xref: /linux/tools/perf/util/cs-etm.c (revision 3d8b92472ae7ba91d759cadb4670bd492ef97d04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 	u8 sample_branches;
54 	u8 sample_instructions;
55 
56 	int num_cpu;
57 	u64 latest_kernel_timestamp;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	unsigned int pmu_type;
66 };
67 
68 struct cs_etm_traceid_queue {
69 	u8 trace_chan_id;
70 	pid_t pid, tid;
71 	u64 period_instructions;
72 	size_t last_branch_pos;
73 	union perf_event *event_buf;
74 	struct thread *thread;
75 	struct branch_stack *last_branch;
76 	struct branch_stack *last_branch_rb;
77 	struct cs_etm_packet *prev_packet;
78 	struct cs_etm_packet *packet;
79 	struct cs_etm_packet_queue packet_queue;
80 };
81 
82 struct cs_etm_queue {
83 	struct cs_etm_auxtrace *etm;
84 	struct cs_etm_decoder *decoder;
85 	struct auxtrace_buffer *buffer;
86 	unsigned int queue_nr;
87 	u8 pending_timestamp_chan_id;
88 	u64 offset;
89 	const unsigned char *buf;
90 	size_t buf_len, buf_used;
91 	/* Conversion between traceID and index in traceid_queues array */
92 	struct intlist *traceid_queues_list;
93 	struct cs_etm_traceid_queue **traceid_queues;
94 };
95 
96 /* RB tree for quick conversion between traceID and metadata pointers */
97 static struct intlist *traceid_list;
98 
99 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
100 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
101 					   pid_t tid);
102 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
103 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
104 
105 /* PTMs ETMIDR [11:8] set to b0011 */
106 #define ETMIDR_PTM_VERSION 0x00000300
107 
108 /*
109  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
110  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
111  * encode the etm queue number as the upper 16 bit and the channel as
112  * the lower 16 bit.
113  */
114 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
115 		      (queue_nr << 16 | trace_chan_id)
116 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
117 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
118 
119 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
120 {
121 	etmidr &= ETMIDR_PTM_VERSION;
122 
123 	if (etmidr == ETMIDR_PTM_VERSION)
124 		return CS_ETM_PROTO_PTM;
125 
126 	return CS_ETM_PROTO_ETMV3;
127 }
128 
129 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
130 {
131 	struct int_node *inode;
132 	u64 *metadata;
133 
134 	inode = intlist__find(traceid_list, trace_chan_id);
135 	if (!inode)
136 		return -EINVAL;
137 
138 	metadata = inode->priv;
139 	*magic = metadata[CS_ETM_MAGIC];
140 	return 0;
141 }
142 
143 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
144 {
145 	struct int_node *inode;
146 	u64 *metadata;
147 
148 	inode = intlist__find(traceid_list, trace_chan_id);
149 	if (!inode)
150 		return -EINVAL;
151 
152 	metadata = inode->priv;
153 	*cpu = (int)metadata[CS_ETM_CPU];
154 	return 0;
155 }
156 
157 /*
158  * The returned PID format is presented by two bits:
159  *
160  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
161  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
162  *
163  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
164  * are enabled at the same time when the session runs on an EL2 kernel.
165  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
166  * recorded in the trace data, the tool will selectively use
167  * CONTEXTIDR_EL2 as PID.
168  */
169 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
170 {
171 	struct int_node *inode;
172 	u64 *metadata, val;
173 
174 	inode = intlist__find(traceid_list, trace_chan_id);
175 	if (!inode)
176 		return -EINVAL;
177 
178 	metadata = inode->priv;
179 
180 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
181 		val = metadata[CS_ETM_ETMCR];
182 		/* CONTEXTIDR is traced */
183 		if (val & BIT(ETM_OPT_CTXTID))
184 			*pid_fmt = BIT(ETM_OPT_CTXTID);
185 	} else {
186 		val = metadata[CS_ETMV4_TRCCONFIGR];
187 		/* CONTEXTIDR_EL2 is traced */
188 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
189 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
190 		/* CONTEXTIDR_EL1 is traced */
191 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
192 			*pid_fmt = BIT(ETM_OPT_CTXTID);
193 	}
194 
195 	return 0;
196 }
197 
198 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
199 					      u8 trace_chan_id)
200 {
201 	/*
202 	 * When a timestamp packet is encountered the backend code
203 	 * is stopped so that the front end has time to process packets
204 	 * that were accumulated in the traceID queue.  Since there can
205 	 * be more than one channel per cs_etm_queue, we need to specify
206 	 * what traceID queue needs servicing.
207 	 */
208 	etmq->pending_timestamp_chan_id = trace_chan_id;
209 }
210 
211 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
212 				      u8 *trace_chan_id)
213 {
214 	struct cs_etm_packet_queue *packet_queue;
215 
216 	if (!etmq->pending_timestamp_chan_id)
217 		return 0;
218 
219 	if (trace_chan_id)
220 		*trace_chan_id = etmq->pending_timestamp_chan_id;
221 
222 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
223 						     etmq->pending_timestamp_chan_id);
224 	if (!packet_queue)
225 		return 0;
226 
227 	/* Acknowledge pending status */
228 	etmq->pending_timestamp_chan_id = 0;
229 
230 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
231 	return packet_queue->cs_timestamp;
232 }
233 
234 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
235 {
236 	int i;
237 
238 	queue->head = 0;
239 	queue->tail = 0;
240 	queue->packet_count = 0;
241 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
242 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
243 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
244 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
245 		queue->packet_buffer[i].instr_count = 0;
246 		queue->packet_buffer[i].last_instr_taken_branch = false;
247 		queue->packet_buffer[i].last_instr_size = 0;
248 		queue->packet_buffer[i].last_instr_type = 0;
249 		queue->packet_buffer[i].last_instr_subtype = 0;
250 		queue->packet_buffer[i].last_instr_cond = 0;
251 		queue->packet_buffer[i].flags = 0;
252 		queue->packet_buffer[i].exception_number = UINT32_MAX;
253 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
254 		queue->packet_buffer[i].cpu = INT_MIN;
255 	}
256 }
257 
258 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
259 {
260 	int idx;
261 	struct int_node *inode;
262 	struct cs_etm_traceid_queue *tidq;
263 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
264 
265 	intlist__for_each_entry(inode, traceid_queues_list) {
266 		idx = (int)(intptr_t)inode->priv;
267 		tidq = etmq->traceid_queues[idx];
268 		cs_etm__clear_packet_queue(&tidq->packet_queue);
269 	}
270 }
271 
272 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
273 				      struct cs_etm_traceid_queue *tidq,
274 				      u8 trace_chan_id)
275 {
276 	int rc = -ENOMEM;
277 	struct auxtrace_queue *queue;
278 	struct cs_etm_auxtrace *etm = etmq->etm;
279 
280 	cs_etm__clear_packet_queue(&tidq->packet_queue);
281 
282 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
283 	tidq->tid = queue->tid;
284 	tidq->pid = -1;
285 	tidq->trace_chan_id = trace_chan_id;
286 
287 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
288 	if (!tidq->packet)
289 		goto out;
290 
291 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
292 	if (!tidq->prev_packet)
293 		goto out_free;
294 
295 	if (etm->synth_opts.last_branch) {
296 		size_t sz = sizeof(struct branch_stack);
297 
298 		sz += etm->synth_opts.last_branch_sz *
299 		      sizeof(struct branch_entry);
300 		tidq->last_branch = zalloc(sz);
301 		if (!tidq->last_branch)
302 			goto out_free;
303 		tidq->last_branch_rb = zalloc(sz);
304 		if (!tidq->last_branch_rb)
305 			goto out_free;
306 	}
307 
308 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
309 	if (!tidq->event_buf)
310 		goto out_free;
311 
312 	return 0;
313 
314 out_free:
315 	zfree(&tidq->last_branch_rb);
316 	zfree(&tidq->last_branch);
317 	zfree(&tidq->prev_packet);
318 	zfree(&tidq->packet);
319 out:
320 	return rc;
321 }
322 
323 static struct cs_etm_traceid_queue
324 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
325 {
326 	int idx;
327 	struct int_node *inode;
328 	struct intlist *traceid_queues_list;
329 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
330 	struct cs_etm_auxtrace *etm = etmq->etm;
331 
332 	if (etm->timeless_decoding)
333 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
334 
335 	traceid_queues_list = etmq->traceid_queues_list;
336 
337 	/*
338 	 * Check if the traceid_queue exist for this traceID by looking
339 	 * in the queue list.
340 	 */
341 	inode = intlist__find(traceid_queues_list, trace_chan_id);
342 	if (inode) {
343 		idx = (int)(intptr_t)inode->priv;
344 		return etmq->traceid_queues[idx];
345 	}
346 
347 	/* We couldn't find a traceid_queue for this traceID, allocate one */
348 	tidq = malloc(sizeof(*tidq));
349 	if (!tidq)
350 		return NULL;
351 
352 	memset(tidq, 0, sizeof(*tidq));
353 
354 	/* Get a valid index for the new traceid_queue */
355 	idx = intlist__nr_entries(traceid_queues_list);
356 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
357 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
358 	if (!inode)
359 		goto out_free;
360 
361 	/* Associate this traceID with this index */
362 	inode->priv = (void *)(intptr_t)idx;
363 
364 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
365 		goto out_free;
366 
367 	/* Grow the traceid_queues array by one unit */
368 	traceid_queues = etmq->traceid_queues;
369 	traceid_queues = reallocarray(traceid_queues,
370 				      idx + 1,
371 				      sizeof(*traceid_queues));
372 
373 	/*
374 	 * On failure reallocarray() returns NULL and the original block of
375 	 * memory is left untouched.
376 	 */
377 	if (!traceid_queues)
378 		goto out_free;
379 
380 	traceid_queues[idx] = tidq;
381 	etmq->traceid_queues = traceid_queues;
382 
383 	return etmq->traceid_queues[idx];
384 
385 out_free:
386 	/*
387 	 * Function intlist__remove() removes the inode from the list
388 	 * and delete the memory associated to it.
389 	 */
390 	intlist__remove(traceid_queues_list, inode);
391 	free(tidq);
392 
393 	return NULL;
394 }
395 
396 struct cs_etm_packet_queue
397 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
398 {
399 	struct cs_etm_traceid_queue *tidq;
400 
401 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
402 	if (tidq)
403 		return &tidq->packet_queue;
404 
405 	return NULL;
406 }
407 
408 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
409 				struct cs_etm_traceid_queue *tidq)
410 {
411 	struct cs_etm_packet *tmp;
412 
413 	if (etm->sample_branches || etm->synth_opts.last_branch ||
414 	    etm->sample_instructions) {
415 		/*
416 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
417 		 * the next incoming packet.
