xref: /linux/tools/perf/util/bpf_counter.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2019 Facebook */
4 
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14 
15 #include "bpf_counter.h"
16 #include "bpf-utils.h"
17 #include "counts.h"
18 #include "debug.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "target.h"
22 #include "cgroup.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 
26 #include "bpf_skel/bpf_prog_profiler.skel.h"
27 #include "bpf_skel/bperf_u.h"
28 #include "bpf_skel/bperf_leader.skel.h"
29 #include "bpf_skel/bperf_follower.skel.h"
30 
31 #define ATTR_MAP_SIZE 16
32 
33 static inline void *u64_to_ptr(__u64 ptr)
34 {
35 	return (void *)(unsigned long)ptr;
36 }
37 
38 static struct bpf_counter *bpf_counter_alloc(void)
39 {
40 	struct bpf_counter *counter;
41 
42 	counter = zalloc(sizeof(*counter));
43 	if (counter)
44 		INIT_LIST_HEAD(&counter->list);
45 	return counter;
46 }
47 
48 static int bpf_program_profiler__destroy(struct evsel *evsel)
49 {
50 	struct bpf_counter *counter, *tmp;
51 
52 	list_for_each_entry_safe(counter, tmp,
53 				 &evsel->bpf_counter_list, list) {
54 		list_del_init(&counter->list);
55 		bpf_prog_profiler_bpf__destroy(counter->skel);
56 		free(counter);
57 	}
58 	assert(list_empty(&evsel->bpf_counter_list));
59 
60 	return 0;
61 }
62 
63 static char *bpf_target_prog_name(int tgt_fd)
64 {
65 	struct bpf_func_info *func_info;
66 	struct perf_bpil *info_linear;
67 	const struct btf_type *t;
68 	struct btf *btf = NULL;
69 	char *name = NULL;
70 
71 	info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72 	if (IS_ERR_OR_NULL(info_linear)) {
73 		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74 		return NULL;
75 	}
76 
77 	if (info_linear->info.btf_id == 0) {
78 		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79 		goto out;
80 	}
81 
82 	btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83 	if (libbpf_get_error(btf)) {
84 		pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85 		goto out;
86 	}
87 
88 	func_info = u64_to_ptr(info_linear->info.func_info);
89 	t = btf__type_by_id(btf, func_info[0].type_id);
90 	if (!t) {
91 		pr_debug("btf %d doesn't have type %d\n",
92 			 info_linear->info.btf_id, func_info[0].type_id);
93 		goto out;
94 	}
95 	name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97 	btf__free(btf);
98 	free(info_linear);
99 	return name;
100 }
101 
102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104 	struct bpf_prog_profiler_bpf *skel;
105 	struct bpf_counter *counter;
106 	struct bpf_program *prog;
107 	char *prog_name = NULL;
108 	int prog_fd;
109 	int err;
110 
111 	prog_fd = bpf_prog_get_fd_by_id(prog_id);
112 	if (prog_fd < 0) {
113 		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114 		return -1;
115 	}
116 	counter = bpf_counter_alloc();
117 	if (!counter) {
118 		close(prog_fd);
119 		return -1;
120 	}
121 
122 	skel = bpf_prog_profiler_bpf__open();
123 	if (!skel) {
124 		pr_err("Failed to open bpf skeleton\n");
125 		goto err_out;
126 	}
127 
128 	skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129 
130 	bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131 	bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132 	bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133 
134 	prog_name = bpf_target_prog_name(prog_fd);
135 	if (!prog_name) {
136 		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137 		goto err_out;
138 	}
139 
140 	bpf_object__for_each_program(prog, skel->obj) {
141 		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142 		if (err) {
143 			pr_err("bpf_program__set_attach_target failed.\n"
144 			       "Does bpf prog %u have BTF?\n", prog_id);
145 			goto err_out;
146 		}
147 	}
148 	set_max_rlimit();
149 	err = bpf_prog_profiler_bpf__load(skel);
150 	if (err) {
151 		pr_err("bpf_prog_profiler_bpf__load failed\n");
152 		goto err_out;
153 	}
154 
155 	assert(skel != NULL);
156 	counter->skel = skel;
157 	list_add(&counter->list, &evsel->bpf_counter_list);
158 	free(prog_name);
159 	close(prog_fd);
160 	return 0;
161 err_out:
162 	bpf_prog_profiler_bpf__destroy(skel);
163 	free(prog_name);
164 	free(counter);
165 	close(prog_fd);
166 	return -1;
167 }
168 
169 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
170 {
171 	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
