xref: /linux/tools/perf/util/bpf_skel/off_cpu.bpf.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 // Copyright (c) 2022 Google
3 #include "vmlinux.h"
4 #include <bpf/bpf_helpers.h>
5 #include <bpf/bpf_tracing.h>
6 #include <bpf/bpf_core_read.h>
7 
8 /* task->flags for off-cpu analysis */
9 #define PF_KTHREAD   0x00200000  /* I am a kernel thread */
10 
11 /* task->state for off-cpu analysis */
12 #define TASK_INTERRUPTIBLE	0x0001
13 #define TASK_UNINTERRUPTIBLE	0x0002
14 
15 /* create a new thread */
16 #define CLONE_THREAD  0x10000
17 
18 #define MAX_STACKS   32
19 #define MAX_ENTRIES  102400
20 
21 struct tstamp_data {
22 	__u32 stack_id;
23 	__u32 state;
24 	__u64 timestamp;
25 };
26 
27 struct offcpu_key {
28 	__u32 pid;
29 	__u32 tgid;
30 	__u32 stack_id;
31 	__u32 state;
32 	__u64 cgroup_id;
33 };
34 
35 struct {
36 	__uint(type, BPF_MAP_TYPE_STACK_TRACE);
37 	__uint(key_size, sizeof(__u32));
38 	__uint(value_size, MAX_STACKS * sizeof(__u64));
39 	__uint(max_entries, MAX_ENTRIES);
40 } stacks SEC(".maps");
41 
42 struct {
43 	__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
44 	__uint(map_flags, BPF_F_NO_PREALLOC);
45 	__type(key, int);
46 	__type(value, struct tstamp_data);
47 } tstamp SEC(".maps");
48 
49 struct {
50 	__uint(type, BPF_MAP_TYPE_HASH);
51 	__uint(key_size, sizeof(struct offcpu_key));
52 	__uint(value_size, sizeof(__u64));
53 	__uint(max_entries, MAX_ENTRIES);
54 } off_cpu SEC(".maps");
55 
56 struct {
57 	__uint(type, BPF_MAP_TYPE_HASH);
58 	__uint(key_size, sizeof(__u32));
59 	__uint(value_size, sizeof(__u8));
60 	__uint(max_entries, 1);
61 } cpu_filter SEC(".maps");
62 
63 struct {
64 	__uint(type, BPF_MAP_TYPE_HASH);
65 	__uint(key_size, sizeof(__u32));
66 	__uint(value_size, sizeof(__u8));
67 	__uint(max_entries, 1);
68 } task_filter SEC(".maps");
69 
70 struct {
71 	__uint(type, BPF_MAP_TYPE_HASH);
72 	__uint(key_size, sizeof(__u64));
73 	__uint(value_size, sizeof(__u8));
74 	__uint(max_entries, 1);
75 } cgroup_filter SEC(".maps");
76 
77 /* new kernel task_struct definition */
78 struct task_struct___new {
79 	long __state;
80 } __attribute__((preserve_access_index));
81 
82 /* old kernel task_struct definition */
83 struct task_struct___old {
84 	long state;
85 } __attribute__((preserve_access_index));
86 
87 int enabled = 0;
88 
89 const volatile int has_cpu = 0;
90 const volatile int has_task = 0;
91 const volatile int has_cgroup = 0;
92 const volatile int uses_tgid = 0;
93 
94 const volatile bool has_prev_state = false;
95 const volatile bool needs_cgroup = false;
96 const volatile bool uses_cgroup_v1 = false;
97 
98 int perf_subsys_id = -1;
99 
100 /*
101  * Old kernel used to call it task_struct->state and now it's '__state'.