418 		 */
419 		tmp = tidq->packet;
420 		tidq->packet = tidq->prev_packet;
421 		tidq->prev_packet = tmp;
422 	}
423 }
424 
425 static void cs_etm__packet_dump(const char *pkt_string)
426 {
427 	const char *color = PERF_COLOR_BLUE;
428 	int len = strlen(pkt_string);
429 
430 	if (len && (pkt_string[len-1] == '\n'))
431 		color_fprintf(stdout, color, "	%s", pkt_string);
432 	else
433 		color_fprintf(stdout, color, "	%s\n", pkt_string);
434 
435 	fflush(stdout);
436 }
437 
438 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
439 					  struct cs_etm_auxtrace *etm, int idx,
440 					  u32 etmidr)
441 {
442 	u64 **metadata = etm->metadata;
443 
444 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
445 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
446 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
447 }
448 
449 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
450 					  struct cs_etm_auxtrace *etm, int idx)
451 {
452 	u64 **metadata = etm->metadata;
453 
454 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
455 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
456 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
457 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
458 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
459 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
460 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
461 }
462 
463 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
464 				     struct cs_etm_auxtrace *etm,
465 				     int decoders)
466 {
467 	int i;
468 	u32 etmidr;
469 	u64 architecture;
470 
471 	for (i = 0; i < decoders; i++) {
472 		architecture = etm->metadata[i][CS_ETM_MAGIC];
473 
474 		switch (architecture) {
475 		case __perf_cs_etmv3_magic:
476 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
477 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
478 			break;
479 		case __perf_cs_etmv4_magic:
480 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
481 			break;
482 		default:
483 			return -EINVAL;
484 		}
485 	}
486 
487 	return 0;
488 }
489 
490 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
491 				       struct cs_etm_queue *etmq,
492 				       enum cs_etm_decoder_operation mode,
493 				       bool formatted)
494 {
495 	int ret = -EINVAL;
496 
497 	if (!(mode < CS_ETM_OPERATION_MAX))
498 		goto out;
499 
500 	d_params->packet_printer = cs_etm__packet_dump;
501 	d_params->operation = mode;
502 	d_params->data = etmq;
503 	d_params->formatted = formatted;
504 	d_params->fsyncs = false;
505 	d_params->hsyncs = false;
506 	d_params->frame_aligned = true;
507 
508 	ret = 0;
509 out:
510 	return ret;
511 }
512 
513 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
514 			       struct auxtrace_buffer *buffer)
515 {
516 	int ret;
517 	const char *color = PERF_COLOR_BLUE;
518 	size_t buffer_used = 0;
519 
520 	fprintf(stdout, "\n");
521 	color_fprintf(stdout, color,
522 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
523 		     buffer->size);
524 
525 	do {
526 		size_t consumed;
527 
528 		ret = cs_etm_decoder__process_data_block(
529 				etmq->decoder, buffer->offset,
530 				&((u8 *)buffer->data)[buffer_used],
531 				buffer->size - buffer_used, &consumed);
532 		if (ret)
533 			break;
534 
535 		buffer_used += consumed;
536 	} while (buffer_used < buffer->size);
537 
538 	cs_etm_decoder__reset(etmq->decoder);
539 }
540 
541 static int cs_etm__flush_events(struct perf_session *session,
542 				struct perf_tool *tool)
543 {
544 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
545 						   struct cs_etm_auxtrace,
546 						   auxtrace);
547 	if (dump_trace)
548 		return 0;
549 
550 	if (!tool->ordered_events)
551 		return -EINVAL;
552 
553 	if (etm->timeless_decoding)
554 		return cs_etm__process_timeless_queues(etm, -1);
555 
556 	return cs_etm__process_queues(etm);
557 }
558 
559 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
560 {
561 	int idx;
562 	uintptr_t priv;
563 	struct int_node *inode, *tmp;
564 	struct cs_etm_traceid_queue *tidq;
565 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
566 
567 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
568 		priv = (uintptr_t)inode->priv;
569 		idx = priv;
570 
571 		/* Free this traceid_queue from the array */
572 		tidq = etmq->traceid_queues[idx];
573 		thread__zput(tidq->thread);
574 		zfree(&tidq->event_buf);
575 		zfree(&tidq->last_branch);
576 		zfree(&tidq->last_branch_rb);
577 		zfree(&tidq->prev_packet);
578 		zfree(&tidq->packet);
579 		zfree(&tidq);
580 
581 		/*
582 		 * Function intlist__remove() removes the inode from the list
583 		 * and delete the memory associated to it.
584 		 */
585 		intlist__remove(traceid_queues_list, inode);
586 	}
587 
588 	/* Then the RB tree itself */
589 	intlist__delete(traceid_queues_list);
590 	etmq->traceid_queues_list = NULL;
591 
592 	/* finally free the traceid_queues array */
593 	zfree(&etmq->traceid_queues);
594 }
595 
596 static void cs_etm__free_queue(void *priv)
597 {
598 	struct cs_etm_queue *etmq = priv;
599 
600 	if (!etmq)
601 		return;
602 
603 	cs_etm_decoder__free(etmq->decoder);
604 	cs_etm__free_traceid_queues(etmq);
605 	free(etmq);
606 }
607 
608 static void cs_etm__free_events(struct perf_session *session)
609 {
610 	unsigned int i;
611 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
612 						   struct cs_etm_auxtrace,
613 						   auxtrace);
614 	struct auxtrace_queues *queues = &aux->queues;
615 
616 	for (i = 0; i < queues->nr_queues; i++) {
617 		cs_etm__free_queue(queues->queue_array[i].priv);
618 		queues->queue_array[i].priv = NULL;
619 	}
620 
621 	auxtrace_queues__free(queues);
622 }
623 
624 static void cs_etm__free(struct perf_session *session)
625 {
626 	int i;
627 	struct int_node *inode, *tmp;
628 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
629 						   struct cs_etm_auxtrace,
630 						   auxtrace);
631 	cs_etm__free_events(session);
632 	session->auxtrace = NULL;
633 
634 	/* First remove all traceID/metadata nodes for the RB tree */
635 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
636 		intlist__remove(traceid_list, inode);
637 	/* Then the RB tree itself */
638 	intlist__delete(traceid_list);
639 
640 	for (i = 0; i < aux->num_cpu; i++)
641 		zfree(&aux->metadata[i]);
642 
643 	thread__zput(aux->unknown_thread);
644 	zfree(&aux->metadata);
645 	zfree(&aux);
646 }
647 
648 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
649 				      struct evsel *evsel)
650 {
651 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
652 						   struct cs_etm_auxtrace,
653 						   auxtrace);
654 
655 	return evsel->core.attr.type == aux->pmu_type;
656 }
657 
658 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
659 {
660 	struct machine *machine;
661 
662 	machine = etmq->etm->machine;
663 
664 	if (address >= machine__kernel_start(machine)) {
665 		if (machine__is_host(machine))
666 			return PERF_RECORD_MISC_KERNEL;
667 		else
668 			return PERF_RECORD_MISC_GUEST_KERNEL;
669 	} else {
670 		if (machine__is_host(machine))
671 			return PERF_RECORD_MISC_USER;
672 		else if (perf_guest)
673 			return PERF_RECORD_MISC_GUEST_USER;
674 		else
675 			return PERF_RECORD_MISC_HYPERVISOR;
676 	}
677 }
678 
679 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
680 			      u64 address, size_t size, u8 *buffer)
681 {
682 	u8  cpumode;
683 	u64 offset;
684 	int len;
685 	struct thread *thread;
686 	struct machine *machine;
687 	struct addr_location al;
688 	struct cs_etm_traceid_queue *tidq;
689 
690 	if (!etmq)
691 		return 0;
692 
693 	machine = etmq->etm->machine;
694 	cpumode = cs_etm__cpu_mode(etmq, address);
695 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
696 	if (!tidq)
697 		return 0;
698 
699 	thread = tidq->thread;
700 	if (!thread) {
701 		if (cpumode != PERF_RECORD_MISC_KERNEL)
702 			return 0;
703 		thread = etmq->etm->unknown_thread;
704 	}
705 
706 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
707 		return 0;
708 
709 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
710 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
711 		return 0;
712 
713 	offset = al.map->map_ip(al.map, address);
714 
715 	map__load(al.map);
716 
717 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
718 
719 	if (len <= 0)
720 		return 0;
721 
722 	return len;
723 }
724 
725 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
726 						bool formatted)
727 {
728 	struct cs_etm_decoder_params d_params;
729 	struct cs_etm_trace_params  *t_params = NULL;
730 	struct cs_etm_queue *etmq;
731 	/*
732 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
733 	 * needed.
734 	 */
735 	int decoders = formatted ? etm->num_cpu : 1;
736 
737 	etmq = zalloc(sizeof(*etmq));
738 	if (!etmq)
739 		return NULL;
740 
741 	etmq->traceid_queues_list = intlist__new(NULL);
742 	if (!etmq->traceid_queues_list)
743 		goto out_free;
744 
745 	/* Use metadata to fill in trace parameters for trace decoder */
746 	t_params = zalloc(sizeof(*t_params) * decoders);
747 
748 	if (!t_params)
749 		goto out_free;
750 
751 	if (cs_etm__init_trace_params(t_params, etm, decoders))
752 		goto out_free;
753 
754 	/* Set decoder parameters to decode trace packets */
755 	if (cs_etm__init_decoder_params(&d_params, etmq,
756 					dump_trace ? CS_ETM_OPERATION_PRINT :
757 						     CS_ETM_OPERATION_DECODE,
758 					formatted))
759 		goto out_free;
760 
761 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
762 					    t_params);
763 
764 	if (!etmq->decoder)
765 		goto out_free;
766 
767 	/*
768 	 * Register a function to handle all memory accesses required by
769 	 * the trace decoder library.
770 	 */
771 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
772 					      0x0L, ((u64) -1L),
773 					      cs_etm__mem_access))
774 		goto out_free_decoder;
775 
776 	zfree(&t_params);
777 	return etmq;
778 
779 out_free_decoder:
780 	cs_etm_decoder__free(etmq->decoder);
781 out_free:
782 	intlist__delete(etmq->traceid_queues_list);
783 	free(etmq);
784 
785 	return NULL;
786 }
787 
788 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
789 			       struct auxtrace_queue *queue,
790 			       unsigned int queue_nr,
791 			       bool formatted)
792 {
793 	struct cs_etm_queue *etmq = queue->priv;
794 
795 	if (list_empty(&queue->head) || etmq)
796 		return 0;
797 
798 	etmq = cs_etm__alloc_queue(etm, formatted);
799 
800 	if (!etmq)
801 		return -ENOMEM;
802 
803 	queue->priv = etmq;
804 	etmq->etm = etm;
805 	etmq->queue_nr = queue_nr;
806 	etmq->offset = 0;
807 
808 	return 0;
809 }
810 
811 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
812 					    struct cs_etm_queue *etmq,
813 					    unsigned int queue_nr)
814 {
815 	int ret = 0;
816 	unsigned int cs_queue_nr;
817 	u8 trace_chan_id;
818 	u64 cs_timestamp;
819 
820 	/*
821 	 * We are under a CPU-wide trace scenario.  As such we need to know
822 	 * when the code that generated the traces started to execute so that
823 	 * it can be correlated with execution on other CPUs.  So we get a
824 	 * handle on the beginning of traces and decode until we find a
825 	 * timestamp.  The timestamp is then added to the auxtrace min heap
826 	 * in order to know what nibble (of all the etmqs) to decode first.
827 	 */
828 	while (1) {
829 		/*
830 		 * Fetch an aux_buffer from this etmq.  Bail if no more
831 		 * blocks or an error has been encountered.
832 		 */
833 		ret = cs_etm__get_data_block(etmq);
834 		if (ret <= 0)
835 			goto out;
836 
837 		/*
838 		 * Run decoder on the trace block.  The decoder will stop when
839 		 * encountering a CS timestamp, a full packet queue or the end of
840 		 * trace for that block.
841 		 */
842 		ret = cs_etm__decode_data_block(etmq);
843 		if (ret)
844 			goto out;
845 
846 		/*
847 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
848 		 * the timestamp calculation for us.
