the sample - possibly recorded with an old version of perf */
356 		pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record.");
357 		return -EINVAL;
358 	}
359 
360 	/* See if the ID is mapped to a CPU, and it matches the current CPU */
361 	inode = intlist__find(traceid_list, trace_chan_id);
362 	if (inode) {
363 		cpu_data = inode->priv;
364 		if ((int)cpu_data[CS_ETM_CPU] != cpu) {
365 			pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n");
366 			return -EINVAL;
367 		}
368 
369 		/* check that the mapped ID matches */
370 		err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data);
371 		if (err)
372 			return err;
373 		if (curr_chan_id != trace_chan_id) {
374 			pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n");
375 			return -EINVAL;
376 		}
377 
378 		/* mapped and matched - return OK */
379 		return 0;
380 	}
381 
382 	cpu_data = get_cpu_data(etm, cpu);
383 	if (cpu_data == NULL)
384 		return err;
385 
386 	/* not one we've seen before - lets map it */
387 	err = cs_etm__map_trace_id(trace_chan_id, cpu_data);
388 	if (err)
389 		return err;
390 
391 	/*
392 	 * if we are picking up the association from the packet, need to plug
393 	 * the correct trace ID into the metadata for setting up decoders later.
394 	 */
395 	err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data);
396 	return err;
397 }
398 
399 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
400 					      u8 trace_chan_id)
401 {
402 	/*
403 	 * When a timestamp packet is encountered the backend code
404 	 * is stopped so that the front end has time to process packets
405 	 * that were accumulated in the traceID queue.  Since there can
406 	 * be more than one channel per cs_etm_queue, we need to specify
407 	 * what traceID queue needs servicing.
408 	 */
409 	etmq->pending_timestamp_chan_id = trace_chan_id;
410 }
411 
412 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
413 				      u8 *trace_chan_id)
414 {
415 	struct cs_etm_packet_queue *packet_queue;
416 
417 	if (!etmq->pending_timestamp_chan_id)
418 		return 0;
419 
420 	if (trace_chan_id)
421 		*trace_chan_id = etmq->pending_timestamp_chan_id;
422 
423 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
424 						     etmq->pending_timestamp_chan_id);
425 	if (!packet_queue)
426 		return 0;
427 
428 	/* Acknowledge pending status */
429 	etmq->pending_timestamp_chan_id = 0;
430 
431 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
432 	return packet_queue->cs_timestamp;
433 }
434 
435 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
436 {
437 	int i;
438 
439 	queue->head = 0;
440 	queue->tail = 0;
441 	queue->packet_count = 0;
442 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
443 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
444 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
445 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
446 		queue->packet_buffer[i].instr_count = 0;
447 		queue->packet_buffer[i].last_instr_taken_branch = false;
448 		queue->packet_buffer[i].last_instr_size = 0;
449 		queue->packet_buffer[i].last_instr_type = 0;
450 		queue->packet_buffer[i].last_instr_subtype = 0;
451 		queue->packet_buffer[i].last_instr_cond = 0;
452 		queue->packet_buffer[i].flags = 0;
453 		queue->packet_buffer[i].exception_number = UINT32_MAX;
454 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
455 		queue->packet_buffer[i].cpu = INT_MIN;
456 	}
457 }
458 
459 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
460 {
461 	int idx;
462 	struct int_node *inode;
463 	struct cs_etm_traceid_queue *tidq;
464 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
465 
466 	intlist__for_each_entry(inode, traceid_queues_list) {
467 		idx = (int)(intptr_t)inode->priv;
468 		tidq = etmq->traceid_queues[idx];
469 		cs_etm__clear_packet_queue(&tidq->packet_queue);
470 	}
471 }
472 
473 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
474 				      struct cs_etm_traceid_queue *tidq,
475 				      u8 trace_chan_id)
476 {
477 	int rc = -ENOMEM;
478 	struct auxtrace_queue *queue;
479 	struct cs_etm_auxtrace *etm = etmq->etm;
480 
481 	cs_etm__clear_packet_queue(&tidq->packet_queue);
482 
483 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
484 	tidq->trace_chan_id = trace_chan_id;
485 	tidq->el = tidq->prev_packet_el = ocsd_EL_unknown;
486 	tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1,
487 					       queue->tid);
488 	tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host);
489 
490 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
491 	if (!tidq->packet)
492 		goto out;
493 
494 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
495 	if (!tidq->prev_packet)
496 		goto out_free;
497 
498 	if (etm->synth_opts.last_branch) {
499 		size_t sz = sizeof(struct branch_stack);
500 
501 		sz += etm->synth_opts.last_branch_sz *
502 		      sizeof(struct branch_entry);
503 		tidq->last_branch = zalloc(sz);
504 		if (!tidq->last_branch)
505 			goto out_free;
506 		tidq->last_branch_rb = zalloc(sz);
507 		if (!tidq->last_branch_rb)
508 			goto out_free;
509 	}
510 
511 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
512 	if (!tidq->event_buf)
513 		goto out_free;
514 
515 	return 0;
516 
517 out_free:
518 	zfree(&tidq->last_branch_rb);
519 	zfree(&tidq->last_branch);
520 	zfree(&tidq->prev_packet);
521 	zfree(&tidq->packet);
522 out:
523 	return rc;
524 }
525 
526 static struct cs_etm_traceid_queue
527 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
528 {
529 	int idx;
530 	struct int_node *inode;
531 	struct intlist *traceid_queues_list;
532 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
533 	struct cs_etm_auxtrace *etm = etmq->etm;
534 
535 	if (etm->per_thread_decoding)
536 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
537 
538 	traceid_queues_list = etmq->traceid_queues_list;
539 
540 	/*
541 	 * Check if the traceid_queue exist for this traceID by looking
542 	 * in the queue list.
543 	 */
544 	inode = intlist__find(traceid_queues_list, trace_chan_id);
545 	if (inode) {
546 		idx = (int)(intptr_t)inode->priv;
547 		return etmq->traceid_queues[idx];
548 	}
549 
550 	/* We couldn't find a traceid_queue for this traceID, allocate one */
551 	tidq = malloc(sizeof(*tidq));
552 	if (!tidq)
553 		return NULL;
554 
555 	memset(tidq, 0, sizeof(*tidq));
556 
557 	/* Get a valid index for the new traceid_queue */
558 	idx = intlist__nr_entries(traceid_queues_list);
559 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
560 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
561 	if (!inode)
562 		goto out_free;
563 
564 	/* Associate this traceID with this index */
565 	inode->priv = (void *)(intptr_t)idx;
566 
567 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
568 		goto out_free;
569 
570 	/* Grow the traceid_queues array by one unit */
571 	traceid_queues = etmq->traceid_queues;
572 	traceid_queues = reallocarray(traceid_queues,
573 				      idx + 1,
574 				      sizeof(*traceid_queues));
575 
576 	/*
577 	 * On failure reallocarray() returns NULL and the original block of
578 	 * memory is left untouched.
579 	 */
580 	if (!traceid_queues)
581 		goto out_free;
582 
583 	traceid_queues[idx] = tidq;
584 	etmq->traceid_queues = traceid_queues;
585 
586 	return etmq->traceid_queues[idx];
587 
588 out_free:
589 	/*
590 	 * Function intlist__remove() removes the inode from the list
591 	 * and delete the memory associated to it.
592 	 */
593 	intlist__remove(traceid_queues_list, inode);
594 	free(tidq);
595 
596 	return NULL;
597 }
598 
599 struct cs_etm_packet_queue
600 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
601 {
602 	struct cs_etm_traceid_queue *tidq;
603 
604 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
605 	if (tidq)
606 		return &tidq->packet_queue;
607 
608 	return NULL;
609 }
610 
611 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
612 				struct cs_etm_traceid_queue *tidq)
613 {
614 	struct cs_etm_packet *tmp;
615 
616 	if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
617 	    etm->synth_opts.instructions) {
618 		/*
619 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
620 		 * the next incoming packet.
621 		 *
622 		 * Threads and exception levels are also tracked for both the
623 		 * previous and current packets. This is because the previous
624 		 * packet is used for the 'from' IP for branch samples, so the
625 		 * thread at that time must also be assigned to that sample.
626 		 * Across discontinuity packets the thread can change, so by
627 		 * tracking the thread for the previous packet the branch sample
628 		 * will have the correct info.
629 		 */
630 		tmp = tidq->packet;
631 		tidq->packet = tidq->prev_packet;
632 		tidq->prev_packet = tmp;
633 		tidq->prev_packet_el = tidq->el;
634 		thread__put(tidq->prev_packet_thread);
635 		tidq->prev_packet_thread = thread__get(tidq->thread);
636 	}
637 }
638 
639 static void cs_etm__packet_dump(const char *pkt_string)
640 {
641 	const char *color = PERF_COLOR_BLUE;
642 	int len = strlen(pkt_string);
643 
644 	if (len && (pkt_string[len-1] == '\n'))
645 		color_fprintf(stdout, color, "	%s", pkt_string);
646 	else
647 		color_fprintf(stdout, color, "	%s\n", pkt_string);
648 
649 	fflush(stdout);
650 }
651 
652 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
653 					  struct cs_etm_auxtrace *etm, int t_idx,
654 					  int m_idx, u32 etmidr)
655 {
656 	u64 **metadata = etm->metadata;
657 
658 	t_params[t_idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
659 	t_params[t_idx].etmv3.reg_ctrl = metadata[m_idx][CS_ETM_ETMCR];
660 	t_params[t_idx].etmv3.reg_trc_id = metadata[m_idx][CS_ETM_ETMTRACEIDR];
661 }
662 
663 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
664 					  struct cs_etm_auxtrace *etm, int t_idx,
665 					  int m_idx)
666 {
667 	u64 **metadata = etm->metadata;
668 
669 	t_params[t_idx].protocol = CS_ETM_PROTO_ETMV4i;
670 	t_params[t_idx].etmv4.reg_idr0 = metadata[m_idx][CS_ETMV4_TRCIDR0];
671 	t_params[t_idx].etmv4.reg_idr1 = metadata[m_idx][CS_ETMV4_TRCIDR1];
672 	t_params[t_idx].etmv4.reg_idr2 = metadata[m_idx][CS_ETMV4_TRCIDR2];
673 	t_params[t_idx].etmv4.reg_idr8 = metadata[m_idx][CS_ETMV4_TRCIDR8];
674 	t_params[t_idx].etmv4.reg_configr = metadata[m_idx][CS_ETMV4_TRCCONFIGR];
675 	t_params[t_idx].etmv4.reg_traceidr = metadata[m_idx][CS_ETMV4_TRCTRACEIDR];
676 }
677 
678 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
679 					  struct cs_etm_auxtrace *etm, int t_idx,
680 					  int m_idx)
681 {
682 	u64 **metadata = etm->metadata;
683 
684 	t_params[t_idx].protocol = CS_ETM_PROTO_ETE;
685 	t_params[t_idx].ete.reg_idr0 = metadata[m_idx][CS_ETE_TRCIDR0];
686 	t_params[t_idx].ete.reg_idr1 = metadata[m_idx][CS_ETE_TRCIDR1];
687 	t_params[t_idx].ete.reg_idr2 = metadata[m_idx][CS_ETE_TRCIDR2];
688 	t_params[t_idx].ete.reg_idr8 = metadata[m_idx][CS_ETE_TRCIDR8];
689 	t_params[t_idx].ete.reg_configr = metadata[m_idx][CS_ETE_TRCCONFIGR];
690 	t_params[t_idx].ete.reg_traceidr = metadata[m_idx][CS_ETE_TRCTRACEIDR];
691 	t_params[t_idx].ete.reg_devarch = metadata[m_idx][CS_ETE_TRCDEVARCH];
692 }
693 
694 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
695 				     struct cs_etm_auxtrace *etm,
696 				     bool formatted,
697 				     int sample_cpu,
698 				     int decoders)
699 {
700 	int t_idx, m_idx;
701 	u32 etmidr;
702 	u64 architecture;
703 
704 	for (t_idx = 0; t_idx < decoders; t_idx++) {
705 		if (formatted)
706 			m_idx = t_idx;
707 		else {
708 			m_idx = get_cpu_data_idx(etm, sample_cpu);
709 			if (m_idx == -1) {
710 				pr_warning("CS_ETM: unknown CPU, falling back to first metadata\n");
711 				m_idx = 0;
712 			}
713 		}
714 
715 		architecture = etm->metadata[m_idx][CS_ETM_MAGIC];
716 
717 		switch (architecture) {
718 		case __perf_cs_etmv3_magic:
719 			etmidr = etm->metadata[m_idx][CS_ETM_ETMIDR];
720 			cs_etm__set_trace_param_etmv3(t_params, etm, t_idx, m_idx, etmidr);
721 			break;
722 		case __perf_cs_etmv4_magic:
723 			cs_etm__set_trace_param_etmv4(t_params, etm, t_idx, m_idx);
724 			break;
725 		case __perf_cs_ete_magic:
726 			cs_etm__set_trace_param_ete(t_params, etm, t_idx, m_idx);
727 			break;
728 		default:
729 			return -EINVAL;
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
737 				       struct cs_etm_queue *etmq,
738 				       enum cs_etm_decoder_operation mode,
739 				       bool formatted)
740 {
741 	int ret = -EINVAL;
742 
743 	if (!(mode < CS_ETM_OPERATION_MAX))
744 		goto out;
745 
746 	d_params->packet_printer = cs_etm__packet_dump;
747 	d_params->operation = mode;
748 	d_params->data = etmq;
749 	d_params->formatted = formatted;
750 	d_params->fsyncs = false;
751 	d_params->hsyncs = false;
752 	d_params->frame_aligned = true;
753 
754 	ret = 0;
755 out:
756 	return ret;
757 }
758 
759 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
760 			       struct auxtrace_buffer *buffer)
761 {
762 	int ret;
763 	const char *color = PERF_COLOR_BLUE;
764 	size_t buffer_used = 0;
765 
766 	fprintf(stdout, "\n");
767 	color_fprintf(stdout, color,
768 		     ". ... CoreSight %s Trace data: size %#zx bytes\n",
769 		     cs_etm_decoder__get_name(etmq->decoder), buffer->size);
770 
771 	do {
772 		size_t consumed;
773 
774 		ret = cs_etm_decoder__process_data_block(
775 				etmq->decoder, buffer->offset,
776 				&((u8 *)buffer->data)[buffer_used],
777 				buffer->size - buffer_used, &consumed);
778 		if (ret)
779 			break;
780 
781 		buffer_used += consumed;
782 	} while (buffer_used < buffer->size);
783 
784 	cs_etm_decoder__reset(etmq->decoder);
785 }
786 
787 static int cs_etm__flush_events(struct perf_session *session,
788 				struct perf_tool *tool)
789 {
790 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
791 						   struct cs_etm_auxtrace,
792 						   auxtrace);
793 	if (dump_trace)
794 		return 0;
795 
796 	if (!tool->ordered_events)
797 		return -EINVAL;
798 
799 	if (etm->timeless_decoding) {
800 		/*
801 		 * Pass tid = -1 to process all queues. But likely they will have
802 		 * already been processed on PERF_RECORD_EXIT anyway.
