1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "symbol.h" 35 #include "util/synthetic-events.h" 36 #include "thread_map.h" 37 #include "asm/bug.h" 38 #include "auxtrace.h" 39 40 #include <linux/hash.h> 41 42 #include "event.h" 43 #include "record.h" 44 #include "session.h" 45 #include "debug.h" 46 #include <subcmd/parse-options.h> 47 48 #include "cs-etm.h" 49 #include "intel-pt.h" 50 #include "intel-bts.h" 51 #include "arm-spe.h" 52 #include "s390-cpumsf.h" 53 #include "util.h" // page_size 54 #include "util/mmap.h" 55 56 #include <linux/ctype.h> 57 #include <linux/kernel.h> 58 #include "symbol/kallsyms.h" 59 #include <internal/lib.h> 60 61 static bool auxtrace__dont_decode(struct perf_session *session) 62 { 63 return !session->itrace_synth_opts || 64 session->itrace_synth_opts->dont_decode; 65 } 66 67 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 68 struct auxtrace_mmap_params *mp, 69 void *userpg, int fd) 70 { 71 struct perf_event_mmap_page *pc = userpg; 72 73 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 74 75 mm->userpg = userpg; 76 mm->mask = mp->mask; 77 mm->len = mp->len; 78 mm->prev = 0; 79 mm->idx = mp->idx; 80 mm->tid = mp->tid; 81 mm->cpu = mp->cpu; 82 83 if (!mp->len) { 84 mm->base = NULL; 85 return 0; 86 } 87 88 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 89 pr_err("Cannot use AUX area tracing mmaps\n"); 90 return -1; 91 #endif 92 93 pc->aux_offset = mp->offset; 94 pc->aux_size = mp->len; 95 96 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 97 if (mm->base == MAP_FAILED) { 98 pr_debug2("failed to mmap AUX area\n"); 99 mm->base = NULL; 100 return -1; 101 } 102 103 return 0; 104 } 105 106 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 107 { 108 if (mm->base) { 109 munmap(mm->base, mm->len); 110 mm->base = NULL; 111 } 112 } 113 114 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 115 off_t auxtrace_offset, 116 unsigned int auxtrace_pages, 117 bool auxtrace_overwrite) 118 { 119 if (auxtrace_pages) { 120 mp->offset = auxtrace_offset; 121 mp->len = auxtrace_pages * (size_t)page_size; 122 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 123 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 124 pr_debug2("AUX area mmap length %zu\n", mp->len); 125 } else { 126 mp->len = 0; 127 } 128 } 129 130 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 131 struct evlist *evlist, int idx, 132 bool per_cpu) 133 { 134 mp->idx = idx; 135 136 if (per_cpu) { 137 mp->cpu = evlist->core.cpus->map[idx]; 138 if (evlist->core.threads) 139 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 140 else 141 mp->tid = -1; 142 } else { 143 mp->cpu = -1; 144 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 145 } 146 } 147 148 #define AUXTRACE_INIT_NR_QUEUES 32 149 150 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 151 { 152 struct auxtrace_queue *queue_array; 153 unsigned int max_nr_queues, i; 154 155 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 156 if (nr_queues > max_nr_queues) 157 return NULL; 158 159 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 160 if (!queue_array) 161 return NULL; 162 163 for (i = 0; i < nr_queues; i++) { 164 INIT_LIST_HEAD(&queue_array[i].head); 165 queue_array[i].priv = NULL; 166 } 167 168 return queue_array; 169 } 170 171 int auxtrace_queues__init(struct auxtrace_queues *queues) 172 { 173 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 174 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 175 if (!queues->queue_array) 176 return -ENOMEM; 177 return 0; 178 } 179 180 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 181 unsigned int new_nr_queues) 182 { 183 unsigned int nr_queues = queues->nr_queues; 184 struct auxtrace_queue *queue_array; 185 unsigned int i; 186 187 if (!nr_queues) 188 nr_queues = AUXTRACE_INIT_NR_QUEUES; 189 190 while (nr_queues && nr_queues < new_nr_queues) 191 nr_queues <<= 1; 192 193 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 194 return -EINVAL; 195 196 queue_array = auxtrace_alloc_queue_array(nr_queues); 197 if (!queue_array) 198 return -ENOMEM; 199 