849 		 */
850 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
851 
852 		/* We found a timestamp, no need to continue. */
853 		if (cs_timestamp)
854 			break;
855 
856 		/*
857 		 * We didn't find a timestamp so empty all the traceid packet
858 		 * queues before looking for another timestamp packet, either
859 		 * in the current data block or a new one.  Packets that were
860 		 * just decoded are useless since no timestamp has been
861 		 * associated with them.  As such simply discard them.
862 		 */
863 		cs_etm__clear_all_packet_queues(etmq);
864 	}
865 
866 	/*
867 	 * We have a timestamp.  Add it to the min heap to reflect when
868 	 * instructions conveyed by the range packets of this traceID queue
869 	 * started to execute.  Once the same has been done for all the traceID
870 	 * queues of each etmq, redenring and decoding can start in
871 	 * chronological order.
872 	 *
873 	 * Note that packets decoded above are still in the traceID's packet
874 	 * queue and will be processed in cs_etm__process_queues().
875 	 */
876 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
877 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
878 out:
879 	return ret;
880 }
881 
882 static inline
883 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
884 				 struct cs_etm_traceid_queue *tidq)
885 {
886 	struct branch_stack *bs_src = tidq->last_branch_rb;
887 	struct branch_stack *bs_dst = tidq->last_branch;
888 	size_t nr = 0;
889 
890 	/*
891 	 * Set the number of records before early exit: ->nr is used to
892 	 * determine how many branches to copy from ->entries.
893 	 */
894 	bs_dst->nr = bs_src->nr;
895 
896 	/*
897 	 * Early exit when there is nothing to copy.
898 	 */
899 	if (!bs_src->nr)
900 		return;
901 
902 	/*
903 	 * As bs_src->entries is a circular buffer, we need to copy from it in
904 	 * two steps.  First, copy the branches from the most recently inserted
905 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
906 	 */
907 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
908 	memcpy(&bs_dst->entries[0],
909 	       &bs_src->entries[tidq->last_branch_pos],
910 	       sizeof(struct branch_entry) * nr);
911 
912 	/*
913 	 * If we wrapped around at least once, the branches from the beginning
914 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
915 	 * are older valid branches: copy them over.  The total number of
916 	 * branches copied over will be equal to the number of branches asked by
917 	 * the user in last_branch_sz.
918 	 */
919 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
920 		memcpy(&bs_dst->entries[nr],
921 		       &bs_src->entries[0],
922 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
923 	}
924 }
925 
926 static inline
927 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
928 {
929 	tidq->last_branch_pos = 0;
930 	tidq->last_branch_rb->nr = 0;
931 }
932 
933 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
934 					 u8 trace_chan_id, u64 addr)
935 {
936 	u8 instrBytes[2];
937 
938 	cs_etm__mem_access(etmq, trace_chan_id, addr,
939 			   ARRAY_SIZE(instrBytes), instrBytes);
940 	/*
941 	 * T32 instruction size is indicated by bits[15:11] of the first
942 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
943 	 * denote a 32-bit instruction.
944 	 */
945 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
946 }
947 
948 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
949 {
950 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
951 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
952 		return 0;
953 
954 	return packet->start_addr;
955 }
956 
957 static inline
958 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
959 {
960 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
961 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
962 		return 0;
963 
964 	return packet->end_addr - packet->last_instr_size;
965 }
966 
967 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
968 				     u64 trace_chan_id,
969 				     const struct cs_etm_packet *packet,
970 				     u64 offset)
971 {
972 	if (packet->isa == CS_ETM_ISA_T32) {
973 		u64 addr = packet->start_addr;
974 
975 		while (offset) {
976 			addr += cs_etm__t32_instr_size(etmq,
977 						       trace_chan_id, addr);
978 			offset--;
979 		}
980 		return addr;
981 	}
982 
983 	/* Assume a 4 byte instruction size (A32/A64) */
984 	return packet->start_addr + offset * 4;
985 }
986 
987 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
988 					  struct cs_etm_traceid_queue *tidq)
989 {
990 	struct branch_stack *bs = tidq->last_branch_rb;
991 	struct branch_entry *be;
992 
993 	/*
994 	 * The branches are recorded in a circular buffer in reverse
995 	 * chronological order: we start recording from the last element of the
996 	 * buffer down.  After writing the first element of the stack, move the
997 	 * insert position back to the end of the buffer.
998 	 */
999 	if (!tidq->last_branch_pos)
1000 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1001 
1002 	tidq->last_branch_pos -= 1;
1003 
1004 	be       = &bs->entries[tidq->last_branch_pos];
1005 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1006 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1007 	/* No support for mispredict */
1008 	be->flags.mispred = 0;
1009 	be->flags.predicted = 1;
1010 
1011 	/*
1012 	 * Increment bs->nr until reaching the number of last branches asked by
1013 	 * the user on the command line.
1014 	 */
1015 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1016 		bs->nr += 1;
1017 }
1018 
1019 static int cs_etm__inject_event(union perf_event *event,
1020 			       struct perf_sample *sample, u64 type)
1021 {
1022 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1023 	return perf_event__synthesize_sample(event, type, 0, sample);
1024 }
1025 
1026 
1027 static int
1028 cs_etm__get_trace(struct cs_etm_queue *etmq)
1029 {
1030 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1031 	struct auxtrace_buffer *old_buffer = aux_buffer;
1032 	struct auxtrace_queue *queue;
1033 
1034 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1035 
1036 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1037 
1038 	/* If no more data, drop the previous auxtrace_buffer and return */
1039 	if (!aux_buffer) {
1040 		if (old_buffer)
1041 			auxtrace_buffer__drop_data(old_buffer);
1042 		etmq->buf_len = 0;
1043 		return 0;
1044 	}
1045 
1046 	etmq->buffer = aux_buffer;
1047 
1048 	/* If the aux_buffer doesn't have data associated, try to load it */
1049 	if (!aux_buffer->data) {
1050 		/* get the file desc associated with the perf data file */
1051 		int fd = perf_data__fd(etmq->etm->session->data);
1052 
1053 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1054 		if (!aux_buffer->data)
1055 			return -ENOMEM;
1056 	}
1057 
1058 	/* If valid, drop the previous buffer */
1059 	if (old_buffer)
1060 		auxtrace_buffer__drop_data(old_buffer);
1061 
1062 	etmq->buf_used = 0;
1063 	etmq->buf_len = aux_buffer->size;
1064 	etmq->buf = aux_buffer->data;
1065 
1066 	return etmq->buf_len;
1067 }
1068 
1069 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1070 				    struct cs_etm_traceid_queue *tidq)
1071 {
1072 	if ((!tidq->thread) && (tidq->tid != -1))
1073 		tidq->thread = machine__find_thread(etm->machine, -1,
1074 						    tidq->tid);
1075 
1076 	if (tidq->thread)
1077 		tidq->pid = tidq->thread->pid_;
1078 }
1079 
1080 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1081 			 pid_t tid, u8 trace_chan_id)
1082 {
1083 	int cpu, err = -EINVAL;
1084 	struct cs_etm_auxtrace *etm = etmq->etm;
1085 	struct cs_etm_traceid_queue *tidq;
1086 
1087 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1088 	if (!tidq)
1089 		return err;
1090 
1091 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1092 		return err;
1093 
1094 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1095 	if (err)
1096 		return err;
1097 
1098 	tidq->tid = tid;
1099 	thread__zput(tidq->thread);
1100 
1101 	cs_etm__set_pid_tid_cpu(etm, tidq);
1102 	return 0;
1103 }
1104 
1105 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1106 {
1107 	return !!etmq->etm->timeless_decoding;
1108 }
1109 
1110 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1111 			      u64 trace_chan_id,
1112 			      const struct cs_etm_packet *packet,
1113 			      struct perf_sample *sample)
1114 {
1115 	/*
1116 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1117 	 * packet, so directly bail out with 'insn_len' = 0.
1118 	 */
1119 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1120 		sample->insn_len = 0;
1121 		return;
1122 	}
1123 
1124 	/*
1125 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1126 	 * cs_etm__t32_instr_size().
1127 	 */
1128 	if (packet->isa == CS_ETM_ISA_T32)
1129 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1130 							  sample->ip);
1131 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1132 	else
1133 		sample->insn_len = 4;
1134 
1135 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1136 			   sample->insn_len, (void *)sample->insn);
1137 }
1138 
1139 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1140 					    struct cs_etm_traceid_queue *tidq,
1141 					    u64 addr, u64 period)
1142 {
1143 	int ret = 0;
1144 	struct cs_etm_auxtrace *etm = etmq->etm;
1145 	union perf_event *event = tidq->event_buf;
1146 	struct perf_sample sample = {.ip = 0,};
1147 
1148 	event->sample.header.type = PERF_RECORD_SAMPLE;
1149 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1150 	event->sample.header.size = sizeof(struct perf_event_header);
1151 
1152 	if (!etm->timeless_decoding)
1153 		sample.time = etm->latest_kernel_timestamp;
1154 	sample.ip = addr;
1155 	sample.pid = tidq->pid;
1156 	sample.tid = tidq->tid;
1157 	sample.id = etmq->etm->instructions_id;
1158 	sample.stream_id = etmq->etm->instructions_id;
1159 	sample.period = period;
1160 	sample.cpu = tidq->packet->cpu;
1161 	sample.flags = tidq->prev_packet->flags;
1162 	sample.cpumode = event->sample.header.misc;
1163 
1164 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1165 
1166 	if (etm->synth_opts.last_branch)
1167 		sample.branch_stack = tidq->last_branch;
1168 
1169 	if (etm->synth_opts.inject) {
1170 		ret = cs_etm__inject_event(event, &sample,
1171 					   etm->instructions_sample_type);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 
1176 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1177 
1178 	if (ret)
1179 		pr_err(
1180 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1181 			ret);
1182 
1183 	return ret;
1184 }
1185 
1186 /*
1187  * The cs etm packet encodes an instruction range between a branch target
1188  * and the next taken branch. Generate sample accordingly.