803 		 */
804 		return cs_etm__process_timeless_queues(etm, -1);
805 	}
806 
807 	return cs_etm__process_timestamped_queues(etm);
808 }
809 
810 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
811 {
812 	int idx;
813 	uintptr_t priv;
814 	struct int_node *inode, *tmp;
815 	struct cs_etm_traceid_queue *tidq;
816 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
817 
818 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
819 		priv = (uintptr_t)inode->priv;
820 		idx = priv;
821 
822 		/* Free this traceid_queue from the array */
823 		tidq = etmq->traceid_queues[idx];
824 		thread__zput(tidq->thread);
825 		thread__zput(tidq->prev_packet_thread);
826 		zfree(&tidq->event_buf);
827 		zfree(&tidq->last_branch);
828 		zfree(&tidq->last_branch_rb);
829 		zfree(&tidq->prev_packet);
830 		zfree(&tidq->packet);
831 		zfree(&tidq);
832 
833 		/*
834 		 * Function intlist__remove() removes the inode from the list
835 		 * and delete the memory associated to it.
836 		 */
837 		intlist__remove(traceid_queues_list, inode);
838 	}
839 
840 	/* Then the RB tree itself */
841 	intlist__delete(traceid_queues_list);
842 	etmq->traceid_queues_list = NULL;
843 
844 	/* finally free the traceid_queues array */
845 	zfree(&etmq->traceid_queues);
846 }
847 
848 static void cs_etm__free_queue(void *priv)
849 {
850 	struct cs_etm_queue *etmq = priv;
851 
852 	if (!etmq)
853 		return;
854 
855 	cs_etm_decoder__free(etmq->decoder);
856 	cs_etm__free_traceid_queues(etmq);
857 	free(etmq);
858 }
859 
860 static void cs_etm__free_events(struct perf_session *session)
861 {
862 	unsigned int i;
863 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
864 						   struct cs_etm_auxtrace,
865 						   auxtrace);
866 	struct auxtrace_queues *queues = &aux->queues;
867 
868 	for (i = 0; i < queues->nr_queues; i++) {
869 		cs_etm__free_queue(queues->queue_array[i].priv);
870 		queues->queue_array[i].priv = NULL;
871 	}
872 
873 	auxtrace_queues__free(queues);
874 }
875 
876 static void cs_etm__free(struct perf_session *session)
877 {
878 	int i;
879 	struct int_node *inode, *tmp;
880 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
881 						   struct cs_etm_auxtrace,
882 						   auxtrace);
883 	cs_etm__free_events(session);
884 	session->auxtrace = NULL;
885 
886 	/* First remove all traceID/metadata nodes for the RB tree */
887 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
888 		intlist__remove(traceid_list, inode);
889 	/* Then the RB tree itself */
890 	intlist__delete(traceid_list);
891 
892 	for (i = 0; i < aux->num_cpu; i++)
893 		zfree(&aux->metadata[i]);
894 
895 	zfree(&aux->metadata);
896 	zfree(&aux);
897 }
898 
899 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
900 				      struct evsel *evsel)
901 {
902 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
903 						   struct cs_etm_auxtrace,
904 						   auxtrace);
905 
906 	return evsel->core.attr.type == aux->pmu_type;
907 }
908 
909 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq,
910 					   ocsd_ex_level el)
911 {
912 	enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq);
913 
914 	/*
915 	 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels
916 	 * running at EL1 assume everything is the host.
917 	 */
918 	if (pid_fmt == CS_ETM_PIDFMT_CTXTID)
919 		return &etmq->etm->session->machines.host;
920 
921 	/*
922 	 * Not perfect, but otherwise assume anything in EL1 is the default
923 	 * guest, and everything else is the host. Distinguishing between guest
924 	 * and host userspaces isn't currently supported either. Neither is
925 	 * multiple guest support. All this does is reduce the likeliness of
926 	 * decode errors where we look into the host kernel maps when it should
927 	 * have been the guest maps.
928 	 */
929 	switch (el) {
930 	case ocsd_EL1:
931 		return machines__find_guest(&etmq->etm->session->machines,
932 					    DEFAULT_GUEST_KERNEL_ID);
933 	case ocsd_EL3:
934 	case ocsd_EL2:
935 	case ocsd_EL0:
936 	case ocsd_EL_unknown:
937 	default:
938 		return &etmq->etm->session->machines.host;
939 	}
940 }
941 
942 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address,
943 			   ocsd_ex_level el)
944 {
945 	struct machine *machine = cs_etm__get_machine(etmq, el);
946 
947 	if (address >= machine__kernel_start(machine)) {
948 		if (machine__is_host(machine))
949 			return PERF_RECORD_MISC_KERNEL;
950 		else
951 			return PERF_RECORD_MISC_GUEST_KERNEL;
952 	} else {
953 		if (machine__is_host(machine))
954 			return PERF_RECORD_MISC_USER;
955 		else {
956 			/*
957 			 * Can't really happen at the moment because
958 			 * cs_etm__get_machine() will always return
959 			 * machines.host for any non EL1 trace.
960 			 */
961 			return PERF_RECORD_MISC_GUEST_USER;
962 		}
963 	}
964 }
965 
966 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
967 			      u64 address, size_t size, u8 *buffer,
968 			      const ocsd_mem_space_acc_t mem_space)
969 {
970 	u8  cpumode;
971 	u64 offset;
972 	int len;
973 	struct addr_location al;
974 	struct dso *dso;
975 	struct cs_etm_traceid_queue *tidq;
976 	int ret = 0;
977 
978 	if (!etmq)
979 		return 0;
980 
981 	addr_location__init(&al);
982 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
983 	if (!tidq)
984 		goto out;
985 
986 	/*
987 	 * We've already tracked EL along side the PID in cs_etm__set_thread()
988 	 * so double check that it matches what OpenCSD thinks as well. It
989 	 * doesn't distinguish between EL0 and EL1 for this mem access callback
990 	 * so we had to do the extra tracking. Skip validation if it's any of
991 	 * the 'any' values.
992 	 */
993 	if (!(mem_space == OCSD_MEM_SPACE_ANY ||
994 	      mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) {
995 		if (mem_space & OCSD_MEM_SPACE_EL1N) {
996 			/* Includes both non secure EL1 and EL0 */
997 			assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0);
998 		} else if (mem_space & OCSD_MEM_SPACE_EL2)
999 			assert(tidq->el == ocsd_EL2);
1000 		else if (mem_space & OCSD_MEM_SPACE_EL3)
1001 			assert(tidq->el == ocsd_EL3);
1002 	}
1003 
1004 	cpumode = cs_etm__cpu_mode(etmq, address, tidq->el);
1005 
1006 	if (!thread__find_map(tidq->thread, cpumode, address, &al))
1007 		goto out;
1008 
1009 	dso = map__dso(al.map);
1010 	if (!dso)
1011 		goto out;
1012 
1013 	if (dso->data.status == DSO_DATA_STATUS_ERROR &&
1014 	    dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE))
1015 		goto out;
1016 
1017 	offset = map__map_ip(al.map, address);
1018 
1019 	map__load(al.map);
1020 
1021 	len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)),
1022 				    offset, buffer, size);
1023 
1024 	if (len <= 0) {
1025 		ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
1026 				 "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
1027 		if (!dso->auxtrace_warned) {
1028 			pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
1029 				    address,
1030 				    dso->long_name ? dso->long_name : "Unknown");
1031 			dso->auxtrace_warned = true;
1032 		}
1033 		goto out;
1034 	}
1035 	ret = len;
1036 out:
1037 	addr_location__exit(&al);
1038 	return ret;
1039 }
1040 
1041 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
1042 						bool formatted, int sample_cpu)
1043 {
1044 	struct cs_etm_decoder_params d_params;
1045 	struct cs_etm_trace_params  *t_params = NULL;
1046 	struct cs_etm_queue *etmq;
1047 	/*
1048 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
1049 	 * needed.
1050 	 */
1051 	int decoders = formatted ? etm->num_cpu : 1;
1052 
1053 	etmq = zalloc(sizeof(*etmq));
1054 	if (!etmq)
1055 		return NULL;
1056 
1057 	etmq->traceid_queues_list = intlist__new(NULL);
1058 	if (!etmq->traceid_queues_list)
1059 		goto out_free;
1060 
1061 	/* Use metadata to fill in trace parameters for trace decoder */
1062 	t_params = zalloc(sizeof(*t_params) * decoders);
1063 
1064 	if (!t_params)
1065 		goto out_free;
1066 
1067 	if (cs_etm__init_trace_params(t_params, etm, formatted, sample_cpu, decoders))
1068 		goto out_free;
1069 
1070 	/* Set decoder parameters to decode trace packets */
1071 	if (cs_etm__init_decoder_params(&d_params, etmq,
1072 					dump_trace ? CS_ETM_OPERATION_PRINT :
1073 						     CS_ETM_OPERATION_DECODE,
1074 					formatted))
1075 		goto out_free;
1076 
1077 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
1078 					    t_params);
1079 
1080 	if (!etmq->decoder)
1081 		goto out_free;
1082 
1083 	/*
1084 	 * Register a function to handle all memory accesses required by
1085 	 * the trace decoder library.
