xref: /linux/tools/perf/util/cs-etm.c (revision 8520a98dbab61e9e340cdfb72dd17ccc8a98961e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "evlist.h"
25 #include "intlist.h"
26 #include "machine.h"
27 #include "map.h"
28 #include "perf.h"
29 #include "symbol.h"
30 #include "thread.h"
31 #include "thread_map.h"
32 #include "thread-stack.h"
33 #include <tools/libc_compat.h>
34 #include "util.h"
35 
36 #define MAX_TIMESTAMP (~0ULL)
37 
38 struct cs_etm_auxtrace {
39 	struct auxtrace auxtrace;
40 	struct auxtrace_queues queues;
41 	struct auxtrace_heap heap;
42 	struct itrace_synth_opts synth_opts;
43 	struct perf_session *session;
44 	struct machine *machine;
45 	struct thread *unknown_thread;
46 
47 	u8 timeless_decoding;
48 	u8 snapshot_mode;
49 	u8 data_queued;
50 	u8 sample_branches;
51 	u8 sample_instructions;
52 
53 	int num_cpu;
54 	u32 auxtrace_type;
55 	u64 branches_sample_type;
56 	u64 branches_id;
57 	u64 instructions_sample_type;
58 	u64 instructions_sample_period;
59 	u64 instructions_id;
60 	u64 **metadata;
61 	u64 kernel_start;
62 	unsigned int pmu_type;
63 };
64 
65 struct cs_etm_traceid_queue {
66 	u8 trace_chan_id;
67 	pid_t pid, tid;
68 	u64 period_instructions;
69 	size_t last_branch_pos;
70 	union perf_event *event_buf;
71 	struct thread *thread;
72 	struct branch_stack *last_branch;
73 	struct branch_stack *last_branch_rb;
74 	struct cs_etm_packet *prev_packet;
75 	struct cs_etm_packet *packet;
76 	struct cs_etm_packet_queue packet_queue;
77 };
78 
79 struct cs_etm_queue {
80 	struct cs_etm_auxtrace *etm;
81 	struct cs_etm_decoder *decoder;
82 	struct auxtrace_buffer *buffer;
83 	unsigned int queue_nr;
84 	u8 pending_timestamp;
85 	u64 offset;
86 	const unsigned char *buf;
87 	size_t buf_len, buf_used;
88 	/* Conversion between traceID and index in traceid_queues array */
89 	struct intlist *traceid_queues_list;
90 	struct cs_etm_traceid_queue **traceid_queues;
91 };
92 
93 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
94 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
95 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
96 					   pid_t tid);
97 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
98 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
99 
100 /* PTMs ETMIDR [11:8] set to b0011 */
101 #define ETMIDR_PTM_VERSION 0x00000300
102 
103 /*
104  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
105  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
106  * encode the etm queue number as the upper 16 bit and the channel as
107  * the lower 16 bit.
108  */
109 #define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
110 		      (queue_nr << 16 | trace_chan_id)
111 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
112 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
113 
114 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
115 {
116 	etmidr &= ETMIDR_PTM_VERSION;
117 
118 	if (etmidr == ETMIDR_PTM_VERSION)
119 		return CS_ETM_PROTO_PTM;
120 
121 	return CS_ETM_PROTO_ETMV3;
122 }
123 
124 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
125 {
126 	struct int_node *inode;
127 	u64 *metadata;
128 
129 	inode = intlist__find(traceid_list, trace_chan_id);
130 	if (!inode)
131 		return -EINVAL;
132 
133 	metadata = inode->priv;
134 	*magic = metadata[CS_ETM_MAGIC];
135 	return 0;
136 }
137 
138 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
139 {
140 	struct int_node *inode;
141 	u64 *metadata;
142 
143 	inode = intlist__find(traceid_list, trace_chan_id);
144 	if (!inode)
145 		return -EINVAL;
146 
147 	metadata = inode->priv;
148 	*cpu = (int)metadata[CS_ETM_CPU];
149 	return 0;
150 }
151 
152 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
153 					      u8 trace_chan_id)
154 {
155 	/*
156 	 * Wnen a timestamp packet is encountered the backend code
157 	 * is stopped so that the front end has time to process packets
158 	 * that were accumulated in the traceID queue.  Since there can
159 	 * be more than one channel per cs_etm_queue, we need to specify
160 	 * what traceID queue needs servicing.
161 	 */
162 	etmq->pending_timestamp = trace_chan_id;
163 }
164 
165 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
166 				      u8 *trace_chan_id)
167 {
168 	struct cs_etm_packet_queue *packet_queue;
169 
170 	if (!etmq->pending_timestamp)
171 		return 0;
172 
173 	if (trace_chan_id)
174 		*trace_chan_id = etmq->pending_timestamp;
175 
176 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
177 						     etmq->pending_timestamp);
178 	if (!packet_queue)
179 		return 0;
180 
181 	/* Acknowledge pending status */
182 	etmq->pending_timestamp = 0;
183 
184 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
185 	return packet_queue->timestamp;
186 }
187 
188 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
189 {
190 	int i;
191 
192 	queue->head = 0;
193 	queue->tail = 0;
194 	queue->packet_count = 0;
195 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
196 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
197 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
198 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
199 		queue->packet_buffer[i].instr_count = 0;
200 		queue->packet_buffer[i].last_instr_taken_branch = false;
201 		queue->packet_buffer[i].last_instr_size = 0;
202 		queue->packet_buffer[i].last_instr_type = 0;
203 		queue->packet_buffer[i].last_instr_subtype = 0;
204 		queue->packet_buffer[i].last_instr_cond = 0;
205 		queue->packet_buffer[i].flags = 0;
206 		queue->packet_buffer[i].exception_number = UINT32_MAX;
207 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
208 		queue->packet_buffer[i].cpu = INT_MIN;
209 	}
210 }
211 
212 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
213 {
214 	int idx;
215 	struct int_node *inode;
216 	struct cs_etm_traceid_queue *tidq;
217 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
218 
219 	intlist__for_each_entry(inode, traceid_queues_list) {
220 		idx = (int)(intptr_t)inode->priv;
221 		tidq = etmq->traceid_queues[idx];
222 		cs_etm__clear_packet_queue(&tidq->packet_queue);
223 	}
224 }
225 
226 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
227 				      struct cs_etm_traceid_queue *tidq,
228 				      u8 trace_chan_id)
229 {
230 	int rc = -ENOMEM;
231 	struct auxtrace_queue *queue;
232 	struct cs_etm_auxtrace *etm = etmq->etm;
233 
234 	cs_etm__clear_packet_queue(&tidq->packet_queue);
235 
236 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
237 	tidq->tid = queue->tid;
238 	tidq->pid = -1;
239 	tidq->trace_chan_id = trace_chan_id;
240 
241 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
242 	if (!tidq->packet)
243 		goto out;
244 
245 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
246 	if (!tidq->prev_packet)
247 		goto out_free;
248 
249 	if (etm->synth_opts.last_branch) {
250 		size_t sz = sizeof(struct branch_stack);
251 
252 		sz += etm->synth_opts.last_branch_sz *
253 		      sizeof(struct branch_entry);
254 		tidq->last_branch = zalloc(sz);
255 		if (!tidq->last_branch)
256 			goto out_free;
257 		tidq->last_branch_rb = zalloc(sz);
258 		if (!tidq->last_branch_rb)
259 			goto out_free;
260 	}
261 
262 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
263 	if (!tidq->event_buf)
264 		goto out_free;
265 
266 	return 0;
267 
268 out_free:
269 	zfree(&tidq->last_branch_rb);
270 	zfree(&tidq->last_branch);
271 	zfree(&tidq->prev_packet);
272 	zfree(&tidq->packet);
273 out:
274 	return rc;
275 }
276 
277 static struct cs_etm_traceid_queue
278 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
279 {
280 	int idx;
281 	struct int_node *inode;
282 	struct intlist *traceid_queues_list;
283 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
284 	struct cs_etm_auxtrace *etm = etmq->etm;
285 
286 	if (etm->timeless_decoding)
287 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
288 
289 	traceid_queues_list = etmq->traceid_queues_list;
290 
291 	/*
292 	 * Check if the traceid_queue exist for this traceID by looking
293 	 * in the queue list.
294 	 */
295 	inode = intlist__find(traceid_queues_list, trace_chan_id);
296 	if (inode) {
297 		idx = (int)(intptr_t)inode->priv;
298 		return etmq->traceid_queues[idx];
299 	}
300 
301 	/* We couldn't find a traceid_queue for this traceID, allocate one */
302 	tidq = malloc(sizeof(*tidq));
303 	if (!tidq)
304 		return NULL;
305 
306 	memset(tidq, 0, sizeof(*tidq));
307 
308 	/* Get a valid index for the new traceid_queue */
309 	idx = intlist__nr_entries(traceid_queues_list);
310 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
311 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
312 	if (!inode)
313 		goto out_free;
314 
315 	/* Associate this traceID with this index */
316 	inode->priv = (void *)(intptr_t)idx;
317 
318 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
319 		goto out_free;
320 
321 	/* Grow the traceid_queues array by one unit */
322 	traceid_queues = etmq->traceid_queues;
323 	traceid_queues = reallocarray(traceid_queues,
324 				      idx + 1,
325 				      sizeof(*traceid_queues));
326 
327 	/*
328 	 * On failure reallocarray() returns NULL and the original block of
329 	 * memory is left untouched.
330 	 */
331 	if (!traceid_queues)
332 		goto out_free;
333 
334 	traceid_queues[idx] = tidq;
335 	etmq->traceid_queues = traceid_queues;
336 
337 	return etmq->traceid_queues[idx];
338 
339 out_free:
340 	/*
341 	 * Function intlist__remove() removes the inode from the list
342 	 * and delete the memory associated to it.