1189  */
1190 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1191 				       struct cs_etm_traceid_queue *tidq)
1192 {
1193 	int ret = 0;
1194 	struct cs_etm_auxtrace *etm = etmq->etm;
1195 	struct perf_sample sample = {.ip = 0,};
1196 	union perf_event *event = tidq->event_buf;
1197 	struct dummy_branch_stack {
1198 		u64			nr;
1199 		u64			hw_idx;
1200 		struct branch_entry	entries;
1201 	} dummy_bs;
1202 	u64 ip;
1203 
1204 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1205 
1206 	event->sample.header.type = PERF_RECORD_SAMPLE;
1207 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1208 	event->sample.header.size = sizeof(struct perf_event_header);
1209 
1210 	if (!etm->timeless_decoding)
1211 		sample.time = etm->latest_kernel_timestamp;
1212 	sample.ip = ip;
1213 	sample.pid = tidq->pid;
1214 	sample.tid = tidq->tid;
1215 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1216 	sample.id = etmq->etm->branches_id;
1217 	sample.stream_id = etmq->etm->branches_id;
1218 	sample.period = 1;
1219 	sample.cpu = tidq->packet->cpu;
1220 	sample.flags = tidq->prev_packet->flags;
1221 	sample.cpumode = event->sample.header.misc;
1222 
1223 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1224 			  &sample);
1225 
1226 	/*
1227 	 * perf report cannot handle events without a branch stack
1228 	 */
1229 	if (etm->synth_opts.last_branch) {
1230 		dummy_bs = (struct dummy_branch_stack){
1231 			.nr = 1,
1232 			.hw_idx = -1ULL,
1233 			.entries = {
1234 				.from = sample.ip,
1235 				.to = sample.addr,
1236 			},
1237 		};
1238 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1239 	}
1240 
1241 	if (etm->synth_opts.inject) {
1242 		ret = cs_etm__inject_event(event, &sample,
1243 					   etm->branches_sample_type);
1244 		if (ret)
1245 			return ret;
1246 	}
1247 
1248 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1249 
1250 	if (ret)
1251 		pr_err(
1252 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1253 		ret);
1254 
1255 	return ret;
1256 }
1257 
1258 struct cs_etm_synth {
1259 	struct perf_tool dummy_tool;
1260 	struct perf_session *session;
1261 };
1262 
1263 static int cs_etm__event_synth(struct perf_tool *tool,
1264 			       union perf_event *event,
1265 			       struct perf_sample *sample __maybe_unused,
1266 			       struct machine *machine __maybe_unused)
1267 {
1268 	struct cs_etm_synth *cs_etm_synth =
1269 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1270 
1271 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1272 						 event, NULL);
1273 }
1274 
1275 static int cs_etm__synth_event(struct perf_session *session,
1276 			       struct perf_event_attr *attr, u64 id)
1277 {
1278 	struct cs_etm_synth cs_etm_synth;
1279 
1280 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1281 	cs_etm_synth.session = session;
1282 
1283 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1284 					   &id, cs_etm__event_synth);
1285 }
1286 
1287 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1288 				struct perf_session *session)
1289 {
1290 	struct evlist *evlist = session->evlist;
1291 	struct evsel *evsel;
1292 	struct perf_event_attr attr;
1293 	bool found = false;
1294 	u64 id;
1295 	int err;
1296 
1297 	evlist__for_each_entry(evlist, evsel) {
1298 		if (evsel->core.attr.type == etm->pmu_type) {
1299 			found = true;
1300 			break;
1301 		}
1302 	}
1303 
1304 	if (!found) {
1305 		pr_debug("No selected events with CoreSight Trace data\n");
1306 		return 0;
1307 	}
1308 
1309 	memset(&attr, 0, sizeof(struct perf_event_attr));
1310 	attr.size = sizeof(struct perf_event_attr);
1311 	attr.type = PERF_TYPE_HARDWARE;
1312 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1313 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1314 			    PERF_SAMPLE_PERIOD;
1315 	if (etm->timeless_decoding)
1316 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1317 	else
1318 		attr.sample_type |= PERF_SAMPLE_TIME;
1319 
1320 	attr.exclude_user = evsel->core.attr.exclude_user;
1321 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1322 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1323 	attr.exclude_host = evsel->core.attr.exclude_host;
1324 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1325 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1326 	attr.read_format = evsel->core.attr.read_format;
1327 
1328 	/* create new id val to be a fixed offset from evsel id */
1329 	id = evsel->core.id[0] + 1000000000;
1330 
1331 	if (!id)
1332 		id = 1;
1333 
1334 	if (etm->synth_opts.branches) {
1335 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1336 		attr.sample_period = 1;
1337 		attr.sample_type |= PERF_SAMPLE_ADDR;
1338 		err = cs_etm__synth_event(session, &attr, id);
1339 		if (err)
1340 			return err;
1341 		etm->sample_branches = true;
1342 		etm->branches_sample_type = attr.sample_type;
1343 		etm->branches_id = id;
1344 		id += 1;
1345 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1346 	}
1347 
1348 	if (etm->synth_opts.last_branch) {
1349 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1350 		/*
1351 		 * We don't use the hardware index, but the sample generation
1352 		 * code uses the new format branch_stack with this field,
1353 		 * so the event attributes must indicate that it's present.
1354 		 */
1355 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1356 	}
1357 
1358 	if (etm->synth_opts.instructions) {
1359 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1360 		attr.sample_period = etm->synth_opts.period;
1361 		etm->instructions_sample_period = attr.sample_period;
1362 		err = cs_etm__synth_event(session, &attr, id);
1363 		if (err)
1364 			return err;
1365 		etm->sample_instructions = true;
1366 		etm->instructions_sample_type = attr.sample_type;
1367 		etm->instructions_id = id;
1368 		id += 1;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int cs_etm__sample(struct cs_etm_queue *etmq,
1375 			  struct cs_etm_traceid_queue *tidq)
1376 {
1377 	struct cs_etm_auxtrace *etm = etmq->etm;
1378 	int ret;
1379 	u8 trace_chan_id = tidq->trace_chan_id;
1380 	u64 instrs_prev;
1381 
1382 	/* Get instructions remainder from previous packet */
1383 	instrs_prev = tidq->period_instructions;
1384 
1385 	tidq->period_instructions += tidq->packet->instr_count;
1386 
1387 	/*
1388 	 * Record a branch when the last instruction in
1389 	 * PREV_PACKET is a branch.
1390 	 */
1391 	if (etm->synth_opts.last_branch &&
1392 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1393 	    tidq->prev_packet->last_instr_taken_branch)
1394 		cs_etm__update_last_branch_rb(etmq, tidq);
1395 
1396 	if (etm->sample_instructions &&
1397 	    tidq->period_instructions >= etm->instructions_sample_period) {
1398 		/*
1399 		 * Emit instruction sample periodically
1400 		 * TODO: allow period to be defined in cycles and clock time
1401 		 */
1402 
1403 		/*
1404 		 * Below diagram demonstrates the instruction samples
1405 		 * generation flows:
1406 		 *
1407 		 *    Instrs     Instrs       Instrs       Instrs
1408 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1409 		 *    |            |            |            |
1410 		 *    V            V            V            V
1411 		 *   --------------------------------------------------
1412 		 *            ^                                  ^
1413 		 *            |                                  |
1414 		 *         Period                             Period
1415 		 *    instructions(Pi)                   instructions(Pi')
1416 		 *
1417 		 *            |                                  |
1418 		 *            \---------------- -----------------/
1419 		 *                             V
1420 		 *                 tidq->packet->instr_count
1421 		 *
1422 		 * Instrs Sample(n...) are the synthesised samples occurring
1423 		 * every etm->instructions_sample_period instructions - as
1424 		 * defined on the perf command line.  Sample(n) is being the
1425 		 * last sample before the current etm packet, n+1 to n+3
1426 		 * samples are generated from the current etm packet.
1427 		 *
1428 		 * tidq->packet->instr_count represents the number of
1429 		 * instructions in the current etm packet.
1430 		 *
1431 		 * Period instructions (Pi) contains the the number of
1432 		 * instructions executed after the sample point(n) from the
1433 		 * previous etm packet.  This will always be less than
1434 		 * etm->instructions_sample_period.
1435 		 *
1436 		 * When generate new samples, it combines with two parts
1437 		 * instructions, one is the tail of the old packet and another
1438 		 * is the head of the new coming packet, to generate
1439 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1440 		 * instructions with sample period.  After sample(n+3), the rest
1441 		 * instructions will be used by later packet and it is assigned
1442 		 * to tidq->period_instructions for next round calculation.
1443 		 */
1444 
1445 		/*
1446 		 * Get the initial offset into the current packet instructions;
1447 		 * entry conditions ensure that instrs_prev is less than
1448 		 * etm->instructions_sample_period.
1449 		 */
1450 		u64 offset = etm->instructions_sample_period - instrs_prev;
1451 		u64 addr;
1452 
1453 		/* Prepare last branches for instruction sample */
1454 		if (etm->synth_opts.last_branch)
1455 			cs_etm__copy_last_branch_rb(etmq, tidq);
1456 
1457 		while (tidq->period_instructions >=
1458 				etm->instructions_sample_period) {
1459 			/*
1460 			 * Calculate the address of the sampled instruction (-1
1461 			 * as sample is reported as though instruction has just
1462 			 * been executed, but PC has not advanced to next
1463 			 * instruction)
1464 			 */
1465 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1466 						  tidq->packet, offset - 1);
1467 			ret = cs_etm__synth_instruction_sample(
1468 				etmq, tidq, addr,
1469 				etm->instructions_sample_period);
1470 			if (ret)
1471 				return ret;
1472 
1473 			offset += etm->instructions_sample_period;
1474 			tidq->period_instructions -=
1475 				etm->instructions_sample_period;
1476 		}
1477 	}
1478 
1479 	if (etm->sample_branches) {
1480 		bool generate_sample = false;
1481 
1482 		/* Generate sample for tracing on packet */
1483 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1484 			generate_sample = true;
1485 
1486 		/* Generate sample for branch taken packet */
1487 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1488 		    tidq->prev_packet->last_instr_taken_branch)
1489 			generate_sample = true;
1490 
1491 		if (generate_sample) {
1492 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1493 			if (ret)
1494 				return ret;
1495 		}
1496 	}
1497 
1498 	cs_etm__packet_swap(etm, tidq);
1499 
1500 	return 0;
1501 }
1502 
1503 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1504 {
1505 	/*
1506 	 * When the exception packet is inserted, whether the last instruction
1507 	 * in previous range packet is taken branch or not, we need to force
1508 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1509 	 * to generate branch sample for the instruction range before the
1510 	 * exception is trapped to kernel or before the exception returning.
1511 	 *
1512 	 * The exception packet includes the dummy address values, so don't
1513 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1514 	 * for generating instruction and branch samples.
1515 	 */
1516 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1517 		tidq->prev_packet->last_instr_taken_branch = true;
1518 
1519 	return 0;
1520 }
1521 
1522 static int cs_etm__flush(struct cs_etm_queue *etmq,
1523 			 struct cs_etm_traceid_queue *tidq)
1524 {
1525 	int err = 0;
1526 	struct cs_etm_auxtrace *etm = etmq->etm;
1527 
1528 	/* Handle start tracing packet */
1529 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1530 		goto swap_packet;
1531 
1532 	if (etmq->etm->synth_opts.last_branch &&
1533 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1534 		u64 addr;
1535 
1536 		/* Prepare last branches for instruction sample */
1537 		cs_etm__copy_last_branch_rb(etmq, tidq);
1538 
1539 		/*
1540 		 * Generate a last branch event for the branches left in the
1541 		 * circular buffer at the end of the trace.
1542 		 *
1543 		 * Use the address of the end of the last reported execution
1544 		 * range
1545 		 */
1546 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1547 
1548 		err = cs_etm__synth_instruction_sample(
1549 			etmq, tidq, addr,
1550 			tidq->period_instructions);
1551 		if (err)
1552 			return err;
1553 
1554 		tidq->period_instructions = 0;
1555 
1556 	}
1557 
1558 	if (etm->sample_branches &&
1559 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1560 		err = cs_etm__synth_branch_sample(etmq, tidq);
1561 		if (err)
1562 			return err;
1563 	}
1564 
1565 swap_packet:
1566 	cs_etm__packet_swap(etm, tidq);
1567 
1568 	/* Reset last branches after flush the trace */
1569 	if (etm->synth_opts.last_branch)
1570 		cs_etm__reset_last_branch_rb(tidq);
1571 
1572 	return err;
1573 }
1574 
1575 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1576 			     struct cs_etm_traceid_queue *tidq)
1577 {
1578 	int err;
1579 
1580 	/*
1581 	 * It has no new packet coming and 'etmq->packet' contains the stale
1582 	 * packet which was set at the previous time with packets swapping;
1583 	 * so skip to generate branch sample to avoid stale packet.
1584 	 *
1585 	 * For this case only flush branch stack and generate a last branch
1586 	 * event for the branches left in the circular buffer at the end of
1587 	 * the trace.
