1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "evsel_config.h" 35 #include "symbol.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "thread_map.h" 39 #include "asm/bug.h" 40 #include "auxtrace.h" 41 42 #include <linux/hash.h> 43 44 #include "event.h" 45 #include "record.h" 46 #include "session.h" 47 #include "debug.h" 48 #include <subcmd/parse-options.h> 49 50 #include "cs-etm.h" 51 #include "intel-pt.h" 52 #include "intel-bts.h" 53 #include "arm-spe.h" 54 #include "s390-cpumsf.h" 55 #include "util/mmap.h" 56 57 #include <linux/ctype.h> 58 #include "symbol/kallsyms.h" 59 #include <internal/lib.h> 60 61 /* 62 * Make a group from 'leader' to 'last', requiring that the events were not 63 * already grouped to a different leader. 64 */ 65 static int perf_evlist__regroup(struct evlist *evlist, 66 struct evsel *leader, 67 struct evsel *last) 68 { 69 struct evsel *evsel; 70 bool grp; 71 72 if (!evsel__is_group_leader(leader)) 73 return -EINVAL; 74 75 grp = false; 76 evlist__for_each_entry(evlist, evsel) { 77 if (grp) { 78 if (!(evsel->leader == leader || 79 (evsel->leader == evsel && 80 evsel->core.nr_members <= 1))) 81 return -EINVAL; 82 } else if (evsel == leader) { 83 grp = true; 84 } 85 if (evsel == last) 86 break; 87 } 88 89 grp = false; 90 evlist__for_each_entry(evlist, evsel) { 91 if (grp) { 92 if (evsel->leader != leader) { 93 evsel->leader = leader; 94 if (leader->core.nr_members < 1) 95 leader->core.nr_members = 1; 96 leader->core.nr_members += 1; 97 } 98 } else if (evsel == leader) { 99 grp = true; 100 } 101 if (evsel == last) 102 break; 103 } 104 105 return 0; 106 } 107 108 static bool auxtrace__dont_decode(struct perf_session *session) 109 { 110 return !session->itrace_synth_opts || 111 session->itrace_synth_opts->dont_decode; 112 } 113 114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 115 struct auxtrace_mmap_params *mp, 116 void *userpg, int fd) 117 { 118 struct perf_event_mmap_page *pc = userpg; 119 120 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 121 122 mm->userpg = userpg; 123 mm->mask = mp->mask; 124 mm->len = mp->len; 125 mm->prev = 0; 126 mm->idx = mp->idx; 127 mm->tid = mp->tid; 128 mm->cpu = mp->cpu; 129 130 if (!mp->len) { 131 mm->base = NULL; 132 return 0; 133 } 134 135 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 136 pr_err("Cannot use AUX area tracing mmaps\n"); 137 return -1; 138 #endif 139 140 pc->aux_offset = mp->offset; 141 pc->aux_size = mp->len; 142 143 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 144 if (mm->base == MAP_FAILED) { 145 pr_debug2("failed to mmap AUX area\n"); 146 mm->base = NULL; 147 return -1; 148 } 149 150 return 0; 151 } 152 153 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 154 { 155 if (mm->base) { 156 munmap(mm->base, mm->len); 157 mm->base = NULL; 158 } 159 } 160 161 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 162 off_t auxtrace_offset, 163 unsigned int auxtrace_pages, 164 bool auxtrace_overwrite) 165 { 166 if (auxtrace_pages) { 167 mp->offset = auxtrace_offset; 168 mp->len = auxtrace_pages * (size_t)page_size; 169 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 170 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 171 pr_debug2("AUX area mmap length %zu\n", mp->len); 172 } else { 173 mp->len = 0; 174 } 175 } 176 177 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 178 struct evlist *evlist, int idx, 179 bool per_cpu) 180 { 181 mp->idx = idx; 182 183 if (per_cpu) { 184 mp->cpu = evlist->core.cpus->map[idx]; 185 if (evlist->core.threads) 186 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 187 else 188 mp->tid = -1; 189 } else { 190 mp->cpu = -1; 191 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 192 } 193 } 194 195 #define AUXTRACE_INIT_NR_QUEUES 32 196 197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 198 { 199 struct auxtrace_queue *queue_array; 200 unsigned int max_nr_queues, i; 201 202 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 203 if (nr_queues > max_nr_queues) 204 return NULL; 205 206 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 207 if (!queue_array) 208 return NULL; 209 210 for (i = 0; i < nr_queues; i++) { 211 INIT_LIST_HEAD(&queue_array[i].head); 212 queue_array[i].priv = NULL; 213 } 214 215 return queue_array; 216 } 217 218 int auxtrace_queues__init(struct auxtrace_queues *queues) 219 { 220 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 221 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 222 if (!queues->queue_array) 223 return -ENOMEM; 224 return 0; 225 } 226 227 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 228 unsigned int new_nr_queues) 229 { 230 unsigned int nr_queues = queues->nr_queues; 231 struct auxtrace_queue *queue_array; 232 unsigned int i; 233 234 if (!nr_queues) 235 nr_queues = AUXTRACE_INIT_NR_QUEUES; 236 237 while (nr_queues && nr_queues < new_nr_queues) 238 nr_queues <<= 1; 239 240 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 241 return -EINVAL; 242 243 queue_array = auxtrace_alloc_queue_array(nr_queues); 244 if (!queue_array) 245 return -ENOMEM; 246 247 for (i = 0; i < queues->nr_queues; i++) { 248 list_splice_tail(&queues->queue_array[i].head, 249 &queue_array[i].head); 250 queue_array[i].tid = queues->queue_array[i].tid; 251 queue_array[i].cpu = queues->queue_array[i].cpu; 252 queue_array[i].set = queues->queue_array[i].set; 253 queue_array[i].priv = queues->queue_array[i].priv; 254 } 255 256 queues->nr_queues = nr_queues; 257 queues->queue_array = queue_array; 258 259 return 0; 260 } 261 262 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 263 { 264 int fd = perf_data__fd(session->data); 265 void *p; 266 ssize_t ret; 267 268 if (size > SSIZE_MAX) 269 return NULL; 270 271 p = malloc(size); 272 if (!p) 273 return NULL; 274 275 ret = readn(fd, p, size); 276 if (ret != (ssize_t)size) { 277 free(p); 278 return NULL; 279 } 280 281 return p; 282 } 283 284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 285 unsigned int idx, 286 struct auxtrace_buffer *buffer) 287 { 288 struct auxtrace_queue *queue; 289 int err; 290 291 if (idx >= queues->nr_queues) { 292 err = auxtrace_queues__grow(queues, idx + 1); 293 if (err) 294 return err; 295 } 296 297 queue = &queues->queue_array[idx]; 298 299 if (!queue->set) { 300 queue->set = true; 301 queue->tid = buffer->tid; 302 queue->cpu = buffer->cpu; 303 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 304 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 305 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 306 return -EINVAL; 307 } 308 309 buffer->buffer_nr = queues->next_buffer_nr++; 310 311 list_add_tail(&buffer->list, &queue->head); 312 313 queues->new_data = true; 314 queues->populated = true; 315 316 return 0; 317 } 318 319 /* Limit buffers to 32MiB on 32-bit */ 320 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 321 322 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 323 unsigned int idx, 324 struct auxtrace_buffer *buffer) 325 { 326 u64 sz = buffer->size; 327 bool consecutive = false; 328 struct auxtrace_buffer *b; 329 int err; 330 331 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 332 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 333 if (!b) 334 return -ENOMEM; 335 b->size = BUFFER_LIMIT_FOR_32_BIT; 336 b->consecutive = consecutive; 337 err = auxtrace_queues__queue_buffer(queues, idx, b); 338 if (err) { 339 auxtrace_buffer__free(b); 340 return err; 341 } 342 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 343 sz -= BUFFER_LIMIT_FOR_32_BIT; 344 consecutive = true; 345 } 346 347 buffer->size = sz; 348 buffer->consecutive = consecutive; 349 350 return 0; 351 } 352 353 static bool filter_cpu(struct perf_session *session, int cpu) 354 { 355 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 356 357 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 358 } 359 360 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 361 struct perf_session *session, 362 unsigned int idx, 363 struct auxtrace_buffer *buffer, 364 struct auxtrace_buffer **buffer_ptr) 365 { 366 int err = -ENOMEM; 367 368 if (filter_cpu(session, buffer->cpu)) 369 return 0; 370 371 buffer = memdup(buffer, sizeof(*buffer)); 