172 	u32 prog_id;
173 	int ret;
174 
175 	bpf_str_ = bpf_str = strdup(target->bpf_str);
176 	if (!bpf_str)
177 		return -1;
178 
179 	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
180 		prog_id = strtoul(tok, &p, 10);
181 		if (prog_id == 0 || prog_id == UINT_MAX ||
182 		    (*p != '\0' && *p != ',')) {
183 			pr_err("Failed to parse bpf prog ids %s\n",
184 			       target->bpf_str);
185 			free(bpf_str_);
186 			return -1;
187 		}
188 
189 		ret = bpf_program_profiler_load_one(evsel, prog_id);
190 		if (ret) {
191 			bpf_program_profiler__destroy(evsel);
192 			free(bpf_str_);
193 			return -1;
194 		}
195 		bpf_str = NULL;
196 	}
197 	free(bpf_str_);
198 	return 0;
199 }
200 
201 static int bpf_program_profiler__enable(struct evsel *evsel)
202 {
203 	struct bpf_counter *counter;
204 	int ret;
205 
206 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
207 		assert(counter->skel != NULL);
208 		ret = bpf_prog_profiler_bpf__attach(counter->skel);
209 		if (ret) {
210 			bpf_program_profiler__destroy(evsel);
211 			return ret;
212 		}
213 	}
214 	return 0;
215 }
216 
217 static int bpf_program_profiler__disable(struct evsel *evsel)
218 {
219 	struct bpf_counter *counter;
220 
221 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
222 		assert(counter->skel != NULL);
223 		bpf_prog_profiler_bpf__detach(counter->skel);
224 	}
225 	return 0;
226 }
227 
228 static int bpf_program_profiler__read(struct evsel *evsel)
229 {
230 	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
231 	// Sometimes possible > online, like on a Ryzen 3900X that has 24
232 	// threads but its possible showed 0-31 -acme
233 	int num_cpu_bpf = libbpf_num_possible_cpus();
234 	struct bpf_perf_event_value values[num_cpu_bpf];
235 	struct bpf_counter *counter;
236 	struct perf_counts_values *counts;
237 	int reading_map_fd;
238 	__u32 key = 0;
239 	int err, idx, bpf_cpu;
240 
241 	if (list_empty(&evsel->bpf_counter_list))
242 		return -EAGAIN;
243 
244 	perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
245 		counts = perf_counts(evsel->counts, idx, 0);
246 		counts->val = 0;
247 		counts->ena = 0;
248 		counts->run = 0;
249 	}
250 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
251 		struct bpf_prog_profiler_bpf *skel = counter->skel;
252 
253 		assert(skel != NULL);
254 		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
255 
256 		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
257 		if (err) {
258 			pr_err("failed to read value\n");
259 			return err;
260 		}
261 
262 		for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
263 			idx = perf_cpu_map__idx(evsel__cpus(evsel),
264 						(struct perf_cpu){.cpu = bpf_cpu});
265 			if (idx == -1)
266 				continue;
267 			counts = perf_counts(evsel->counts, idx, 0);
268 			counts->val += values[bpf_cpu].counter;
269 			counts->ena += values[bpf_cpu].enabled;
270 			counts->run += values[bpf_cpu].running;
271 		}
272 	}
273 	return 0;
274 }
275 
276 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
277 					    int fd)
278 {
279 	struct bpf_prog_profiler_bpf *skel;
280 	struct bpf_counter *counter;
281 	int ret;
282 
283 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
284 		skel = counter->skel;
285 		assert(skel != NULL);
286 
287 		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
288 					  &cpu_map_idx, &fd, BPF_ANY);
289 		if (ret)
290 			return ret;
291 	}
292 	return 0;
293 }
294 
295 struct bpf_counter_ops bpf_program_profiler_ops = {
296 	.load       = bpf_program_profiler__load,
297 	.enable	    = bpf_program_profiler__enable,
298 	.disable    = bpf_program_profiler__disable,
299 	.read       = bpf_program_profiler__read,
300 	.destroy    = bpf_program_profiler__destroy,
301 	.install_pe = bpf_program_profiler__install_pe,
302 };
303 
304 static bool bperf_attr_map_compatible(int attr_map_fd)
305 {
306 	struct bpf_map_info map_info = {0};
307 	__u32 map_info_len = sizeof(map_info);
308 	int err;
309 
310 	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
311 
312 	if (err)
313 		return false;
314 	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
315 		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
316 }
317 
318 static int bperf_lock_attr_map(struct target *target)
319 {
320 	char path[PATH_MAX];