343 	 */
344 	intlist__remove(traceid_queues_list, inode);
345 	free(tidq);
346 
347 	return NULL;
348 }
349 
350 struct cs_etm_packet_queue
351 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
352 {
353 	struct cs_etm_traceid_queue *tidq;
354 
355 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
356 	if (tidq)
357 		return &tidq->packet_queue;
358 
359 	return NULL;
360 }
361 
362 static void cs_etm__packet_dump(const char *pkt_string)
363 {
364 	const char *color = PERF_COLOR_BLUE;
365 	int len = strlen(pkt_string);
366 
367 	if (len && (pkt_string[len-1] == '\n'))
368 		color_fprintf(stdout, color, "	%s", pkt_string);
369 	else
370 		color_fprintf(stdout, color, "	%s\n", pkt_string);
371 
372 	fflush(stdout);
373 }
374 
375 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
376 					  struct cs_etm_auxtrace *etm, int idx,
377 					  u32 etmidr)
378 {
379 	u64 **metadata = etm->metadata;
380 
381 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
382 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
383 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
384 }
385 
386 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
387 					  struct cs_etm_auxtrace *etm, int idx)
388 {
389 	u64 **metadata = etm->metadata;
390 
391 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
392 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
393 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
394 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
395 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
396 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
397 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
398 }
399 
400 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
401 				     struct cs_etm_auxtrace *etm)
402 {
403 	int i;
404 	u32 etmidr;
405 	u64 architecture;
406 
407 	for (i = 0; i < etm->num_cpu; i++) {
408 		architecture = etm->metadata[i][CS_ETM_MAGIC];
409 
410 		switch (architecture) {
411 		case __perf_cs_etmv3_magic:
412 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
413 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
414 			break;
415 		case __perf_cs_etmv4_magic:
416 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
417 			break;
418 		default:
419 			return -EINVAL;
420 		}
421 	}
422 
423 	return 0;
424 }
425 
426 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
427 				       struct cs_etm_queue *etmq,
428 				       enum cs_etm_decoder_operation mode)
429 {
430 	int ret = -EINVAL;
431 
432 	if (!(mode < CS_ETM_OPERATION_MAX))
433 		goto out;
434 
435 	d_params->packet_printer = cs_etm__packet_dump;
436 	d_params->operation = mode;
437 	d_params->data = etmq;
438 	d_params->formatted = true;
439 	d_params->fsyncs = false;
440 	d_params->hsyncs = false;
441 	d_params->frame_aligned = true;
442 
443 	ret = 0;
444 out:
445 	return ret;
446 }
447 
448 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
449 			       struct auxtrace_buffer *buffer)
450 {
451 	int ret;
452 	const char *color = PERF_COLOR_BLUE;
453 	struct cs_etm_decoder_params d_params;
454 	struct cs_etm_trace_params *t_params;
455 	struct cs_etm_decoder *decoder;
456 	size_t buffer_used = 0;
457 
458 	fprintf(stdout, "\n");
459 	color_fprintf(stdout, color,
460 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
461 		     buffer->size);
462 
463 	/* Use metadata to fill in trace parameters for trace decoder */
464 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
465 
466 	if (!t_params)
467 		return;
468 
469 	if (cs_etm__init_trace_params(t_params, etm))
470 		goto out_free;
471 
472 	/* Set decoder parameters to simply print the trace packets */
473 	if (cs_etm__init_decoder_params(&d_params, NULL,
474 					CS_ETM_OPERATION_PRINT))
475 		goto out_free;
476 
477 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
478 
479 	if (!decoder)
480 		goto out_free;
481 	do {
482 		size_t consumed;
483 
484 		ret = cs_etm_decoder__process_data_block(
485 				decoder, buffer->offset,
486 				&((u8 *)buffer->data)[buffer_used],
487 				buffer->size - buffer_used, &consumed);
488 		if (ret)
489 			break;
490 
491 		buffer_used += consumed;
492 	} while (buffer_used < buffer->size);
493 
494 	cs_etm_decoder__free(decoder);
495 
496 out_free:
497 	zfree(&t_params);
498 }
499 
500 static int cs_etm__flush_events(struct perf_session *session,
501 				struct perf_tool *tool)
502 {
503 	int ret;
504 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
505 						   struct cs_etm_auxtrace,
506 						   auxtrace);
507 	if (dump_trace)
508 		return 0;
509 
510 	if (!tool->ordered_events)
511 		return -EINVAL;
512 
513 	ret = cs_etm__update_queues(etm);
514 
515 	if (ret < 0)
516 		return ret;
517 
518 	if (etm->timeless_decoding)
519 		return cs_etm__process_timeless_queues(etm, -1);
520 
521 	return cs_etm__process_queues(etm);
522 }
523 
524 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
525 {
526 	int idx;
527 	uintptr_t priv;
528 	struct int_node *inode, *tmp;
529 	struct cs_etm_traceid_queue *tidq;
530 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
531 
532 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
533 		priv = (uintptr_t)inode->priv;
534 		idx = priv;
535 
536 		/* Free this traceid_queue from the array */
537 		tidq = etmq->traceid_queues[idx];
538 		thread__zput(tidq->thread);
539 		zfree(&tidq->event_buf);
540 		zfree(&tidq->last_branch);
541 		zfree(&tidq->last_branch_rb);
542 		zfree(&tidq->prev_packet);
543 		zfree(&tidq->packet);
544 		zfree(&tidq);
545 
546 		/*
547 		 * Function intlist__remove() removes the inode from the list
548 		 * and delete the memory associated to it.
549 		 */
550 		intlist__remove(traceid_queues_list, inode);
551 	}
552 
553 	/* Then the RB tree itself */
554 	intlist__delete(traceid_queues_list);
555 	etmq->traceid_queues_list = NULL;
556 
557 	/* finally free the traceid_queues array */
558 	zfree(&etmq->traceid_queues);
559 }
560 
561 static void cs_etm__free_queue(void *priv)
562 {
563 	struct cs_etm_queue *etmq = priv;
564 
565 	if (!etmq)
566 		return;
567 
568 	cs_etm_decoder__free(etmq->decoder);
569 	cs_etm__free_traceid_queues(etmq);
570 	free(etmq);
571 }
572 
573 static void cs_etm__free_events(struct perf_session *session)
574 {
575 	unsigned int i;
576 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
577 						   struct cs_etm_auxtrace,
578 						   auxtrace);
579 	struct auxtrace_queues *queues = &aux->queues;
580 
581 	for (i = 0; i < queues->nr_queues; i++) {
582 		cs_etm__free_queue(queues->queue_array[i].priv);
583 		queues->queue_array[i].priv = NULL;
584 	}
585 
586 	auxtrace_queues__free(queues);
587 }
588 
589 static void cs_etm__free(struct perf_session *session)
590 {
591 	int i;
592 	struct int_node *inode, *tmp;
593 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
594 						   struct cs_etm_auxtrace,
595 						   auxtrace);
596 	cs_etm__free_events(session);
597 	session->auxtrace = NULL;
598 
599 	/* First remove all traceID/metadata nodes for the RB tree */
600 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
601 		intlist__remove(traceid_list, inode);
602 	/* Then the RB tree itself */
603 	intlist__delete(traceid_list);
604 
605 	for (i = 0; i < aux->num_cpu; i++)
606 		zfree(&aux->metadata[i]);
607 
608 	thread__zput(aux->unknown_thread);
609 	zfree(&aux->metadata);
610 	zfree(&aux);
611 }
612 
613 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
614 {
615 	struct machine *machine;
616 
617 	machine = etmq->etm->machine;
618 
619 	if (address >= etmq->etm->kernel_start) {
620 		if (machine__is_host(machine))
621 			return PERF_RECORD_MISC_KERNEL;
622 		else
623 			return PERF_RECORD_MISC_GUEST_KERNEL;
624 	} else {
625 		if (machine__is_host(machine))
626 			return PERF_RECORD_MISC_USER;
627 		else if (perf_guest)
628 			return PERF_RECORD_MISC_GUEST_USER;
629 		else
630 			return PERF_RECORD_MISC_HYPERVISOR;
631 	}
632 }
633 
634 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
635 			      u64 address, size_t size, u8 *buffer)
636 {
637 	u8  cpumode;
638 	u64 offset;
639 	int len;
640 	struct thread *thread;
641 	struct machine *machine;
642 	struct addr_location al;
643 	struct cs_etm_traceid_queue *tidq;
644 
645 	if (!etmq)
646 		return 0;
647 
648 	machine = etmq->etm->machine;
649 	cpumode = cs_etm__cpu_mode(etmq, address);
650 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
651 	if (!tidq)
652 		return 0;
653 
654 	thread = tidq->thread;
655 	if (!thread) {
656 		if (cpumode != PERF_RECORD_MISC_KERNEL)
657 			return 0;
658 		thread = etmq->etm->unknown_thread;
659 	}
660 
661 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
662 		return 0;
663 
664 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
665 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
666 		return 0;
667 
668 	offset = al.map->map_ip(al.map, address);
669 
670 	map__load(al.map);
671 
672 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
673 
674 	if (len <= 0)
675 		return 0;
676 
677 	return len;
678 }
679 
680 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
681 {
682 	struct cs_etm_decoder_params d_params;
683 	struct cs_etm_trace_params  *t_params = NULL;
684 	struct cs_etm_queue *etmq;
685 
686 	etmq = zalloc(sizeof(*etmq));
687 	if (!etmq)
688 		return NULL;
689 
690 	etmq->traceid_queues_list = intlist__new(NULL);
691 	if (!etmq->traceid_queues_list)
692 		goto out_free;
693 
694 	/* Use metadata to fill in trace parameters for trace decoder */
695 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
696 
697 	if (!t_params)
698 		goto out_free;
699 
700 	if (cs_etm__init_trace_params(t_params, etm))
701 		goto out_free;
702 
703 	/* Set decoder parameters to decode trace packets */
704 	if (cs_etm__init_decoder_params(&d_params, etmq,
705 					CS_ETM_OPERATION_DECODE))
706 		goto out_free;
707 
708 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
709 
710 	if (!etmq->decoder)
711 		goto out_free;
712 
713 	/*
714 	 * Register a function to handle all memory accesses required by
715 	 * the trace decoder library.