1086 	 */
1087 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
1088 					      0x0L, ((u64) -1L),
1089 					      cs_etm__mem_access))
1090 		goto out_free_decoder;
1091 
1092 	zfree(&t_params);
1093 	return etmq;
1094 
1095 out_free_decoder:
1096 	cs_etm_decoder__free(etmq->decoder);
1097 out_free:
1098 	intlist__delete(etmq->traceid_queues_list);
1099 	free(etmq);
1100 
1101 	return NULL;
1102 }
1103 
1104 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
1105 			       struct auxtrace_queue *queue,
1106 			       unsigned int queue_nr,
1107 			       bool formatted,
1108 			       int sample_cpu)
1109 {
1110 	struct cs_etm_queue *etmq = queue->priv;
1111 
1112 	if (list_empty(&queue->head) || etmq)
1113 		return 0;
1114 
1115 	etmq = cs_etm__alloc_queue(etm, formatted, sample_cpu);
1116 
1117 	if (!etmq)
1118 		return -ENOMEM;
1119 
1120 	queue->priv = etmq;
1121 	etmq->etm = etm;
1122 	etmq->queue_nr = queue_nr;
1123 	etmq->offset = 0;
1124 
1125 	return 0;
1126 }
1127 
1128 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
1129 					    struct cs_etm_queue *etmq,
1130 					    unsigned int queue_nr)
1131 {
1132 	int ret = 0;
1133 	unsigned int cs_queue_nr;
1134 	u8 trace_chan_id;
1135 	u64 cs_timestamp;
1136 
1137 	/*
1138 	 * We are under a CPU-wide trace scenario.  As such we need to know
1139 	 * when the code that generated the traces started to execute so that
1140 	 * it can be correlated with execution on other CPUs.  So we get a
1141 	 * handle on the beginning of traces and decode until we find a
1142 	 * timestamp.  The timestamp is then added to the auxtrace min heap
1143 	 * in order to know what nibble (of all the etmqs) to decode first.
1144 	 */
1145 	while (1) {
1146 		/*
1147 		 * Fetch an aux_buffer from this etmq.  Bail if no more
1148 		 * blocks or an error has been encountered.
1149 		 */
1150 		ret = cs_etm__get_data_block(etmq);
1151 		if (ret <= 0)
1152 			goto out;
1153 
1154 		/*
1155 		 * Run decoder on the trace block.  The decoder will stop when
1156 		 * encountering a CS timestamp, a full packet queue or the end of
1157 		 * trace for that block.
1158 		 */
1159 		ret = cs_etm__decode_data_block(etmq);
1160 		if (ret)
1161 			goto out;
1162 
1163 		/*
1164 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
1165 		 * the timestamp calculation for us.
1166 		 */
1167 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
1168 
1169 		/* We found a timestamp, no need to continue. */
1170 		if (cs_timestamp)
1171 			break;
1172 
1173 		/*
1174 		 * We didn't find a timestamp so empty all the traceid packet
1175 		 * queues before looking for another timestamp packet, either
1176 		 * in the current data block or a new one.  Packets that were
1177 		 * just decoded are useless since no timestamp has been
1178 		 * associated with them.  As such simply discard them.
1179 		 */
1180 		cs_etm__clear_all_packet_queues(etmq);
1181 	}
1182 
1183 	/*
1184 	 * We have a timestamp.  Add it to the min heap to reflect when
1185 	 * instructions conveyed by the range packets of this traceID queue
1186 	 * started to execute.  Once the same has been done for all the traceID
1187 	 * queues of each etmq, redenring and decoding can start in
1188 	 * chronological order.
1189 	 *
1190 	 * Note that packets decoded above are still in the traceID's packet
1191 	 * queue and will be processed in cs_etm__process_timestamped_queues().
1192 	 */
1193 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
1194 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
1195 out:
1196 	return ret;
1197 }
1198 
1199 static inline
1200 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
1201 				 struct cs_etm_traceid_queue *tidq)
1202 {
1203 	struct branch_stack *bs_src = tidq->last_branch_rb;
1204 	struct branch_stack *bs_dst = tidq->last_branch;
1205 	size_t nr = 0;
1206 
1207 	/*
1208 	 * Set the number of records before early exit: ->nr is used to
1209 	 * determine how many branches to copy from ->entries.
1210 	 */
1211 	bs_dst->nr = bs_src->nr;
1212 
1213 	/*
1214 	 * Early exit when there is nothing to copy.
1215 	 */
1216 	if (!bs_src->nr)
1217 		return;
1218 
1219 	/*
1220 	 * As bs_src->entries is a circular buffer, we need to copy from it in
1221 	 * two steps.  First, copy the branches from the most recently inserted
1222 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
1223 	 */
1224 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
1225 	memcpy(&bs_dst->entries[0],
1226 	       &bs_src->entries[tidq->last_branch_pos],
1227 	       sizeof(struct branch_entry) * nr);
1228 
1229 	/*
1230 	 * If we wrapped around at least once, the branches from the beginning
1231 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
1232 	 * are older valid branches: copy them over.  The total number of
1233 	 * branches copied over will be equal to the number of branches asked by
1234 	 * the user in last_branch_sz.
1235 	 */
1236 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
1237 		memcpy(&bs_dst->entries[nr],
1238 		       &bs_src->entries[0],
1239 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
1240 	}
1241 }
1242 
1243 static inline
1244 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
1245 {
1246 	tidq->last_branch_pos = 0;
1247 	tidq->last_branch_rb->nr = 0;
1248 }
1249 
1250 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
1251 					 u8 trace_chan_id, u64 addr)
1252 {
1253 	u8 instrBytes[2];
1254 
1255 	cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes),
1256 			   instrBytes, 0);
1257 	/*
1258 	 * T32 instruction size is indicated by bits[15:11] of the first
1259 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
1260 	 * denote a 32-bit instruction.
1261 	 */
1262 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
1263 }
1264 
1265 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
1266 {
1267 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1268 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1269 		return 0;
1270 
1271 	return packet->start_addr;
1272 }
1273 
1274 static inline
1275 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1276 {
1277 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1278 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1279 		return 0;
1280 
1281 	return packet->end_addr - packet->last_instr_size;
1282 }
1283 
1284 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1285 				     u64 trace_chan_id,
1286 				     const struct cs_etm_packet *packet,
1287 				     u64 offset)
1288 {
1289 	if (packet->isa == CS_ETM_ISA_T32) {
1290 		u64 addr = packet->start_addr;
1291 
1292 		while (offset) {
1293 			addr += cs_etm__t32_instr_size(etmq,
1294 						       trace_chan_id, addr);
1295 			offset--;
1296 		}
1297 		return addr;
1298 	}
1299 
1300 	/* Assume a 4 byte instruction size (A32/A64) */
1301 	return packet->start_addr + offset * 4;
1302 }
1303 
1304 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1305 					  struct cs_etm_traceid_queue *tidq)
1306 {
1307 	struct branch_stack *bs = tidq->last_branch_rb;
1308 	struct branch_entry *be;
1309 
1310 	/*
1311 	 * The branches are recorded in a circular buffer in reverse
1312 	 * chronological order: we start recording from the last element of the
1313 	 * buffer down.  After writing the first element of the stack, move the
1314 	 * insert position back to the end of the buffer.
1315 	 */
1316 	if (!tidq->last_branch_pos)
1317 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1318 
1319 	tidq->last_branch_pos -= 1;
1320 
1321 	be       = &bs->entries[tidq->last_branch_pos];
1322 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1323 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1324 	/* No support for mispredict */
1325 	be->flags.mispred = 0;
1326 	be->flags.predicted = 1;
1327 
1328 	/*
1329 	 * Increment bs->nr until reaching the number of last branches asked by
1330 	 * the user on the command line.
1331 	 */
1332 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1333 		bs->nr += 1;
1334 }
1335 
1336 static int cs_etm__inject_event(union perf_event *event,
1337 			       struct perf_sample *sample, u64 type)
1338 {
1339 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1340 	return perf_event__synthesize_sample(event, type, 0, sample);
1341 }
1342 
1343 
1344 static int
1345 cs_etm__get_trace(struct cs_etm_queue *etmq)
1346 {
1347 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1348 	struct auxtrace_buffer *old_buffer = aux_buffer;
1349 	struct auxtrace_queue *queue;
1350 
1351 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1352 
1353 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1354 
1355 	/* If no more data, drop the previous auxtrace_buffer and return */
1356 	if (!aux_buffer) {
1357 		if (old_buffer)
1358 			auxtrace_buffer__drop_data(old_buffer);
1359 		etmq->buf_len = 0;
1360 		return 0;
1361 	}
1362 
1363 	etmq->buffer = aux_buffer;
1364 
1365 	/* If the aux_buffer doesn't have data associated, try to load it */
1366 	if (!aux_buffer->data) {
1367 		/* get the file desc associated with the perf data file */
1368 		int fd = perf_data__fd(etmq->etm->session->data);
1369 
1370 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1371 		if (!aux_buffer->data)
1372 			return -ENOMEM;
1373 	}
1374 
1375 	/* If valid, drop the previous buffer */
1376 	if (old_buffer)
1377 		auxtrace_buffer__drop_data(old_buffer);
1378 
1379 	etmq->buf_used = 0;
1380 	etmq->buf_len = aux_buffer->size;
1381 	etmq->buf = aux_buffer->data;
1382 
1383 	return etmq->buf_len;
1384 }
1385 
1386 static void cs_etm__set_thread(struct cs_etm_queue *etmq,
1387 			       struct cs_etm_traceid_queue *tidq, pid_t tid,
1388 			       ocsd_ex_level el)
1389 {
1390 	struct machine *machine = cs_etm__get_machine(etmq, el);
1391 
1392 	if (tid != -1) {
1393 		thread__zput(tidq->thread);
1394 		tidq->thread = machine__find_thread(machine, -1, tid);
1395 	}
1396 
1397 	/* Couldn't find a known thread */
1398 	if (!tidq->thread)
1399 		tidq->thread = machine__idle_thread(machine);
1400 
1401 	tidq->el = el;
1402 }
1403 
1404 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid,
1405 			    u8 trace_chan_id, ocsd_ex_level el)
1406 {
1407 	struct cs_etm_traceid_queue *tidq;
1408 
1409 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1410 	if (!tidq)
1411 		return -EINVAL;
1412 
1413 	cs_etm__set_thread(etmq, tidq, tid, el);
1414 	return 0;
1415 }
1416 
1417 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1418 {
1419 	return !!etmq->etm->timeless_decoding;
1420 }
1421 
1422 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1423 			      u64 trace_chan_id,
1424 			      const struct cs_etm_packet *packet,
1425 			      struct perf_sample *sample)
1426 {
1427 	/*
1428 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1429 	 * packet, so directly bail out with 'insn_len' = 0.
1430 	 */
1431 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1432 		sample->insn_len = 0;
1433 		return;
1434 	}
1435 
1436 	/*
1437 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1438 	 * cs_etm__t32_instr_size().
1439 	 */
1440 	if (packet->isa == CS_ETM_ISA_T32)
1441 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1442 							  sample->ip);
1443 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1444 	else
1445 		sample->insn_len = 4;
1446 
1447 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len,
1448 			   (void *)sample->insn, 0);
1449 }
1450 
1451 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1452 {
1453 	struct cs_etm_auxtrace *etm = etmq->etm;
1454 
1455 	if (etm->has_virtual_ts)
1456 		return tsc_to_perf_time(cs_timestamp, &etm->tc);
1457 	else
1458 		return cs_timestamp;
1459 }
1460 
1461 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1462 					       struct cs_etm_traceid_queue *tidq)
1463 {
1464 	struct cs_etm_auxtrace *etm = etmq->etm;
1465 	struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1466 
1467 	if (!etm->timeless_decoding && etm->has_virtual_ts)
1468 		return packet_queue->cs_timestamp;
1469 	else
1470 		return etm->latest_kernel_timestamp;
1471 }
1472 
1473 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1474 					    struct cs_etm_traceid_queue *tidq,
1475 					    u64 addr, u64 period)
1476 {
1477 	int ret = 0;
1478 	struct cs_etm_auxtrace *etm = etmq->etm;
1479 	union perf_event *event = tidq->event_buf;
1480 	struct perf_sample sample = {.ip = 0,};
1481 
1482 	event->sample.header.type = PERF_RECORD_SAMPLE;
1483 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el);
1484 	event->sample.header.size = sizeof(struct perf_event_header);
1485 
1486 	/* Set time field based on etm auxtrace config. */
1487 	sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1488 
1489 	sample.ip = addr;
1490 	sample.pid = thread__pid(tidq->thread);
1491 	sample.tid = thread__tid(tidq->thread);
1492 	sample.id = etmq->etm->instructions_id;
1493 	sample.stream_id = etmq->etm->instructions_id;
1494 	sample.period = period;
1495 	sample.cpu = tidq->packet->cpu;
1496 	sample.flags = tidq->prev_packet->flags;
1497 	sample.cpumode = event->sample.header.misc;
1498 
1499 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1500 
1501 	if (etm->synth_opts.last_branch)
1502 		sample.branch_stack = tidq->last_branch;
1503 
1504 	if (etm->synth_opts.inject) {
1505 		ret = cs_etm__inject_event(event, &sample,
1506 					   etm->instructions_sample_type);
1507 		if (ret)
1508 			return ret;
1509 	}
1510 
1511 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1512 
1513 	if (ret)
1514 		pr_err(
1515 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1516 			ret);
1517 
1518 	return ret;
1519 }
1520 
1521 /*
1522  * The cs etm packet encodes an instruction range between a branch target
1523  * and the next taken branch. Generate sample accordingly.