321 	int map_fd, err;
322 
323 	if (target->attr_map) {
324 		scnprintf(path, PATH_MAX, "%s", target->attr_map);
325 	} else {
326 		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
327 			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
328 	}
329 
330 	if (access(path, F_OK)) {
331 		map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
332 					sizeof(struct perf_event_attr),
333 					sizeof(struct perf_event_attr_map_entry),
334 					ATTR_MAP_SIZE, NULL);
335 		if (map_fd < 0)
336 			return -1;
337 
338 		err = bpf_obj_pin(map_fd, path);
339 		if (err) {
340 			/* someone pinned the map in parallel? */
341 			close(map_fd);
342 			map_fd = bpf_obj_get(path);
343 			if (map_fd < 0)
344 				return -1;
345 		}
346 	} else {
347 		map_fd = bpf_obj_get(path);
348 		if (map_fd < 0)
349 			return -1;
350 	}
351 
352 	if (!bperf_attr_map_compatible(map_fd)) {
353 		close(map_fd);
354 		return -1;
355 
356 	}
357 	err = flock(map_fd, LOCK_EX);
358 	if (err) {
359 		close(map_fd);
360 		return -1;
361 	}
362 	return map_fd;
363 }
364 
365 static int bperf_check_target(struct evsel *evsel,
366 			      struct target *target,
367 			      enum bperf_filter_type *filter_type,
368 			      __u32 *filter_entry_cnt)
369 {
370 	if (evsel->core.leader->nr_members > 1) {
371 		pr_err("bpf managed perf events do not yet support groups.\n");
372 		return -1;
373 	}
374 
375 	/* determine filter type based on target */
376 	if (target->system_wide) {
377 		*filter_type = BPERF_FILTER_GLOBAL;
378 		*filter_entry_cnt = 1;
379 	} else if (target->cpu_list) {
380 		*filter_type = BPERF_FILTER_CPU;
381 		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
382 	} else if (target->tid) {
383 		*filter_type = BPERF_FILTER_PID;
384 		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385 	} else if (target->pid || evsel->evlist->workload.pid != -1) {
386 		*filter_type = BPERF_FILTER_TGID;
387 		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
388 	} else {
389 		pr_err("bpf managed perf events do not yet support these targets.\n");
390 		return -1;
391 	}
392 
393 	return 0;
394 }
395 
396 static	struct perf_cpu_map *all_cpu_map;
397 
398 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
399 				       struct perf_event_attr_map_entry *entry)
400 {
401 	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
402 	int link_fd, diff_map_fd, err;
403 	struct bpf_link *link = NULL;
404 
405 	if (!skel) {
406 		pr_err("Failed to open leader skeleton\n");
407 		return -1;
408 	}
409 
410 	bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
411 	err = bperf_leader_bpf__load(skel);
412 	if (err) {
413 		pr_err("Failed to load leader skeleton\n");
414 		goto out;
415 	}
416 
417 	link = bpf_program__attach(skel->progs.on_switch);
418 	if (IS_ERR(link)) {
419 		pr_err("Failed to attach leader program\n");
420 		err = PTR_ERR(link);
421 		goto out;
422 	}
423 
424 	link_fd = bpf_link__fd(link);
425 	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
426 	entry->link_id = bpf_link_get_id(link_fd);
427 	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
428 	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
429 	assert(err == 0);
430 
431 	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
432 	assert(evsel->bperf_leader_link_fd >= 0);
433 
434 	/*
435 	 * save leader_skel for install_pe, which is called within
436 	 * following evsel__open_per_cpu call
437 	 */
438 	evsel->leader_skel = skel;
439 	evsel__open_per_cpu(evsel, all_cpu_map, -1);
440 
441 out:
442 	bperf_leader_bpf__destroy(skel);
443 	bpf_link__destroy(link);
444 	return err;
445 }
446 
447 static int bperf__load(struct evsel *evsel, struct target *target)
448 {
449 	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
450 	int attr_map_fd, diff_map_fd = -1, err;
451 	enum bperf_filter_type filter_type;
452 	__u32 filter_entry_cnt, i;
453 
454 	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
455 		return -1;
456 
457 	if (!all_cpu_map) {
458 		all_cpu_map = perf_cpu_map__new_online_cpus();
459 		if (!all_cpu_map)
460 			return -1;
461 	}
462 
463 	evsel->bperf_leader_prog_fd = -1;
464 	evsel->bperf_leader_link_fd = -1;
465 
466 	/*
467 	 * Step 1: hold a fd on the leader program and the bpf_link, if
468 	 * the program is not already gone, reload the program.