716 	 */
717 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
718 					      0x0L, ((u64) -1L),
719 					      cs_etm__mem_access))
720 		goto out_free_decoder;
721 
722 	zfree(&t_params);
723 	return etmq;
724 
725 out_free_decoder:
726 	cs_etm_decoder__free(etmq->decoder);
727 out_free:
728 	intlist__delete(etmq->traceid_queues_list);
729 	free(etmq);
730 
731 	return NULL;
732 }
733 
734 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
735 			       struct auxtrace_queue *queue,
736 			       unsigned int queue_nr)
737 {
738 	int ret = 0;
739 	unsigned int cs_queue_nr;
740 	u8 trace_chan_id;
741 	u64 timestamp;
742 	struct cs_etm_queue *etmq = queue->priv;
743 
744 	if (list_empty(&queue->head) || etmq)
745 		goto out;
746 
747 	etmq = cs_etm__alloc_queue(etm);
748 
749 	if (!etmq) {
750 		ret = -ENOMEM;
751 		goto out;
752 	}
753 
754 	queue->priv = etmq;
755 	etmq->etm = etm;
756 	etmq->queue_nr = queue_nr;
757 	etmq->offset = 0;
758 
759 	if (etm->timeless_decoding)
760 		goto out;
761 
762 	/*
763 	 * We are under a CPU-wide trace scenario.  As such we need to know
764 	 * when the code that generated the traces started to execute so that
765 	 * it can be correlated with execution on other CPUs.  So we get a
766 	 * handle on the beginning of traces and decode until we find a
767 	 * timestamp.  The timestamp is then added to the auxtrace min heap
768 	 * in order to know what nibble (of all the etmqs) to decode first.
769 	 */
770 	while (1) {
771 		/*
772 		 * Fetch an aux_buffer from this etmq.  Bail if no more
773 		 * blocks or an error has been encountered.
774 		 */
775 		ret = cs_etm__get_data_block(etmq);
776 		if (ret <= 0)
777 			goto out;
778 
779 		/*
780 		 * Run decoder on the trace block.  The decoder will stop when
781 		 * encountering a timestamp, a full packet queue or the end of
782 		 * trace for that block.
783 		 */
784 		ret = cs_etm__decode_data_block(etmq);
785 		if (ret)
786 			goto out;
787 
788 		/*
789 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
790 		 * the timestamp calculation for us.
791 		 */
792 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
793 
794 		/* We found a timestamp, no need to continue. */
795 		if (timestamp)
796 			break;
797 
798 		/*
799 		 * We didn't find a timestamp so empty all the traceid packet
800 		 * queues before looking for another timestamp packet, either
801 		 * in the current data block or a new one.  Packets that were
802 		 * just decoded are useless since no timestamp has been
803 		 * associated with them.  As such simply discard them.
804 		 */
805 		cs_etm__clear_all_packet_queues(etmq);
806 	}
807 
808 	/*
809 	 * We have a timestamp.  Add it to the min heap to reflect when
810 	 * instructions conveyed by the range packets of this traceID queue
811 	 * started to execute.  Once the same has been done for all the traceID
812 	 * queues of each etmq, redenring and decoding can start in
813 	 * chronological order.
814 	 *
815 	 * Note that packets decoded above are still in the traceID's packet
816 	 * queue and will be processed in cs_etm__process_queues().
817 	 */
818 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
819 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
820 out:
821 	return ret;
822 }
823 
824 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
825 {
826 	unsigned int i;
827 	int ret;
828 
829 	if (!etm->kernel_start)
830 		etm->kernel_start = machine__kernel_start(etm->machine);
831 
832 	for (i = 0; i < etm->queues.nr_queues; i++) {
833 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
834 		if (ret)
835 			return ret;
836 	}
837 
838 	return 0;
839 }
840 
841 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
842 {
843 	if (etm->queues.new_data) {
844 		etm->queues.new_data = false;
845 		return cs_etm__setup_queues(etm);
846 	}
847 
848 	return 0;
849 }
850 
851 static inline
852 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
853 				 struct cs_etm_traceid_queue *tidq)
854 {
855 	struct branch_stack *bs_src = tidq->last_branch_rb;
856 	struct branch_stack *bs_dst = tidq->last_branch;
857 	size_t nr = 0;
858 
859 	/*
860 	 * Set the number of records before early exit: ->nr is used to
861 	 * determine how many branches to copy from ->entries.
862 	 */
863 	bs_dst->nr = bs_src->nr;
864 
865 	/*
866 	 * Early exit when there is nothing to copy.
867 	 */
868 	if (!bs_src->nr)
869 		return;
870 
871 	/*
872 	 * As bs_src->entries is a circular buffer, we need to copy from it in
873 	 * two steps.  First, copy the branches from the most recently inserted
874 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
875 	 */
876 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
877 	memcpy(&bs_dst->entries[0],
878 	       &bs_src->entries[tidq->last_branch_pos],
879 	       sizeof(struct branch_entry) * nr);
880 
881 	/*
882 	 * If we wrapped around at least once, the branches from the beginning
883 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
884 	 * are older valid branches: copy them over.  The total number of
885 	 * branches copied over will be equal to the number of branches asked by
886 	 * the user in last_branch_sz.
887 	 */
888 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
889 		memcpy(&bs_dst->entries[nr],
890 		       &bs_src->entries[0],
891 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
892 	}
893 }
894 
895 static inline
896 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
897 {
898 	tidq->last_branch_pos = 0;
899 	tidq->last_branch_rb->nr = 0;
900 }
901 
902 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
903 					 u8 trace_chan_id, u64 addr)
904 {
905 	u8 instrBytes[2];
906 
907 	cs_etm__mem_access(etmq, trace_chan_id, addr,
908 			   ARRAY_SIZE(instrBytes), instrBytes);
909 	/*
910 	 * T32 instruction size is indicated by bits[15:11] of the first
911 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
912 	 * denote a 32-bit instruction.
913 	 */
914 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
915 }
916 
917 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
918 {
919 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
920 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
921 		return 0;
922 
923 	return packet->start_addr;
924 }
925 
926 static inline
927 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
928 {
929 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
930 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
931 		return 0;
932 
933 	return packet->end_addr - packet->last_instr_size;
934 }
935 
936 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
937 				     u64 trace_chan_id,
938 				     const struct cs_etm_packet *packet,
939 				     u64 offset)
940 {
941 	if (packet->isa == CS_ETM_ISA_T32) {
942 		u64 addr = packet->start_addr;
943 
944 		while (offset > 0) {
945 			addr += cs_etm__t32_instr_size(etmq,
946 						       trace_chan_id, addr);
947 			offset--;
948 		}
949 		return addr;
950 	}
951 
952 	/* Assume a 4 byte instruction size (A32/A64) */
953 	return packet->start_addr + offset * 4;
954 }
955 
956 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
957 					  struct cs_etm_traceid_queue *tidq)
958 {
959 	struct branch_stack *bs = tidq->last_branch_rb;
960 	struct branch_entry *be;
961 
962 	/*
963 	 * The branches are recorded in a circular buffer in reverse
964 	 * chronological order: we start recording from the last element of the
965 	 * buffer down.  After writing the first element of the stack, move the
966 	 * insert position back to the end of the buffer.
967 	 */
968 	if (!tidq->last_branch_pos)
969 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
970 
971 	tidq->last_branch_pos -= 1;
972 
973 	be       = &bs->entries[tidq->last_branch_pos];
974 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
975 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
976 	/* No support for mispredict */
977 	be->flags.mispred = 0;
978 	be->flags.predicted = 1;
979 
980 	/*
981 	 * Increment bs->nr until reaching the number of last branches asked by
982 	 * the user on the command line.