372 if (!buffer) 373 return -ENOMEM; 374 375 if (session->one_mmap) { 376 buffer->data = buffer->data_offset - session->one_mmap_offset + 377 session->one_mmap_addr; 378 } else if (perf_data__is_pipe(session->data)) { 379 buffer->data = auxtrace_copy_data(buffer->size, session); 380 if (!buffer->data) 381 goto out_free; 382 buffer->data_needs_freeing = true; 383 } else if (BITS_PER_LONG == 32 && 384 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 385 err = auxtrace_queues__split_buffer(queues, idx, buffer); 386 if (err) 387 goto out_free; 388 } 389 390 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 391 if (err) 392 goto out_free; 393 394 /* FIXME: Doesn't work for split buffer */ 395 if (buffer_ptr) 396 *buffer_ptr = buffer; 397 398 return 0; 399 400 out_free: 401 auxtrace_buffer__free(buffer); 402 return err; 403 } 404 405 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 406 struct perf_session *session, 407 union perf_event *event, off_t data_offset, 408 struct auxtrace_buffer **buffer_ptr) 409 { 410 struct auxtrace_buffer buffer = { 411 .pid = -1, 412 .tid = event->auxtrace.tid, 413 .cpu = event->auxtrace.cpu, 414 .data_offset = data_offset, 415 .offset = event->auxtrace.offset, 416 .reference = event->auxtrace.reference, 417 .size = event->auxtrace.size, 418 }; 419 unsigned int idx = event->auxtrace.idx; 420 421 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 422 buffer_ptr); 423 } 424 425 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 426 struct perf_session *session, 427 off_t file_offset, size_t sz) 428 { 429 union perf_event *event; 430 int err; 431 char buf[PERF_SAMPLE_MAX_SIZE]; 432 433 err = perf_session__peek_event(session, file_offset, buf, 434 PERF_SAMPLE_MAX_SIZE, &event, NULL); 435 if (err) 436 return err; 437 438 if (event->header.type == PERF_RECORD_AUXTRACE) { 439 if (event->header.size < sizeof(struct perf_record_auxtrace) || 440 event->header.size != sz) { 441 err = -EINVAL; 442 goto out; 443 } 444 file_offset += event->header.size; 445 err = auxtrace_queues__add_event(queues, session, event, 446 file_offset, NULL); 447 } 448 out: 449 return err; 450 } 451 452 void auxtrace_queues__free(struct auxtrace_queues *queues) 453 { 454 unsigned int i; 455 456 for (i = 0; i < queues->nr_queues; i++) { 457 while (!list_empty(&queues->queue_array[i].head)) { 458 struct auxtrace_buffer *buffer; 459 460 buffer = list_entry(queues->queue_array[i].head.next, 461 struct auxtrace_buffer, list); 462 list_del_init(&buffer->list); 463 auxtrace_buffer__free(buffer); 464 } 465 } 466 467 zfree(&queues->queue_array); 468 queues->nr_queues = 0; 469 } 470 471 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 472 unsigned int pos, unsigned int queue_nr, 473 u64 ordinal) 474 { 475 unsigned int parent; 476 477 while (pos) { 478 parent = (pos - 1) >> 1; 479 if (heap_array[parent].ordinal <= ordinal) 480 break; 481 heap_array[pos] = heap_array[parent]; 482 pos = parent; 483 } 484 heap_array[pos].queue_nr = queue_nr; 485 heap_array[pos].ordinal = ordinal; 486 } 487 488 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 489 u64 ordinal) 490 { 491 struct auxtrace_heap_item *heap_array; 492 493 if (queue_nr >= heap->heap_sz) { 494 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 495 496 while (heap_sz <= queue_nr) 497 heap_sz <<= 1; 498 heap_array = realloc(heap->heap_array, 499 heap_sz * sizeof(struct auxtrace_heap_item)); 500 if (!heap_array) 501 return -ENOMEM; 502 heap->heap_array = heap_array; 503 heap->heap_sz = heap_sz; 504 } 505 506 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 507 508 return 0; 509 } 510 511 void auxtrace_heap__free(struct auxtrace_heap *heap) 512 { 513 zfree(&heap->heap_array); 514 heap->heap_cnt = 0; 515 heap->heap_sz = 0; 516 } 517 518 void auxtrace_heap__pop(struct auxtrace_heap *heap) 519 { 520 unsigned int pos, last, heap_cnt = heap->heap_cnt; 521 struct auxtrace_heap_item *heap_array; 522 523 if (!heap_cnt) 524 return; 525 526 heap->heap_cnt -= 1; 527 528 heap_array = heap->heap_array; 529 530 pos = 0; 531 while (1) { 532 unsigned int left, right; 533 534 left = (pos << 1) + 1; 535 if (left >= heap_cnt) 536 break; 537 right = left + 1; 538 if (right >= heap_cnt) { 539 heap_array[pos] = heap_array[left]; 540 return; 541 } 542 if (heap_array[left].ordinal < heap_array[right].ordinal) { 543 heap_array[pos] = heap_array[left]; 544 pos = left; 545 } else { 546 heap_array[pos] = heap_array[right]; 547 pos = right; 548 } 549 } 550 551 last = heap_cnt - 1; 552 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 553 heap_array[last].ordinal); 554 } 555 556 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 557 struct evlist *evlist) 558 { 559 if (itr) 560 return itr->info_priv_size(itr, evlist); 561 return 0; 562 } 563 564 static int auxtrace_not_supported(void) 565 { 566 pr_err("AUX area tracing is not supported on this architecture\n"); 567 return -EINVAL; 568 } 569 570 int auxtrace_record__info_fill(struct auxtrace_record *itr, 571 struct perf_session *session, 572 struct perf_record_auxtrace_info *auxtrace_info, 573 size_t priv_size) 574 { 575 if (itr) 576 return itr->info_fill(itr, session, auxtrace_info, priv_size); 577 return auxtrace_not_supported(); 578 } 579 580 void auxtrace_record__free(struct auxtrace_record *itr) 581 { 582 if (itr) 583 itr->free(itr); 584 } 585 586 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 587 { 588 if (itr && itr->snapshot_start) 589 return itr->snapshot_start(itr); 590 return 0; 591 } 592 593 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 594 { 595 if (!on_exit && itr && itr->snapshot_finish) 596 return itr->snapshot_finish(itr); 597 return 0; 598 } 599 600 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 601 struct auxtrace_mmap *mm, 602 unsigned char *data, u64 *head, u64 *old) 603 { 604 if (itr && itr->find_snapshot) 605 return itr->find_snapshot(itr, idx, mm, data, head, old); 606 return 0; 607 } 608 609 int auxtrace_record__options(struct auxtrace_record *itr, 610 struct evlist *evlist, 611 struct record_opts *opts) 612 { 613 if (itr) { 614 itr->evlist = evlist; 615 return itr->recording_options(itr, evlist, opts); 616 } 617 return 0; 618 } 619 620 u64 auxtrace_record__reference(struct auxtrace_record *itr) 621 { 622 if (itr) 623 return itr->reference(itr); 624 return 0; 625 } 626 627 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 628 struct record_opts *opts, const char *str) 629 { 630 if (!str) 631 return 0; 632 633 /* PMU-agnostic options */ 634 switch (*str) { 635 case 'e': 636 opts->auxtrace_snapshot_on_exit = true; 637 str++; 638 break; 639 default: 640 break; 641 } 642 643 if (itr) 644 return itr->parse_snapshot_options(itr, opts, str); 645 646 pr_err("No AUX area tracing to snapshot\n"); 647 return -EINVAL; 648 } 649 650 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 651 { 652 struct evsel *evsel; 653 654 if (!itr->evlist || !itr->pmu) 655 return -EINVAL; 656 657 evlist__for_each_entry(itr->evlist, evsel) { 658 if (evsel->core.attr.type == itr->pmu->type) { 659 if (evsel->disabled) 660 return 0; 661 return perf_evlist__enable_event_idx(itr->evlist, evsel, 662 idx); 663 } 664 } 665 return -EINVAL; 666 } 667 668 /* 669 * Event record size is 16-bit which results in a maximum size of about 64KiB. 670 * Allow about 4KiB for the rest of the sample record, to give a maximum 671 * AUX area sample size of 60KiB. 672 */ 673 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 674 675 /* Arbitrary default size if no other default provided */ 676 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 677 678 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 679 struct record_opts *opts) 680 { 681 struct evsel *evsel; 682 bool has_aux_leader = false; 683 u32 sz; 684 685 evlist__for_each_entry(evlist, evsel) { 686 sz = evsel->core.attr.aux_sample_size; 687 if (evsel__is_group_leader(evsel)) { 688 has_aux_leader = evsel__is_aux_event(evsel); 689 if (sz) { 690 if (has_aux_leader) 691 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 692 else 693 pr_err("Cannot add AUX area sampling to a group leader\n"); 694 return -EINVAL; 695 } 696 } 