1524  */
1525 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1526 				       struct cs_etm_traceid_queue *tidq)
1527 {
1528 	int ret = 0;
1529 	struct cs_etm_auxtrace *etm = etmq->etm;
1530 	struct perf_sample sample = {.ip = 0,};
1531 	union perf_event *event = tidq->event_buf;
1532 	struct dummy_branch_stack {
1533 		u64			nr;
1534 		u64			hw_idx;
1535 		struct branch_entry	entries;
1536 	} dummy_bs;
1537 	u64 ip;
1538 
1539 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1540 
1541 	event->sample.header.type = PERF_RECORD_SAMPLE;
1542 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip,
1543 						     tidq->prev_packet_el);
1544 	event->sample.header.size = sizeof(struct perf_event_header);
1545 
1546 	/* Set time field based on etm auxtrace config. */
1547 	sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1548 
1549 	sample.ip = ip;
1550 	sample.pid = thread__pid(tidq->prev_packet_thread);
1551 	sample.tid = thread__tid(tidq->prev_packet_thread);
1552 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1553 	sample.id = etmq->etm->branches_id;
1554 	sample.stream_id = etmq->etm->branches_id;
1555 	sample.period = 1;
1556 	sample.cpu = tidq->packet->cpu;
1557 	sample.flags = tidq->prev_packet->flags;
1558 	sample.cpumode = event->sample.header.misc;
1559 
1560 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1561 			  &sample);
1562 
1563 	/*
1564 	 * perf report cannot handle events without a branch stack
1565 	 */
1566 	if (etm->synth_opts.last_branch) {
1567 		dummy_bs = (struct dummy_branch_stack){
1568 			.nr = 1,
1569 			.hw_idx = -1ULL,
1570 			.entries = {
1571 				.from = sample.ip,
1572 				.to = sample.addr,
1573 			},
1574 		};
1575 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1576 	}
1577 
1578 	if (etm->synth_opts.inject) {
1579 		ret = cs_etm__inject_event(event, &sample,
1580 					   etm->branches_sample_type);
1581 		if (ret)
1582 			return ret;
1583 	}
1584 
1585 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1586 
1587 	if (ret)
1588 		pr_err(
1589 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1590 		ret);
1591 
1592 	return ret;
1593 }
1594 
1595 struct cs_etm_synth {
1596 	struct perf_tool dummy_tool;
1597 	struct perf_session *session;
1598 };
1599 
1600 static int cs_etm__event_synth(struct perf_tool *tool,
1601 			       union perf_event *event,
1602 			       struct perf_sample *sample __maybe_unused,
1603 			       struct machine *machine __maybe_unused)
1604 {
1605 	struct cs_etm_synth *cs_etm_synth =
1606 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1607 
1608 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1609 						 event, NULL);
1610 }
1611 
1612 static int cs_etm__synth_event(struct perf_session *session,
1613 			       struct perf_event_attr *attr, u64 id)
1614 {
1615 	struct cs_etm_synth cs_etm_synth;
1616 
1617 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1618 	cs_etm_synth.session = session;
1619 
1620 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1621 					   &id, cs_etm__event_synth);
1622 }
1623 
1624 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1625 				struct perf_session *session)
1626 {
1627 	struct evlist *evlist = session->evlist;
1628 	struct evsel *evsel;
1629 	struct perf_event_attr attr;
1630 	bool found = false;
1631 	u64 id;
1632 	int err;
1633 
1634 	evlist__for_each_entry(evlist, evsel) {
1635 		if (evsel->core.attr.type == etm->pmu_type) {
1636 			found = true;
1637 			break;
1638 		}
1639 	}
1640 
1641 	if (!found) {
1642 		pr_debug("No selected events with CoreSight Trace data\n");
1643 		return 0;
1644 	}
1645 
1646 	memset(&attr, 0, sizeof(struct perf_event_attr));
1647 	attr.size = sizeof(struct perf_event_attr);
1648 	attr.type = PERF_TYPE_HARDWARE;
1649 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1650 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1651 			    PERF_SAMPLE_PERIOD;
1652 	if (etm->timeless_decoding)
1653 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1654 	else
1655 		attr.sample_type |= PERF_SAMPLE_TIME;
1656 
1657 	attr.exclude_user = evsel->core.attr.exclude_user;
1658 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1659 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1660 	attr.exclude_host = evsel->core.attr.exclude_host;
1661 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1662 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1663 	attr.read_format = evsel->core.attr.read_format;
1664 
1665 	/* create new id val to be a fixed offset from evsel id */
1666 	id = evsel->core.id[0] + 1000000000;
1667 
1668 	if (!id)
1669 		id = 1;
1670 
1671 	if (etm->synth_opts.branches) {
1672 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1673 		attr.sample_period = 1;
1674 		attr.sample_type |= PERF_SAMPLE_ADDR;
1675 		err = cs_etm__synth_event(session, &attr, id);
1676 		if (err)
1677 			return err;
1678 		etm->branches_sample_type = attr.sample_type;
1679 		etm->branches_id = id;
1680 		id += 1;
1681 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1682 	}
1683 
1684 	if (etm->synth_opts.last_branch) {
1685 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1686 		/*
1687 		 * We don't use the hardware index, but the sample generation
1688 		 * code uses the new format branch_stack with this field,
1689 		 * so the event attributes must indicate that it's present.
1690 		 */
1691 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1692 	}
1693 
1694 	if (etm->synth_opts.instructions) {
1695 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1696 		attr.sample_period = etm->synth_opts.period;
1697 		etm->instructions_sample_period = attr.sample_period;
1698 		err = cs_etm__synth_event(session, &attr, id);
1699 		if (err)
1700 			return err;
1701 		etm->instructions_sample_type = attr.sample_type;
1702 		etm->instructions_id = id;
1703 		id += 1;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int cs_etm__sample(struct cs_etm_queue *etmq,
1710 			  struct cs_etm_traceid_queue *tidq)
1711 {
1712 	struct cs_etm_auxtrace *etm = etmq->etm;
1713 	int ret;
1714 	u8 trace_chan_id = tidq->trace_chan_id;
1715 	u64 instrs_prev;
1716 
1717 	/* Get instructions remainder from previous packet */
1718 	instrs_prev = tidq->period_instructions;
1719 
1720 	tidq->period_instructions += tidq->packet->instr_count;
1721 
1722 	/*
1723 	 * Record a branch when the last instruction in
1724 	 * PREV_PACKET is a branch.
1725 	 */
1726 	if (etm->synth_opts.last_branch &&
1727 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1728 	    tidq->prev_packet->last_instr_taken_branch)
1729 		cs_etm__update_last_branch_rb(etmq, tidq);
1730 
1731 	if (etm->synth_opts.instructions &&
1732 	    tidq->period_instructions >= etm->instructions_sample_period) {
1733 		/*
1734 		 * Emit instruction sample periodically
1735 		 * TODO: allow period to be defined in cycles and clock time
1736 		 */
1737 
1738 		/*
1739 		 * Below diagram demonstrates the instruction samples
1740 		 * generation flows:
1741 		 *
1742 		 *    Instrs     Instrs       Instrs       Instrs
1743 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1744 		 *    |            |            |            |
1745 		 *    V            V            V            V
1746 		 *   --------------------------------------------------
1747 		 *            ^                                  ^
1748 		 *            |                                  |
1749 		 *         Period                             Period
1750 		 *    instructions(Pi)                   instructions(Pi')
1751 		 *
1752 		 *            |                                  |
1753 		 *            \---------------- -----------------/
1754 		 *                             V
1755 		 *                 tidq->packet->instr_count
1756 		 *
1757 		 * Instrs Sample(n...) are the synthesised samples occurring
1758 		 * every etm->instructions_sample_period instructions - as
1759 		 * defined on the perf command line.  Sample(n) is being the
1760 		 * last sample before the current etm packet, n+1 to n+3
1761 		 * samples are generated from the current etm packet.
1762 		 *
1763 		 * tidq->packet->instr_count represents the number of
1764 		 * instructions in the current etm packet.
1765 		 *
1766 		 * Period instructions (Pi) contains the number of
1767 		 * instructions executed after the sample point(n) from the
1768 		 * previous etm packet.  This will always be less than
1769 		 * etm->instructions_sample_period.
1770 		 *
1771 		 * When generate new samples, it combines with two parts
1772 		 * instructions, one is the tail of the old packet and another
1773 		 * is the head of the new coming packet, to generate
1774 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1775 		 * instructions with sample period.  After sample(n+3), the rest
1776 		 * instructions will be used by later packet and it is assigned
1777 		 * to tidq->period_instructions for next round calculation.
1778 		 */
1779 
1780 		/*
1781 		 * Get the initial offset into the current packet instructions;
1782 		 * entry conditions ensure that instrs_prev is less than
1783 		 * etm->instructions_sample_period.
1784 		 */
1785 		u64 offset = etm->instructions_sample_period - instrs_prev;
1786 		u64 addr;
1787 
1788 		/* Prepare last branches for instruction sample */
1789 		if (etm->synth_opts.last_branch)
1790 			cs_etm__copy_last_branch_rb(etmq, tidq);
1791 
1792 		while (tidq->period_instructions >=
1793 				etm->instructions_sample_period) {
1794 			/*
1795 			 * Calculate the address of the sampled instruction (-1
1796 			 * as sample is reported as though instruction has just
1797 			 * been executed, but PC has not advanced to next
1798 			 * instruction)
1799 			 */
1800 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1801 						  tidq->packet, offset - 1);
1802 			ret = cs_etm__synth_instruction_sample(
1803 				etmq, tidq, addr,
1804 				etm->instructions_sample_period);
1805 			if (ret)
1806 				return ret;
1807 
1808 			offset += etm->instructions_sample_period;
1809 			tidq->period_instructions -=
1810 				etm->instructions_sample_period;
1811 		}
1812 	}
1813 
1814 	if (etm->synth_opts.branches) {
1815 		bool generate_sample = false;
1816 
1817 		/* Generate sample for tracing on packet */
1818 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1819 			generate_sample = true;
1820 
1821 		/* Generate sample for branch taken packet */
1822 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1823 		    tidq->prev_packet->last_instr_taken_branch)
1824 			generate_sample = true;
1825 
1826 		if (generate_sample) {
1827 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1828 			if (ret)
1829 				return ret;
1830 		}
1831 	}
1832 
1833 	cs_etm__packet_swap(etm, tidq);
1834 
1835 	return 0;
1836 }
1837 
1838 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1839 {
1840 	/*
1841 	 * When the exception packet is inserted, whether the last instruction
1842 	 * in previous range packet is taken branch or not, we need to force
1843 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1844 	 * to generate branch sample for the instruction range before the
1845 	 * exception is trapped to kernel or before the exception returning.
1846 	 *
1847 	 * The exception packet includes the dummy address values, so don't
1848 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1849 	 * for generating instruction and branch samples.
1850 	 */
1851 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1852 		tidq->prev_packet->last_instr_taken_branch = true;
1853 
1854 	return 0;
1855 }
1856 
1857 static int cs_etm__flush(struct cs_etm_queue *etmq,
1858 			 struct cs_etm_traceid_queue *tidq)
1859 {
1860 	int err = 0;
1861 	struct cs_etm_auxtrace *etm = etmq->etm;
1862 
1863 	/* Handle start tracing packet */
1864 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1865 		goto swap_packet;
1866 
1867 	if (etmq->etm->synth_opts.last_branch &&
1868 	    etmq->etm->synth_opts.instructions &&
1869 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1870 		u64 addr;
1871 
1872 		/* Prepare last branches for instruction sample */
1873 		cs_etm__copy_last_branch_rb(etmq, tidq);
1874 
1875 		/*
1876 		 * Generate a last branch event for the branches left in the
1877 		 * circular buffer at the end of the trace.