983 	 */
984 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
985 		bs->nr += 1;
986 }
987 
988 static int cs_etm__inject_event(union perf_event *event,
989 			       struct perf_sample *sample, u64 type)
990 {
991 	event->header.size = perf_event__sample_event_size(sample, type, 0);
992 	return perf_event__synthesize_sample(event, type, 0, sample);
993 }
994 
995 
996 static int
997 cs_etm__get_trace(struct cs_etm_queue *etmq)
998 {
999 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1000 	struct auxtrace_buffer *old_buffer = aux_buffer;
1001 	struct auxtrace_queue *queue;
1002 
1003 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1004 
1005 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1006 
1007 	/* If no more data, drop the previous auxtrace_buffer and return */
1008 	if (!aux_buffer) {
1009 		if (old_buffer)
1010 			auxtrace_buffer__drop_data(old_buffer);
1011 		etmq->buf_len = 0;
1012 		return 0;
1013 	}
1014 
1015 	etmq->buffer = aux_buffer;
1016 
1017 	/* If the aux_buffer doesn't have data associated, try to load it */
1018 	if (!aux_buffer->data) {
1019 		/* get the file desc associated with the perf data file */
1020 		int fd = perf_data__fd(etmq->etm->session->data);
1021 
1022 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1023 		if (!aux_buffer->data)
1024 			return -ENOMEM;
1025 	}
1026 
1027 	/* If valid, drop the previous buffer */
1028 	if (old_buffer)
1029 		auxtrace_buffer__drop_data(old_buffer);
1030 
1031 	etmq->buf_used = 0;
1032 	etmq->buf_len = aux_buffer->size;
1033 	etmq->buf = aux_buffer->data;
1034 
1035 	return etmq->buf_len;
1036 }
1037 
1038 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1039 				    struct cs_etm_traceid_queue *tidq)
1040 {
1041 	if ((!tidq->thread) && (tidq->tid != -1))
1042 		tidq->thread = machine__find_thread(etm->machine, -1,
1043 						    tidq->tid);
1044 
1045 	if (tidq->thread)
1046 		tidq->pid = tidq->thread->pid_;
1047 }
1048 
1049 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1050 			 pid_t tid, u8 trace_chan_id)
1051 {
1052 	int cpu, err = -EINVAL;
1053 	struct cs_etm_auxtrace *etm = etmq->etm;
1054 	struct cs_etm_traceid_queue *tidq;
1055 
1056 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1057 	if (!tidq)
1058 		return err;
1059 
1060 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1061 		return err;
1062 
1063 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1064 	if (err)
1065 		return err;
1066 
1067 	tidq->tid = tid;
1068 	thread__zput(tidq->thread);
1069 
1070 	cs_etm__set_pid_tid_cpu(etm, tidq);
1071 	return 0;
1072 }
1073 
1074 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1075 {
1076 	return !!etmq->etm->timeless_decoding;
1077 }
1078 
1079 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1080 			      u64 trace_chan_id,
1081 			      const struct cs_etm_packet *packet,
1082 			      struct perf_sample *sample)
1083 {
1084 	/*
1085 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1086 	 * packet, so directly bail out with 'insn_len' = 0.
1087 	 */
1088 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1089 		sample->insn_len = 0;
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1095 	 * cs_etm__t32_instr_size().
1096 	 */
1097 	if (packet->isa == CS_ETM_ISA_T32)
1098 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1099 							  sample->ip);
1100 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1101 	else
1102 		sample->insn_len = 4;
1103 
1104 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1105 			   sample->insn_len, (void *)sample->insn);
1106 }
1107 
1108 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1109 					    struct cs_etm_traceid_queue *tidq,
1110 					    u64 addr, u64 period)
1111 {
1112 	int ret = 0;
1113 	struct cs_etm_auxtrace *etm = etmq->etm;
1114 	union perf_event *event = tidq->event_buf;
1115 	struct perf_sample sample = {.ip = 0,};
1116 
1117 	event->sample.header.type = PERF_RECORD_SAMPLE;
1118 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1119 	event->sample.header.size = sizeof(struct perf_event_header);
1120 
1121 	sample.ip = addr;
1122 	sample.pid = tidq->pid;
1123 	sample.tid = tidq->tid;
1124 	sample.id = etmq->etm->instructions_id;
1125 	sample.stream_id = etmq->etm->instructions_id;
1126 	sample.period = period;
1127 	sample.cpu = tidq->packet->cpu;
1128 	sample.flags = tidq->prev_packet->flags;
1129 	sample.cpumode = event->sample.header.misc;
1130 
1131 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1132 
1133 	if (etm->synth_opts.last_branch) {
1134 		cs_etm__copy_last_branch_rb(etmq, tidq);
1135 		sample.branch_stack = tidq->last_branch;
1136 	}
1137 
1138 	if (etm->synth_opts.inject) {
1139 		ret = cs_etm__inject_event(event, &sample,
1140 					   etm->instructions_sample_type);
1141 		if (ret)
1142 			return ret;
1143 	}
1144 
1145 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1146 
1147 	if (ret)
1148 		pr_err(
1149 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1150 			ret);
1151 
1152 	if (etm->synth_opts.last_branch)
1153 		cs_etm__reset_last_branch_rb(tidq);
1154 
1155 	return ret;
1156 }
1157 
1158 /*
1159  * The cs etm packet encodes an instruction range between a branch target
1160  * and the next taken branch. Generate sample accordingly.
1161  */
1162 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1163 				       struct cs_etm_traceid_queue *tidq)
1164 {
1165 	int ret = 0;
1166 	struct cs_etm_auxtrace *etm = etmq->etm;
1167 	struct perf_sample sample = {.ip = 0,};
1168 	union perf_event *event = tidq->event_buf;
1169 	struct dummy_branch_stack {
1170 		u64			nr;
1171 		struct branch_entry	entries;
1172 	} dummy_bs;
1173 	u64 ip;
1174 
1175 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1176 
1177 	event->sample.header.type = PERF_RECORD_SAMPLE;
1178 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1179 	event->sample.header.size = sizeof(struct perf_event_header);
1180 
1181 	sample.ip = ip;
1182 	sample.pid = tidq->pid;
1183 	sample.tid = tidq->tid;
1184 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1185 	sample.id = etmq->etm->branches_id;
1186 	sample.stream_id = etmq->etm->branches_id;
1187 	sample.period = 1;
1188 	sample.cpu = tidq->packet->cpu;
1189 	sample.flags = tidq->prev_packet->flags;
1190 	sample.cpumode = event->sample.header.misc;
1191 
1192 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1193 			  &sample);
1194 
1195 	/*
1196 	 * perf report cannot handle events without a branch stack
1197 	 */
1198 	if (etm->synth_opts.last_branch) {
1199 		dummy_bs = (struct dummy_branch_stack){
1200 			.nr = 1,
1201 			.entries = {
1202 				.from = sample.ip,
1203 				.to = sample.addr,
1204 			},
1205 		};
1206 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1207 	}
1208 
1209 	if (etm->synth_opts.inject) {
1210 		ret = cs_etm__inject_event(event, &sample,
1211 					   etm->branches_sample_type);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 
1216 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1217 
1218 	if (ret)
1219 		pr_err(
1220 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1221 		ret);
1222 
1223 	return ret;
1224 }
1225 
1226 struct cs_etm_synth {
1227 	struct perf_tool dummy_tool;
1228 	struct perf_session *session;
1229 };
1230 
1231 static int cs_etm__event_synth(struct perf_tool *tool,
1232 			       union perf_event *event,
1233 			       struct perf_sample *sample __maybe_unused,
1234 			       struct machine *machine __maybe_unused)
1235 {
1236 	struct cs_etm_synth *cs_etm_synth =
1237 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1238 
1239 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1240 						 event, NULL);
1241 }
1242 
1243 static int cs_etm__synth_event(struct perf_session *session,
1244 			       struct perf_event_attr *attr, u64 id)
1245 {
1246 	struct cs_etm_synth cs_etm_synth;
1247 
1248 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1249 	cs_etm_synth.session = session;
1250 
1251 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1252 					   &id, cs_etm__event_synth);
1253 }
1254 
1255 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1256 				struct perf_session *session)
1257 {
1258 	struct evlist *evlist = session->evlist;
1259 	struct evsel *evsel;
1260 	struct perf_event_attr attr;
1261 	bool found = false;
1262 	u64 id;
1263 	int err;
1264 
1265 	evlist__for_each_entry(evlist, evsel) {
1266 		if (evsel->core.attr.type == etm->pmu_type) {
1267 			found = true;
1268 			break;
1269 		}
1270 	}
1271 
1272 	if (!found) {
1273 		pr_debug("No selected events with CoreSight Trace data\n");
1274 		return 0;
1275 	}
1276 
1277 	memset(&attr, 0, sizeof(struct perf_event_attr));
1278 	attr.size = sizeof(struct perf_event_attr);
1279 	attr.type = PERF_TYPE_HARDWARE;
1280 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1281 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1282 			    PERF_SAMPLE_PERIOD;
1283 	if (etm->timeless_decoding)
1284 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1285 	else
1286 		attr.sample_type |= PERF_SAMPLE_TIME;
1287 
1288 	attr.exclude_user = evsel->core.attr.exclude_user;
1289 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1290 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1291 	attr.exclude_host = evsel->core.attr.exclude_host;
1292 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1293 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1294 	attr.read_format = evsel->core.attr.read_format;
1295 
1296 	/* create new id val to be a fixed offset from evsel id */
1297 	id = evsel->id[0] + 1000000000;
1298 
1299 	if (!id)
1300 		id = 1;
1301 
1302 	if (etm->synth_opts.branches) {
1303 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1304 		attr.sample_period = 1;
1305 		attr.sample_type |= PERF_SAMPLE_ADDR;
1306 		err = cs_etm__synth_event(session, &attr, id);
1307 		if (err)
1308 			return err;
1309 		etm->sample_branches = true;
1310 		etm->branches_sample_type = attr.sample_type;
1311 		etm->branches_id = id;
1312 		id += 1;
1313 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1314 	}
1315 
1316 	if (etm->synth_opts.last_branch)
1317 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1318 
1319 	if (etm->synth_opts.instructions) {
1320 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1321 		attr.sample_period = etm->synth_opts.period;
1322 		etm->instructions_sample_period = attr.sample_period;
1323 		err = cs_etm__synth_event(session, &attr, id);
1324 		if (err)
1325 			return err;
1326 		etm->sample_instructions = true;
1327 		etm->instructions_sample_type = attr.sample_type;
1328 		etm->instructions_id = id;
1329 		id += 1;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 static int cs_etm__sample(struct cs_etm_queue *etmq,
1336 			  struct cs_etm_traceid_queue *tidq)
1337 {
1338 	struct cs_etm_auxtrace *etm = etmq->etm;
1339 	struct cs_etm_packet *tmp;
1340 	int ret;
1341 	u8 trace_chan_id = tidq->trace_chan_id;
1342 	u64 instrs_executed = tidq->packet->instr_count;
1343 
1344 	tidq->period_instructions += instrs_executed;
1345 
1346 	/*
1347 	 * Record a branch when the last instruction in
1348 	 * PREV_PACKET is a branch.