1588 	 */
1589 	if (etmq->etm->synth_opts.last_branch &&
1590 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1591 		u64 addr;
1592 
1593 		/* Prepare last branches for instruction sample */
1594 		cs_etm__copy_last_branch_rb(etmq, tidq);
1595 
1596 		/*
1597 		 * Use the address of the end of the last reported execution
1598 		 * range.
1599 		 */
1600 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1601 
1602 		err = cs_etm__synth_instruction_sample(
1603 			etmq, tidq, addr,
1604 			tidq->period_instructions);
1605 		if (err)
1606 			return err;
1607 
1608 		tidq->period_instructions = 0;
1609 	}
1610 
1611 	return 0;
1612 }
1613 /*
1614  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1615  *			   if need be.
1616  * Returns:	< 0	if error
1617  *		= 0	if no more auxtrace_buffer to read
1618  *		> 0	if the current buffer isn't empty yet
1619  */
1620 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1621 {
1622 	int ret;
1623 
1624 	if (!etmq->buf_len) {
1625 		ret = cs_etm__get_trace(etmq);
1626 		if (ret <= 0)
1627 			return ret;
1628 		/*
1629 		 * We cannot assume consecutive blocks in the data file
1630 		 * are contiguous, reset the decoder to force re-sync.
1631 		 */
1632 		ret = cs_etm_decoder__reset(etmq->decoder);
1633 		if (ret)
1634 			return ret;
1635 	}
1636 
1637 	return etmq->buf_len;
1638 }
1639 
1640 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1641 				 struct cs_etm_packet *packet,
1642 				 u64 end_addr)
1643 {
1644 	/* Initialise to keep compiler happy */
1645 	u16 instr16 = 0;
1646 	u32 instr32 = 0;
1647 	u64 addr;
1648 
1649 	switch (packet->isa) {
1650 	case CS_ETM_ISA_T32:
1651 		/*
1652 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1653 		 *
1654 		 *  b'15         b'8
1655 		 * +-----------------+--------+
1656 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1657 		 * +-----------------+--------+
1658 		 *
1659 		 * According to the specification, it only defines SVC for T32
1660 		 * with 16 bits instruction and has no definition for 32bits;
1661 		 * so below only read 2 bytes as instruction size for T32.
1662 		 */
1663 		addr = end_addr - 2;
1664 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1665 				   sizeof(instr16), (u8 *)&instr16);
1666 		if ((instr16 & 0xFF00) == 0xDF00)
1667 			return true;
1668 
1669 		break;
1670 	case CS_ETM_ISA_A32:
1671 		/*
1672 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1673 		 *
1674 		 *  b'31 b'28 b'27 b'24
1675 		 * +---------+---------+-------------------------+
1676 		 * |  !1111  | 1 1 1 1 |        imm24            |
1677 		 * +---------+---------+-------------------------+
1678 		 */
1679 		addr = end_addr - 4;
1680 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1681 				   sizeof(instr32), (u8 *)&instr32);
1682 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1683 		    (instr32 & 0xF0000000) != 0xF0000000)
1684 			return true;
1685 
1686 		break;
1687 	case CS_ETM_ISA_A64:
1688 		/*
1689 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1690 		 *
1691 		 *  b'31               b'21           b'4     b'0
1692 		 * +-----------------------+---------+-----------+
1693 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1694 		 * +-----------------------+---------+-----------+
1695 		 */
1696 		addr = end_addr - 4;
1697 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1698 				   sizeof(instr32), (u8 *)&instr32);
1699 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1700 			return true;
1701 
1702 		break;
1703 	case CS_ETM_ISA_UNKNOWN:
1704 	default:
1705 		break;
1706 	}
1707 
1708 	return false;
1709 }
1710 
1711 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1712 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1713 {
1714 	u8 trace_chan_id = tidq->trace_chan_id;
1715 	struct cs_etm_packet *packet = tidq->packet;
1716 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1717 
1718 	if (magic == __perf_cs_etmv3_magic)
1719 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1720 			return true;
1721 
1722 	/*
1723 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1724 	 * HVC cases; need to check if it's SVC instruction based on
1725 	 * packet address.
1726 	 */
1727 	if (magic == __perf_cs_etmv4_magic) {
1728 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1729 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1730 					 prev_packet->end_addr))
1731 			return true;
1732 	}
1733 
1734 	return false;
1735 }
1736 
1737 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1738 				       u64 magic)
1739 {
1740 	struct cs_etm_packet *packet = tidq->packet;
1741 
1742 	if (magic == __perf_cs_etmv3_magic)
1743 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1744 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1745 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1746 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1747 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1748 			return true;
1749 
1750 	if (magic == __perf_cs_etmv4_magic)
1751 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1752 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1753 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1754 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1755 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1756 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1757 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1758 			return true;
1759 
1760 	return false;
1761 }
1762 
1763 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1764 				      struct cs_etm_traceid_queue *tidq,
1765 				      u64 magic)
1766 {
1767 	u8 trace_chan_id = tidq->trace_chan_id;
1768 	struct cs_etm_packet *packet = tidq->packet;
1769 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1770 
1771 	if (magic == __perf_cs_etmv3_magic)
1772 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1773 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1774 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1775 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1776 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1777 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1778 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1779 			return true;
1780 
1781 	if (magic == __perf_cs_etmv4_magic) {
1782 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1783 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1784 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1785 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1786 			return true;
1787 
1788 		/*
1789 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1790 		 * (SMC, HVC) are taken as sync exceptions.
1791 		 */
1792 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1793 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1794 					  prev_packet->end_addr))
1795 			return true;
1796 
1797 		/*
1798 		 * ETMv4 has 5 bits for exception number; if the numbers
1799 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1800 		 * they are implementation defined exceptions.
1801 		 *
1802 		 * For this case, simply take it as sync exception.
1803 		 */
1804 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1805 		    packet->exception_number <= CS_ETMV4_EXC_END)
1806 			return true;
1807 	}
1808 
1809 	return false;
1810 }
1811 
1812 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1813 				    struct cs_etm_traceid_queue *tidq)
1814 {
1815 	struct cs_etm_packet *packet = tidq->packet;
1816 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1817 	u8 trace_chan_id = tidq->trace_chan_id;
1818 	u64 magic;
1819 	int ret;
1820 
1821 	switch (packet->sample_type) {
1822 	case CS_ETM_RANGE:
1823 		/*
1824 		 * Immediate branch instruction without neither link nor
1825 		 * return flag, it's normal branch instruction within
1826 		 * the function.
1827 		 */
1828 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1829 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1830 			packet->flags = PERF_IP_FLAG_BRANCH;
1831 
1832 			if (packet->last_instr_cond)
1833 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1834 		}
1835 
1836 		/*
1837 		 * Immediate branch instruction with link (e.g. BL), this is
1838 		 * branch instruction for function call.
1839 		 */
1840 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1841 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1842 			packet->flags = PERF_IP_FLAG_BRANCH |
1843 					PERF_IP_FLAG_CALL;
1844 
1845 		/*
1846 		 * Indirect branch instruction with link (e.g. BLR), this is
1847 		 * branch instruction for function call.
1848 		 */
1849 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1850 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1851 			packet->flags = PERF_IP_FLAG_BRANCH |
1852 					PERF_IP_FLAG_CALL;
1853 
1854 		/*
1855 		 * Indirect branch instruction with subtype of
1856 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1857 		 * function return for A32/T32.
1858 		 */
1859 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1860 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1861 			packet->flags = PERF_IP_FLAG_BRANCH |
1862 					PERF_IP_FLAG_RETURN;
1863 
1864 		/*
1865 		 * Indirect branch instruction without link (e.g. BR), usually
1866 		 * this is used for function return, especially for functions
1867 		 * within dynamic link lib.
1868 		 */
1869 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1870 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1871 			packet->flags = PERF_IP_FLAG_BRANCH |
1872 					PERF_IP_FLAG_RETURN;
1873 
1874 		/* Return instruction for function return. */
1875 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1876 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1877 			packet->flags = PERF_IP_FLAG_BRANCH |
1878 					PERF_IP_FLAG_RETURN;
1879 
1880 		/*
1881 		 * Decoder might insert a discontinuity in the middle of
1882 		 * instruction packets, fixup prev_packet with flag
1883 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1884 		 */
1885 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1886 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1887 					      PERF_IP_FLAG_TRACE_BEGIN;
1888 
1889 		/*
1890 		 * If the previous packet is an exception return packet
1891 		 * and the return address just follows SVC instruction,
1892 		 * it needs to calibrate the previous packet sample flags
1893 		 * as PERF_IP_FLAG_SYSCALLRET.
1894 		 */
1895 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1896 					   PERF_IP_FLAG_RETURN |
1897 					   PERF_IP_FLAG_INTERRUPT) &&
1898 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1899 					 packet, packet->start_addr))
1900 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1901 					     PERF_IP_FLAG_RETURN |
1902 					     PERF_IP_FLAG_SYSCALLRET;
1903 		break;
1904 	case CS_ETM_DISCONTINUITY:
1905 		/*
1906 		 * The trace is discontinuous, if the previous packet is
1907 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1908 		 * for previous packet.
1909 		 */
1910 		if (prev_packet->sample_type == CS_ETM_RANGE)
1911 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1912 					      PERF_IP_FLAG_TRACE_END;
1913 		break;
1914 	case CS_ETM_EXCEPTION:
1915 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1916 		if (ret)
1917 			return ret;
1918 
1919 		/* The exception is for system call. */
1920 		if (cs_etm__is_syscall(etmq, tidq, magic))
1921 			packet->flags = PERF_IP_FLAG_BRANCH |
1922 					PERF_IP_FLAG_CALL |
1923 					PERF_IP_FLAG_SYSCALLRET;
1924 		/*
1925 		 * The exceptions are triggered by external signals from bus,
1926 		 * interrupt controller, debug module, PE reset or halt.
1927 		 */
1928 		else if (cs_etm__is_async_exception(tidq, magic))
1929 			packet->flags = PERF_IP_FLAG_BRANCH |
1930 					PERF_IP_FLAG_CALL |
1931 					PERF_IP_FLAG_ASYNC |
1932 					PERF_IP_FLAG_INTERRUPT;
1933 		/*
1934 		 * Otherwise, exception is caused by trap, instruction &
1935 		 * data fault, or alignment errors.
1936 		 */
1937 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1938 			packet->flags = PERF_IP_FLAG_BRANCH |
1939 					PERF_IP_FLAG_CALL |
1940 					PERF_IP_FLAG_INTERRUPT;
1941 
1942 		/*
1943 		 * When the exception packet is inserted, since exception
1944 		 * packet is not used standalone for generating samples
1945 		 * and it's affiliation to the previous instruction range
1946 		 * packet; so set previous range packet flags to tell perf
1947 		 * it is an exception taken branch.
1948 		 */
1949 		if (prev_packet->sample_type == CS_ETM_RANGE)
1950 			prev_packet->flags = packet->flags;
1951 		break;
1952 	case CS_ETM_EXCEPTION_RET:
1953 		/*
1954 		 * When the exception return packet is inserted, since
1955 		 * exception return packet is not used standalone for
1956 		 * generating samples and it's affiliation to the previous
1957 		 * instruction range packet; so set previous range packet
1958 		 * flags to tell perf it is an exception return branch.
1959 		 *
1960 		 * The exception return can be for either system call or
1961 		 * other exception types; unfortunately the packet doesn't
1962 		 * contain exception type related info so we cannot decide
1963 		 * the exception type purely based on exception return packet.
1964 		 * If we record the exception number from exception packet and
1965 		 * reuse it for exception return packet, this is not reliable
1966 		 * due the trace can be discontinuity or the interrupt can
1967 		 * be nested, thus the recorded exception number cannot be
1968 		 * used for exception return packet for these two cases.