102  * Use BPF CO-RE "ignored suffix rule" to deal with it like below:
103  *
104  * https://nakryiko.com/posts/bpf-core-reference-guide/#handling-incompatible-field-and-type-changes
105  */
106 static inline int get_task_state(struct task_struct *t)
107 {
108 	/* recast pointer to capture new type for compiler */
109 	struct task_struct___new *t_new = (void *)t;
110 
111 	if (bpf_core_field_exists(t_new->__state)) {
112 		return BPF_CORE_READ(t_new, __state);
113 	} else {
114 		/* recast pointer to capture old type for compiler */
115 		struct task_struct___old *t_old = (void *)t;
116 
117 		return BPF_CORE_READ(t_old, state);
118 	}
119 }
120 
121 static inline __u64 get_cgroup_id(struct task_struct *t)
122 {
123 	struct cgroup *cgrp;
124 
125 	if (!uses_cgroup_v1)
126 		return BPF_CORE_READ(t, cgroups, dfl_cgrp, kn, id);
127 
128 	if (perf_subsys_id == -1) {
129 #if __has_builtin(__builtin_preserve_enum_value)
130 		perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id,
131 						     perf_event_cgrp_id);
132 #else
133 		perf_subsys_id = perf_event_cgrp_id;
134 #endif
135 	}
136 
137 	cgrp = BPF_CORE_READ(t, cgroups, subsys[perf_subsys_id], cgroup);
138 	return BPF_CORE_READ(cgrp, kn, id);
139 }
140 
141 static inline int can_record(struct task_struct *t, int state)
142 {
143 	/* kernel threads don't have user stack */
144 	if (t->flags & PF_KTHREAD)
145 		return 0;
146 
147 	if (state != TASK_INTERRUPTIBLE &&
148 	    state != TASK_UNINTERRUPTIBLE)
149 		return 0;
150 
151 	if (has_cpu) {
152 		__u32 cpu = bpf_get_smp_processor_id();
153 		__u8 *ok;
154 
155 		ok = bpf_map_lookup_elem(&cpu_filter, &cpu);
156 		if (!ok)
157 			return 0;
158 	}
159 
160 	if (has_task) {
161 		__u8 *ok;
162 		__u32 pid;
163 
164 		if (uses_tgid)
165 			pid = t->tgid;
166 		else
167 			pid = t->pid;
168 
169 		ok = bpf_map_lookup_elem(&task_filter, &pid);
170 		if (!ok)
171 			return 0;
172 	}
173 
174 	if (has_cgroup) {
175 		__u8 *ok;
176 		__u64 cgrp_id = get_cgroup_id(t);
177 
178 		ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp_id);
179 		if (!ok)
180 			return 0;
181 	}
182 
183 	return 1;
184 }
185 
186 static int off_cpu_stat(u64 *ctx, struct task_struct *prev,
187 			struct task_struct *next, int state)
188 {
189 	__u64 ts;
190 	__u32 stack_id;
191 	struct tstamp_data *pelem;
192 
193 	ts = bpf_ktime_get_ns();
194 
195 	if (!can_record(prev, state))
196 		goto next;
197 
198 	stack_id = bpf_get_stackid(ctx, &stacks,
199 				   BPF_F_FAST_STACK_CMP | BPF_F_USER_STACK);
200 
201 	pelem = bpf_task_storage_get(&tstamp, prev, NULL,
202 				     BPF_LOCAL_STORAGE_GET_F_CREATE);
203 	if (!pelem)
204 		goto next;
205 
206 	pelem->timestamp = ts;
207 	pelem->state = state;
208 	pelem->stack_id = stack_id;
209 
210 next:
211 	pelem = bpf_task_storage_get(&tstamp, next, NULL, 0);
212 
213 	if (pelem && pelem->timestamp) {
214 		struct offcpu_key key = {
215 			.pid = next->pid,
216 			.tgid = next->tgid,
217 			.stack_id = pelem->stack_id,
218 			.state = pelem->state,
219 			.cgroup_id = needs_cgroup ? get_cgroup_id(next) : 0,
220 		};
221 		__u64 delta = ts - pelem->timestamp;
222 		__u64 *total;
223 
224 		total = bpf_map_lookup_elem(&off_cpu, &key);
225 		if (total)
226 			*total += delta;
227 		else
228 			bpf_map_update_elem(&off_cpu, &key, &delta, BPF_ANY);
229 
230 		/* prevent to reuse the timestamp later */
231 		pelem->timestamp = 0;
232 	}
233 
234 	return 0;
235 }
236 
237 SEC("tp_btf/task_newtask")
238 int on_newtask(u64 *ctx)
239 {
240 	struct task_struct *task;
241 	u64 clone_flags;
242 	u32 pid;
243 	u8 val = 1;
244 
245 	if (!uses_tgid)
246 		return 0;
247 
248 	task = (struct task_struct *)bpf_get_current_task();
249 
250 	pid = BPF_CORE_READ(task, tgid);
251 	if (!bpf_map_lookup_elem(&task_filter, &pid))
252 		return 0;
253 
254 	task = (struct task_struct *)ctx[0];
255 	clone_flags = ctx[1];
256 
257 	pid = task->tgid;
258 	if (!(clone_flags & CLONE_THREAD))
259 		bpf_map_update_elem(&task_filter, &pid, &val, BPF_NOEXIST);
260 
261 	return 0;
262 }
263 
264 SEC("tp_btf/sched_switch")
265 int on_switch(u64 *ctx)
266 {
267 	struct task_struct *prev, *next;
268 	int prev_state;
269 
270 	if (!enabled)
271 		return 0;
272 
273 	prev = (struct task_struct *)ctx[1];
274 	next = (struct task_struct *)ctx[2];
275 
276 	if (has_prev_state)
277 		prev_state = (int)ctx[3];
278 	else
279 		prev_state = get_task_state(prev);
280 
281 	return off_cpu_stat(ctx, prev, next, prev_state & 0xff);
282 }
283 
284 char LICENSE[] SEC("license") = "Dual BSD/GPL";
285