1349 	 */
1350 	if (etm->synth_opts.last_branch &&
1351 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1352 	    tidq->prev_packet->last_instr_taken_branch)
1353 		cs_etm__update_last_branch_rb(etmq, tidq);
1354 
1355 	if (etm->sample_instructions &&
1356 	    tidq->period_instructions >= etm->instructions_sample_period) {
1357 		/*
1358 		 * Emit instruction sample periodically
1359 		 * TODO: allow period to be defined in cycles and clock time
1360 		 */
1361 
1362 		/* Get number of instructions executed after the sample point */
1363 		u64 instrs_over = tidq->period_instructions -
1364 			etm->instructions_sample_period;
1365 
1366 		/*
1367 		 * Calculate the address of the sampled instruction (-1 as
1368 		 * sample is reported as though instruction has just been
1369 		 * executed, but PC has not advanced to next instruction)
1370 		 */
1371 		u64 offset = (instrs_executed - instrs_over - 1);
1372 		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1373 					      tidq->packet, offset);
1374 
1375 		ret = cs_etm__synth_instruction_sample(
1376 			etmq, tidq, addr, etm->instructions_sample_period);
1377 		if (ret)
1378 			return ret;
1379 
1380 		/* Carry remaining instructions into next sample period */
1381 		tidq->period_instructions = instrs_over;
1382 	}
1383 
1384 	if (etm->sample_branches) {
1385 		bool generate_sample = false;
1386 
1387 		/* Generate sample for tracing on packet */
1388 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1389 			generate_sample = true;
1390 
1391 		/* Generate sample for branch taken packet */
1392 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1393 		    tidq->prev_packet->last_instr_taken_branch)
1394 			generate_sample = true;
1395 
1396 		if (generate_sample) {
1397 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1398 			if (ret)
1399 				return ret;
1400 		}
1401 	}
1402 
1403 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1404 		/*
1405 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1406 		 * the next incoming packet.
1407 		 */
1408 		tmp = tidq->packet;
1409 		tidq->packet = tidq->prev_packet;
1410 		tidq->prev_packet = tmp;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1417 {
1418 	/*
1419 	 * When the exception packet is inserted, whether the last instruction
1420 	 * in previous range packet is taken branch or not, we need to force
1421 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1422 	 * to generate branch sample for the instruction range before the
1423 	 * exception is trapped to kernel or before the exception returning.
1424 	 *
1425 	 * The exception packet includes the dummy address values, so don't
1426 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1427 	 * for generating instruction and branch samples.
1428 	 */
1429 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1430 		tidq->prev_packet->last_instr_taken_branch = true;
1431 
1432 	return 0;
1433 }
1434 
1435 static int cs_etm__flush(struct cs_etm_queue *etmq,
1436 			 struct cs_etm_traceid_queue *tidq)
1437 {
1438 	int err = 0;
1439 	struct cs_etm_auxtrace *etm = etmq->etm;
1440 	struct cs_etm_packet *tmp;
1441 
1442 	/* Handle start tracing packet */
1443 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1444 		goto swap_packet;
1445 
1446 	if (etmq->etm->synth_opts.last_branch &&
1447 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1448 		/*
1449 		 * Generate a last branch event for the branches left in the
1450 		 * circular buffer at the end of the trace.
1451 		 *
1452 		 * Use the address of the end of the last reported execution
1453 		 * range
1454 		 */
1455 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1456 
1457 		err = cs_etm__synth_instruction_sample(
1458 			etmq, tidq, addr,
1459 			tidq->period_instructions);
1460 		if (err)
1461 			return err;
1462 
1463 		tidq->period_instructions = 0;
1464 
1465 	}
1466 
1467 	if (etm->sample_branches &&
1468 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1469 		err = cs_etm__synth_branch_sample(etmq, tidq);
1470 		if (err)
1471 			return err;
1472 	}
1473 
1474 swap_packet:
1475 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1476 		/*
1477 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1478 		 * the next incoming packet.
1479 		 */
1480 		tmp = tidq->packet;
1481 		tidq->packet = tidq->prev_packet;
1482 		tidq->prev_packet = tmp;
1483 	}
1484 
1485 	return err;
1486 }
1487 
1488 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1489 			     struct cs_etm_traceid_queue *tidq)
1490 {
1491 	int err;
1492 
1493 	/*
1494 	 * It has no new packet coming and 'etmq->packet' contains the stale
1495 	 * packet which was set at the previous time with packets swapping;
1496 	 * so skip to generate branch sample to avoid stale packet.
1497 	 *
1498 	 * For this case only flush branch stack and generate a last branch
1499 	 * event for the branches left in the circular buffer at the end of
1500 	 * the trace.
1501 	 */
1502 	if (etmq->etm->synth_opts.last_branch &&
1503 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1504 		/*
1505 		 * Use the address of the end of the last reported execution
1506 		 * range.
1507 		 */
1508 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1509 
1510 		err = cs_etm__synth_instruction_sample(
1511 			etmq, tidq, addr,
1512 			tidq->period_instructions);
1513 		if (err)
1514 			return err;
1515 
1516 		tidq->period_instructions = 0;
1517 	}
1518 
1519 	return 0;
1520 }
1521 /*
1522  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1523  *			   if need be.
1524  * Returns:	< 0	if error
1525  *		= 0	if no more auxtrace_buffer to read
1526  *		> 0	if the current buffer isn't empty yet
1527  */
1528 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1529 {
1530 	int ret;
1531 
1532 	if (!etmq->buf_len) {
1533 		ret = cs_etm__get_trace(etmq);
1534 		if (ret <= 0)
1535 			return ret;
1536 		/*
1537 		 * We cannot assume consecutive blocks in the data file
1538 		 * are contiguous, reset the decoder to force re-sync.
1539 		 */
1540 		ret = cs_etm_decoder__reset(etmq->decoder);
1541 		if (ret)
1542 			return ret;
1543 	}
1544 
1545 	return etmq->buf_len;
1546 }
1547 
1548 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1549 				 struct cs_etm_packet *packet,
1550 				 u64 end_addr)
1551 {
1552 	/* Initialise to keep compiler happy */
1553 	u16 instr16 = 0;
1554 	u32 instr32 = 0;
1555 	u64 addr;
1556 
1557 	switch (packet->isa) {
1558 	case CS_ETM_ISA_T32:
1559 		/*
1560 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1561 		 *
1562 		 *  b'15         b'8
1563 		 * +-----------------+--------+
1564 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1565 		 * +-----------------+--------+
1566 		 *
1567 		 * According to the specifiction, it only defines SVC for T32
1568 		 * with 16 bits instruction and has no definition for 32bits;
1569 		 * so below only read 2 bytes as instruction size for T32.
1570 		 */
1571 		addr = end_addr - 2;
1572 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1573 				   sizeof(instr16), (u8 *)&instr16);
1574 		if ((instr16 & 0xFF00) == 0xDF00)
1575 			return true;
1576 
1577 		break;
1578 	case CS_ETM_ISA_A32:
1579 		/*
1580 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1581 		 *
1582 		 *  b'31 b'28 b'27 b'24
1583 		 * +---------+---------+-------------------------+
1584 		 * |  !1111  | 1 1 1 1 |        imm24            |
1585 		 * +---------+---------+-------------------------+
1586 		 */
1587 		addr = end_addr - 4;
1588 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1589 				   sizeof(instr32), (u8 *)&instr32);
1590 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1591 		    (instr32 & 0xF0000000) != 0xF0000000)
1592 			return true;
1593 
1594 		break;
1595 	case CS_ETM_ISA_A64:
1596 		/*
1597 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1598 		 *
1599 		 *  b'31               b'21           b'4     b'0
1600 		 * +-----------------------+---------+-----------+
1601 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1602 		 * +-----------------------+---------+-----------+
1603 		 */
1604 		addr = end_addr - 4;
1605 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1606 				   sizeof(instr32), (u8 *)&instr32);
1607 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1608 			return true;
1609 
1610 		break;
1611 	case CS_ETM_ISA_UNKNOWN:
1612 	default:
1613 		break;
1614 	}
1615 
1616 	return false;
1617 }
1618 
1619 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1620 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1621 {
1622 	u8 trace_chan_id = tidq->trace_chan_id;
1623 	struct cs_etm_packet *packet = tidq->packet;
1624 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1625 
1626 	if (magic == __perf_cs_etmv3_magic)
1627 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1628 			return true;
1629 
1630 	/*
1631 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1632 	 * HVC cases; need to check if it's SVC instruction based on
1633 	 * packet address.
1634 	 */
1635 	if (magic == __perf_cs_etmv4_magic) {
1636 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1637 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1638 					 prev_packet->end_addr))
1639 			return true;
1640 	}
1641 
1642 	return false;
1643 }
1644 
1645 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1646 				       u64 magic)
1647 {
1648 	struct cs_etm_packet *packet = tidq->packet;
1649 
1650 	if (magic == __perf_cs_etmv3_magic)
1651 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1652 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1653 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1654 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1655 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1656 			return true;
1657 
1658 	if (magic == __perf_cs_etmv4_magic)
1659 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1660 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1661 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1662 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1663 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1664 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1665 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1666 			return true;
1667 
1668 	return false;
1669 }
1670 
1671 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1672 				      struct cs_etm_traceid_queue *tidq,
1673 				      u64 magic)
1674 {
1675 	u8 trace_chan_id = tidq->trace_chan_id;
1676 	struct cs_etm_packet *packet = tidq->packet;
1677 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1678 
1679 	if (magic == __perf_cs_etmv3_magic)
1680 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1681 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1682 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1683 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1684 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1685 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1686 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1687 			return true;
1688 
1689 	if (magic == __perf_cs_etmv4_magic) {
1690 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1691 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1692 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1693 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1694 			return true;
1695 
1696 		/*
1697 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1698 		 * (SMC, HVC) are taken as sync exceptions.