1969 		 *
1970 		 * For exception return packet, we only need to distinguish the
1971 		 * packet is for system call or for other types.  Thus the
1972 		 * decision can be deferred when receive the next packet which
1973 		 * contains the return address, based on the return address we
1974 		 * can read out the previous instruction and check if it's a
1975 		 * system call instruction and then calibrate the sample flag
1976 		 * as needed.
1977 		 */
1978 		if (prev_packet->sample_type == CS_ETM_RANGE)
1979 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1980 					     PERF_IP_FLAG_RETURN |
1981 					     PERF_IP_FLAG_INTERRUPT;
1982 		break;
1983 	case CS_ETM_EMPTY:
1984 	default:
1985 		break;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1992 {
1993 	int ret = 0;
1994 	size_t processed = 0;
1995 
1996 	/*
1997 	 * Packets are decoded and added to the decoder's packet queue
1998 	 * until the decoder packet processing callback has requested that
1999 	 * processing stops or there is nothing left in the buffer.  Normal
2000 	 * operations that stop processing are a timestamp packet or a full
2001 	 * decoder buffer queue.
2002 	 */
2003 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2004 						 etmq->offset,
2005 						 &etmq->buf[etmq->buf_used],
2006 						 etmq->buf_len,
2007 						 &processed);
2008 	if (ret)
2009 		goto out;
2010 
2011 	etmq->offset += processed;
2012 	etmq->buf_used += processed;
2013 	etmq->buf_len -= processed;
2014 
2015 out:
2016 	return ret;
2017 }
2018 
2019 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2020 					 struct cs_etm_traceid_queue *tidq)
2021 {
2022 	int ret;
2023 	struct cs_etm_packet_queue *packet_queue;
2024 
2025 	packet_queue = &tidq->packet_queue;
2026 
2027 	/* Process each packet in this chunk */
2028 	while (1) {
2029 		ret = cs_etm_decoder__get_packet(packet_queue,
2030 						 tidq->packet);
2031 		if (ret <= 0)
2032 			/*
2033 			 * Stop processing this chunk on
2034 			 * end of data or error
2035 			 */
2036 			break;
2037 
2038 		/*
2039 		 * Since packet addresses are swapped in packet
2040 		 * handling within below switch() statements,
2041 		 * thus setting sample flags must be called
2042 		 * prior to switch() statement to use address
2043 		 * information before packets swapping.
2044 		 */
2045 		ret = cs_etm__set_sample_flags(etmq, tidq);
2046 		if (ret < 0)
2047 			break;
2048 
2049 		switch (tidq->packet->sample_type) {
2050 		case CS_ETM_RANGE:
2051 			/*
2052 			 * If the packet contains an instruction
2053 			 * range, generate instruction sequence
2054 			 * events.
2055 			 */
2056 			cs_etm__sample(etmq, tidq);
2057 			break;
2058 		case CS_ETM_EXCEPTION:
2059 		case CS_ETM_EXCEPTION_RET:
2060 			/*
2061 			 * If the exception packet is coming,
2062 			 * make sure the previous instruction
2063 			 * range packet to be handled properly.
2064 			 */
2065 			cs_etm__exception(tidq);
2066 			break;
2067 		case CS_ETM_DISCONTINUITY:
2068 			/*
2069 			 * Discontinuity in trace, flush
2070 			 * previous branch stack
2071 			 */
2072 			cs_etm__flush(etmq, tidq);
2073 			break;
2074 		case CS_ETM_EMPTY:
2075 			/*
2076 			 * Should not receive empty packet,
2077 			 * report error.
2078 			 */
2079 			pr_err("CS ETM Trace: empty packet\n");
2080 			return -EINVAL;
2081 		default:
2082 			break;
2083 		}
2084 	}
2085 
2086 	return ret;
2087 }
2088 
2089 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2090 {
2091 	int idx;
2092 	struct int_node *inode;
2093 	struct cs_etm_traceid_queue *tidq;
2094 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2095 
2096 	intlist__for_each_entry(inode, traceid_queues_list) {
2097 		idx = (int)(intptr_t)inode->priv;
2098 		tidq = etmq->traceid_queues[idx];
2099 
2100 		/* Ignore return value */
2101 		cs_etm__process_traceid_queue(etmq, tidq);
2102 
2103 		/*
2104 		 * Generate an instruction sample with the remaining
2105 		 * branchstack entries.
2106 		 */
2107 		cs_etm__flush(etmq, tidq);
2108 	}
2109 }
2110 
2111 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2112 {
2113 	int err = 0;
2114 	struct cs_etm_traceid_queue *tidq;
2115 
2116 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2117 	if (!tidq)
2118 		return -EINVAL;
2119 
2120 	/* Go through each buffer in the queue and decode them one by one */
2121 	while (1) {
2122 		err = cs_etm__get_data_block(etmq);
2123 		if (err <= 0)
2124 			return err;
2125 
2126 		/* Run trace decoder until buffer consumed or end of trace */
2127 		do {
2128 			err = cs_etm__decode_data_block(etmq);
2129 			if (err)
2130 				return err;
2131 
2132 			/*
2133 			 * Process each packet in this chunk, nothing to do if
2134 			 * an error occurs other than hoping the next one will
2135 			 * be better.
2136 			 */
2137 			err = cs_etm__process_traceid_queue(etmq, tidq);
2138 
2139 		} while (etmq->buf_len);
2140 
2141 		if (err == 0)
2142 			/* Flush any remaining branch stack entries */
2143 			err = cs_etm__end_block(etmq, tidq);
2144 	}
2145 
2146 	return err;
2147 }
2148 
2149 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2150 					   pid_t tid)
2151 {
2152 	unsigned int i;
2153 	struct auxtrace_queues *queues = &etm->queues;
2154 
2155 	for (i = 0; i < queues->nr_queues; i++) {
2156 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2157 		struct cs_etm_queue *etmq = queue->priv;
2158 		struct cs_etm_traceid_queue *tidq;
2159 
2160 		if (!etmq)
2161 			continue;
2162 
2163 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2164 						CS_ETM_PER_THREAD_TRACEID);
2165 
2166 		if (!tidq)
2167 			continue;
2168 
2169 		if ((tid == -1) || (tidq->tid == tid)) {
2170 			cs_etm__set_pid_tid_cpu(etm, tidq);
2171 			cs_etm__run_decoder(etmq);
2172 		}
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2179 {
2180 	int ret = 0;
2181 	unsigned int cs_queue_nr, queue_nr, i;
2182 	u8 trace_chan_id;
2183 	u64 cs_timestamp;
2184 	struct auxtrace_queue *queue;
2185 	struct cs_etm_queue *etmq;
2186 	struct cs_etm_traceid_queue *tidq;
2187 
2188 	/*
2189 	 * Pre-populate the heap with one entry from each queue so that we can
2190 	 * start processing in time order across all queues.
2191 	 */
2192 	for (i = 0; i < etm->queues.nr_queues; i++) {
2193 		etmq = etm->queues.queue_array[i].priv;
2194 		if (!etmq)
2195 			continue;
2196 
2197 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2198 		if (ret)
2199 			return ret;
2200 	}
2201 
2202 	while (1) {
2203 		if (!etm->heap.heap_cnt)
2204 			goto out;
2205 
2206 		/* Take the entry at the top of the min heap */
2207 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2208 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2209 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2210 		queue = &etm->queues.queue_array[queue_nr];
2211 		etmq = queue->priv;
2212 
2213 		/*
2214 		 * Remove the top entry from the heap since we are about
2215 		 * to process it.
2216 		 */
2217 		auxtrace_heap__pop(&etm->heap);
2218 
2219 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2220 		if (!tidq) {
2221 			/*
2222 			 * No traceID queue has been allocated for this traceID,
2223 			 * which means something somewhere went very wrong.  No
2224 			 * other choice than simply exit.
2225 			 */
2226 			ret = -EINVAL;
2227 			goto out;
2228 		}
2229 
2230 		/*
2231 		 * Packets associated with this timestamp are already in
2232 		 * the etmq's traceID queue, so process them.
2233 		 */
2234 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2235 		if (ret < 0)
2236 			goto out;
2237 
2238 		/*
2239 		 * Packets for this timestamp have been processed, time to
2240 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2241 		 * if need be.
2242 		 */
2243 refetch:
2244 		ret = cs_etm__get_data_block(etmq);
2245 		if (ret < 0)
2246 			goto out;
2247 
2248 		/*
2249 		 * No more auxtrace_buffers to process in this etmq, simply
2250 		 * move on to another entry in the auxtrace_heap.
2251 		 */
2252 		if (!ret)
2253 			continue;
2254 
2255 		ret = cs_etm__decode_data_block(etmq);
2256 		if (ret)
2257 			goto out;
2258 
2259 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2260 
2261 		if (!cs_timestamp) {
2262 			/*
2263 			 * Function cs_etm__decode_data_block() returns when
2264 			 * there is no more traces to decode in the current
2265 			 * auxtrace_buffer OR when a timestamp has been
2266 			 * encountered on any of the traceID queues.  Since we
2267 			 * did not get a timestamp, there is no more traces to
2268 			 * process in this auxtrace_buffer.  As such empty and
2269 			 * flush all traceID queues.
2270 			 */
2271 			cs_etm__clear_all_traceid_queues(etmq);
2272 
2273 			/* Fetch another auxtrace_buffer for this etmq */
2274 			goto refetch;
2275 		}
2276 
2277 		/*
2278 		 * Add to the min heap the timestamp for packets that have
2279 		 * just been decoded.  They will be processed and synthesized
2280 		 * during the next call to cs_etm__process_traceid_queue() for
2281 		 * this queue/traceID.
2282 		 */
2283 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2284 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2285 	}
2286 
2287 out:
2288 	return ret;
2289 }
2290 
2291 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2292 					union perf_event *event)
2293 {
2294 	struct thread *th;
2295 
2296 	if (etm->timeless_decoding)
2297 		return 0;
2298 
2299 	/*
2300 	 * Add the tid/pid to the log so that we can get a match when
2301 	 * we get a contextID from the decoder.
2302 	 */
2303 	th = machine__findnew_thread(etm->machine,
2304 				     event->itrace_start.pid,
2305 				     event->itrace_start.tid);
2306 	if (!th)
2307 		return -ENOMEM;
2308 
2309 	thread__put(th);
2310 
2311 	return 0;
2312 }
2313 
2314 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2315 					   union perf_event *event)
2316 {
2317 	struct thread *th;
2318 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2319 
2320 	/*
2321 	 * Context switch in per-thread mode are irrelevant since perf
2322 	 * will start/stop tracing as the process is scheduled.
2323 	 */
2324 	if (etm->timeless_decoding)
2325 		return 0;
2326 
2327 	/*
2328 	 * SWITCH_IN events carry the next process to be switched out while
2329 	 * SWITCH_OUT events carry the process to be switched in.  As such
2330 	 * we don't care about IN events.
2331 	 */
2332 	if (!out)
2333 		return 0;
2334 
2335 	/*
2336 	 * Add the tid/pid to the log so that we can get a match when
2337 	 * we get a contextID from the decoder.