1878 		 *
1879 		 * Use the address of the end of the last reported execution
1880 		 * range
1881 		 */
1882 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1883 
1884 		err = cs_etm__synth_instruction_sample(
1885 			etmq, tidq, addr,
1886 			tidq->period_instructions);
1887 		if (err)
1888 			return err;
1889 
1890 		tidq->period_instructions = 0;
1891 
1892 	}
1893 
1894 	if (etm->synth_opts.branches &&
1895 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1896 		err = cs_etm__synth_branch_sample(etmq, tidq);
1897 		if (err)
1898 			return err;
1899 	}
1900 
1901 swap_packet:
1902 	cs_etm__packet_swap(etm, tidq);
1903 
1904 	/* Reset last branches after flush the trace */
1905 	if (etm->synth_opts.last_branch)
1906 		cs_etm__reset_last_branch_rb(tidq);
1907 
1908 	return err;
1909 }
1910 
1911 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1912 			     struct cs_etm_traceid_queue *tidq)
1913 {
1914 	int err;
1915 
1916 	/*
1917 	 * It has no new packet coming and 'etmq->packet' contains the stale
1918 	 * packet which was set at the previous time with packets swapping;
1919 	 * so skip to generate branch sample to avoid stale packet.
1920 	 *
1921 	 * For this case only flush branch stack and generate a last branch
1922 	 * event for the branches left in the circular buffer at the end of
1923 	 * the trace.
1924 	 */
1925 	if (etmq->etm->synth_opts.last_branch &&
1926 	    etmq->etm->synth_opts.instructions &&
1927 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1928 		u64 addr;
1929 
1930 		/* Prepare last branches for instruction sample */
1931 		cs_etm__copy_last_branch_rb(etmq, tidq);
1932 
1933 		/*
1934 		 * Use the address of the end of the last reported execution
1935 		 * range.
1936 		 */
1937 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1938 
1939 		err = cs_etm__synth_instruction_sample(
1940 			etmq, tidq, addr,
1941 			tidq->period_instructions);
1942 		if (err)
1943 			return err;
1944 
1945 		tidq->period_instructions = 0;
1946 	}
1947 
1948 	return 0;
1949 }
1950 /*
1951  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1952  *			   if need be.
1953  * Returns:	< 0	if error
1954  *		= 0	if no more auxtrace_buffer to read
1955  *		> 0	if the current buffer isn't empty yet
1956  */
1957 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1958 {
1959 	int ret;
1960 
1961 	if (!etmq->buf_len) {
1962 		ret = cs_etm__get_trace(etmq);
1963 		if (ret <= 0)
1964 			return ret;
1965 		/*
1966 		 * We cannot assume consecutive blocks in the data file
1967 		 * are contiguous, reset the decoder to force re-sync.
1968 		 */
1969 		ret = cs_etm_decoder__reset(etmq->decoder);
1970 		if (ret)
1971 			return ret;
1972 	}
1973 
1974 	return etmq->buf_len;
1975 }
1976 
1977 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1978 				 struct cs_etm_packet *packet,
1979 				 u64 end_addr)
1980 {
1981 	/* Initialise to keep compiler happy */
1982 	u16 instr16 = 0;
1983 	u32 instr32 = 0;
1984 	u64 addr;
1985 
1986 	switch (packet->isa) {
1987 	case CS_ETM_ISA_T32:
1988 		/*
1989 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1990 		 *
1991 		 *  b'15         b'8
1992 		 * +-----------------+--------+
1993 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1994 		 * +-----------------+--------+
1995 		 *
1996 		 * According to the specification, it only defines SVC for T32
1997 		 * with 16 bits instruction and has no definition for 32bits;
1998 		 * so below only read 2 bytes as instruction size for T32.
1999 		 */
2000 		addr = end_addr - 2;
2001 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16),
2002 				   (u8 *)&instr16, 0);
2003 		if ((instr16 & 0xFF00) == 0xDF00)
2004 			return true;
2005 
2006 		break;
2007 	case CS_ETM_ISA_A32:
2008 		/*
2009 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
2010 		 *
2011 		 *  b'31 b'28 b'27 b'24
2012 		 * +---------+---------+-------------------------+
2013 		 * |  !1111  | 1 1 1 1 |        imm24            |
2014 		 * +---------+---------+-------------------------+
2015 		 */
2016 		addr = end_addr - 4;
2017 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2018 				   (u8 *)&instr32, 0);
2019 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
2020 		    (instr32 & 0xF0000000) != 0xF0000000)
2021 			return true;
2022 
2023 		break;
2024 	case CS_ETM_ISA_A64:
2025 		/*
2026 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
2027 		 *
2028 		 *  b'31               b'21           b'4     b'0
2029 		 * +-----------------------+---------+-----------+
2030 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
2031 		 * +-----------------------+---------+-----------+
2032 		 */
2033 		addr = end_addr - 4;
2034 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2035 				   (u8 *)&instr32, 0);
2036 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
2037 			return true;
2038 
2039 		break;
2040 	case CS_ETM_ISA_UNKNOWN:
2041 	default:
2042 		break;
2043 	}
2044 
2045 	return false;
2046 }
2047 
2048 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
2049 			       struct cs_etm_traceid_queue *tidq, u64 magic)
2050 {
2051 	u8 trace_chan_id = tidq->trace_chan_id;
2052 	struct cs_etm_packet *packet = tidq->packet;
2053 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2054 
2055 	if (magic == __perf_cs_etmv3_magic)
2056 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
2057 			return true;
2058 
2059 	/*
2060 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
2061 	 * HVC cases; need to check if it's SVC instruction based on
2062 	 * packet address.
2063 	 */
2064 	if (magic == __perf_cs_etmv4_magic) {
2065 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2066 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2067 					 prev_packet->end_addr))
2068 			return true;
2069 	}
2070 
2071 	return false;
2072 }
2073 
2074 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
2075 				       u64 magic)
2076 {
2077 	struct cs_etm_packet *packet = tidq->packet;
2078 
2079 	if (magic == __perf_cs_etmv3_magic)
2080 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
2081 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
2082 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
2083 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
2084 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
2085 			return true;
2086 
2087 	if (magic == __perf_cs_etmv4_magic)
2088 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
2089 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
2090 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
2091 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
2092 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
2093 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
2094 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
2095 			return true;
2096 
2097 	return false;
2098 }
2099 
2100 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
2101 				      struct cs_etm_traceid_queue *tidq,
2102 				      u64 magic)
2103 {
2104 	u8 trace_chan_id = tidq->trace_chan_id;
2105 	struct cs_etm_packet *packet = tidq->packet;
2106 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2107 
2108 	if (magic == __perf_cs_etmv3_magic)
2109 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
2110 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
2111 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
2112 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
2113 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
2114 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
2115 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
2116 			return true;
2117 
2118 	if (magic == __perf_cs_etmv4_magic) {
2119 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
2120 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
2121 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
2122 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
2123 			return true;
2124 
2125 		/*
2126 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
2127 		 * (SMC, HVC) are taken as sync exceptions.
2128 		 */
2129 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2130 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2131 					  prev_packet->end_addr))
2132 			return true;
2133 
2134 		/*
2135 		 * ETMv4 has 5 bits for exception number; if the numbers
2136 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
2137 		 * they are implementation defined exceptions.
2138 		 *
2139 		 * For this case, simply take it as sync exception.
2140 		 */
2141 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
2142 		    packet->exception_number <= CS_ETMV4_EXC_END)
2143 			return true;
2144 	}
2145 
2146 	return false;
2147 }
2148 
2149 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
2150 				    struct cs_etm_traceid_queue *tidq)
2151 {
2152 	struct cs_etm_packet *packet = tidq->packet;
2153 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2154 	u8 trace_chan_id = tidq->trace_chan_id;
2155 	u64 magic;
2156 	int ret;
2157 
2158 	switch (packet->sample_type) {
2159 	case CS_ETM_RANGE:
2160 		/*
2161 		 * Immediate branch instruction without neither link nor
2162 		 * return flag, it's normal branch instruction within
2163 		 * the function.
2164 		 */
2165 		if (packet->last_instr_type == OCSD_INSTR_BR &&
2166 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
2167 			packet->flags = PERF_IP_FLAG_BRANCH;
2168 
2169 			if (packet->last_instr_cond)
2170 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
2171 		}
2172 
2173 		/*
2174 		 * Immediate branch instruction with link (e.g. BL), this is
2175 		 * branch instruction for function call.
2176 		 */
2177 		if (packet->last_instr_type == OCSD_INSTR_BR &&
2178 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2179 			packet->flags = PERF_IP_FLAG_BRANCH |
2180 					PERF_IP_FLAG_CALL;
2181 
2182 		/*
2183 		 * Indirect branch instruction with link (e.g. BLR), this is
2184 		 * branch instruction for function call.
2185 		 */
2186 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2187 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2188 			packet->flags = PERF_IP_FLAG_BRANCH |
2189 					PERF_IP_FLAG_CALL;
2190 
2191 		/*
2192 		 * Indirect branch instruction with subtype of
2193 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
2194 		 * function return for A32/T32.
2195 		 */
2196 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2197 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
2198 			packet->flags = PERF_IP_FLAG_BRANCH |
2199 					PERF_IP_FLAG_RETURN;
2200 
2201 		/*
2202 		 * Indirect branch instruction without link (e.g. BR), usually
2203 		 * this is used for function return, especially for functions
2204 		 * within dynamic link lib.
2205 		 */
2206 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2207 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
2208 			packet->flags = PERF_IP_FLAG_BRANCH |
2209 					PERF_IP_FLAG_RETURN;
2210 
2211 		/* Return instruction for function return. */
2212 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2213 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
2214 			packet->flags = PERF_IP_FLAG_BRANCH |
2215 					PERF_IP_FLAG_RETURN;
2216 
2217 		/*
2218 		 * Decoder might insert a discontinuity in the middle of
2219 		 * instruction packets, fixup prev_packet with flag
2220 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
2221 		 */
2222 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
2223 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2224 					      PERF_IP_FLAG_TRACE_BEGIN;
2225 
2226 		/*
2227 		 * If the previous packet is an exception return packet
2228 		 * and the return address just follows SVC instruction,
2229 		 * it needs to calibrate the previous packet sample flags
2230 		 * as PERF_IP_FLAG_SYSCALLRET.
2231 		 */
2232 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
2233 					   PERF_IP_FLAG_RETURN |
2234 					   PERF_IP_FLAG_INTERRUPT) &&
2235 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
2236 					 packet, packet->start_addr))
2237 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2238 					     PERF_IP_FLAG_RETURN |
2239 					     PERF_IP_FLAG_SYSCALLRET;
2240 		break;
2241 	case CS_ETM_DISCONTINUITY:
2242 		/*
2243 		 * The trace is discontinuous, if the previous packet is
2244 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
2245 		 * for previous packet.
2246 		 */
2247 		if (prev_packet->sample_type == CS_ETM_RANGE)
2248 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2249 					      PERF_IP_FLAG_TRACE_END;
2250 		break;
2251 	case CS_ETM_EXCEPTION:
2252 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
2253 		if (ret)
2254 			return ret;
2255 
2256 		/* The exception is for system call. */
2257 		if (cs_etm__is_syscall(etmq, tidq, magic))
2258 			packet->flags = PERF_IP_FLAG_BRANCH |
2259 					PERF_IP_FLAG_CALL |
2260 					PERF_IP_FLAG_SYSCALLRET;
2261 		/*
2262 		 * The exceptions are triggered by external signals from bus,
2263 		 * interrupt controller, debug module, PE reset or halt.
2264 		 */
2265 		else if (cs_etm__is_async_exception(tidq, magic))
2266 			packet->flags = PERF_IP_FLAG_BRANCH |
2267 					PERF_IP_FLAG_CALL |
2268 					PERF_IP_FLAG_ASYNC |
2269 					PERF_IP_FLAG_INTERRUPT;
2270 		/*
2271 		 * Otherwise, exception is caused by trap, instruction &
2272 		 * data fault, or alignment errors.
2273 		 */
2274 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
2275 			packet->flags = PERF_IP_FLAG_BRANCH |
2276 					PERF_IP_FLAG_CALL |
2277 					PERF_IP_FLAG_INTERRUPT;
2278 
2279 		/*
2280 		 * When the exception packet is inserted, since exception
2281 		 * packet is not used standalone for generating samples
2282 		 * and it's affiliation to the previous instruction range
2283 		 * packet; so set previous range packet flags to tell perf
2284 		 * it is an exception taken branch.