1699 		 */
1700 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1701 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1702 					  prev_packet->end_addr))
1703 			return true;
1704 
1705 		/*
1706 		 * ETMv4 has 5 bits for exception number; if the numbers
1707 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1708 		 * they are implementation defined exceptions.
1709 		 *
1710 		 * For this case, simply take it as sync exception.
1711 		 */
1712 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1713 		    packet->exception_number <= CS_ETMV4_EXC_END)
1714 			return true;
1715 	}
1716 
1717 	return false;
1718 }
1719 
1720 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1721 				    struct cs_etm_traceid_queue *tidq)
1722 {
1723 	struct cs_etm_packet *packet = tidq->packet;
1724 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1725 	u8 trace_chan_id = tidq->trace_chan_id;
1726 	u64 magic;
1727 	int ret;
1728 
1729 	switch (packet->sample_type) {
1730 	case CS_ETM_RANGE:
1731 		/*
1732 		 * Immediate branch instruction without neither link nor
1733 		 * return flag, it's normal branch instruction within
1734 		 * the function.
1735 		 */
1736 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1737 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1738 			packet->flags = PERF_IP_FLAG_BRANCH;
1739 
1740 			if (packet->last_instr_cond)
1741 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1742 		}
1743 
1744 		/*
1745 		 * Immediate branch instruction with link (e.g. BL), this is
1746 		 * branch instruction for function call.
1747 		 */
1748 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1749 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1750 			packet->flags = PERF_IP_FLAG_BRANCH |
1751 					PERF_IP_FLAG_CALL;
1752 
1753 		/*
1754 		 * Indirect branch instruction with link (e.g. BLR), this is
1755 		 * branch instruction for function call.
1756 		 */
1757 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1758 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1759 			packet->flags = PERF_IP_FLAG_BRANCH |
1760 					PERF_IP_FLAG_CALL;
1761 
1762 		/*
1763 		 * Indirect branch instruction with subtype of
1764 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1765 		 * function return for A32/T32.
1766 		 */
1767 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1768 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1769 			packet->flags = PERF_IP_FLAG_BRANCH |
1770 					PERF_IP_FLAG_RETURN;
1771 
1772 		/*
1773 		 * Indirect branch instruction without link (e.g. BR), usually
1774 		 * this is used for function return, especially for functions
1775 		 * within dynamic link lib.
1776 		 */
1777 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1778 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1779 			packet->flags = PERF_IP_FLAG_BRANCH |
1780 					PERF_IP_FLAG_RETURN;
1781 
1782 		/* Return instruction for function return. */
1783 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1784 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1785 			packet->flags = PERF_IP_FLAG_BRANCH |
1786 					PERF_IP_FLAG_RETURN;
1787 
1788 		/*
1789 		 * Decoder might insert a discontinuity in the middle of
1790 		 * instruction packets, fixup prev_packet with flag
1791 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1792 		 */
1793 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1794 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1795 					      PERF_IP_FLAG_TRACE_BEGIN;
1796 
1797 		/*
1798 		 * If the previous packet is an exception return packet
1799 		 * and the return address just follows SVC instuction,
1800 		 * it needs to calibrate the previous packet sample flags
1801 		 * as PERF_IP_FLAG_SYSCALLRET.
1802 		 */
1803 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1804 					   PERF_IP_FLAG_RETURN |
1805 					   PERF_IP_FLAG_INTERRUPT) &&
1806 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1807 					 packet, packet->start_addr))
1808 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1809 					     PERF_IP_FLAG_RETURN |
1810 					     PERF_IP_FLAG_SYSCALLRET;
1811 		break;
1812 	case CS_ETM_DISCONTINUITY:
1813 		/*
1814 		 * The trace is discontinuous, if the previous packet is
1815 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1816 		 * for previous packet.
1817 		 */
1818 		if (prev_packet->sample_type == CS_ETM_RANGE)
1819 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1820 					      PERF_IP_FLAG_TRACE_END;
1821 		break;
1822 	case CS_ETM_EXCEPTION:
1823 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1824 		if (ret)
1825 			return ret;
1826 
1827 		/* The exception is for system call. */
1828 		if (cs_etm__is_syscall(etmq, tidq, magic))
1829 			packet->flags = PERF_IP_FLAG_BRANCH |
1830 					PERF_IP_FLAG_CALL |
1831 					PERF_IP_FLAG_SYSCALLRET;
1832 		/*
1833 		 * The exceptions are triggered by external signals from bus,
1834 		 * interrupt controller, debug module, PE reset or halt.
1835 		 */
1836 		else if (cs_etm__is_async_exception(tidq, magic))
1837 			packet->flags = PERF_IP_FLAG_BRANCH |
1838 					PERF_IP_FLAG_CALL |
1839 					PERF_IP_FLAG_ASYNC |
1840 					PERF_IP_FLAG_INTERRUPT;
1841 		/*
1842 		 * Otherwise, exception is caused by trap, instruction &
1843 		 * data fault, or alignment errors.
1844 		 */
1845 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1846 			packet->flags = PERF_IP_FLAG_BRANCH |
1847 					PERF_IP_FLAG_CALL |
1848 					PERF_IP_FLAG_INTERRUPT;
1849 
1850 		/*
1851 		 * When the exception packet is inserted, since exception
1852 		 * packet is not used standalone for generating samples
1853 		 * and it's affiliation to the previous instruction range
1854 		 * packet; so set previous range packet flags to tell perf
1855 		 * it is an exception taken branch.
1856 		 */
1857 		if (prev_packet->sample_type == CS_ETM_RANGE)
1858 			prev_packet->flags = packet->flags;
1859 		break;
1860 	case CS_ETM_EXCEPTION_RET:
1861 		/*
1862 		 * When the exception return packet is inserted, since
1863 		 * exception return packet is not used standalone for
1864 		 * generating samples and it's affiliation to the previous
1865 		 * instruction range packet; so set previous range packet
1866 		 * flags to tell perf it is an exception return branch.
1867 		 *
1868 		 * The exception return can be for either system call or
1869 		 * other exception types; unfortunately the packet doesn't
1870 		 * contain exception type related info so we cannot decide
1871 		 * the exception type purely based on exception return packet.
1872 		 * If we record the exception number from exception packet and
1873 		 * reuse it for excpetion return packet, this is not reliable
1874 		 * due the trace can be discontinuity or the interrupt can
1875 		 * be nested, thus the recorded exception number cannot be
1876 		 * used for exception return packet for these two cases.
1877 		 *
1878 		 * For exception return packet, we only need to distinguish the
1879 		 * packet is for system call or for other types.  Thus the
1880 		 * decision can be deferred when receive the next packet which
1881 		 * contains the return address, based on the return address we
1882 		 * can read out the previous instruction and check if it's a
1883 		 * system call instruction and then calibrate the sample flag
1884 		 * as needed.
1885 		 */
1886 		if (prev_packet->sample_type == CS_ETM_RANGE)
1887 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1888 					     PERF_IP_FLAG_RETURN |
1889 					     PERF_IP_FLAG_INTERRUPT;
1890 		break;
1891 	case CS_ETM_EMPTY:
1892 	default:
1893 		break;
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1900 {
1901 	int ret = 0;
1902 	size_t processed = 0;
1903 
1904 	/*
1905 	 * Packets are decoded and added to the decoder's packet queue
1906 	 * until the decoder packet processing callback has requested that
1907 	 * processing stops or there is nothing left in the buffer.  Normal
1908 	 * operations that stop processing are a timestamp packet or a full
1909 	 * decoder buffer queue.
1910 	 */
1911 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1912 						 etmq->offset,
1913 						 &etmq->buf[etmq->buf_used],
1914 						 etmq->buf_len,
1915 						 &processed);
1916 	if (ret)
1917 		goto out;
1918 
1919 	etmq->offset += processed;
1920 	etmq->buf_used += processed;
1921 	etmq->buf_len -= processed;
1922 
1923 out:
1924 	return ret;
1925 }
1926 
1927 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1928 					 struct cs_etm_traceid_queue *tidq)
1929 {
1930 	int ret;
1931 	struct cs_etm_packet_queue *packet_queue;
1932 
1933 	packet_queue = &tidq->packet_queue;
1934 
1935 	/* Process each packet in this chunk */
1936 	while (1) {
1937 		ret = cs_etm_decoder__get_packet(packet_queue,
1938 						 tidq->packet);
1939 		if (ret <= 0)
1940 			/*
1941 			 * Stop processing this chunk on
1942 			 * end of data or error
1943 			 */
1944 			break;
1945 
1946 		/*
1947 		 * Since packet addresses are swapped in packet
1948 		 * handling within below switch() statements,
1949 		 * thus setting sample flags must be called
1950 		 * prior to switch() statement to use address
1951 		 * information before packets swapping.
1952 		 */
1953 		ret = cs_etm__set_sample_flags(etmq, tidq);
1954 		if (ret < 0)
1955 			break;
1956 
1957 		switch (tidq->packet->sample_type) {
1958 		case CS_ETM_RANGE:
1959 			/*
1960 			 * If the packet contains an instruction
1961 			 * range, generate instruction sequence
1962 			 * events.
1963 			 */
1964 			cs_etm__sample(etmq, tidq);
1965 			break;
1966 		case CS_ETM_EXCEPTION:
1967 		case CS_ETM_EXCEPTION_RET:
1968 			/*
1969 			 * If the exception packet is coming,
1970 			 * make sure the previous instruction
1971 			 * range packet to be handled properly.