697 if (sz > MAX_AUX_SAMPLE_SIZE) { 698 pr_err("AUX area sample size %u too big, max. %d\n", 699 sz, MAX_AUX_SAMPLE_SIZE); 700 return -EINVAL; 701 } 702 if (sz) { 703 if (!has_aux_leader) { 704 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 705 return -EINVAL; 706 } 707 evsel__set_sample_bit(evsel, AUX); 708 opts->auxtrace_sample_mode = true; 709 } else { 710 evsel__reset_sample_bit(evsel, AUX); 711 } 712 } 713 714 if (!opts->auxtrace_sample_mode) { 715 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 716 return -EINVAL; 717 } 718 719 if (!perf_can_aux_sample()) { 720 pr_err("AUX area sampling is not supported by kernel\n"); 721 return -EINVAL; 722 } 723 724 return 0; 725 } 726 727 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 728 struct evlist *evlist, 729 struct record_opts *opts, const char *str) 730 { 731 struct evsel_config_term *term; 732 struct evsel *aux_evsel; 733 bool has_aux_sample_size = false; 734 bool has_aux_leader = false; 735 struct evsel *evsel; 736 char *endptr; 737 unsigned long sz; 738 739 if (!str) 740 goto no_opt; 741 742 if (!itr) { 743 pr_err("No AUX area event to sample\n"); 744 return -EINVAL; 745 } 746 747 sz = strtoul(str, &endptr, 0); 748 if (*endptr || sz > UINT_MAX) { 749 pr_err("Bad AUX area sampling option: '%s'\n", str); 750 return -EINVAL; 751 } 752 753 if (!sz) 754 sz = itr->default_aux_sample_size; 755 756 if (!sz) 757 sz = DEFAULT_AUX_SAMPLE_SIZE; 758 759 /* Set aux_sample_size based on --aux-sample option */ 760 evlist__for_each_entry(evlist, evsel) { 761 if (evsel__is_group_leader(evsel)) { 762 has_aux_leader = evsel__is_aux_event(evsel); 763 } else if (has_aux_leader) { 764 evsel->core.attr.aux_sample_size = sz; 765 } 766 } 767 no_opt: 768 aux_evsel = NULL; 769 /* Override with aux_sample_size from config term */ 770 evlist__for_each_entry(evlist, evsel) { 771 if (evsel__is_aux_event(evsel)) 772 aux_evsel = evsel; 773 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 774 if (term) { 775 has_aux_sample_size = true; 776 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 777 /* If possible, group with the AUX event */ 778 if (aux_evsel && evsel->core.attr.aux_sample_size) 779 perf_evlist__regroup(evlist, aux_evsel, evsel); 780 } 781 } 782 783 if (!str && !has_aux_sample_size) 784 return 0; 785 786 if (!itr) { 787 pr_err("No AUX area event to sample\n"); 788 return -EINVAL; 789 } 790 791 return auxtrace_validate_aux_sample_size(evlist, opts); 792 } 793 794 struct auxtrace_record *__weak 795 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 796 { 797 *err = 0; 798 return NULL; 799 } 800 801 static int auxtrace_index__alloc(struct list_head *head) 802 { 803 struct auxtrace_index *auxtrace_index; 804 805 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 806 if (!auxtrace_index) 807 return -ENOMEM; 808 809 auxtrace_index->nr = 0; 810 INIT_LIST_HEAD(&auxtrace_index->list); 811 812 list_add_tail(&auxtrace_index->list, head); 813 814 return 0; 815 } 816 817 void auxtrace_index__free(struct list_head *head) 818 { 819 struct auxtrace_index *auxtrace_index, *n; 820 821 list_for_each_entry_safe(auxtrace_index, n, head, list) { 822 list_del_init(&auxtrace_index->list); 823 free(auxtrace_index); 824 } 825 } 826 827 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 828 { 829 struct auxtrace_index *auxtrace_index; 830 int err; 831 832 if (list_empty(head)) { 833 err = auxtrace_index__alloc(head); 834 if (err) 835 return NULL; 836 } 837 838 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 839 840 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 841 err = auxtrace_index__alloc(head); 842 if (err) 843 return NULL; 844 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 845 list); 846 } 847 848 return auxtrace_index; 849 } 850 851 int auxtrace_index__auxtrace_event(struct list_head *head, 852 union perf_event *event, off_t file_offset) 853 { 854 struct auxtrace_index *auxtrace_index; 855 size_t nr; 856 857 auxtrace_index = auxtrace_index__last(head); 858 if (!auxtrace_index) 859 return -ENOMEM; 860 861 nr = auxtrace_index->nr; 862 auxtrace_index->entries[nr].file_offset = file_offset; 863 auxtrace_index->entries[nr].sz = event->header.size; 864 auxtrace_index->nr += 1; 865 866 return 0; 867 } 868 869 static int auxtrace_index__do_write(int fd, 870 struct auxtrace_index *auxtrace_index) 871 { 872 struct auxtrace_index_entry ent; 873 size_t i; 874 875 for (i = 0; i < auxtrace_index->nr; i++) { 876 ent.file_offset = auxtrace_index->entries[i].file_offset; 877 ent.sz = auxtrace_index->entries[i].sz; 878 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 879 return -errno; 880 } 881 return 0; 882 } 883 884 int auxtrace_index__write(int fd, struct list_head *head) 885 { 886 struct auxtrace_index *auxtrace_index; 887 u64 total = 0; 888 int err; 889 890 list_for_each_entry(auxtrace_index, head, list) 891 total += auxtrace_index->nr; 892 893 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 894 return -errno; 895 896 list_for_each_entry(auxtrace_index, head, list) { 897 err = auxtrace_index__do_write(fd, auxtrace_index); 898 if (err) 899 return err; 900 } 901 902 return 0; 903 } 904 905 static int auxtrace_index__process_entry(int fd, struct list_head *head, 906 bool needs_swap) 907 { 908 struct auxtrace_index *auxtrace_index; 909 struct auxtrace_index_entry ent; 910 size_t nr; 911 912 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 913 return -1; 914 915 auxtrace_index = auxtrace_index__last(head); 916 if (!auxtrace_index) 917 return -1; 918 919 nr = auxtrace_index->nr; 920 if (needs_swap) { 921 auxtrace_index->entries[nr].file_offset = 922 bswap_64(ent.file_offset); 923 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 924 } else { 925 auxtrace_index->entries[nr].file_offset = ent.file_offset; 926 auxtrace_index->entries[nr].sz = ent.sz; 927 } 928 929 auxtrace_index->nr = nr + 1; 930 931 return 0; 932 } 933 934 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 935 bool needs_swap) 936 { 937 struct list_head *head = &session->auxtrace_index; 938 u64 nr; 939 940 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 941 return -1; 942 943 if (needs_swap) 944 nr = bswap_64(nr); 945 946 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 947 return -1; 948 949 while (nr--) { 950 int err; 951 952 err = auxtrace_index__process_entry(fd, head, needs_swap); 953 if (err) 954 return -1; 955 } 956 957 return 0; 958 } 959 960 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 961 struct perf_session *session, 962 struct auxtrace_index_entry *ent) 963 { 964 return auxtrace_queues__add_indexed_event(queues, session, 965 ent->file_offset, ent->sz); 966 } 967 968 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 969 struct perf_session *session) 970 { 971 struct auxtrace_index *auxtrace_index; 972 struct auxtrace_index_entry *ent; 973 size_t i; 974 int err; 975 976 if (auxtrace__dont_decode(session)) 977 return 0; 978 979 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 980 for (i = 0; i < auxtrace_index->nr; i++) { 981 ent = &auxtrace_index->entries[i]; 982 err = auxtrace_queues__process_index_entry(queues, 983 session, 984 ent); 985 if (err) 986 return err; 987 } 988 } 989 return 0; 990 } 991 992 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 993 struct auxtrace_buffer *buffer) 994 { 995 if (buffer) { 996 if (list_is_last(&buffer->list, &queue->head)) 997 return NULL; 998 return list_entry(buffer->list.next, struct auxtrace_buffer, 999 list); 1000 } else { 1001 if (list_empty(&queue->head)) 1002 return NULL; 1003 return list_entry(queue->head.next, struct auxtrace_buffer, 1004 list); 1005 } 1006 } 1007 1008 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1009 struct perf_sample *sample, 1010 struct perf_session *session) 1011 { 1012 struct perf_sample_id *sid; 1013 unsigned int idx; 1014 u64 id; 1015 1016 id = sample->id; 1017 if (!id) 1018 return NULL; 1019 1020 sid = evlist__id2sid(session->evlist, id); 1021 if (!sid) 1022 return NULL; 1023 1024 idx = sid->idx; 1025 1026 if (idx >= queues->nr_queues) 1027 return NULL; 1028 1029 return &queues->queue_array[idx]; 1030 } 1031 1032 