2338 	 */
2339 	th = machine__findnew_thread(etm->machine,
2340 				     event->context_switch.next_prev_pid,
2341 				     event->context_switch.next_prev_tid);
2342 	if (!th)
2343 		return -ENOMEM;
2344 
2345 	thread__put(th);
2346 
2347 	return 0;
2348 }
2349 
2350 static int cs_etm__process_event(struct perf_session *session,
2351 				 union perf_event *event,
2352 				 struct perf_sample *sample,
2353 				 struct perf_tool *tool)
2354 {
2355 	u64 sample_kernel_timestamp;
2356 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2357 						   struct cs_etm_auxtrace,
2358 						   auxtrace);
2359 
2360 	if (dump_trace)
2361 		return 0;
2362 
2363 	if (!tool->ordered_events) {
2364 		pr_err("CoreSight ETM Trace requires ordered events\n");
2365 		return -EINVAL;
2366 	}
2367 
2368 	if (sample->time && (sample->time != (u64) -1))
2369 		sample_kernel_timestamp = sample->time;
2370 	else
2371 		sample_kernel_timestamp = 0;
2372 
2373 	/*
2374 	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2375 	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2376 	 * ETM_OPT_CTXTID is not enabled.
2377 	 */
2378 	if (etm->timeless_decoding &&
2379 	    event->header.type == PERF_RECORD_EXIT)
2380 		return cs_etm__process_timeless_queues(etm,
2381 						       event->fork.tid);
2382 
2383 	if (event->header.type == PERF_RECORD_ITRACE_START)
2384 		return cs_etm__process_itrace_start(etm, event);
2385 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2386 		return cs_etm__process_switch_cpu_wide(etm, event);
2387 
2388 	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2389 		/*
2390 		 * Record the latest kernel timestamp available in the header
2391 		 * for samples so that synthesised samples occur from this point
2392 		 * onwards.
2393 		 */
2394 		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2395 	}
2396 
2397 	return 0;
2398 }
2399 
2400 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2401 			     struct perf_record_auxtrace *event)
2402 {
2403 	struct auxtrace_buffer *buf;
2404 	unsigned int i;
2405 	/*
2406 	 * Find all buffers with same reference in the queues and dump them.
2407 	 * This is because the queues can contain multiple entries of the same
2408 	 * buffer that were split on aux records.
2409 	 */
2410 	for (i = 0; i < etm->queues.nr_queues; ++i)
2411 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2412 			if (buf->reference == event->reference)
2413 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2414 }
2415 
2416 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2417 					  union perf_event *event,
2418 					  struct perf_tool *tool __maybe_unused)
2419 {
2420 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2421 						   struct cs_etm_auxtrace,
2422 						   auxtrace);
2423 	if (!etm->data_queued) {
2424 		struct auxtrace_buffer *buffer;
2425 		off_t  data_offset;
2426 		int fd = perf_data__fd(session->data);
2427 		bool is_pipe = perf_data__is_pipe(session->data);
2428 		int err;
2429 		int idx = event->auxtrace.idx;
2430 
2431 		if (is_pipe)
2432 			data_offset = 0;
2433 		else {
2434 			data_offset = lseek(fd, 0, SEEK_CUR);
2435 			if (data_offset == -1)
2436 				return -errno;
2437 		}
2438 
2439 		err = auxtrace_queues__add_event(&etm->queues, session,
2440 						 event, data_offset, &buffer);
2441 		if (err)
2442 			return err;
2443 
2444 		/*
2445 		 * Knowing if the trace is formatted or not requires a lookup of
2446 		 * the aux record so only works in non-piped mode where data is
2447 		 * queued in cs_etm__queue_aux_records(). Always assume
2448 		 * formatted in piped mode (true).
2449 		 */
2450 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2451 					  idx, true);
2452 		if (err)
2453 			return err;
2454 
2455 		if (dump_trace)
2456 			if (auxtrace_buffer__get_data(buffer, fd)) {
2457 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2458 				auxtrace_buffer__put_data(buffer);
2459 			}
2460 	} else if (dump_trace)
2461 		dump_queued_data(etm, &event->auxtrace);
2462 
2463 	return 0;
2464 }
2465 
2466 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2467 {
2468 	struct evsel *evsel;
2469 	struct evlist *evlist = etm->session->evlist;
2470 	bool timeless_decoding = true;
2471 
2472 	/* Override timeless mode with user input from --itrace=Z */
2473 	if (etm->synth_opts.timeless_decoding)
2474 		return true;
2475 
2476 	/*
2477 	 * Circle through the list of event and complain if we find one
2478 	 * with the time bit set.
2479 	 */
2480 	evlist__for_each_entry(evlist, evsel) {
2481 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2482 			timeless_decoding = false;
2483 	}
2484 
2485 	return timeless_decoding;
2486 }
2487 
2488 static const char * const cs_etm_global_header_fmts[] = {
2489 	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2490 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2491 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2492 };
2493 
2494 static const char * const cs_etm_priv_fmts[] = {
2495 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2496 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2497 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2498 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2499 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2500 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2501 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2502 };
2503 
2504 static const char * const cs_etmv4_priv_fmts[] = {
2505 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2506 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2507 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2508 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2509 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2510 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2511 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2512 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2513 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2514 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2515 };
2516 
2517 static const char * const param_unk_fmt =
2518 	"	Unknown parameter [%d]	       %llx\n";
2519 static const char * const magic_unk_fmt =
2520 	"	Magic number Unknown	       %llx\n";
2521 
2522 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2523 {
2524 	int i = *offset, j, nr_params = 0, fmt_offset;
2525 	__u64 magic;
2526 
2527 	/* check magic value */
2528 	magic = val[i + CS_ETM_MAGIC];
2529 	if ((magic != __perf_cs_etmv3_magic) &&
2530 	    (magic != __perf_cs_etmv4_magic)) {
2531 		/* failure - note bad magic value */
2532 		fprintf(stdout, magic_unk_fmt, magic);
2533 		return -EINVAL;
2534 	}
2535 
2536 	/* print common header block */
2537 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2538 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2539 
2540 	if (magic == __perf_cs_etmv3_magic) {
2541 		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2542 		fmt_offset = CS_ETM_ETMCR;
2543 		/* after common block, offset format index past NR_PARAMS */
2544 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2545 			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2546 	} else if (magic == __perf_cs_etmv4_magic) {
2547 		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2548 		fmt_offset = CS_ETMV4_TRCCONFIGR;
2549 		/* after common block, offset format index past NR_PARAMS */
2550 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2551 			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2552 	}
2553 	*offset = i;
2554 	return 0;
2555 }
2556 
2557 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2558 {
2559 	int i = *offset, j, total_params = 0;
2560 	__u64 magic;
2561 
2562 	magic = val[i + CS_ETM_MAGIC];
2563 	/* total params to print is NR_PARAMS + common block size for v1 */
2564 	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2565 
2566 	if (magic == __perf_cs_etmv3_magic) {
2567 		for (j = 0; j < total_params; j++, i++) {
2568 			/* if newer record - could be excess params */
2569 			if (j >= CS_ETM_PRIV_MAX)
2570 				fprintf(stdout, param_unk_fmt, j, val[i]);
2571 			else
2572 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2573 		}
2574 	} else if (magic == __perf_cs_etmv4_magic) {
2575 		for (j = 0; j < total_params; j++, i++) {
2576 			/* if newer record - could be excess params */
2577 			if (j >= CS_ETMV4_PRIV_MAX)
2578 				fprintf(stdout, param_unk_fmt, j, val[i]);
2579 			else
2580 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2581 		}
2582 	} else {
2583 		/* failure - note bad magic value and error out */
2584 		fprintf(stdout, magic_unk_fmt, magic);
2585 		return -EINVAL;
2586 	}
2587 	*offset = i;
2588 	return 0;
2589 }
2590 
2591 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2592 {
2593 	int i, cpu = 0, version, err;
2594 
2595 	/* bail out early on bad header version */
2596 	version = val[0];
2597 	if (version > CS_HEADER_CURRENT_VERSION) {
2598 		/* failure.. return */
2599 		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2600 		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2601 		return;
2602 	}
2603 
2604 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2605 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2606 
2607 	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2608 		if (version == 0)
2609 			err = cs_etm__print_cpu_metadata_v0(val, &i);
2610 		else if (version == 1)
2611 			err = cs_etm__print_cpu_metadata_v1(val, &i);
2612 		if (err)
2613 			return;
2614 	}
2615 }
2616 
2617 /*
2618  * Read a single cpu parameter block from the auxtrace_info priv block.
2619  *
2620  * For version 1 there is a per cpu nr_params entry. If we are handling
2621  * version 1 file, then there may be less, the same, or more params
2622  * indicated by this value than the compile time number we understand.
2623  *
2624  * For a version 0 info block, there are a fixed number, and we need to
2625  * fill out the nr_param value in the metadata we create.
2626  */
2627 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2628 				    int out_blk_size, int nr_params_v0)
2629 {
2630 	u64 *metadata = NULL;
2631 	int hdr_version;
2632 	int nr_in_params, nr_out_params, nr_cmn_params;
2633 	int i, k;
2634 
2635 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2636 	if (!metadata)
2637 		return NULL;
2638 
2639 	/* read block current index & version */
2640 	i = *buff_in_offset;
2641 	hdr_version = buff_in[CS_HEADER_VERSION];
2642 
2643 	if (!hdr_version) {
2644 	/* read version 0 info block into a version 1 metadata block  */
2645 		nr_in_params = nr_params_v0;
2646 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2647 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2648 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2649 		/* remaining block params at offset +1 from source */
2650 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2651 			metadata[k + 1] = buff_in[i + k];
2652 		/* version 0 has 2 common params */
2653 		nr_cmn_params = 2;
2654 	} else {
2655 	/* read version 1 info block - input and output nr_params may differ */
2656 		/* version 1 has 3 common params */
2657 		nr_cmn_params = 3;
2658 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2659 
2660 		/* if input has more params than output - skip excess */
2661 		nr_out_params = nr_in_params + nr_cmn_params;
2662 		if (nr_out_params > out_blk_size)
2663 			nr_out_params = out_blk_size;
2664 
2665 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2666 			metadata[k] = buff_in[i + k];
2667 
2668 		/* record the actual nr params we copied */
2669 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2670 	}
2671 
2672 	/* adjust in offset by number of in params used */
2673 	i += nr_in_params + nr_cmn_params;
2674 	*buff_in_offset = i;
2675 	return metadata;
2676 }
2677 
2678 /**
2679  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2680  * on the bounds of aux_event, if it matches with the buffer that's at
2681  * file_offset.
2682  *
2683  * Normally, whole auxtrace buffers would be added to the queue. But we
2684  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2685  * is reset across each buffer, so splitting the buffers up in advance has
2686  * the same effect.
2687  */
2688 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2689 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2690 {
2691 	int err;
2692 	char buf[PERF_SAMPLE_MAX_SIZE];
2693 	union perf_event *auxtrace_event_union;
2694 	struct perf_record_auxtrace *auxtrace_event;
2695 	union perf_event auxtrace_fragment;
2696 	__u64 aux_offset, aux_size;
2697 	__u32 idx;
2698 	bool formatted;
2699 
2700 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2701 						   struct cs_etm_auxtrace,
2702 						   auxtrace);
2703 
2704 	/*
2705 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2706 	 * from looping through the auxtrace index.
2707 	 */
2708 	err = perf_session__peek_event(session, file_offset, buf,
2709 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2710 	if (err)
2711 		return err;
2712 	auxtrace_event = &auxtrace_event_union->auxtrace;
2713 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2714 		return -EINVAL;
2715 
2716 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2717 		auxtrace_event->header.size != sz) {
2718 		return -EINVAL;
2719 	}
2720 
2721 	/*
2722 	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2723 	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2724 	 */
2725 	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2726 			auxtrace_event->cpu != sample->cpu)
2727 		return 1;
2728 
2729 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2730 		/*
2731 		 * Clamp size in snapshot mode. The buffer size is clamped in
2732 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2733 		 * the buffer size.