1972 			 */
1973 			cs_etm__exception(tidq);
1974 			break;
1975 		case CS_ETM_DISCONTINUITY:
1976 			/*
1977 			 * Discontinuity in trace, flush
1978 			 * previous branch stack
1979 			 */
1980 			cs_etm__flush(etmq, tidq);
1981 			break;
1982 		case CS_ETM_EMPTY:
1983 			/*
1984 			 * Should not receive empty packet,
1985 			 * report error.
1986 			 */
1987 			pr_err("CS ETM Trace: empty packet\n");
1988 			return -EINVAL;
1989 		default:
1990 			break;
1991 		}
1992 	}
1993 
1994 	return ret;
1995 }
1996 
1997 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
1998 {
1999 	int idx;
2000 	struct int_node *inode;
2001 	struct cs_etm_traceid_queue *tidq;
2002 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2003 
2004 	intlist__for_each_entry(inode, traceid_queues_list) {
2005 		idx = (int)(intptr_t)inode->priv;
2006 		tidq = etmq->traceid_queues[idx];
2007 
2008 		/* Ignore return value */
2009 		cs_etm__process_traceid_queue(etmq, tidq);
2010 
2011 		/*
2012 		 * Generate an instruction sample with the remaining
2013 		 * branchstack entries.
2014 		 */
2015 		cs_etm__flush(etmq, tidq);
2016 	}
2017 }
2018 
2019 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2020 {
2021 	int err = 0;
2022 	struct cs_etm_traceid_queue *tidq;
2023 
2024 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2025 	if (!tidq)
2026 		return -EINVAL;
2027 
2028 	/* Go through each buffer in the queue and decode them one by one */
2029 	while (1) {
2030 		err = cs_etm__get_data_block(etmq);
2031 		if (err <= 0)
2032 			return err;
2033 
2034 		/* Run trace decoder until buffer consumed or end of trace */
2035 		do {
2036 			err = cs_etm__decode_data_block(etmq);
2037 			if (err)
2038 				return err;
2039 
2040 			/*
2041 			 * Process each packet in this chunk, nothing to do if
2042 			 * an error occurs other than hoping the next one will
2043 			 * be better.
2044 			 */
2045 			err = cs_etm__process_traceid_queue(etmq, tidq);
2046 
2047 		} while (etmq->buf_len);
2048 
2049 		if (err == 0)
2050 			/* Flush any remaining branch stack entries */
2051 			err = cs_etm__end_block(etmq, tidq);
2052 	}
2053 
2054 	return err;
2055 }
2056 
2057 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2058 					   pid_t tid)
2059 {
2060 	unsigned int i;
2061 	struct auxtrace_queues *queues = &etm->queues;
2062 
2063 	for (i = 0; i < queues->nr_queues; i++) {
2064 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2065 		struct cs_etm_queue *etmq = queue->priv;
2066 		struct cs_etm_traceid_queue *tidq;
2067 
2068 		if (!etmq)
2069 			continue;
2070 
2071 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2072 						CS_ETM_PER_THREAD_TRACEID);
2073 
2074 		if (!tidq)
2075 			continue;
2076 
2077 		if ((tid == -1) || (tidq->tid == tid)) {
2078 			cs_etm__set_pid_tid_cpu(etm, tidq);
2079 			cs_etm__run_decoder(etmq);
2080 		}
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2087 {
2088 	int ret = 0;
2089 	unsigned int cs_queue_nr, queue_nr;
2090 	u8 trace_chan_id;
2091 	u64 timestamp;
2092 	struct auxtrace_queue *queue;
2093 	struct cs_etm_queue *etmq;
2094 	struct cs_etm_traceid_queue *tidq;
2095 
2096 	while (1) {
2097 		if (!etm->heap.heap_cnt)
2098 			goto out;
2099 
2100 		/* Take the entry at the top of the min heap */
2101 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2102 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2103 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2104 		queue = &etm->queues.queue_array[queue_nr];
2105 		etmq = queue->priv;
2106 
2107 		/*
2108 		 * Remove the top entry from the heap since we are about
2109 		 * to process it.
2110 		 */
2111 		auxtrace_heap__pop(&etm->heap);
2112 
2113 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2114 		if (!tidq) {
2115 			/*
2116 			 * No traceID queue has been allocated for this traceID,
2117 			 * which means something somewhere went very wrong.  No
2118 			 * other choice than simply exit.
2119 			 */
2120 			ret = -EINVAL;
2121 			goto out;
2122 		}
2123 
2124 		/*
2125 		 * Packets associated with this timestamp are already in
2126 		 * the etmq's traceID queue, so process them.
2127 		 */
2128 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2129 		if (ret < 0)
2130 			goto out;
2131 
2132 		/*
2133 		 * Packets for this timestamp have been processed, time to
2134 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2135 		 * if need be.
2136 		 */
2137 refetch:
2138 		ret = cs_etm__get_data_block(etmq);
2139 		if (ret < 0)
2140 			goto out;
2141 
2142 		/*
2143 		 * No more auxtrace_buffers to process in this etmq, simply
2144 		 * move on to another entry in the auxtrace_heap.
2145 		 */
2146 		if (!ret)
2147 			continue;
2148 
2149 		ret = cs_etm__decode_data_block(etmq);
2150 		if (ret)
2151 			goto out;
2152 
2153 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2154 
2155 		if (!timestamp) {
2156 			/*
2157 			 * Function cs_etm__decode_data_block() returns when
2158 			 * there is no more traces to decode in the current
2159 			 * auxtrace_buffer OR when a timestamp has been
2160 			 * encountered on any of the traceID queues.  Since we
2161 			 * did not get a timestamp, there is no more traces to
2162 			 * process in this auxtrace_buffer.  As such empty and
2163 			 * flush all traceID queues.
2164 			 */
2165 			cs_etm__clear_all_traceid_queues(etmq);
2166 
2167 			/* Fetch another auxtrace_buffer for this etmq */
2168 			goto refetch;
2169 		}
2170 
2171 		/*
2172 		 * Add to the min heap the timestamp for packets that have
2173 		 * just been decoded.  They will be processed and synthesized
2174 		 * during the next call to cs_etm__process_traceid_queue() for
2175 		 * this queue/traceID.
2176 		 */
2177 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2178 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2179 	}
2180 
2181 out:
2182 	return ret;
2183 }
2184 
2185 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2186 					union perf_event *event)
2187 {
2188 	struct thread *th;
2189 
2190 	if (etm->timeless_decoding)
2191 		return 0;
2192 
2193 	/*
2194 	 * Add the tid/pid to the log so that we can get a match when
2195 	 * we get a contextID from the decoder.
2196 	 */
2197 	th = machine__findnew_thread(etm->machine,
2198 				     event->itrace_start.pid,
2199 				     event->itrace_start.tid);
2200 	if (!th)
2201 		return -ENOMEM;
2202 
2203 	thread__put(th);
2204 
2205 	return 0;
2206 }
2207 
2208 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2209 					   union perf_event *event)
2210 {
2211 	struct thread *th;
2212 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2213 
2214 	/*
2215 	 * Context switch in per-thread mode are irrelevant since perf
2216 	 * will start/stop tracing as the process is scheduled.
2217 	 */
2218 	if (etm->timeless_decoding)
2219 		return 0;
2220 
2221 	/*
2222 	 * SWITCH_IN events carry the next process to be switched out while
2223 	 * SWITCH_OUT events carry the process to be switched in.  As such
2224 	 * we don't care about IN events.
2225 	 */
2226 	if (!out)
2227 		return 0;
2228 
2229 	/*
2230 	 * Add the tid/pid to the log so that we can get a match when
2231 	 * we get a contextID from the decoder.
2232 	 */
2233 	th = machine__findnew_thread(etm->machine,
2234 				     event->context_switch.next_prev_pid,
2235 				     event->context_switch.next_prev_tid);
2236 	if (!th)
2237 		return -ENOMEM;
2238 
2239 	thread__put(th);
2240 
2241 	return 0;
2242 }
2243 
2244 static int cs_etm__process_event(struct perf_session *session,
2245 				 union perf_event *event,
2246 				 struct perf_sample *sample,
2247 				 struct perf_tool *tool)
2248 {
2249 	int err = 0;
2250 	u64 timestamp;
2251 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2252 						   struct cs_etm_auxtrace,
2253 						   auxtrace);
2254 
2255 	if (dump_trace)
2256 		return 0;
2257 
2258 	if (!tool->ordered_events) {
2259 		pr_err("CoreSight ETM Trace requires ordered events\n");
2260 		return -EINVAL;
2261 	}
2262 
2263 	if (sample->time && (sample->time != (u64) -1))
2264 		timestamp = sample->time;
2265 	else
2266 		timestamp = 0;
2267 
2268 	if (timestamp || etm->timeless_decoding) {
2269 		err = cs_etm__update_queues(etm);
2270 		if (err)
2271 			return err;
2272 	}
2273 
2274 	if (etm->timeless_decoding &&
2275 	    event->header.type == PERF_RECORD_EXIT)
2276 		return cs_etm__process_timeless_queues(etm,
2277 						       event->fork.tid);
2278 
2279 	if (event->header.type == PERF_RECORD_ITRACE_START)
2280 		return cs_etm__process_itrace_start(etm, event);
2281 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2282 		return cs_etm__process_switch_cpu_wide(etm, event);
2283 
2284 	if (!etm->timeless_decoding &&
2285 	    event->header.type == PERF_RECORD_AUX)
2286 		return cs_etm__process_queues(etm);
2287 
2288 	return 0;
2289 }
2290 
2291 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2292 					  union perf_event *event,
2293 					  struct perf_tool *tool __maybe_unused)
2294 {
2295 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2296 						   struct cs_etm_auxtrace,
2297 						   auxtrace);
2298 	if (!etm->data_queued) {
2299 		struct auxtrace_buffer *buffer;
2300 		off_t  data_offset;
2301 		int fd = perf_data__fd(session->data);
2302 		bool is_pipe = perf_data__is_pipe(session->data);
2303 		int err;
2304 
2305 		if (is_pipe)
2306 			data_offset = 0;
2307 		else {
2308 			data_offset = lseek(fd, 0, SEEK_CUR);
2309 			if (data_offset == -1)
2310 				return -errno;
2311 		}
2312 
2313 		err = auxtrace_queues__add_event(&etm->queues, session,
2314 						 event, data_offset, &buffer);
2315 		if (err)
2316 			return err;
2317 
2318 		if (dump_trace)
2319 			if (auxtrace_buffer__get_data(buffer, fd)) {
2320 				cs_etm__dump_event(etm, buffer);
2321 				auxtrace_buffer__put_data(buffer);
2322 			}
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2329 {
2330 	struct evsel *evsel;
2331 	struct evlist *evlist = etm->session->evlist;
2332 	bool timeless_decoding = true;
2333 
2334 	/*
2335 	 * Circle through the list of event and complain if we find one
2336 	 * with the time bit set.