469 	 * Use flock() to ensure exclusive access to the perf_event_attr
470 	 * map.
471 	 */
472 	attr_map_fd = bperf_lock_attr_map(target);
473 	if (attr_map_fd < 0) {
474 		pr_err("Failed to lock perf_event_attr map\n");
475 		return -1;
476 	}
477 
478 	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
479 	if (err) {
480 		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
481 		if (err)
482 			goto out;
483 	}
484 
485 	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
486 	if (evsel->bperf_leader_link_fd < 0 &&
487 	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
488 		err = -1;
489 		goto out;
490 	}
491 	/*
492 	 * The bpf_link holds reference to the leader program, and the
493 	 * leader program holds reference to the maps. Therefore, if
494 	 * link_id is valid, diff_map_id should also be valid.
495 	 */
496 	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
497 		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
498 	assert(evsel->bperf_leader_prog_fd >= 0);
499 
500 	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
501 	assert(diff_map_fd >= 0);
502 
503 	/*
504 	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
505 	 * whether the kernel support it
506 	 */
507 	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
508 	if (err) {
509 		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
510 		       "Therefore, --use-bpf might show inaccurate readings\n");
511 		goto out;
512 	}
513 
514 	/* Step 2: load the follower skeleton */
515 	evsel->follower_skel = bperf_follower_bpf__open();
516 	if (!evsel->follower_skel) {
517 		err = -1;
518 		pr_err("Failed to open follower skeleton\n");
519 		goto out;
520 	}
521 
522 	/* attach fexit program to the leader program */
523 	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
524 				       evsel->bperf_leader_prog_fd, "on_switch");
525 
526 	/* connect to leader diff_reading map */
527 	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
528 
529 	/* set up reading map */
530 	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
531 				 filter_entry_cnt);
532 	/* set up follower filter based on target */
533 	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
534 				 filter_entry_cnt);
535 	err = bperf_follower_bpf__load(evsel->follower_skel);
536 	if (err) {
537 		pr_err("Failed to load follower skeleton\n");
538 		bperf_follower_bpf__destroy(evsel->follower_skel);
539 		evsel->follower_skel = NULL;
540 		goto out;
541 	}
542 
543 	for (i = 0; i < filter_entry_cnt; i++) {
544 		int filter_map_fd;
545 		__u32 key;
546 
547 		if (filter_type == BPERF_FILTER_PID ||
548 		    filter_type == BPERF_FILTER_TGID)
549 			key = perf_thread_map__pid(evsel->core.threads, i);
550 		else if (filter_type == BPERF_FILTER_CPU)
551 			key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
552 		else
553 			break;
554 
555 		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
556 		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
557 	}
558 
559 	evsel->follower_skel->bss->type = filter_type;
560 
561 	err = bperf_follower_bpf__attach(evsel->follower_skel);
562 
563 out:
564 	if (err && evsel->bperf_leader_link_fd >= 0)
565 		close(evsel->bperf_leader_link_fd);
566 	if (err && evsel->bperf_leader_prog_fd >= 0)
567 		close(evsel->bperf_leader_prog_fd);
568 	if (diff_map_fd >= 0)
569 		close(diff_map_fd);
570 
571 	flock(attr_map_fd, LOCK_UN);
572 	close(attr_map_fd);
573 
574 	return err;
575 }
576 
577 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
578 {
579 	struct bperf_leader_bpf *skel = evsel->leader_skel;
580 
581 	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
582 				   &cpu_map_idx, &fd, BPF_ANY);
583 }
584 
585 /*
586  * trigger the leader prog on each cpu, so the accum_reading map could get
587  * the latest readings.