2285 		 */
2286 		if (prev_packet->sample_type == CS_ETM_RANGE)
2287 			prev_packet->flags = packet->flags;
2288 		break;
2289 	case CS_ETM_EXCEPTION_RET:
2290 		/*
2291 		 * When the exception return packet is inserted, since
2292 		 * exception return packet is not used standalone for
2293 		 * generating samples and it's affiliation to the previous
2294 		 * instruction range packet; so set previous range packet
2295 		 * flags to tell perf it is an exception return branch.
2296 		 *
2297 		 * The exception return can be for either system call or
2298 		 * other exception types; unfortunately the packet doesn't
2299 		 * contain exception type related info so we cannot decide
2300 		 * the exception type purely based on exception return packet.
2301 		 * If we record the exception number from exception packet and
2302 		 * reuse it for exception return packet, this is not reliable
2303 		 * due the trace can be discontinuity or the interrupt can
2304 		 * be nested, thus the recorded exception number cannot be
2305 		 * used for exception return packet for these two cases.
2306 		 *
2307 		 * For exception return packet, we only need to distinguish the
2308 		 * packet is for system call or for other types.  Thus the
2309 		 * decision can be deferred when receive the next packet which
2310 		 * contains the return address, based on the return address we
2311 		 * can read out the previous instruction and check if it's a
2312 		 * system call instruction and then calibrate the sample flag
2313 		 * as needed.
2314 		 */
2315 		if (prev_packet->sample_type == CS_ETM_RANGE)
2316 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2317 					     PERF_IP_FLAG_RETURN |
2318 					     PERF_IP_FLAG_INTERRUPT;
2319 		break;
2320 	case CS_ETM_EMPTY:
2321 	default:
2322 		break;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2329 {
2330 	int ret = 0;
2331 	size_t processed = 0;
2332 
2333 	/*
2334 	 * Packets are decoded and added to the decoder's packet queue
2335 	 * until the decoder packet processing callback has requested that
2336 	 * processing stops or there is nothing left in the buffer.  Normal
2337 	 * operations that stop processing are a timestamp packet or a full
2338 	 * decoder buffer queue.
2339 	 */
2340 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2341 						 etmq->offset,
2342 						 &etmq->buf[etmq->buf_used],
2343 						 etmq->buf_len,
2344 						 &processed);
2345 	if (ret)
2346 		goto out;
2347 
2348 	etmq->offset += processed;
2349 	etmq->buf_used += processed;
2350 	etmq->buf_len -= processed;
2351 
2352 out:
2353 	return ret;
2354 }
2355 
2356 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2357 					 struct cs_etm_traceid_queue *tidq)
2358 {
2359 	int ret;
2360 	struct cs_etm_packet_queue *packet_queue;
2361 
2362 	packet_queue = &tidq->packet_queue;
2363 
2364 	/* Process each packet in this chunk */
2365 	while (1) {
2366 		ret = cs_etm_decoder__get_packet(packet_queue,
2367 						 tidq->packet);
2368 		if (ret <= 0)
2369 			/*
2370 			 * Stop processing this chunk on
2371 			 * end of data or error
2372 			 */
2373 			break;
2374 
2375 		/*
2376 		 * Since packet addresses are swapped in packet
2377 		 * handling within below switch() statements,
2378 		 * thus setting sample flags must be called
2379 		 * prior to switch() statement to use address
2380 		 * information before packets swapping.
2381 		 */
2382 		ret = cs_etm__set_sample_flags(etmq, tidq);
2383 		if (ret < 0)
2384 			break;
2385 
2386 		switch (tidq->packet->sample_type) {
2387 		case CS_ETM_RANGE:
2388 			/*
2389 			 * If the packet contains an instruction
2390 			 * range, generate instruction sequence
2391 			 * events.
2392 			 */
2393 			cs_etm__sample(etmq, tidq);
2394 			break;
2395 		case CS_ETM_EXCEPTION:
2396 		case CS_ETM_EXCEPTION_RET:
2397 			/*
2398 			 * If the exception packet is coming,
2399 			 * make sure the previous instruction
2400 			 * range packet to be handled properly.
2401 			 */
2402 			cs_etm__exception(tidq);
2403 			break;
2404 		case CS_ETM_DISCONTINUITY:
2405 			/*
2406 			 * Discontinuity in trace, flush
2407 			 * previous branch stack
2408 			 */
2409 			cs_etm__flush(etmq, tidq);
2410 			break;
2411 		case CS_ETM_EMPTY:
2412 			/*
2413 			 * Should not receive empty packet,
2414 			 * report error.
2415 			 */
2416 			pr_err("CS ETM Trace: empty packet\n");
2417 			return -EINVAL;
2418 		default:
2419 			break;
2420 		}
2421 	}
2422 
2423 	return ret;
2424 }
2425 
2426 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2427 {
2428 	int idx;
2429 	struct int_node *inode;
2430 	struct cs_etm_traceid_queue *tidq;
2431 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2432 
2433 	intlist__for_each_entry(inode, traceid_queues_list) {
2434 		idx = (int)(intptr_t)inode->priv;
2435 		tidq = etmq->traceid_queues[idx];
2436 
2437 		/* Ignore return value */
2438 		cs_etm__process_traceid_queue(etmq, tidq);
2439 
2440 		/*
2441 		 * Generate an instruction sample with the remaining
2442 		 * branchstack entries.
2443 		 */
2444 		cs_etm__flush(etmq, tidq);
2445 	}
2446 }
2447 
2448 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq)
2449 {
2450 	int err = 0;
2451 	struct cs_etm_traceid_queue *tidq;
2452 
2453 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2454 	if (!tidq)
2455 		return -EINVAL;
2456 
2457 	/* Go through each buffer in the queue and decode them one by one */
2458 	while (1) {
2459 		err = cs_etm__get_data_block(etmq);
2460 		if (err <= 0)
2461 			return err;
2462 
2463 		/* Run trace decoder until buffer consumed or end of trace */
2464 		do {
2465 			err = cs_etm__decode_data_block(etmq);
2466 			if (err)
2467 				return err;
2468 
2469 			/*
2470 			 * Process each packet in this chunk, nothing to do if
2471 			 * an error occurs other than hoping the next one will
2472 			 * be better.
2473 			 */
2474 			err = cs_etm__process_traceid_queue(etmq, tidq);
2475 
2476 		} while (etmq->buf_len);
2477 
2478 		if (err == 0)
2479 			/* Flush any remaining branch stack entries */
2480 			err = cs_etm__end_block(etmq, tidq);
2481 	}
2482 
2483 	return err;
2484 }
2485 
2486 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq)
2487 {
2488 	int idx, err = 0;
2489 	struct cs_etm_traceid_queue *tidq;
2490 	struct int_node *inode;
2491 
2492 	/* Go through each buffer in the queue and decode them one by one */
2493 	while (1) {
2494 		err = cs_etm__get_data_block(etmq);
2495 		if (err <= 0)
2496 			return err;
2497 
2498 		/* Run trace decoder until buffer consumed or end of trace */
2499 		do {
2500 			err = cs_etm__decode_data_block(etmq);
2501 			if (err)
2502 				return err;
2503 
2504 			/*
2505 			 * cs_etm__run_per_thread_timeless_decoder() runs on a
2506 			 * single traceID queue because each TID has a separate
2507 			 * buffer. But here in per-cpu mode we need to iterate
2508 			 * over each channel instead.
2509 			 */
2510 			intlist__for_each_entry(inode,
2511 						etmq->traceid_queues_list) {
2512 				idx = (int)(intptr_t)inode->priv;
2513 				tidq = etmq->traceid_queues[idx];
2514 				cs_etm__process_traceid_queue(etmq, tidq);
2515 			}
2516 		} while (etmq->buf_len);
2517 
2518 		intlist__for_each_entry(inode, etmq->traceid_queues_list) {
2519 			idx = (int)(intptr_t)inode->priv;
2520 			tidq = etmq->traceid_queues[idx];
2521 			/* Flush any remaining branch stack entries */
2522 			err = cs_etm__end_block(etmq, tidq);
2523 			if (err)
2524 				return err;
2525 		}
2526 	}
2527 
2528 	return err;
2529 }
2530 
2531 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2532 					   pid_t tid)
2533 {
2534 	unsigned int i;
2535 	struct auxtrace_queues *queues = &etm->queues;
2536 
2537 	for (i = 0; i < queues->nr_queues; i++) {
2538 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2539 		struct cs_etm_queue *etmq = queue->priv;
2540 		struct cs_etm_traceid_queue *tidq;
2541 
2542 		if (!etmq)
2543 			continue;
2544 
2545 		if (etm->per_thread_decoding) {
2546 			tidq = cs_etm__etmq_get_traceid_queue(
2547 				etmq, CS_ETM_PER_THREAD_TRACEID);
2548 
2549 			if (!tidq)
2550 				continue;
2551 
2552 			if (tid == -1 || thread__tid(tidq->thread) == tid)
2553 				cs_etm__run_per_thread_timeless_decoder(etmq);
2554 		} else
2555 			cs_etm__run_per_cpu_timeless_decoder(etmq);
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm)
2562 {
2563 	int ret = 0;
2564 	unsigned int cs_queue_nr, queue_nr, i;
2565 	u8 trace_chan_id;
2566 	u64 cs_timestamp;
2567 	struct auxtrace_queue *queue;
2568 	struct cs_etm_queue *etmq;
2569 	struct cs_etm_traceid_queue *tidq;
2570 
2571 	/*
2572 	 * Pre-populate the heap with one entry from each queue so that we can
2573 	 * start processing in time order across all queues.
2574 	 */
2575 	for (i = 0; i < etm->queues.nr_queues; i++) {
2576 		etmq = etm->queues.queue_array[i].priv;
2577 		if (!etmq)
2578 			continue;
2579 
2580 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	while (1) {
2586 		if (!etm->heap.heap_cnt)
2587 			goto out;
2588 
2589 		/* Take the entry at the top of the min heap */
2590 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2591 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2592 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2593 		queue = &etm->queues.queue_array[queue_nr];
2594 		etmq = queue->priv;
2595 
2596 		/*
2597 		 * Remove the top entry from the heap since we are about
2598 		 * to process it.
2599 		 */
2600 		auxtrace_heap__pop(&etm->heap);
2601 
2602 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2603 		if (!tidq) {
2604 			/*
2605 			 * No traceID queue has been allocated for this traceID,
2606 			 * which means something somewhere went very wrong.  No
2607 			 * other choice than simply exit.
2608 			 */
2609 			ret = -EINVAL;
2610 			goto out;
2611 		}
2612 
2613 		/*
2614 		 * Packets associated with this timestamp are already in
2615 		 * the etmq's traceID queue, so process them.
2616 		 */
2617 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2618 		if (ret < 0)
2619 			goto out;
2620 
2621 		/*
2622 		 * Packets for this timestamp have been processed, time to
2623 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2624 		 * if need be.
2625 		 */
2626 refetch:
2627 		ret = cs_etm__get_data_block(etmq);
2628 		if (ret < 0)
2629 			goto out;
2630 
2631 		/*
2632 		 * No more auxtrace_buffers to process in this etmq, simply
2633 		 * move on to another entry in the auxtrace_heap.
2634 		 */
2635 		if (!ret)
2636 			continue;
2637 
2638 		ret = cs_etm__decode_data_block(etmq);
2639 		if (ret)
2640 			goto out;
2641 
2642 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2643 
2644 		if (!cs_timestamp) {
2645 			/*
2646 			 * Function cs_etm__decode_data_block() returns when
2647 			 * there is no more traces to decode in the current
2648 			 * auxtrace_buffer OR when a timestamp has been
2649 			 * encountered on any of the traceID queues.  Since we
2650 			 * did not get a timestamp, there is no more traces to
2651 			 * process in this auxtrace_buffer.  As such empty and
2652 			 * flush all traceID queues.
2653 			 */
2654 			cs_etm__clear_all_traceid_queues(etmq);
2655 
2656 			/* Fetch another auxtrace_buffer for this etmq */
2657 			goto refetch;
2658 		}
2659 
2660 		/*
2661 		 * Add to the min heap the timestamp for packets that have
2662 		 * just been decoded.  They will be processed and synthesized
2663 		 * during the next call to cs_etm__process_traceid_queue() for
2664 		 * this queue/traceID.