2337 	 */
2338 	evlist__for_each_entry(evlist, evsel) {
2339 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2340 			timeless_decoding = false;
2341 	}
2342 
2343 	return timeless_decoding;
2344 }
2345 
2346 static const char * const cs_etm_global_header_fmts[] = {
2347 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2348 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2349 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2350 };
2351 
2352 static const char * const cs_etm_priv_fmts[] = {
2353 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2354 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2355 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2356 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2357 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2358 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2359 };
2360 
2361 static const char * const cs_etmv4_priv_fmts[] = {
2362 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2363 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2364 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2365 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2366 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2367 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2368 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2369 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2370 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2371 };
2372 
2373 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2374 {
2375 	int i, j, cpu = 0;
2376 
2377 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2378 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2379 
2380 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2381 		if (val[i] == __perf_cs_etmv3_magic)
2382 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2383 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2384 		else if (val[i] == __perf_cs_etmv4_magic)
2385 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2386 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2387 		else
2388 			/* failure.. return */
2389 			return;
2390 	}
2391 }
2392 
2393 int cs_etm__process_auxtrace_info(union perf_event *event,
2394 				  struct perf_session *session)
2395 {
2396 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2397 	struct cs_etm_auxtrace *etm = NULL;
2398 	struct int_node *inode;
2399 	unsigned int pmu_type;
2400 	int event_header_size = sizeof(struct perf_event_header);
2401 	int info_header_size;
2402 	int total_size = auxtrace_info->header.size;
2403 	int priv_size = 0;
2404 	int num_cpu;
2405 	int err = 0, idx = -1;
2406 	int i, j, k;
2407 	u64 *ptr, *hdr = NULL;
2408 	u64 **metadata = NULL;
2409 
2410 	/*
2411 	 * sizeof(auxtrace_info_event::type) +
2412 	 * sizeof(auxtrace_info_event::reserved) == 8
2413 	 */
2414 	info_header_size = 8;
2415 
2416 	if (total_size < (event_header_size + info_header_size))
2417 		return -EINVAL;
2418 
2419 	priv_size = total_size - event_header_size - info_header_size;
2420 
2421 	/* First the global part */
2422 	ptr = (u64 *) auxtrace_info->priv;
2423 
2424 	/* Look for version '0' of the header */
2425 	if (ptr[0] != 0)
2426 		return -EINVAL;
2427 
2428 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2429 	if (!hdr)
2430 		return -ENOMEM;
2431 
2432 	/* Extract header information - see cs-etm.h for format */
2433 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2434 		hdr[i] = ptr[i];
2435 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2436 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2437 				    0xffffffff);
2438 
2439 	/*
2440 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2441 	 * has to be made for each packet that gets decoded, optimizing access
2442 	 * in anything other than a sequential array is worth doing.
2443 	 */
2444 	traceid_list = intlist__new(NULL);
2445 	if (!traceid_list) {
2446 		err = -ENOMEM;
2447 		goto err_free_hdr;
2448 	}
2449 
2450 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2451 	if (!metadata) {
2452 		err = -ENOMEM;
2453 		goto err_free_traceid_list;
2454 	}
2455 
2456 	/*
2457 	 * The metadata is stored in the auxtrace_info section and encodes
2458 	 * the configuration of the ARM embedded trace macrocell which is
2459 	 * required by the trace decoder to properly decode the trace due
2460 	 * to its highly compressed nature.
2461 	 */
2462 	for (j = 0; j < num_cpu; j++) {
2463 		if (ptr[i] == __perf_cs_etmv3_magic) {
2464 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2465 					     CS_ETM_PRIV_MAX);
2466 			if (!metadata[j]) {
2467 				err = -ENOMEM;
2468 				goto err_free_metadata;
2469 			}
2470 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2471 				metadata[j][k] = ptr[i + k];
2472 
2473 			/* The traceID is our handle */
2474 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2475 			i += CS_ETM_PRIV_MAX;
2476 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2477 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2478 					     CS_ETMV4_PRIV_MAX);
2479 			if (!metadata[j]) {
2480 				err = -ENOMEM;
2481 				goto err_free_metadata;
2482 			}
2483 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2484 				metadata[j][k] = ptr[i + k];
2485 
2486 			/* The traceID is our handle */
2487 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2488 			i += CS_ETMV4_PRIV_MAX;
2489 		}
2490 
2491 		/* Get an RB node for this CPU */
2492 		inode = intlist__findnew(traceid_list, idx);
2493 
2494 		/* Something went wrong, no need to continue */
2495 		if (!inode) {
2496 			err = -ENOMEM;
2497 			goto err_free_metadata;
2498 		}
2499 
2500 		/*
2501 		 * The node for that CPU should not be taken.
2502 		 * Back out if that's the case.
2503 		 */
2504 		if (inode->priv) {
2505 			err = -EINVAL;
2506 			goto err_free_metadata;
2507 		}
2508 		/* All good, associate the traceID with the metadata pointer */
2509 		inode->priv = metadata[j];
2510 	}
2511 
2512 	/*
2513 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2514 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2515 	 * global metadata, and each cpu's metadata respectively.
2516 	 * The following tests if the correct number of double words was
2517 	 * present in the auxtrace info section.
2518 	 */
2519 	if (i * 8 != priv_size) {
2520 		err = -EINVAL;
2521 		goto err_free_metadata;
2522 	}
2523 
2524 	etm = zalloc(sizeof(*etm));
2525 
2526 	if (!etm) {
2527 		err = -ENOMEM;
2528 		goto err_free_metadata;
2529 	}
2530 
2531 	err = auxtrace_queues__init(&etm->queues);
2532 	if (err)
2533 		goto err_free_etm;
2534 
2535 	etm->session = session;
2536 	etm->machine = &session->machines.host;
2537 
2538 	etm->num_cpu = num_cpu;
2539 	etm->pmu_type = pmu_type;
2540 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2541 	etm->metadata = metadata;
2542 	etm->auxtrace_type = auxtrace_info->type;
2543 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2544 
2545 	etm->auxtrace.process_event = cs_etm__process_event;
2546 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2547 	etm->auxtrace.flush_events = cs_etm__flush_events;
2548 	etm->auxtrace.free_events = cs_etm__free_events;
2549 	etm->auxtrace.free = cs_etm__free;
2550 	session->auxtrace = &etm->auxtrace;
2551 
2552 	etm->unknown_thread = thread__new(999999999, 999999999);
2553 	if (!etm->unknown_thread) {
2554 		err = -ENOMEM;
2555 		goto err_free_queues;
2556 	}
2557 
2558 	/*
2559 	 * Initialize list node so that at thread__zput() we can avoid
2560 	 * segmentation fault at list_del_init().
2561 	 */
2562 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2563 
2564 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2565 	if (err)
2566 		goto err_delete_thread;
2567 
2568 	if (thread__init_map_groups(etm->unknown_thread, etm->machine)) {
2569 		err = -ENOMEM;
2570 		goto err_delete_thread;
2571 	}
2572 
2573 	if (dump_trace) {
2574 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2575 		return 0;
2576 	}
2577 
2578 	if (session->itrace_synth_opts->set) {
2579 		etm->synth_opts = *session->itrace_synth_opts;
2580 	} else {
2581 		itrace_synth_opts__set_default(&etm->synth_opts,
2582 				session->itrace_synth_opts->default_no_sample);
2583 		etm->synth_opts.callchain = false;
2584 	}
2585 
2586 	err = cs_etm__synth_events(etm, session);
2587 	if (err)
2588 		goto err_delete_thread;
2589 
2590 	err = auxtrace_queues__process_index(&etm->queues, session);
2591 	if (err)
2592 		goto err_delete_thread;
2593 
2594 	etm->data_queued = etm->queues.populated;
2595 
2596 	return 0;
2597 
2598 err_delete_thread:
2599 	thread__zput(etm->unknown_thread);
2600 err_free_queues:
2601 	auxtrace_queues__free(&etm->queues);
2602 	session->auxtrace = NULL;
2603 err_free_etm:
2604 	zfree(&etm);
2605 err_free_metadata:
2606 	/* No need to check @metadata[j], free(NULL) is supported */
2607 	for (j = 0; j < num_cpu; j++)
2608 		zfree(&metadata[j]);
2609 	zfree(&metadata);
2610 err_free_traceid_list:
2611 	intlist__delete(traceid_list);
2612 err_free_hdr:
2613 	zfree(&hdr);
2614 
2615 	return err;
2616 }
2617