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1033 struct perf_session *session, 1034 struct perf_sample *sample, u64 data_offset, 1035 u64 reference) 1036 { 1037 struct auxtrace_buffer buffer = { 1038 .pid = -1, 1039 .data_offset = data_offset, 1040 .reference = reference, 1041 .size = sample->aux_sample.size, 1042 }; 1043 struct perf_sample_id *sid; 1044 u64 id = sample->id; 1045 unsigned int idx; 1046 1047 if (!id) 1048 return -EINVAL; 1049 1050 sid = evlist__id2sid(session->evlist, id); 1051 if (!sid) 1052 return -ENOENT; 1053 1054 idx = sid->idx; 1055 buffer.tid = sid->tid; 1056 buffer.cpu = sid->cpu; 1057 1058 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1059 } 1060 1061 struct queue_data { 1062 bool samples; 1063 bool events; 1064 }; 1065 1066 static int auxtrace_queue_data_cb(struct perf_session *session, 1067 union perf_event *event, u64 offset, 1068 void *data) 1069 { 1070 struct queue_data *qd = data; 1071 struct perf_sample sample; 1072 int err; 1073 1074 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1075 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1076 return -EINVAL; 1077 offset += event->header.size; 1078 return session->auxtrace->queue_data(session, NULL, event, 1079 offset); 1080 } 1081 1082 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1083 return 0; 1084 1085 err = evlist__parse_sample(session->evlist, event, &sample); 1086 if (err) 1087 return err; 1088 1089 if (!sample.aux_sample.size) 1090 return 0; 1091 1092 offset += sample.aux_sample.data - (void *)event; 1093 1094 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1095 } 1096 1097 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1098 { 1099 struct queue_data qd = { 1100 .samples = samples, 1101 .events = events, 1102 }; 1103 1104 if (auxtrace__dont_decode(session)) 1105 return 0; 1106 1107 if (!session->auxtrace || !session->auxtrace->queue_data) 1108 return -EINVAL; 1109 1110 return perf_session__peek_events(session, session->header.data_offset, 1111 session->header.data_size, 1112 auxtrace_queue_data_cb, &qd); 1113 } 1114 1115 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 1116 { 1117 size_t adj = buffer->data_offset & (page_size - 1); 1118 size_t size = buffer->size + adj; 1119 off_t file_offset = buffer->data_offset - adj; 1120 void *addr; 1121 1122 if (buffer->data) 1123 return buffer->data; 1124 1125 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 1126 if (addr == MAP_FAILED) 1127 return NULL; 1128 1129 buffer->mmap_addr = addr; 1130 buffer->mmap_size = size; 1131 1132 buffer->data = addr + adj; 1133 1134 return buffer->data; 1135 } 1136 1137 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1138 { 1139 if (!buffer->data || !buffer->mmap_addr) 1140 return; 1141 munmap(buffer->mmap_addr, buffer->mmap_size); 1142 buffer->mmap_addr = NULL; 1143 buffer->mmap_size = 0; 1144 buffer->data = NULL; 1145 buffer->use_data = NULL; 1146 } 1147 1148 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1149 { 1150 auxtrace_buffer__put_data(buffer); 1151 if (buffer->data_needs_freeing) { 1152 buffer->data_needs_freeing = false; 1153 zfree(&buffer->data); 1154 buffer->use_data = NULL; 1155 buffer->size = 0; 1156 } 1157 } 1158 1159 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1160 { 1161 auxtrace_buffer__drop_data(buffer); 1162 free(buffer); 1163 } 1164 1165 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1166 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1167 const char *msg, u64 timestamp) 1168 { 1169 size_t size; 1170 1171 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1172 1173 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1174 auxtrace_error->type = type; 1175 auxtrace_error->code = code; 1176 auxtrace_error->cpu = cpu; 1177 auxtrace_error->pid = pid; 1178 auxtrace_error->tid = tid; 1179 auxtrace_error->fmt = 1; 1180 auxtrace_error->ip = ip; 1181 auxtrace_error->time = timestamp; 1182 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1183 1184 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1185 strlen(auxtrace_error->msg) + 1; 1186 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1187 } 1188 1189 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1190 struct perf_tool *tool, 1191 struct perf_session *session, 1192 perf_event__handler_t process) 1193 { 1194 union perf_event *ev; 1195 size_t priv_size; 1196 int err; 1197 1198 pr_debug2("Synthesizing auxtrace information\n"); 1199 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1200 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1201 if (!ev) 1202 return -ENOMEM; 1203 1204 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1205 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1206 priv_size; 1207 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1208 priv_size); 1209 if (err) 1210 goto out_free; 1211 1212 err = process(tool, ev, NULL, NULL); 1213 out_free: 1214 free(ev); 1215 return err; 1216 } 1217 1218 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1219 { 1220 struct evsel *new_leader = NULL; 1221 struct evsel *evsel; 1222 1223 /* Find new leader for the group */ 1224 evlist__for_each_entry(evlist, evsel) { 1225 if (evsel->leader != leader || evsel == leader) 1226 continue; 1227 if (!new_leader) 1228 new_leader = evsel; 1229 evsel->leader = new_leader; 1230 } 1231 1232 /* Update group information */ 1233 if (new_leader) { 1234 zfree(&new_leader->group_name); 1235 new_leader->group_name = leader->group_name; 1236 leader->group_name = NULL; 1237 1238 new_leader->core.nr_members = leader->core.nr_members - 1; 1239 leader->core.nr_members = 1; 1240 } 1241 } 1242 1243 static void unleader_auxtrace(struct perf_session *session) 1244 { 1245 struct evsel *evsel; 1246 1247 evlist__for_each_entry(session->evlist, evsel) { 1248 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1249 evsel__is_group_leader(evsel)) { 1250 unleader_evsel(session->evlist, evsel); 1251 } 1252 } 1253 } 1254 1255 int perf_event__process_auxtrace_info(struct perf_session *session, 1256 union perf_event *event) 1257 { 1258 enum auxtrace_type type = event->auxtrace_info.type; 1259 int err; 1260 1261 if (dump_trace) 1262 fprintf(stdout, " type: %u\n", type); 1263 1264 switch (type) { 1265 case PERF_AUXTRACE_INTEL_PT: 1266 err = intel_pt_process_auxtrace_info(event, session); 1267 break; 1268 case PERF_AUXTRACE_INTEL_BTS: 1269 err = intel_bts_process_auxtrace_info(event, session); 1270 break; 1271 case PERF_AUXTRACE_ARM_SPE: 1272 err = arm_spe_process_auxtrace_info(event, session); 1273 break; 1274 case PERF_AUXTRACE_CS_ETM: 1275 err = cs_etm__process_auxtrace_info(event, session); 1276 break; 1277 case PERF_AUXTRACE_S390_CPUMSF: 1278 err = s390_cpumsf_process_auxtrace_info(event, session); 1279 break; 1280 case PERF_AUXTRACE_UNKNOWN: 1281 default: 1282 return -EINVAL; 1283 } 1284 1285 if (err) 1286 return err; 1287 1288 unleader_auxtrace(session); 1289 1290 return 0; 1291 } 1292 1293 s64 perf_event__process_auxtrace(struct perf_session *session, 1294 union perf_event *event) 1295 { 1296 s64 err; 1297 1298 if (dump_trace) 1299 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1300 event->auxtrace.size, event->auxtrace.offset, 1301 event->auxtrace.reference, event->auxtrace.idx, 1302 event->auxtrace.tid, event->auxtrace.cpu); 1303 1304 if (auxtrace__dont_decode(session)) 1305 return event->auxtrace.size; 1306 1307 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1308 return -EINVAL; 1309 1310 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1311 if (err < 0) 1312 return err; 1313 1314 return event->auxtrace.size; 1315 } 1316 1317 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1318 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1319 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1320 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1321 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1322 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1323 1324 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1325 bool no_sample) 1326 { 1327 synth_opts->branches = true; 1328 synth_opts->transactions = true; 1329 synth_opts->ptwrites = true; 1330 synth_opts->pwr_events = true; 1331 synth_opts->other_events = true; 1332 synth_opts->errors = true; 1333 synth_opts->flc = true; 1334 synth_opts->llc = true; 1335 synth_opts->tlb = true; 1336 synth_opts->mem = true; 1337 synth_opts->remote_access = true; 1338 1339 if (no_sample) { 1340 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1341 synth_opts->period = 1; 1342 synth_opts->calls = true; 1343 } else { 1344 synth_opts->instructions = true; 1345 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1346 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1347 } 1348 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1349 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1350 synth_opts->initial_skip = 0; 1351 } 1352 1353 static int get_flag(const char **ptr, unsigned int *flags) 1354 { 1355 while (1) { 1356 char c = **ptr; 1357 1358 if (c >= 'a' && c <= 'z') { 1359 *flags |= 1 << (c - 'a'); 1360 ++*ptr; 1361 return 0; 1362 } else if (c == ' ') { 1363 ++*ptr; 1364 continue; 1365 } else { 1366 return -1; 1367 } 1368 } 1369 } 1370 1371 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1372 { 1373 while (1) { 1374 switch (**ptr) { 1375 case '+': 1376 ++*ptr; 1377 if (get_flag(ptr, plus_flags)) 1378 return -1; 1379 break; 1380 case '-': 1381 ++*ptr; 1382 if (get_flag(ptr, minus_flags)) 1383 return -1; 1384 break; 1385 case ' ': 1386 ++*ptr; 1387 break; 1388 default: 1389 return 0; 1390 } 1391 } 1392 } 1393 1394 /* 1395 * Please check tools/perf/Documentation/perf-script.txt for information 1396 * about the options parsed here, which is introduced after this cset, 1397 * when support in 'perf script' for these options is introduced. 1398 */ 1399 int itrace_parse_synth_opts(const struct option *opt, const char *str, 1400 int unset) 1401 { 1402 struct itrace_synth_opts *synth_opts = opt->value; 1403 const char *p; 1404 char *endptr; 1405 bool period_type_set = false; 1406 bool period_set = false; 1407 1408 synth_opts->set = true; 1409 1410 if (unset) { 1411 synth_opts->dont_decode = true; 1412 return 0; 1413 } 1414 1415 if (!str) { 1416 itrace_synth_opts__set_default(synth_opts, 1417 synth_opts->default_no_sample); 1418 return 0; 1419 } 1420 1421 for (p = str; *p;) { 1422 switch (*p++) { 1423 case 'i': 1424 synth_opts->instructions = true; 1425 while (*p == ' ' || *p == ',') 1426 p += 1; 1427 if (isdigit(*p)) { 1428 synth_opts->period = strtoull(p, &endptr, 10); 1429 period_set = true; 1430 p = endptr; 1431 while (*p == ' ' || *p == ',') 1432 p += 1; 1433 switch (*p++) { 1434 case 'i': 1435 synth_opts->period_type = 1436 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1437 period_type_set = true; 1438 break; 1439 case 't': 1440 synth_opts->period_type = 1441 PERF_ITRACE_PERIOD_TICKS; 1442 period_type_set = true; 1443 break; 1444 case 'm': 1445 synth_opts->period *= 1000; 1446 /* Fall through */ 1447 case 'u': 1448 synth_opts->period *= 1000; 1449 /* Fall through */ 1450 case 'n': 1451 if (*p++ != 's') 1452 goto out_err; 1453 synth_opts->period_type = 1454 PERF_ITRACE_PERIOD_NANOSECS; 1455 period_type_set = true; 1456 break; 1457 case '\0': 1458 goto out; 1459 default: 1460 goto out_err; 1461 } 1462 } 1463 break; 1464 case 'b': 1465 synth_opts->branches = true; 1466 break; 1467 case 'x': 1468 synth_opts->transactions = true; 1469 break; 1470 case 'w': 1471 synth_opts->ptwrites = true; 1472 break; 1473 case 'p': 1474 synth_opts->pwr_events = true; 1475 break; 1476 case 'o': 1477 synth_opts->other_events = true; 1478 break; 1479 case 'e': 1480 synth_opts->errors = true; 1481 if (get_flags(&p, &synth_opts->error_plus_flags, 1482 &synth_opts->error_minus_flags)) 1483 goto out_err; 1484 break; 1485 case 'd': 1486 synth_opts->log = true; 1487 if (get_flags(&p, &synth_opts->log_plus_flags, 1488 &synth_opts->log_minus_flags)) 1489 goto out_err; 1490 break; 1491 case 'c': 1492 synth_opts->branches = true; 1493 synth_opts->calls = true; 1494 break; 1495 case 'r': 1496 synth_opts->branches = true; 1497 synth_opts->returns = true; 1498 break; 1499 case 'G': 1500 case 'g': 1501 if (p[-1] == 'G') 1502 synth_opts->add_callchain = true; 1503 else 1504 synth_opts->callchain = true; 1505 synth_opts->callchain_sz = 1506 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1507 while (*p == ' ' || *p == ',') 1508 p += 1; 1509 if (isdigit(*p)) { 1510 unsigned int val; 1511 1512 val = strtoul(p, &endptr, 10); 1513 p = endptr; 1514 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1515 goto out_err; 1516 synth_opts->callchain_sz = val; 1517 } 1518 break; 1519 case 'L': 1520 case 'l': 1521 if (p[-1] == 'L') 1522 synth_opts->add_last_branch = true; 1523 else 1524 synth_opts->last_branch = true; 1525 synth_opts->last_branch_sz = 1526 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1527 while (*p == ' ' || *p == ',') 1528 p += 1; 1529 if (isdigit(*p)) { 1530 unsigned int val; 1531 1532 val = strtoul(p, &endptr, 10); 1533 p = endptr; 1534 if (!val || 1535 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1536 goto out_err; 1537 synth_opts->last_branch_sz = val; 1538 } 1539 break; 1540 case 's': 1541 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1542 if (p == endptr) 1543 goto out_err; 1544 p = endptr; 1545 break; 1546 case 'f': 1547 synth_opts->flc = true; 1548 break; 1549 case 'm': 1550 synth_opts->llc = true; 1551 break; 1552 case 't': 1553 synth_opts->tlb = true; 1554 break; 1555 case 'a': 1556 synth_opts->remote_access = true; 1557 break; 1558 case 'M': 1559 synth_opts->mem = true; 1560 break; 1561 case 'q': 1562 synth_opts->quick += 1; 1563 break; 1564 case ' ': 1565 case ',': 1566 break; 1567 default: 1568 goto out_err; 1569 } 1570 } 1571 out: 1572 if (synth_opts->instructions) { 1573 if (!period_type_set) 1574 synth_opts->period_type = 1575 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1576 if (!period_set) 1577 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1578 } 1579 1580 return 0; 1581 1582 out_err: 1583 pr_err("Bad Instruction Tracing options '%s'\n", str); 1584 return -EINVAL; 1585 } 1586 1587 static const char * const auxtrace_error_type_name[] = { 1588 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1589 }; 1590 1591 static const char *auxtrace_error_name(int type) 1592 { 1593 const char *error_type_name = NULL; 1594 1595 if (type < PERF_AUXTRACE_ERROR_MAX) 1596 error_type_name = auxtrace_error_type_name[type]; 1597 if (!error_type_name) 1598 error_type_name = "unknown AUX"; 1599 return error_type_name; 1600 } 1601 1602 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1603 { 1604 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1605 unsigned long long nsecs = e->time; 1606 const char *msg = e->msg; 1607 int ret; 1608 1609 ret = fprintf(fp, " %s error type %u", 1610 auxtrace_error_name(e->type), e->type); 1611 1612 if (e->fmt && nsecs) { 1613 unsigned long secs = nsecs / NSEC_PER_SEC; 1614 1615 nsecs -= secs * NSEC_PER_SEC; 1616 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1617 } else { 1618 ret += fprintf(fp, " time 0"); 1619 } 1620 1621 if (!e->fmt) 1622 msg = (const char *)&e->time; 1623 1624 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1625 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1626 return ret; 1627 } 1628 1629 void perf_session__auxtrace_error_inc(struct perf_session *session, 1630 union perf_event *event) 1631 { 1632 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1633 1634 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1635 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1636 } 1637 1638 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1639 { 1640 int i; 1641 1642 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1643 if (!stats->nr_auxtrace_errors[i]) 1644 continue; 1645 ui__warning("%u %s errors\n", 1646 stats->nr_auxtrace_errors[i], 1647 auxtrace_error_name(i)); 1648 } 1649 } 1650 1651 int perf_event__process_auxtrace_error(struct perf_session *session, 1652 union perf_event *event) 1653 { 1654 if (auxtrace__dont_decode(session)) 1655 return 0; 1656 1657 perf_event__fprintf_auxtrace_error(event, stdout); 1658 return 0; 1659 } 1660 1661 static int __auxtrace_mmap__read(struct mmap *map, 1662 struct