2665 		 */
2666 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2667 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2668 	}
2669 
2670 out:
2671 	return ret;
2672 }
2673 
2674 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2675 					union perf_event *event)
2676 {
2677 	struct thread *th;
2678 
2679 	if (etm->timeless_decoding)
2680 		return 0;
2681 
2682 	/*
2683 	 * Add the tid/pid to the log so that we can get a match when we get a
2684 	 * contextID from the decoder. Only track for the host: only kernel
2685 	 * trace is supported for guests which wouldn't need pids so this should
2686 	 * be fine.
2687 	 */
2688 	th = machine__findnew_thread(&etm->session->machines.host,
2689 				     event->itrace_start.pid,
2690 				     event->itrace_start.tid);
2691 	if (!th)
2692 		return -ENOMEM;
2693 
2694 	thread__put(th);
2695 
2696 	return 0;
2697 }
2698 
2699 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2700 					   union perf_event *event)
2701 {
2702 	struct thread *th;
2703 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2704 
2705 	/*
2706 	 * Context switch in per-thread mode are irrelevant since perf
2707 	 * will start/stop tracing as the process is scheduled.
2708 	 */
2709 	if (etm->timeless_decoding)
2710 		return 0;
2711 
2712 	/*
2713 	 * SWITCH_IN events carry the next process to be switched out while
2714 	 * SWITCH_OUT events carry the process to be switched in.  As such
2715 	 * we don't care about IN events.
2716 	 */
2717 	if (!out)
2718 		return 0;
2719 
2720 	/*
2721 	 * Add the tid/pid to the log so that we can get a match when we get a
2722 	 * contextID from the decoder. Only track for the host: only kernel
2723 	 * trace is supported for guests which wouldn't need pids so this should
2724 	 * be fine.
2725 	 */
2726 	th = machine__findnew_thread(&etm->session->machines.host,
2727 				     event->context_switch.next_prev_pid,
2728 				     event->context_switch.next_prev_tid);
2729 	if (!th)
2730 		return -ENOMEM;
2731 
2732 	thread__put(th);
2733 
2734 	return 0;
2735 }
2736 
2737 static int cs_etm__process_event(struct perf_session *session,
2738 				 union perf_event *event,
2739 				 struct perf_sample *sample,
2740 				 struct perf_tool *tool)
2741 {
2742 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2743 						   struct cs_etm_auxtrace,
2744 						   auxtrace);
2745 
2746 	if (dump_trace)
2747 		return 0;
2748 
2749 	if (!tool->ordered_events) {
2750 		pr_err("CoreSight ETM Trace requires ordered events\n");
2751 		return -EINVAL;
2752 	}
2753 
2754 	switch (event->header.type) {
2755 	case PERF_RECORD_EXIT:
2756 		/*
2757 		 * Don't need to wait for cs_etm__flush_events() in per-thread mode to
2758 		 * start the decode because we know there will be no more trace from
2759 		 * this thread. All this does is emit samples earlier than waiting for
2760 		 * the flush in other modes, but with timestamps it makes sense to wait
2761 		 * for flush so that events from different threads are interleaved
2762 		 * properly.
2763 		 */
2764 		if (etm->per_thread_decoding && etm->timeless_decoding)
2765 			return cs_etm__process_timeless_queues(etm,
2766 							       event->fork.tid);
2767 		break;
2768 
2769 	case PERF_RECORD_ITRACE_START:
2770 		return cs_etm__process_itrace_start(etm, event);
2771 
2772 	case PERF_RECORD_SWITCH_CPU_WIDE:
2773 		return cs_etm__process_switch_cpu_wide(etm, event);
2774 
2775 	case PERF_RECORD_AUX:
2776 		/*
2777 		 * Record the latest kernel timestamp available in the header
2778 		 * for samples so that synthesised samples occur from this point
2779 		 * onwards.
2780 		 */
2781 		if (sample->time && (sample->time != (u64)-1))
2782 			etm->latest_kernel_timestamp = sample->time;
2783 		break;
2784 
2785 	default:
2786 		break;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2793 			     struct perf_record_auxtrace *event)
2794 {
2795 	struct auxtrace_buffer *buf;
2796 	unsigned int i;
2797 	/*
2798 	 * Find all buffers with same reference in the queues and dump them.
2799 	 * This is because the queues can contain multiple entries of the same
2800 	 * buffer that were split on aux records.
2801 	 */
2802 	for (i = 0; i < etm->queues.nr_queues; ++i)
2803 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2804 			if (buf->reference == event->reference)
2805 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2806 }
2807 
2808 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2809 					  union perf_event *event,
2810 					  struct perf_tool *tool __maybe_unused)
2811 {
2812 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2813 						   struct cs_etm_auxtrace,
2814 						   auxtrace);
2815 	if (!etm->data_queued) {
2816 		struct auxtrace_buffer *buffer;
2817 		off_t  data_offset;
2818 		int fd = perf_data__fd(session->data);
2819 		bool is_pipe = perf_data__is_pipe(session->data);
2820 		int err;
2821 		int idx = event->auxtrace.idx;
2822 
2823 		if (is_pipe)
2824 			data_offset = 0;
2825 		else {
2826 			data_offset = lseek(fd, 0, SEEK_CUR);
2827 			if (data_offset == -1)
2828 				return -errno;
2829 		}
2830 
2831 		err = auxtrace_queues__add_event(&etm->queues, session,
2832 						 event, data_offset, &buffer);
2833 		if (err)
2834 			return err;
2835 
2836 		/*
2837 		 * Knowing if the trace is formatted or not requires a lookup of
2838 		 * the aux record so only works in non-piped mode where data is
2839 		 * queued in cs_etm__queue_aux_records(). Always assume
2840 		 * formatted in piped mode (true).
2841 		 */
2842 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2843 					  idx, true, -1);
2844 		if (err)
2845 			return err;
2846 
2847 		if (dump_trace)
2848 			if (auxtrace_buffer__get_data(buffer, fd)) {
2849 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2850 				auxtrace_buffer__put_data(buffer);
2851 			}
2852 	} else if (dump_trace)
2853 		dump_queued_data(etm, &event->auxtrace);
2854 
2855 	return 0;
2856 }
2857 
2858 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
2859 {
2860 	struct evsel *evsel;
2861 	struct evlist *evlist = etm->session->evlist;
2862 
2863 	/* Override timeless mode with user input from --itrace=Z */
2864 	if (etm->synth_opts.timeless_decoding) {
2865 		etm->timeless_decoding = true;
2866 		return 0;
2867 	}
2868 
2869 	/*
2870 	 * Find the cs_etm evsel and look at what its timestamp setting was
2871 	 */
2872 	evlist__for_each_entry(evlist, evsel)
2873 		if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2874 			etm->timeless_decoding =
2875 				!(evsel->core.attr.config & BIT(ETM_OPT_TS));
2876 			return 0;
2877 		}
2878 
2879 	pr_err("CS ETM: Couldn't find ETM evsel\n");
2880 	return -EINVAL;
2881 }
2882 
2883 /*
2884  * Read a single cpu parameter block from the auxtrace_info priv block.
2885  *
2886  * For version 1 there is a per cpu nr_params entry. If we are handling
2887  * version 1 file, then there may be less, the same, or more params
2888  * indicated by this value than the compile time number we understand.
2889  *
2890  * For a version 0 info block, there are a fixed number, and we need to
2891  * fill out the nr_param value in the metadata we create.
2892  */
2893 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2894 				    int out_blk_size, int nr_params_v0)
2895 {
2896 	u64 *metadata = NULL;
2897 	int hdr_version;
2898 	int nr_in_params, nr_out_params, nr_cmn_params;
2899 	int i, k;
2900 
2901 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2902 	if (!metadata)
2903 		return NULL;
2904 
2905 	/* read block current index & version */
2906 	i = *buff_in_offset;
2907 	hdr_version = buff_in[CS_HEADER_VERSION];
2908 
2909 	if (!hdr_version) {
2910 	/* read version 0 info block into a version 1 metadata block  */
2911 		nr_in_params = nr_params_v0;
2912 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2913 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2914 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2915 		/* remaining block params at offset +1 from source */
2916 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2917 			metadata[k + 1] = buff_in[i + k];
2918 		/* version 0 has 2 common params */
2919 		nr_cmn_params = 2;
2920 	} else {
2921 	/* read version 1 info block - input and output nr_params may differ */
2922 		/* version 1 has 3 common params */
2923 		nr_cmn_params = 3;
2924 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2925 
2926 		/* if input has more params than output - skip excess */
2927 		nr_out_params = nr_in_params + nr_cmn_params;
2928 		if (nr_out_params > out_blk_size)
2929 			nr_out_params = out_blk_size;
2930 
2931 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2932 			metadata[k] = buff_in[i + k];
2933 
2934 		/* record the actual nr params we copied */
2935 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2936 	}
2937 
2938 	/* adjust in offset by number of in params used */
2939 	i += nr_in_params + nr_cmn_params;
2940 	*buff_in_offset = i;
2941 	return metadata;
2942 }
2943 
2944 /**
2945  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2946  * on the bounds of aux_event, if it matches with the buffer that's at
2947  * file_offset.
2948  *
2949  * Normally, whole auxtrace buffers would be added to the queue. But we
2950  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2951  * is reset across each buffer, so splitting the buffers up in advance has
2952  * the same effect.
2953  */
2954 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2955 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2956 {
2957 	int err;
2958 	char buf[PERF_SAMPLE_MAX_SIZE];
2959 	union perf_event *auxtrace_event_union;
2960 	struct perf_record_auxtrace *auxtrace_event;
2961 	union perf_event auxtrace_fragment;
2962 	__u64 aux_offset, aux_size;
2963 	__u32 idx;
2964 	bool formatted;
2965 
2966 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2967 						   struct cs_etm_auxtrace,
2968 						   auxtrace);
2969 
2970 	/*
2971 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2972 	 * from looping through the auxtrace index.
2973 	 */
2974 	err = perf_session__peek_event(session, file_offset, buf,
2975 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2976 	if (err)
2977 		return err;
2978 	auxtrace_event = &auxtrace_event_union->auxtrace;
2979 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2980 		return -EINVAL;
2981 
2982 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2983 		auxtrace_event->header.size != sz) {
2984 		return -EINVAL;
2985 	}
2986 
2987 	/*
2988 	 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See
2989 	 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a
2990 	 * CPU as we set this always for the AUX_OUTPUT_HW_ID event.
2991 	 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1.
2992 	 * Return 'not found' if mismatch.
2993 	 */
2994 	if (auxtrace_event->cpu == (__u32) -1) {
2995 		etm->per_thread_decoding = true;
2996 		if (auxtrace_event->tid != sample->tid)
2997 			return 1;
2998 	} else if (auxtrace_event->cpu != sample->cpu) {
2999 		if (etm->per_thread_decoding) {
3000 			/*
3001 			 * Found a per-cpu buffer after a per-thread one was
3002 			 * already found
3003 			 */
3004 			pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n");
3005 			return -EINVAL;
3006 		}
3007 		return 1;
3008 	}
3009 
3010 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
3011 		/*
3012 		 * Clamp size in snapshot mode. The buffer size is clamped in
3013 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
3014 		 * the buffer size.
3015 		 */
3016 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
3017 
3018 		/*
3019 		 * In this mode, the head also points to the end of the buffer so aux_offset
3020 		 * needs to have the size subtracted so it points to the beginning as in normal mode
3021 		 */
3022 		aux_offset = aux_event->aux_offset - aux_size;
3023 	} else {
3024 		aux_size = aux_event->aux_size;
3025 		aux_offset = aux_event->aux_offset;
3026 	}
3027 
3028 	if (aux_offset >= auxtrace_event->offset &&
3029 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
3030 		/*
3031 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
3032 		 * based on the sizes of the aux event, and queue that fragment.