588  */
589 static int bperf_sync_counters(struct evsel *evsel)
590 {
591 	int num_cpu, i, cpu;
592 
593 	num_cpu = perf_cpu_map__nr(all_cpu_map);
594 	for (i = 0; i < num_cpu; i++) {
595 		cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
596 		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
597 	}
598 	return 0;
599 }
600 
601 static int bperf__enable(struct evsel *evsel)
602 {
603 	evsel->follower_skel->bss->enabled = 1;
604 	return 0;
605 }
606 
607 static int bperf__disable(struct evsel *evsel)
608 {
609 	evsel->follower_skel->bss->enabled = 0;
610 	return 0;
611 }
612 
613 static int bperf__read(struct evsel *evsel)
614 {
615 	struct bperf_follower_bpf *skel = evsel->follower_skel;
616 	__u32 num_cpu_bpf = cpu__max_cpu().cpu;
617 	struct bpf_perf_event_value values[num_cpu_bpf];
618 	struct perf_counts_values *counts;
619 	int reading_map_fd, err = 0;
620 	__u32 i;
621 	int j;
622 
623 	bperf_sync_counters(evsel);
624 	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
625 
626 	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
627 		struct perf_cpu entry;
628 		__u32 cpu;
629 
630 		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
631 		if (err)
632 			goto out;
633 		switch (evsel->follower_skel->bss->type) {
634 		case BPERF_FILTER_GLOBAL:
635 			assert(i == 0);
636 
637 			perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
638 				counts = perf_counts(evsel->counts, j, 0);
639 				counts->val = values[entry.cpu].counter;
640 				counts->ena = values[entry.cpu].enabled;
641 				counts->run = values[entry.cpu].running;
642 			}
643 			break;
644 		case BPERF_FILTER_CPU:
645 			cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
646 			assert(cpu >= 0);
647 			counts = perf_counts(evsel->counts, i, 0);
648 			counts->val = values[cpu].counter;
649 			counts->ena = values[cpu].enabled;
650 			counts->run = values[cpu].running;
651 			break;
652 		case BPERF_FILTER_PID:
653 		case BPERF_FILTER_TGID:
654 			counts = perf_counts(evsel->counts, 0, i);
655 			counts->val = 0;
656 			counts->ena = 0;
657 			counts->run = 0;
658 
659 			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
660 				counts->val += values[cpu].counter;
661 				counts->ena += values[cpu].enabled;
662 				counts->run += values[cpu].running;
663 			}
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 out:
670 	return err;
671 }
672 
673 static int bperf__destroy(struct evsel *evsel)
674 {
675 	bperf_follower_bpf__destroy(evsel->follower_skel);
676 	close(evsel->bperf_leader_prog_fd);
677 	close(evsel->bperf_leader_link_fd);
678 	return 0;
679 }
680 
681 /*
682  * bperf: share hardware PMCs with BPF
683  *
684  * perf uses performance monitoring counters (PMC) to monitor system
685  * performance. The PMCs are limited hardware resources. For example,
686  * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
687  *
688  * Modern data center systems use these PMCs in many different ways:
689  * system level monitoring, (maybe nested) container level monitoring, per
690  * process monitoring, profiling (in sample mode), etc. In some cases,
691  * there are more active perf_events than available hardware PMCs. To allow
692  * all perf_events to have a chance to run, it is necessary to do expensive
693  * time multiplexing of events.
694  *
695  * On the other hand, many monitoring tools count the common metrics
696  * (cycles, instructions). It is a waste to have multiple tools create
697  * multiple perf_events of "cycles" and occupy multiple PMCs.
698  *
699  * bperf tries to reduce such wastes by allowing multiple perf_events of
700  * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
701  * of having each perf-stat session to read its own perf_events, bperf uses
702  * BPF programs to read the perf_events and aggregate readings to BPF maps.
703  * Then, the perf-stat session(s) reads the values from these BPF maps.