auxtrace_record *itr, 1663 struct perf_tool *tool, process_auxtrace_t fn, 1664 bool snapshot, size_t snapshot_size) 1665 { 1666 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1667 u64 head, old = mm->prev, offset, ref; 1668 unsigned char *data = mm->base; 1669 size_t size, head_off, old_off, len1, len2, padding; 1670 union perf_event ev; 1671 void *data1, *data2; 1672 1673 if (snapshot) { 1674 head = auxtrace_mmap__read_snapshot_head(mm); 1675 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1676 &head, &old)) 1677 return -1; 1678 } else { 1679 head = auxtrace_mmap__read_head(mm); 1680 } 1681 1682 if (old == head) 1683 return 0; 1684 1685 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1686 mm->idx, old, head, head - old); 1687 1688 if (mm->mask) { 1689 head_off = head & mm->mask; 1690 old_off = old & mm->mask; 1691 } else { 1692 head_off = head % mm->len; 1693 old_off = old % mm->len; 1694 } 1695 1696 if (head_off > old_off) 1697 size = head_off - old_off; 1698 else 1699 size = mm->len - (old_off - head_off); 1700 1701 if (snapshot && size > snapshot_size) 1702 size = snapshot_size; 1703 1704 ref = auxtrace_record__reference(itr); 1705 1706 if (head > old || size <= head || mm->mask) { 1707 offset = head - size; 1708 } else { 1709 /* 1710 * When the buffer size is not a power of 2, 'head' wraps at the 1711 * highest multiple of the buffer size, so we have to subtract 1712 * the remainder here. 1713 */ 1714 u64 rem = (0ULL - mm->len) % mm->len; 1715 1716 offset = head - size - rem; 1717 } 1718 1719 if (size > head_off) { 1720 len1 = size - head_off; 1721 data1 = &data[mm->len - len1]; 1722 len2 = head_off; 1723 data2 = &data[0]; 1724 } else { 1725 len1 = size; 1726 data1 = &data[head_off - len1]; 1727 len2 = 0; 1728 data2 = NULL; 1729 } 1730 1731 if (itr->alignment) { 1732 unsigned int unwanted = len1 % itr->alignment; 1733 1734 len1 -= unwanted; 1735 size -= unwanted; 1736 } 1737 1738 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1739 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1740 if (padding) 1741 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1742 1743 memset(&ev, 0, sizeof(ev)); 1744 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1745 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1746 ev.auxtrace.size = size + padding; 1747 ev.auxtrace.offset = offset; 1748 ev.auxtrace.reference = ref; 1749 ev.auxtrace.idx = mm->idx; 1750 ev.auxtrace.tid = mm->tid; 1751 ev.auxtrace.cpu = mm->cpu; 1752 1753 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1754 return -1; 1755 1756 mm->prev = head; 1757 1758 if (!snapshot) { 1759 auxtrace_mmap__write_tail(mm, head); 1760 if (itr->read_finish) { 1761 int err; 1762 1763 err = itr->read_finish(itr, mm->idx); 1764 if (err < 0) 1765 return err; 1766 } 1767 } 1768 1769 return 1; 1770 } 1771 1772 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1773 struct perf_tool *tool, process_auxtrace_t fn) 1774 { 1775 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1776 } 1777 1778 int auxtrace_mmap__read_snapshot(struct mmap *map, 1779 struct auxtrace_record *itr, 1780 struct perf_tool *tool, process_auxtrace_t fn, 1781 size_t snapshot_size) 1782 { 1783 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1784 } 1785 1786 /** 1787 * struct auxtrace_cache - hash table to implement a cache 1788 * @hashtable: the hashtable 1789 * @sz: hashtable size (number of hlists) 1790 * @entry_size: size of an entry 1791 * @limit: limit the number of entries to this maximum, when reached the cache 1792 * is dropped and caching begins again with an empty cache 1793 * @cnt: current number of entries 1794 * @bits: hashtable size (@sz = 2^@bits) 1795 */ 1796 struct auxtrace_cache { 1797 struct hlist_head *hashtable; 1798 size_t sz; 1799 size_t entry_size; 1800 size_t limit; 1801 size_t cnt; 1802 unsigned int bits; 1803 }; 1804 1805 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1806 unsigned int limit_percent) 1807 { 1808 struct auxtrace_cache *c; 1809 struct hlist_head *ht; 1810 size_t sz, i; 1811 1812 c = zalloc(sizeof(struct auxtrace_cache)); 1813 if (!c) 1814 return NULL; 1815 1816 sz = 1UL << bits; 1817 1818 ht = calloc(sz, sizeof(struct hlist_head)); 1819 if (!ht) 1820 goto out_free; 1821 1822 for (i = 0; i < sz; i++) 1823 INIT_HLIST_HEAD(&ht[i]); 1824 1825 c->hashtable = ht; 1826 c->sz = sz; 1827 c->entry_size = entry_size; 1828 c->limit = (c->sz * limit_percent) / 100; 1829 c->bits = bits; 1830 1831 return c; 1832 1833 out_free: 1834 free(c); 1835 return NULL; 1836 } 1837 1838 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1839 { 1840 struct auxtrace_cache_entry *entry; 1841 struct hlist_node *tmp; 1842 size_t i; 1843 1844 if (!c) 1845 return; 1846 1847 for (i = 0; i < c->sz; i++) { 1848 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1849 hlist_del(&entry->hash); 1850 auxtrace_cache__free_entry(c, entry); 1851 } 1852 } 1853 1854 c->cnt = 0; 1855 } 1856 1857 void auxtrace_cache__free(struct auxtrace_cache *c) 1858 { 1859 if (!c) 1860 return; 1861 1862 auxtrace_cache__drop(c); 1863 zfree(&c->hashtable); 1864 free(c); 1865 } 1866 1867 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1868 { 1869 return malloc(c->entry_size); 1870 } 1871 1872 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1873 void *entry) 1874 { 1875 free(entry); 1876 } 1877 1878 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1879 struct auxtrace_cache_entry *entry) 1880 { 1881 if (c->limit && ++c->cnt > c->limit) 1882 auxtrace_cache__drop(c); 1883 1884 entry->key = key; 1885 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1886 1887 return 0; 1888 } 1889 1890 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 1891 u32 key) 1892 { 1893 struct auxtrace_cache_entry *entry; 1894 struct hlist_head *hlist; 1895 struct hlist_node *n; 1896 1897 if (!c) 1898 return NULL; 1899 1900 hlist = &c->hashtable[hash_32(key, c->bits)]; 1901 hlist_for_each_entry_safe(entry, n, hlist, hash) { 1902 if (entry->key == key) { 1903 hlist_del(&entry->hash); 1904 return entry; 1905 } 1906 } 1907 1908 return NULL; 1909 } 1910 1911 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 1912 { 1913 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 1914 1915 auxtrace_cache__free_entry(c, entry); 1916 } 1917 1918 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1919 { 1920 struct auxtrace_cache_entry *entry; 1921 struct hlist_head *hlist; 1922 1923 if (!c) 1924 return NULL; 1925 1926 hlist = &c->hashtable[hash_32(key, c->bits)]; 1927 hlist_for_each_entry(entry, hlist, hash) { 1928 if (entry->key == key) 1929 return entry; 1930 } 1931 1932 return NULL; 1933 } 1934 1935 static void addr_filter__free_str(struct addr_filter *filt) 1936 { 1937 zfree(&filt->str); 1938 filt->action = NULL; 1939 filt->sym_from = NULL; 1940 filt->sym_to = NULL; 1941 filt->filename = NULL; 1942 } 1943 1944 static struct addr_filter *addr_filter__new(void) 1945 { 1946 struct addr_filter *filt = zalloc(sizeof(*filt)); 1947 1948 if (filt) 1949 INIT_LIST_HEAD(&filt->list); 1950 1951 return filt; 1952 } 1953 1954 static void addr_filter__free(struct addr_filter *filt) 1955 { 1956 if (filt) 1957 addr_filter__free_str(filt); 1958 free(filt); 1959 } 1960 1961 static void addr_filters__add(struct addr_filters *filts, 1962 struct addr_filter *filt) 1963 { 1964 list_add_tail(&filt->list, &filts->head); 1965 filts->cnt += 1; 1966 } 1967 1968 static void addr_filters__del(struct addr_filters *filts, 1969 struct addr_filter *filt) 1970 { 1971 list_del_init(&filt->list); 1972 filts->cnt -= 1; 1973 } 1974 1975 void addr_filters__init(struct addr_filters *filts) 1976 { 1977 INIT_LIST_HEAD(&filts->head); 1978 filts->cnt = 0; 1979 } 1980 1981 void addr_filters__exit(struct addr_filters *filts) 1982 { 1983 struct addr_filter *filt, *n; 1984 1985 list_for_each_entry_safe(filt, n, &filts->head, list) { 1986 addr_filters__del(filts, filt); 1987 addr_filter__free(filt); 1988 } 1989 } 1990 1991 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1992 const char *str_delim) 1993 { 1994 *inp += strspn(*inp, " "); 1995 1996 if (isdigit(**inp)) { 1997 char *endptr; 1998 1999 if (!num) 2000 