2734 		 */
2735 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2736 
2737 		/*
2738 		 * In this mode, the head also points to the end of the buffer so aux_offset
2739 		 * needs to have the size subtracted so it points to the beginning as in normal mode
2740 		 */
2741 		aux_offset = aux_event->aux_offset - aux_size;
2742 	} else {
2743 		aux_size = aux_event->aux_size;
2744 		aux_offset = aux_event->aux_offset;
2745 	}
2746 
2747 	if (aux_offset >= auxtrace_event->offset &&
2748 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2749 		/*
2750 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2751 		 * based on the sizes of the aux event, and queue that fragment.
2752 		 */
2753 		auxtrace_fragment.auxtrace = *auxtrace_event;
2754 		auxtrace_fragment.auxtrace.size = aux_size;
2755 		auxtrace_fragment.auxtrace.offset = aux_offset;
2756 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2757 
2758 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2759 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2760 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2761 						 file_offset, NULL);
2762 		if (err)
2763 			return err;
2764 
2765 		idx = auxtrace_event->idx;
2766 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2767 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2768 					   idx, formatted);
2769 	}
2770 
2771 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2772 	return 1;
2773 }
2774 
2775 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2776 					u64 offset __maybe_unused, void *data __maybe_unused)
2777 {
2778 	struct perf_sample sample;
2779 	int ret;
2780 	struct auxtrace_index_entry *ent;
2781 	struct auxtrace_index *auxtrace_index;
2782 	struct evsel *evsel;
2783 	size_t i;
2784 
2785 	/* Don't care about any other events, we're only queuing buffers for AUX events */
2786 	if (event->header.type != PERF_RECORD_AUX)
2787 		return 0;
2788 
2789 	if (event->header.size < sizeof(struct perf_record_aux))
2790 		return -EINVAL;
2791 
2792 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2793 	if (!event->aux.aux_size)
2794 		return 0;
2795 
2796 	/*
2797 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2798 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2799 	 */
2800 	evsel = evlist__event2evsel(session->evlist, event);
2801 	if (!evsel)
2802 		return -EINVAL;
2803 	ret = evsel__parse_sample(evsel, event, &sample);
2804 	if (ret)
2805 		return ret;
2806 
2807 	/*
2808 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2809 	 */
2810 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2811 		for (i = 0; i < auxtrace_index->nr; i++) {
2812 			ent = &auxtrace_index->entries[i];
2813 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2814 							 ent->sz, &event->aux, &sample);
2815 			/*
2816 			 * Stop search on error or successful values. Continue search on
2817 			 * 1 ('not found')
2818 			 */
2819 			if (ret != 1)
2820 				return ret;
2821 		}
2822 	}
2823 
2824 	/*
2825 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2826 	 * don't exit with an error because it will still be possible to decode other aux records.
2827 	 */
2828 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2829 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2830 	return 0;
2831 }
2832 
2833 static int cs_etm__queue_aux_records(struct perf_session *session)
2834 {
2835 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2836 								struct auxtrace_index, list);
2837 	if (index && index->nr > 0)
2838 		return perf_session__peek_events(session, session->header.data_offset,
2839 						 session->header.data_size,
2840 						 cs_etm__queue_aux_records_cb, NULL);
2841 
2842 	/*
2843 	 * We would get here if there are no entries in the index (either no auxtrace
2844 	 * buffers or no index at all). Fail silently as there is the possibility of
2845 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2846 	 * false.
2847 	 *
2848 	 * In that scenario, buffers will not be split by AUX records.
2849 	 */
2850 	return 0;
2851 }
2852 
2853 int cs_etm__process_auxtrace_info(union perf_event *event,
2854 				  struct perf_session *session)
2855 {
2856 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2857 	struct cs_etm_auxtrace *etm = NULL;
2858 	struct int_node *inode;
2859 	unsigned int pmu_type;
2860 	int event_header_size = sizeof(struct perf_event_header);
2861 	int info_header_size;
2862 	int total_size = auxtrace_info->header.size;
2863 	int priv_size = 0;
2864 	int num_cpu, trcidr_idx;
2865 	int err = 0;
2866 	int i, j;
2867 	u64 *ptr, *hdr = NULL;
2868 	u64 **metadata = NULL;
2869 	u64 hdr_version;
2870 
2871 	/*
2872 	 * sizeof(auxtrace_info_event::type) +
2873 	 * sizeof(auxtrace_info_event::reserved) == 8
2874 	 */
2875 	info_header_size = 8;
2876 
2877 	if (total_size < (event_header_size + info_header_size))
2878 		return -EINVAL;
2879 
2880 	priv_size = total_size - event_header_size - info_header_size;
2881 
2882 	/* First the global part */
2883 	ptr = (u64 *) auxtrace_info->priv;
2884 
2885 	/* Look for version of the header */
2886 	hdr_version = ptr[0];
2887 	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2888 		/* print routine will print an error on bad version */
2889 		if (dump_trace)
2890 			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2891 		return -EINVAL;
2892 	}
2893 
2894 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2895 	if (!hdr)
2896 		return -ENOMEM;
2897 
2898 	/* Extract header information - see cs-etm.h for format */
2899 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2900 		hdr[i] = ptr[i];
2901 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2902 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2903 				    0xffffffff);
2904 
2905 	/*
2906 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2907 	 * has to be made for each packet that gets decoded, optimizing access
2908 	 * in anything other than a sequential array is worth doing.
2909 	 */
2910 	traceid_list = intlist__new(NULL);
2911 	if (!traceid_list) {
2912 		err = -ENOMEM;
2913 		goto err_free_hdr;
2914 	}
2915 
2916 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2917 	if (!metadata) {
2918 		err = -ENOMEM;
2919 		goto err_free_traceid_list;
2920 	}
2921 
2922 	/*
2923 	 * The metadata is stored in the auxtrace_info section and encodes
2924 	 * the configuration of the ARM embedded trace macrocell which is
2925 	 * required by the trace decoder to properly decode the trace due
2926 	 * to its highly compressed nature.
2927 	 */
2928 	for (j = 0; j < num_cpu; j++) {
2929 		if (ptr[i] == __perf_cs_etmv3_magic) {
2930 			metadata[j] =
2931 				cs_etm__create_meta_blk(ptr, &i,
2932 							CS_ETM_PRIV_MAX,
2933 							CS_ETM_NR_TRC_PARAMS_V0);
2934 
2935 			/* The traceID is our handle */
2936 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2937 
2938 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2939 			metadata[j] =
2940 				cs_etm__create_meta_blk(ptr, &i,
2941 							CS_ETMV4_PRIV_MAX,
2942 							CS_ETMV4_NR_TRC_PARAMS_V0);
2943 
2944 			/* The traceID is our handle */
2945 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2946 		}
2947 
2948 		if (!metadata[j]) {
2949 			err = -ENOMEM;
2950 			goto err_free_metadata;
2951 		}
2952 
2953 		/* Get an RB node for this CPU */
2954 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2955 
2956 		/* Something went wrong, no need to continue */
2957 		if (!inode) {
2958 			err = -ENOMEM;
2959 			goto err_free_metadata;
2960 		}
2961 
2962 		/*
2963 		 * The node for that CPU should not be taken.
2964 		 * Back out if that's the case.
2965 		 */
2966 		if (inode->priv) {
2967 			err = -EINVAL;
2968 			goto err_free_metadata;
2969 		}
2970 		/* All good, associate the traceID with the metadata pointer */
2971 		inode->priv = metadata[j];
2972 	}
2973 
2974 	/*
2975 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2976 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2977 	 * global metadata, and each cpu's metadata respectively.
2978 	 * The following tests if the correct number of double words was
2979 	 * present in the auxtrace info section.
2980 	 */
2981 	if (i * 8 != priv_size) {
2982 		err = -EINVAL;
2983 		goto err_free_metadata;
2984 	}
2985 
2986 	etm = zalloc(sizeof(*etm));
2987 
2988 	if (!etm) {
2989 		err = -ENOMEM;
2990 		goto err_free_metadata;
2991 	}
2992 
2993 	err = auxtrace_queues__init(&etm->queues);
2994 	if (err)
2995 		goto err_free_etm;
2996 
2997 	if (session->itrace_synth_opts->set) {
2998 		etm->synth_opts = *session->itrace_synth_opts;
2999 	} else {
3000 		itrace_synth_opts__set_default(&etm->synth_opts,
3001 				session->itrace_synth_opts->default_no_sample);
3002 		etm->synth_opts.callchain = false;
3003 	}
3004 
3005 	etm->session = session;
3006 	etm->machine = &session->machines.host;
3007 
3008 	etm->num_cpu = num_cpu;
3009 	etm->pmu_type = pmu_type;
3010 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3011 	etm->metadata = metadata;
3012 	etm->auxtrace_type = auxtrace_info->type;
3013 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3014 
3015 	etm->auxtrace.process_event = cs_etm__process_event;
3016 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3017 	etm->auxtrace.flush_events = cs_etm__flush_events;
3018 	etm->auxtrace.free_events = cs_etm__free_events;
3019 	etm->auxtrace.free = cs_etm__free;
3020 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3021 	session->auxtrace = &etm->auxtrace;
3022 
3023 	etm->unknown_thread = thread__new(999999999, 999999999);
3024 	if (!etm->unknown_thread) {
3025 		err = -ENOMEM;
3026 		goto err_free_queues;
3027 	}
3028 
3029 	/*
3030 	 * Initialize list node so that at thread__zput() we can avoid
3031 	 * segmentation fault at list_del_init().
3032 	 */
3033 	INIT_LIST_HEAD(&etm->unknown_thread->node);
3034 
3035 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3036 	if (err)
3037 		goto err_delete_thread;
3038 
3039 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3040 		err = -ENOMEM;
3041 		goto err_delete_thread;
3042 	}
3043 
3044 	if (dump_trace) {
3045 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3046 	}
3047 
3048 	err = cs_etm__synth_events(etm, session);
3049 	if (err)
3050 		goto err_delete_thread;
3051 
3052 	err = cs_etm__queue_aux_records(session);
3053 	if (err)
3054 		goto err_delete_thread;
3055 
3056 	etm->data_queued = etm->queues.populated;
3057 	/*
3058 	 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3059 	 * cs_etm__queue_aux_fragment() for details relating to limitations.
3060 	 */
3061 	if (!etm->data_queued)
3062 		pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3063 			   "Continuing with best effort decoding in piped mode.\n\n");
3064 
3065 	return 0;
3066 
3067 err_delete_thread:
3068 	thread__zput(etm->unknown_thread);
3069 err_free_queues:
3070 	auxtrace_queues__free(&etm->queues);
3071 	session->auxtrace = NULL;
3072 err_free_etm:
3073 	zfree(&etm);
3074 err_free_metadata:
3075 	/* No need to check @metadata[j], free(NULL) is supported */
3076 	for (j = 0; j < num_cpu; j++)
3077 		zfree(&metadata[j]);
3078 	zfree(&metadata);
3079 err_free_traceid_list:
3080 	intlist__delete(traceid_list);
3081 err_free_hdr:
3082 	zfree(&hdr);
3083 	/*
3084 	 * At this point, as a minimum we have valid header. Dump the rest of
3085 	 * the info section - the print routines will error out on structural
3086 	 * issues.
3087 	 */
3088 	if (dump_trace)
3089 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3090 	return err;
3091 }
3092