xref: /linux/tools/perf/util/callchain.c (revision ac6a0cf6716bb46813d0161024c66c2af66e53d1)
1 /*
2  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
3  *
4  * Handle the callchains from the stream in an ad-hoc radix tree and then
5  * sort them in an rbtree.
6  *
7  * Using a radix for code path provides a fast retrieval and factorizes
8  * memory use. Also that lets us use the paths in a hierarchical graph view.
9  *
10  */
11 
12 #include <stdlib.h>
13 #include <stdio.h>
14 #include <stdbool.h>
15 #include <errno.h>
16 #include <math.h>
17 
18 #include "callchain.h"
19 
20 #define chain_for_each_child(child, parent)	\
21 	list_for_each_entry(child, &parent->children, brothers)
22 
23 static void
24 rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
25 		    enum chain_mode mode)
26 {
27 	struct rb_node **p = &root->rb_node;
28 	struct rb_node *parent = NULL;
29 	struct callchain_node *rnode;
30 	u64 chain_cumul = cumul_hits(chain);
31 
32 	while (*p) {
33 		u64 rnode_cumul;
34 
35 		parent = *p;
36 		rnode = rb_entry(parent, struct callchain_node, rb_node);
37 		rnode_cumul = cumul_hits(rnode);
38 
39 		switch (mode) {
40 		case CHAIN_FLAT:
41 			if (rnode->hit < chain->hit)
42 				p = &(*p)->rb_left;
43 			else
44 				p = &(*p)->rb_right;
45 			break;
46 		case CHAIN_GRAPH_ABS: /* Falldown */
47 		case CHAIN_GRAPH_REL:
48 			if (rnode_cumul < chain_cumul)
49 				p = &(*p)->rb_left;
50 			else
51 				p = &(*p)->rb_right;
52 			break;
53 		default:
54 			break;
55 		}
56 	}
57 
58 	rb_link_node(&chain->rb_node, parent, p);
59 	rb_insert_color(&chain->rb_node, root);
60 }
61 
62 static void
63 __sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
64 		  u64 min_hit)
65 {
66 	struct callchain_node *child;
67 
68 	chain_for_each_child(child, node)
69 		__sort_chain_flat(rb_root, child, min_hit);
70 
71 	if (node->hit && node->hit >= min_hit)
72 		rb_insert_callchain(rb_root, node, CHAIN_FLAT);
73 }
74 
75 /*
76  * Once we get every callchains from the stream, we can now
77  * sort them by hit
78  */
79 static void
80 sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
81 		u64 min_hit, struct callchain_param *param __used)
82 {
83 	__sort_chain_flat(rb_root, node, min_hit);
84 }
85 
86 static void __sort_chain_graph_abs(struct callchain_node *node,
87 				   u64 min_hit)
88 {
89 	struct callchain_node *child;
90 
91 	node->rb_root = RB_ROOT;
92 
93 	chain_for_each_child(child, node) {
94 		__sort_chain_graph_abs(child, min_hit);
95 		if (cumul_hits(child) >= min_hit)
96 			rb_insert_callchain(&node->rb_root, child,
97 					    CHAIN_GRAPH_ABS);
98 	}
99 }
100 
101 static void
102 sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_node *chain_root,
103 		     u64 min_hit, struct callchain_param *param __used)
104 {
105 	__sort_chain_graph_abs(chain_root, min_hit);
106 	rb_root->rb_node = chain_root->rb_root.rb_node;
107 }
108 
109 static void __sort_chain_graph_rel(struct callchain_node *node,
110 				   double min_percent)
111 {
112 	struct callchain_node *child;
113 	u64 min_hit;
114 
115 	node->rb_root = RB_ROOT;
116 	min_hit = ceil(node->children_hit * min_percent);
117 
118 	chain_for_each_child(child, node) {
119 		__sort_chain_graph_rel(child, min_percent);
120 		if (cumul_hits(child) >= min_hit)
121 			rb_insert_callchain(&node->rb_root, child,
122 					    CHAIN_GRAPH_REL);
123 	}
124 }
125 
126 static void
127 sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_node *chain_root,
128 		     u64 min_hit __used, struct callchain_param *param)
129 {
130 	__sort_chain_graph_rel(chain_root, param->min_percent / 100.0);
131 	rb_root->rb_node = chain_root->rb_root.rb_node;
132 }
133 
134 int register_callchain_param(struct callchain_param *param)
135 {
136 	switch (param->mode) {
137 	case CHAIN_GRAPH_ABS:
138 		param->sort = sort_chain_graph_abs;
139 		break;
140 	case CHAIN_GRAPH_REL:
141 		param->sort = sort_chain_graph_rel;
142 		break;
143 	case CHAIN_FLAT:
144 		param->sort = sort_chain_flat;
145 		break;
146 	default:
147 		return -1;
148 	}
149 	return 0;
150 }
151 
152 /*
153  * Create a child for a parent. If inherit_children, then the new child
154  * will become the new parent of it's parent children
155  */
156 static struct callchain_node *
157 create_child(struct callchain_node *parent, bool inherit_children)
158 {
159 	struct callchain_node *new;
160 
161 	new = malloc(sizeof(*new));
162 	if (!new) {
163 		perror("not enough memory to create child for code path tree");
164 		return NULL;
165 	}
166 	new->parent = parent;
167 	INIT_LIST_HEAD(&new->children);
168 	INIT_LIST_HEAD(&new->val);
169 
170 	if (inherit_children) {
171 		struct callchain_node *next;
172 
173 		list_splice(&parent->children, &new->children);
174 		INIT_LIST_HEAD(&parent->children);
175 
176 		chain_for_each_child(next, new)
177 			next->parent = new;
178 	}
179 	list_add_tail(&new->brothers, &parent->children);
180 
181 	return new;
182 }
183 
184 /*
185  * Fill the node with callchain values
186  */
187 static void
188 fill_node(struct callchain_node *node, struct ip_callchain *chain,
189 	  int start, struct symbol **syms)
190 {
191 	unsigned int i;
192 
193 	for (i = start; i < chain->nr; i++) {
194 		struct callchain_list *call;
195 
196 		call = malloc(sizeof(*call));
197 		if (!call) {
198 			perror("not enough memory for the code path tree");
199 			return;
200 		}
201 		call->ip = chain->ips[i];
202 		call->sym = syms[i];
203 		list_add_tail(&call->list, &node->val);
204 	}
205 	node->val_nr = chain->nr - start;
206 	if (!node->val_nr)
207 		printf("Warning: empty node in callchain tree\n");
208 }
209 
210 static void
211 add_child(struct callchain_node *parent, struct ip_callchain *chain,
212 	  int start, struct symbol **syms)
213 {
214 	struct callchain_node *new;
215 
216 	new = create_child(parent, false);
217 	fill_node(new, chain, start, syms);
218 
219 	new->children_hit = 0;
220 	new->hit = 1;
221 }
222 
223 /*
224  * Split the parent in two parts (a new child is created) and
225  * give a part of its callchain to the created child.