return -EINVAL; 2001 errno = 0; 2002 *num = strtoull(*inp, &endptr, 0); 2003 if (errno) 2004 return -errno; 2005 if (endptr == *inp) 2006 return -EINVAL; 2007 *inp = endptr; 2008 } else { 2009 size_t n; 2010 2011 if (!str) 2012 return -EINVAL; 2013 *inp += strspn(*inp, " "); 2014 *str = *inp; 2015 n = strcspn(*inp, str_delim); 2016 if (!n) 2017 return -EINVAL; 2018 *inp += n; 2019 if (**inp) { 2020 **inp = '\0'; 2021 *inp += 1; 2022 } 2023 } 2024 return 0; 2025 } 2026 2027 static int parse_action(struct addr_filter *filt) 2028 { 2029 if (!strcmp(filt->action, "filter")) { 2030 filt->start = true; 2031 filt->range = true; 2032 } else if (!strcmp(filt->action, "start")) { 2033 filt->start = true; 2034 } else if (!strcmp(filt->action, "stop")) { 2035 filt->start = false; 2036 } else if (!strcmp(filt->action, "tracestop")) { 2037 filt->start = false; 2038 filt->range = true; 2039 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2040 } else { 2041 return -EINVAL; 2042 } 2043 return 0; 2044 } 2045 2046 static int parse_sym_idx(char **inp, int *idx) 2047 { 2048 *idx = -1; 2049 2050 *inp += strspn(*inp, " "); 2051 2052 if (**inp != '#') 2053 return 0; 2054 2055 *inp += 1; 2056 2057 if (**inp == 'g' || **inp == 'G') { 2058 *inp += 1; 2059 *idx = 0; 2060 } else { 2061 unsigned long num; 2062 char *endptr; 2063 2064 errno = 0; 2065 num = strtoul(*inp, &endptr, 0); 2066 if (errno) 2067 return -errno; 2068 if (endptr == *inp || num > INT_MAX) 2069 return -EINVAL; 2070 *inp = endptr; 2071 *idx = num; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2078 { 2079 int err = parse_num_or_str(inp, num, str, " "); 2080 2081 if (!err && *str) 2082 err = parse_sym_idx(inp, idx); 2083 2084 return err; 2085 } 2086 2087 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2088 { 2089 char *fstr; 2090 int err; 2091 2092 filt->str = fstr = strdup(*filter_inp); 2093 if (!fstr) 2094 return -ENOMEM; 2095 2096 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2097 if (err) 2098 goto out_err; 2099 2100 err = parse_action(filt); 2101 if (err) 2102 goto out_err; 2103 2104 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2105 &filt->sym_from_idx); 2106 if (err) 2107 goto out_err; 2108 2109 fstr += strspn(fstr, " "); 2110 2111 if (*fstr == '/') { 2112 fstr += 1; 2113 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2114 &filt->sym_to_idx); 2115 if (err) 2116 goto out_err; 2117 filt->range = true; 2118 } 2119 2120 fstr += strspn(fstr, " "); 2121 2122 if (*fstr == '@') { 2123 fstr += 1; 2124 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2125 if (err) 2126 goto out_err; 2127 } 2128 2129 fstr += strspn(fstr, " ,"); 2130 2131 *filter_inp += fstr - filt->str; 2132 2133 return 0; 2134 2135 out_err: 2136 addr_filter__free_str(filt); 2137 2138 return err; 2139 } 2140 2141 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2142 const char *filter) 2143 { 2144 struct addr_filter *filt; 2145 const char *fstr = filter; 2146 int err; 2147 2148 while (*fstr) { 2149 filt = addr_filter__new(); 2150 err = parse_one_filter(filt, &fstr); 2151 if (err) { 2152 addr_filter__free(filt); 2153 addr_filters__exit(filts); 2154 return err; 2155 } 2156 addr_filters__add(filts, filt); 2157 } 2158 2159 return 0; 2160 } 2161 2162 struct sym_args { 2163 const char *name; 2164 u64 start; 2165 u64 size; 2166 int idx; 2167 int cnt; 2168 bool started; 2169 bool global; 2170 bool selected; 2171 bool duplicate; 2172 bool near; 2173 }; 2174 2175 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2176 { 2177 /* A function with the same name, and global or the n'th found or any */ 2178 return kallsyms__is_function(type) && 2179 !strcmp(name, args->name) && 2180 ((args->global && isupper(type)) || 2181 (args->selected && ++(args->cnt) == args->idx) || 2182 (!args->global && !args->selected)); 2183 } 2184 2185 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2186 { 2187 struct sym_args *args = arg; 2188 2189 if (args->started) { 2190 if (!args->size) 2191 args->size = start - args->start; 2192 if (args->selected) { 2193 if (args->size) 2194 return 1; 2195 } else if (kern_sym_match(args, name, type)) { 2196 args->duplicate = true; 2197 return 1; 2198 } 2199 } else if (kern_sym_match(args, name, type)) { 2200 args->started = true; 2201 args->start = start; 2202 } 2203 2204 return 0; 2205 } 2206 2207 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2208 { 2209 struct sym_args *args = arg; 2210 2211 if (kern_sym_match(args, name, type)) { 2212 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2213 ++args->cnt, start, type, name); 2214 args->near = true; 2215 } else if (args->near) { 2216 args->near = false; 2217 pr_err("\t\twhich is near\t\t%s\n", name); 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int sym_not_found_error(const char *sym_name, int idx) 2224 { 2225 if (idx > 0) { 2226 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2227 idx, sym_name); 2228 } else if (!idx) { 2229 pr_err("Global symbol '%s' not found.\n", sym_name); 2230 } else { 2231 pr_err("Symbol '%s' not found.\n", sym_name); 2232 } 2233 pr_err("Note that symbols must be functions.\n"); 2234 2235 return -EINVAL; 2236 } 2237 2238 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2239 { 2240 struct sym_args args = { 2241 .name = sym_name, 2242 .idx = idx, 2243 .global = !idx, 2244 .selected = idx > 0, 2245 }; 2246 int err; 2247 2248 *start = 0; 2249 *size = 0; 2250 2251 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2252 if (err < 0) { 2253 pr_err("Failed to parse /proc/kallsyms\n"); 2254 return err; 2255 } 2256 2257 if (args.duplicate) { 2258 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2259 args.cnt = 0; 2260 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2261 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2262 sym_name); 2263 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2264 return -EINVAL; 2265 } 2266 2267 if (!args.started) { 2268 pr_err("Kernel symbol lookup: "); 2269 return sym_not_found_error(sym_name, idx); 2270 } 2271 2272 *start = args.start; 2273 *size = args.size; 2274 2275 return 0; 2276 } 2277 2278 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2279 char type, u64 start) 2280 { 2281 struct sym_args *args = arg; 2282 2283 if (!kallsyms__is_function(type)) 2284 return 0; 2285 2286 if (!args->started) { 2287 args->started = true; 2288 args->start = start; 2289 } 2290 /* Don't know exactly where the kernel ends, so we add a page */ 2291 args->size = round_up(start, page_size) + page_size - args->start; 2292 2293 return 0; 2294 } 2295 2296 static int addr_filter__entire_kernel(struct addr_filter *filt) 2297 { 2298 struct sym_args args = { .started = false }; 2299 int err; 2300 2301 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2302 if (err < 0 || !args.started) { 2303 pr_err("Failed to parse /proc/kallsyms\n"); 2304 return err; 2305 } 2306 2307 filt->addr = args.start; 2308 filt->size = args.size; 2309 2310 return 0; 2311 } 2312 2313 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2314 { 2315 if (start + size >= filt->addr) 2316 return 0; 2317 2318 if (filt->sym_from) { 2319 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2320 filt->sym_to, start, filt->sym_from, filt->addr); 2321 } else { 2322 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2323 filt->sym_to, start, filt->addr); 2324 } 2325 2326 return -EINVAL; 2327 } 2328 2329 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2330 { 2331 bool no_size = false; 2332 u64 start, size; 2333 int err; 2334 2335 if (symbol_conf.kptr_restrict) { 2336 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2337 return -EINVAL; 2338 } 2339 2340 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2341 return addr_filter__entire_kernel(filt); 2342 2343 if (filt->sym_from) { 2344 err = find_kern_sym(filt->sym_from, &start, &size, 2345 filt->sym_from_idx); 2346 if (err) 2347 return err; 2348 filt->addr = start; 2349 if (filt->range && !filt->size && !filt->sym_to) { 2350 filt->size = size; 2351 no_size = !size; 2352 } 2353 } 2354 2355 if (filt->sym_to) { 2356 err = find_kern_sym(filt->sym_to, &start, &size, 2357 filt->sym_to_idx); 2358 if (err) 2359 return err; 2360 2361 err = check_end_after_start(filt, start, size); 2362 if (err) 2363 return err; 2364 filt->size = start + size - filt->addr; 2365 no_size = !size; 2366 } 2367 2368 /* The very last symbol in kallsyms does not imply a particular size */ 2369 if (no_size) { 2370 pr_err("Cannot determine size of symbol '%s'\n", 2371 filt->sym_to ? filt->sym_to : filt->sym_from); 2372 return -EINVAL; 2373 } 2374 2375 return 0; 2376 } 2377 2378 static struct dso *load_dso(const char *name) 2379 { 2380 struct map *map; 2381 struct dso *dso; 2382 2383 map = dso__new_map(name); 2384 if (!map) 2385 return NULL; 2386 2387 if (map__load(map) < 0) 2388 pr_err("File '%s' not found or has no symbols.