704  *
705  *                                ||
706  *       shared progs and maps <- || -> per session progs and maps
707  *                                ||
708  *   ---------------              ||
709  *   | perf_events |              ||
710  *   ---------------       fexit  ||      -----------------
711  *          |             --------||----> | follower prog |
712  *       --------------- /        || ---  -----------------
713  * cs -> | leader prog |/         ||/        |         |
714  *   --> ---------------         /||  --------------  ------------------
715  *  /       |         |         / ||  | filter map |  | accum_readings |
716  * /  ------------  ------------  ||  --------------  ------------------
717  * |  | prev map |  | diff map |  ||                        |
718  * |  ------------  ------------  ||                        |
719  *  \                             ||                        |
720  * = \ ==================================================== | ============
721  *    \                                                    /   user space
722  *     \                                                  /
723  *      \                                                /
724  *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
725  *        \                                            /
726  *         \                                          /
727  *          \------  perf-stat ----------------------/
728  *
729  * The figure above shows the architecture of bperf. Note that the figure
730  * is divided into 3 regions: shared progs and maps (top left), per session
731  * progs and maps (top right), and user space (bottom).
732  *
733  * The leader prog is triggered on each context switch (cs). The leader
734  * prog reads perf_events and stores the difference (current_reading -
735  * previous_reading) to the diff map. For the same metric, e.g. "cycles",
736  * multiple perf-stat sessions share the same leader prog.
737  *
738  * Each perf-stat session creates a follower prog as fexit program to the
739  * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
740  * follower progs to the same leader prog. The follower prog checks current
741  * task and processor ID to decide whether to add the value from the diff
742  * map to its accumulated reading map (accum_readings).
743  *
744  * Finally, perf-stat user space reads the value from accum_reading map.
745  *
746  * Besides context switch, it is also necessary to trigger the leader prog
747  * before perf-stat reads the value. Otherwise, the accum_reading map may
748  * not have the latest reading from the perf_events. This is achieved by
749  * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
750  *
751  * Comment before the definition of struct perf_event_attr_map_entry
752  * describes how different sessions of perf-stat share information about
753  * the leader prog.
754  */
755 
756 struct bpf_counter_ops bperf_ops = {
757 	.load       = bperf__load,
758 	.enable     = bperf__enable,
759 	.disable    = bperf__disable,
760 	.read       = bperf__read,
761 	.install_pe = bperf__install_pe,
762 	.destroy    = bperf__destroy,
763 };
764 
765 extern struct bpf_counter_ops bperf_cgrp_ops;
766 
767 static inline bool bpf_counter_skip(struct evsel *evsel)
768 {
769 	return evsel->bpf_counter_ops == NULL;
770 }
771 
772 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
773 {
774 	if (bpf_counter_skip(evsel))
775 		return 0;
776 	return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
777 }
778 
779 int bpf_counter__load(struct evsel *evsel, struct target *target)
780 {
781 	if (target->bpf_str)
782 		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
783 	else if (cgrp_event_expanded && target->use_bpf)
784 		evsel->bpf_counter_ops = &bperf_cgrp_ops;
785 	else if (target->use_bpf || evsel->bpf_counter ||
786 		 evsel__match_bpf_counter_events(evsel->name))
787 		evsel->bpf_counter_ops = &bperf_ops;
788 
789 	if (evsel->bpf_counter_ops)
790 		return evsel->bpf_counter_ops->load(evsel, target);
791 	return 0;
792 }
793 
794 int bpf_counter__enable(struct evsel *evsel)
795 {
796 	if (bpf_counter_skip(evsel))
797 		return 0;
798 	return evsel->bpf_counter_ops->enable(evsel);
799 }
800 
801 int bpf_counter__disable(struct evsel *evsel)
802 {
803 	if (bpf_counter_skip(evsel))
804 		return 0;
805 	return evsel->bpf_counter_ops->disable(evsel);
806 }
807 
808 int bpf_counter__read(struct evsel *evsel)
809 {
810 	if (bpf_counter_skip(evsel))
811 		return -EAGAIN;
812 	return evsel->bpf_counter_ops->read(evsel);
813 }
814 
815 void bpf_counter__destroy(struct evsel *evsel)
816 {
817 	if (bpf_counter_skip(evsel))
818 		return;
819 	evsel->bpf_counter_ops->destroy(evsel);
820 	evsel->bpf_counter_ops = NULL;
821 	evsel->bpf_skel = NULL;
822 }
823