3033 		 */
3034 		auxtrace_fragment.auxtrace = *auxtrace_event;
3035 		auxtrace_fragment.auxtrace.size = aux_size;
3036 		auxtrace_fragment.auxtrace.offset = aux_offset;
3037 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
3038 
3039 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
3040 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
3041 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
3042 						 file_offset, NULL);
3043 		if (err)
3044 			return err;
3045 
3046 		idx = auxtrace_event->idx;
3047 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
3048 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
3049 					   idx, formatted, sample->cpu);
3050 	}
3051 
3052 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
3053 	return 1;
3054 }
3055 
3056 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event,
3057 					u64 offset __maybe_unused, void *data __maybe_unused)
3058 {
3059 	/* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */
3060 	if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) {
3061 		(*(int *)data)++; /* increment found count */
3062 		return cs_etm__process_aux_output_hw_id(session, event);
3063 	}
3064 	return 0;
3065 }
3066 
3067 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
3068 					u64 offset __maybe_unused, void *data __maybe_unused)
3069 {
3070 	struct perf_sample sample;
3071 	int ret;
3072 	struct auxtrace_index_entry *ent;
3073 	struct auxtrace_index *auxtrace_index;
3074 	struct evsel *evsel;
3075 	size_t i;
3076 
3077 	/* Don't care about any other events, we're only queuing buffers for AUX events */
3078 	if (event->header.type != PERF_RECORD_AUX)
3079 		return 0;
3080 
3081 	if (event->header.size < sizeof(struct perf_record_aux))
3082 		return -EINVAL;
3083 
3084 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
3085 	if (!event->aux.aux_size)
3086 		return 0;
3087 
3088 	/*
3089 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
3090 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
3091 	 */
3092 	evsel = evlist__event2evsel(session->evlist, event);
3093 	if (!evsel)
3094 		return -EINVAL;
3095 	ret = evsel__parse_sample(evsel, event, &sample);
3096 	if (ret)
3097 		return ret;
3098 
3099 	/*
3100 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
3101 	 */
3102 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
3103 		for (i = 0; i < auxtrace_index->nr; i++) {
3104 			ent = &auxtrace_index->entries[i];
3105 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
3106 							 ent->sz, &event->aux, &sample);
3107 			/*
3108 			 * Stop search on error or successful values. Continue search on
3109 			 * 1 ('not found')
3110 			 */
3111 			if (ret != 1)
3112 				return ret;
3113 		}
3114 	}
3115 
3116 	/*
3117 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
3118 	 * don't exit with an error because it will still be possible to decode other aux records.
3119 	 */
3120 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
3121 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
3122 	return 0;
3123 }
3124 
3125 static int cs_etm__queue_aux_records(struct perf_session *session)
3126 {
3127 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
3128 								struct auxtrace_index, list);
3129 	if (index && index->nr > 0)
3130 		return perf_session__peek_events(session, session->header.data_offset,
3131 						 session->header.data_size,
3132 						 cs_etm__queue_aux_records_cb, NULL);
3133 
3134 	/*
3135 	 * We would get here if there are no entries in the index (either no auxtrace
3136 	 * buffers or no index at all). Fail silently as there is the possibility of
3137 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
3138 	 * false.
3139 	 *
3140 	 * In that scenario, buffers will not be split by AUX records.
3141 	 */
3142 	return 0;
3143 }
3144 
3145 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
3146 				  (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
3147 
3148 /*
3149  * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
3150  * timestamps).
3151  */
3152 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
3153 {
3154 	int j;
3155 
3156 	for (j = 0; j < num_cpu; j++) {
3157 		switch (metadata[j][CS_ETM_MAGIC]) {
3158 		case __perf_cs_etmv4_magic:
3159 			if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
3160 				return false;
3161 			break;
3162 		case __perf_cs_ete_magic:
3163 			if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
3164 				return false;
3165 			break;
3166 		default:
3167 			/* Unknown / unsupported magic number. */
3168 			return false;
3169 		}
3170 	}
3171 	return true;
3172 }
3173 
3174 /* map trace ids to correct metadata block, from information in metadata */
3175 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata)
3176 {
3177 	u64 cs_etm_magic;
3178 	u8 trace_chan_id;
3179 	int i, err;
3180 
3181 	for (i = 0; i < num_cpu; i++) {
3182 		cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3183 		switch (cs_etm_magic) {
3184 		case __perf_cs_etmv3_magic:
3185 			metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3186 			trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]);
3187 			break;
3188 		case __perf_cs_etmv4_magic:
3189 		case __perf_cs_ete_magic:
3190 			metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3191 			trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]);
3192 			break;
3193 		default:
3194 			/* unknown magic number */
3195 			return -EINVAL;
3196 		}
3197 		err = cs_etm__map_trace_id(trace_chan_id, metadata[i]);
3198 		if (err)
3199 			return err;
3200 	}
3201 	return 0;
3202 }
3203 
3204 /*
3205  * If we found AUX_HW_ID packets, then set any metadata marked as unused to the
3206  * unused value to reduce the number of unneeded decoders created.
3207  */
3208 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata)
3209 {
3210 	u64 cs_etm_magic;
3211 	int i;
3212 
3213 	for (i = 0; i < num_cpu; i++) {
3214 		cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3215 		switch (cs_etm_magic) {
3216 		case __perf_cs_etmv3_magic:
3217 			if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3218 				metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3219 			break;
3220 		case __perf_cs_etmv4_magic:
3221 		case __perf_cs_ete_magic:
3222 			if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3223 				metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3224 			break;
3225 		default:
3226 			/* unknown magic number */
3227 			return -EINVAL;
3228 		}
3229 	}
3230 	return 0;
3231 }
3232 
3233 int cs_etm__process_auxtrace_info_full(union perf_event *event,
3234 				       struct perf_session *session)
3235 {
3236 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3237 	struct cs_etm_auxtrace *etm = NULL;
3238 	struct perf_record_time_conv *tc = &session->time_conv;
3239 	int event_header_size = sizeof(struct perf_event_header);
3240 	int total_size = auxtrace_info->header.size;
3241 	int priv_size = 0;
3242 	int num_cpu;
3243 	int err = 0;
3244 	int aux_hw_id_found;
3245 	int i, j;
3246 	u64 *ptr = NULL;
3247 	u64 **metadata = NULL;
3248 
3249 	/*
3250 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
3251 	 * has to be made for each packet that gets decoded, optimizing access
3252 	 * in anything other than a sequential array is worth doing.
3253 	 */
3254 	traceid_list = intlist__new(NULL);
3255 	if (!traceid_list)
3256 		return -ENOMEM;
3257 
3258 	/* First the global part */
3259 	ptr = (u64 *) auxtrace_info->priv;
3260 	num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
3261 	metadata = zalloc(sizeof(*metadata) * num_cpu);
3262 	if (!metadata) {
3263 		err = -ENOMEM;
3264 		goto err_free_traceid_list;
3265 	}
3266 
3267 	/* Start parsing after the common part of the header */
3268 	i = CS_HEADER_VERSION_MAX;
3269 
3270 	/*
3271 	 * The metadata is stored in the auxtrace_info section and encodes
3272 	 * the configuration of the ARM embedded trace macrocell which is
3273 	 * required by the trace decoder to properly decode the trace due
3274 	 * to its highly compressed nature.
3275 	 */
3276 	for (j = 0; j < num_cpu; j++) {
3277 		if (ptr[i] == __perf_cs_etmv3_magic) {
3278 			metadata[j] =
3279 				cs_etm__create_meta_blk(ptr, &i,
3280 							CS_ETM_PRIV_MAX,
3281 							CS_ETM_NR_TRC_PARAMS_V0);
3282 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
3283 			metadata[j] =
3284 				cs_etm__create_meta_blk(ptr, &i,
3285 							CS_ETMV4_PRIV_MAX,
3286 							CS_ETMV4_NR_TRC_PARAMS_V0);
3287 		} else if (ptr[i] == __perf_cs_ete_magic) {
3288 			metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
3289 		} else {
3290 			ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
3291 				  ptr[i]);
3292 			err = -EINVAL;
3293 			goto err_free_metadata;
3294 		}
3295 
3296 		if (!metadata[j]) {
3297 			err = -ENOMEM;
3298 			goto err_free_metadata;
3299 		}
3300 	}
3301 
3302 	/*
3303 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3304 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
3305 	 * global metadata, and each cpu's metadata respectively.
3306 	 * The following tests if the correct number of double words was
3307 	 * present in the auxtrace info section.
3308 	 */
3309 	priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
3310 	if (i * 8 != priv_size) {
3311 		err = -EINVAL;
3312 		goto err_free_metadata;
3313 	}
3314 
3315 	etm = zalloc(sizeof(*etm));
3316 
3317 	if (!etm) {
3318 		err = -ENOMEM;
3319 		goto err_free_metadata;
3320 	}
3321 
3322 	/*
3323 	 * As all the ETMs run at the same exception level, the system should
3324 	 * have the same PID format crossing CPUs.  So cache the PID format
3325 	 * and reuse it for sequential decoding.
3326 	 */
3327 	etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]);
3328 
3329 	err = auxtrace_queues__init(&etm->queues);
3330 	if (err)
3331 		goto err_free_etm;
3332 
3333 	if (session->itrace_synth_opts->set) {
3334 		etm->synth_opts = *session->itrace_synth_opts;
3335 	} else {
3336 		itrace_synth_opts__set_default(&etm->synth_opts,
3337 				session->itrace_synth_opts->default_no_sample);
3338 		etm->synth_opts.callchain = false;
3339 	}
3340 
3341 	etm->session = session;
3342 
3343 	etm->num_cpu = num_cpu;
3344 	etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
3345 	etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
3346 	etm->metadata = metadata;
3347 	etm->auxtrace_type = auxtrace_info->type;
3348 
3349 	/* Use virtual timestamps if all ETMs report ts_source = 1 */
3350 	etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
3351 
3352 	if (!etm->has_virtual_ts)
3353 		ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
3354 			    "The time field of the samples will not be set accurately.\n\n");
3355 
3356 	etm->auxtrace.process_event = cs_etm__process_event;
3357 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3358 	etm->auxtrace.flush_events = cs_etm__flush_events;
3359 	etm->auxtrace.free_events = cs_etm__free_events;
3360 	etm->auxtrace.free = cs_etm__free;
3361 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3362 	session->auxtrace = &etm->auxtrace;
3363 
3364 	err = cs_etm__setup_timeless_decoding(etm);
3365 	if (err)
3366 		return err;
3367 
3368 	etm->tc.time_shift = tc->time_shift;
3369 	etm->tc.time_mult = tc->time_mult;
3370 	etm->tc.time_zero = tc->time_zero;
3371 	if (event_contains(*tc, time_cycles)) {
3372 		etm->tc.time_cycles = tc->time_cycles;
3373 		etm->tc.time_mask = tc->time_mask;
3374 		etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
3375 		etm->tc.cap_user_time_short = tc->cap_user_time_short;
3376 	}
3377 	err = cs_etm__synth_events(etm, session);
3378 	if (err)
3379 		goto err_free_queues;
3380 
3381 	/*
3382 	 * Map Trace ID values to CPU metadata.
3383 	 *
3384 	 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the
3385 	 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata
3386 	 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set.
3387 	 *
3388 	 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use
3389 	 * the same IDs as the old algorithm as far as is possible, unless there are clashes
3390 	 * in which case a different value will be used. This means an older perf may still
3391 	 * be able to record and read files generate on a newer system.
3392 	 *
3393 	 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of
3394 	 * those packets. If they are there then the values will be mapped and plugged into
3395 	 * the metadata. We then set any remaining metadata values with the used flag to a
3396 	 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required.
3397 	 *
3398 	 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel
3399 	 * then we map Trace ID values to CPU directly from the metadata - clearing any unused
3400 	 * flags if present.
3401 	 */
3402 
3403 	/* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */
3404 	aux_hw_id_found = 0;
3405 	err = perf_session__peek_events(session, session->header.data_offset,
3406 					session->header.data_size,
3407 					cs_etm__process_aux_hw_id_cb, &aux_hw_id_found);
3408 	if (err)
3409 		goto err_free_queues;
3410 
3411 	/* if HW ID found then clear any unused metadata ID values */
3412 	if (aux_hw_id_found)
3413 		err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata);
3414 	/* otherwise, this is a file with metadata values only, map from metadata */
3415 	else
3416 		err = cs_etm__map_trace_ids_metadata(num_cpu, metadata);
3417 
3418 	if (err)
3419 		goto err_free_queues;
3420 
3421 	err = cs_etm__queue_aux_records(session);
3422 	if (err)
3423 		goto err_free_queues;
3424 
3425 	etm->data_queued = etm->queues.populated;
3426 	return 0;
3427 
3428 err_free_queues:
3429 	auxtrace_queues__free(&etm->queues);
3430 	session->auxtrace = NULL;
3431 err_free_etm:
3432 	zfree(&etm);
3433 err_free_metadata:
3434 	/* No need to check @metadata[j], free(NULL) is supported */
3435 	for (j = 0; j < num_cpu; j++)
3436 		zfree(&metadata[j]);
3437 	zfree(&metadata);
3438 err_free_traceid_list:
3439 	intlist__delete(traceid_list);
3440 	return err;
3441 }
3442