\n", name); 2389 2390 dso = dso__get(map->dso); 2391 2392 map__put(map); 2393 2394 return dso; 2395 } 2396 2397 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2398 int idx) 2399 { 2400 /* Same name, and global or the n'th found or any */ 2401 return !arch__compare_symbol_names(name, sym->name) && 2402 ((!idx && sym->binding == STB_GLOBAL) || 2403 (idx > 0 && ++*cnt == idx) || 2404 idx < 0); 2405 } 2406 2407 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2408 { 2409 struct symbol *sym; 2410 bool near = false; 2411 int cnt = 0; 2412 2413 pr_err("Multiple symbols with name '%s'\n", sym_name); 2414 2415 sym = dso__first_symbol(dso); 2416 while (sym) { 2417 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2418 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2419 ++cnt, sym->start, 2420 sym->binding == STB_GLOBAL ? 'g' : 2421 sym->binding == STB_LOCAL ? 'l' : 'w', 2422 sym->name); 2423 near = true; 2424 } else if (near) { 2425 near = false; 2426 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2427 } 2428 sym = dso__next_symbol(sym); 2429 } 2430 2431 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2432 sym_name); 2433 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2434 } 2435 2436 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2437 u64 *size, int idx) 2438 { 2439 struct symbol *sym; 2440 int cnt = 0; 2441 2442 *start = 0; 2443 *size = 0; 2444 2445 sym = dso__first_symbol(dso); 2446 while (sym) { 2447 if (*start) { 2448 if (!*size) 2449 *size = sym->start - *start; 2450 if (idx > 0) { 2451 if (*size) 2452 return 1; 2453 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2454 print_duplicate_syms(dso, sym_name); 2455 return -EINVAL; 2456 } 2457 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2458 *start = sym->start; 2459 *size = sym->end - sym->start; 2460 } 2461 sym = dso__next_symbol(sym); 2462 } 2463 2464 if (!*start) 2465 return sym_not_found_error(sym_name, idx); 2466 2467 return 0; 2468 } 2469 2470 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2471 { 2472 if (dso__data_file_size(dso, NULL)) { 2473 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2474 filt->filename); 2475 return -EINVAL; 2476 } 2477 2478 filt->addr = 0; 2479 filt->size = dso->data.file_size; 2480 2481 return 0; 2482 } 2483 2484 static int addr_filter__resolve_syms(struct addr_filter *filt) 2485 { 2486 u64 start, size; 2487 struct dso *dso; 2488 int err = 0; 2489 2490 if (!filt->sym_from && !filt->sym_to) 2491 return 0; 2492 2493 if (!filt->filename) 2494 return addr_filter__resolve_kernel_syms(filt); 2495 2496 dso = load_dso(filt->filename); 2497 if (!dso) { 2498 pr_err("Failed to load symbols from: %s\n", filt->filename); 2499 return -EINVAL; 2500 } 2501 2502 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2503 err = addr_filter__entire_dso(filt, dso); 2504 goto put_dso; 2505 } 2506 2507 if (filt->sym_from) { 2508 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2509 filt->sym_from_idx); 2510 if (err) 2511 goto put_dso; 2512 filt->addr = start; 2513 if (filt->range && !filt->size && !filt->sym_to) 2514 filt->size = size; 2515 } 2516 2517 if (filt->sym_to) { 2518 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2519 filt->sym_to_idx); 2520 if (err) 2521 goto put_dso; 2522 2523 err = check_end_after_start(filt, start, size); 2524 if (err) 2525 return err; 2526 2527 filt->size = start + size - filt->addr; 2528 } 2529 2530 put_dso: 2531 dso__put(dso); 2532 2533 return err; 2534 } 2535 2536 static char *addr_filter__to_str(struct addr_filter *filt) 2537 { 2538 char filename_buf[PATH_MAX]; 2539 const char *at = ""; 2540 const char *fn = ""; 2541 char *filter; 2542 int err; 2543 2544 if (filt->filename) { 2545 at = "@"; 2546 fn = realpath(filt->filename, filename_buf); 2547 if (!fn) 2548 return NULL; 2549 } 2550 2551 if (filt->range) { 2552 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2553 filt->action, filt->addr, filt->size, at, fn); 2554 } else { 2555 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2556 filt->action, filt->addr, at, fn); 2557 } 2558 2559 return err < 0 ? NULL : filter; 2560 } 2561 2562 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2563 int max_nr) 2564 { 2565 struct addr_filters filts; 2566 struct addr_filter *filt; 2567 int err; 2568 2569 addr_filters__init(&filts); 2570 2571 err = addr_filters__parse_bare_filter(&filts, filter); 2572 if (err) 2573 goto out_exit; 2574 2575 if (filts.cnt > max_nr) { 2576 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2577 filts.cnt, max_nr); 2578 err = -EINVAL; 2579 goto out_exit; 2580 } 2581 2582 list_for_each_entry(filt, &filts.head, list) { 2583 char *new_filter; 2584 2585 err = addr_filter__resolve_syms(filt); 2586 if (err) 2587 goto out_exit; 2588 2589 new_filter = addr_filter__to_str(filt); 2590 if (!new_filter) { 2591 err = -ENOMEM; 2592 goto out_exit; 2593 } 2594 2595 if (evsel__append_addr_filter(evsel, new_filter)) { 2596 err = -ENOMEM; 2597 goto out_exit; 2598 } 2599 } 2600 2601 out_exit: 2602 addr_filters__exit(&filts); 2603 2604 if (err) { 2605 pr_err("Failed to parse address filter: '%s'\n", filter); 2606 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2607 pr_err("Where multiple filters are separated by space or comma.\n"); 2608 } 2609 2610 return err; 2611 } 2612 2613 static int evsel__nr_addr_filter(struct evsel *evsel) 2614 { 2615 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2616 int nr_addr_filters = 0; 2617 2618 if (!pmu) 2619 return 0; 2620 2621 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2622 2623 return nr_addr_filters; 2624 } 2625 2626 int auxtrace_parse_filters(struct evlist *evlist) 2627 { 2628 struct evsel *evsel; 2629 char *filter; 2630 int err, max_nr; 2631 2632 evlist__for_each_entry(evlist, evsel) { 2633 filter = evsel->filter; 2634 max_nr = evsel__nr_addr_filter(evsel); 2635 if (!filter || !max_nr) 2636 continue; 2637 evsel->filter = NULL; 2638 err = parse_addr_filter(evsel, filter, max_nr); 2639 free(filter); 2640 if (err) 2641 return err; 2642 pr_debug("Address filter: %s\n", evsel->filter); 2643 } 2644 2645 return 0; 2646 } 2647 2648 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2649 struct perf_sample *sample, struct perf_tool *tool) 2650 { 2651 if (!session->auxtrace) 2652 return 0; 2653 2654 return session->auxtrace->process_event(session, event, sample, tool); 2655 } 2656 2657 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2658 struct perf_sample *sample) 2659 { 2660 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2661 auxtrace__dont_decode(session)) 2662 return; 2663 2664 session->auxtrace->dump_auxtrace_sample(session, sample); 2665 } 2666 2667 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2668 { 2669 if (!session->auxtrace) 2670 return 0; 2671 2672 return session->auxtrace->flush_events(session, tool); 2673 } 2674 2675 void auxtrace__free_events(struct perf_session *session) 2676 { 2677 if (!session->auxtrace) 2678 return; 2679 2680 return session->auxtrace->free_events(session); 2681 } 2682 2683 void auxtrace__free(struct perf_session *session) 2684 { 2685 if (!session->auxtrace) 2686 return; 2687 2688 return session->auxtrace->free(session); 2689 } 2690 2691 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2692 struct evsel *evsel) 2693 { 2694 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2695 return false; 2696 2697 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2698 } 2699