226  * Then create another child to host the given callchain of new branch
227  */
228 static void
229 split_add_child(struct callchain_node *parent, struct ip_callchain *chain,
230 		struct callchain_list *to_split, int idx_parents, int idx_local,
231 		struct symbol **syms)
232 {
233 	struct callchain_node *new;
234 	struct list_head *old_tail;
235 	unsigned int idx_total = idx_parents + idx_local;
236 
237 	/* split */
238 	new = create_child(parent, true);
239 
240 	/* split the callchain and move a part to the new child */
241 	old_tail = parent->val.prev;
242 	list_del_range(&to_split->list, old_tail);
243 	new->val.next = &to_split->list;
244 	new->val.prev = old_tail;
245 	to_split->list.prev = &new->val;
246 	old_tail->next = &new->val;
247 
248 	/* split the hits */
249 	new->hit = parent->hit;
250 	new->children_hit = parent->children_hit;
251 	parent->children_hit = cumul_hits(new);
252 	new->val_nr = parent->val_nr - idx_local;
253 	parent->val_nr = idx_local;
254 
255 	/* create a new child for the new branch if any */
256 	if (idx_total < chain->nr) {
257 		parent->hit = 0;
258 		add_child(parent, chain, idx_total, syms);
259 		parent->children_hit++;
260 	} else {
261 		parent->hit = 1;
262 	}
263 }
264 
265 static int
266 __append_chain(struct callchain_node *root, struct ip_callchain *chain,
267 	       unsigned int start, struct symbol **syms);
268 
269 static void
270 __append_chain_children(struct callchain_node *root, struct ip_callchain *chain,
271 			struct symbol **syms, unsigned int start)
272 {
273 	struct callchain_node *rnode;
274 
275 	/* lookup in childrens */
276 	chain_for_each_child(rnode, root) {
277 		unsigned int ret = __append_chain(rnode, chain, start, syms);
278 
279 		if (!ret)
280 			goto inc_children_hit;
281 	}
282 	/* nothing in children, add to the current node */
283 	add_child(root, chain, start, syms);
284 
285 inc_children_hit:
286 	root->children_hit++;
287 }
288 
289 static int
290 __append_chain(struct callchain_node *root, struct ip_callchain *chain,
291 	       unsigned int start, struct symbol **syms)
292 {
293 	struct callchain_list *cnode;
294 	unsigned int i = start;
295 	bool found = false;
296 
297 	/*
298 	 * Lookup in the current node
299 	 * If we have a symbol, then compare the start to match
300 	 * anywhere inside a function.
301 	 */
302 	list_for_each_entry(cnode, &root->val, list) {
303 		if (i == chain->nr)
304 			break;
305 		if (cnode->sym && syms[i]) {
306 			if (cnode->sym->start != syms[i]->start)
307 				break;
308 		} else if (cnode->ip != chain->ips[i])
309 			break;
310 		if (!found)
311 			found = true;
312 		i++;
313 	}
314 
315 	/* matches not, relay on the parent */
316 	if (!found)
317 		return -1;
318 
319 	/* we match only a part of the node. Split it and add the new chain */
320 	if (i - start < root->val_nr) {
321 		split_add_child(root, chain, cnode, start, i - start, syms);
322 		return 0;
323 	}
324 
325 	/* we match 100% of the path, increment the hit */
326 	if (i - start == root->val_nr && i == chain->nr) {
327 		root->hit++;
328 		return 0;
329 	}
330 
331 	/* We match the node and still have a part remaining */
332 	__append_chain_children(root, chain, syms, i);
333 
334 	return 0;
335 }
336 
337 void append_chain(struct callchain_node *root, struct ip_callchain *chain,
338 		  struct symbol **syms)
339 {
340 	if (!chain->nr)
341 		return;
342 	__append_chain_children(root, chain, syms, 0);
343 }
344