200 for (i = 0; i < queues->nr_queues; i++) { 201 list_splice_tail(&queues->queue_array[i].head, 202 &queue_array[i].head); 203 queue_array[i].tid = queues->queue_array[i].tid; 204 queue_array[i].cpu = queues->queue_array[i].cpu; 205 queue_array[i].set = queues->queue_array[i].set; 206 queue_array[i].priv = queues->queue_array[i].priv; 207 } 208 209 queues->nr_queues = nr_queues; 210 queues->queue_array = queue_array; 211 212 return 0; 213 } 214 215 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 216 { 217 int fd = perf_data__fd(session->data); 218 void *p; 219 ssize_t ret; 220 221 if (size > SSIZE_MAX) 222 return NULL; 223 224 p = malloc(size); 225 if (!p) 226 return NULL; 227 228 ret = readn(fd, p, size); 229 if (ret != (ssize_t)size) { 230 free(p); 231 return NULL; 232 } 233 234 return p; 235 } 236 237 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 238 unsigned int idx, 239 struct auxtrace_buffer *buffer) 240 { 241 struct auxtrace_queue *queue; 242 int err; 243 244 if (idx >= queues->nr_queues) { 245 err = auxtrace_queues__grow(queues, idx + 1); 246 if (err) 247 return err; 248 } 249 250 queue = &queues->queue_array[idx]; 251 252 if (!queue->set) { 253 queue->set = true; 254 queue->tid = buffer->tid; 255 queue->cpu = buffer->cpu; 256 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 257 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 258 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 259 return -EINVAL; 260 } 261 262 buffer->buffer_nr = queues->next_buffer_nr++; 263 264 list_add_tail(&buffer->list, &queue->head); 265 266 queues->new_data = true; 267 queues->populated = true; 268 269 return 0; 270 } 271 272 /* Limit buffers to 32MiB on 32-bit */ 273 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 274 275 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 276 unsigned int idx, 277 struct auxtrace_buffer *buffer) 278 { 279 u64 sz = buffer->size; 280 bool consecutive = false; 281 struct auxtrace_buffer *b; 282 int err; 283 284 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 285 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 286 if (!b) 287 return -ENOMEM; 288 b->size = BUFFER_LIMIT_FOR_32_BIT; 289 b->consecutive = consecutive; 290 err = auxtrace_queues__queue_buffer(queues, idx, b); 291 if (err) { 292 auxtrace_buffer__free(b); 293 return err; 294 } 295 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 296 sz -= BUFFER_LIMIT_FOR_32_BIT; 297 consecutive = true; 298 } 299 300 buffer->size = sz; 301 buffer->consecutive = consecutive; 302 303 return 0; 304 } 305 306 static bool filter_cpu(struct perf_session *session, int cpu) 307 { 308 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 309 310 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 311 } 312 313 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 314 struct perf_session *session, 315 unsigned int idx, 316 struct auxtrace_buffer *buffer, 317 struct auxtrace_buffer **buffer_ptr) 318 { 319 int err = -ENOMEM; 320 321 if (filter_cpu(session, buffer->cpu)) 322 return 0; 323 324 buffer = memdup(buffer, sizeof(*buffer)); 325 if (!buffer) 326 return -ENOMEM; 327 328 if (session->one_mmap) { 329 buffer->data = buffer->data_offset - session->one_mmap_offset + 330 session->one_mmap_addr; 331 } else if (perf_data__is_pipe(session->data)) { 332 buffer->data = auxtrace_copy_data(buffer->size, session); 333 if (!buffer->data) 334 goto out_free; 335 buffer->data_needs_freeing = true; 336 } else if (BITS_PER_LONG == 32 && 337 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 338 err = auxtrace_queues__split_buffer(queues, idx, buffer); 339 if (err) 340 goto out_free; 341 } 342 343 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 344 if (err) 345 goto out_free; 346 347 /* FIXME: Doesn't work for split buffer */ 348 if (buffer_ptr) 349 *buffer_ptr = buffer; 350 351 return 0; 352 353 out_free: 354 auxtrace_buffer__free(buffer); 355 return err; 356 } 357 358 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 359 struct perf_session *session, 360 union perf_event *event, off_t data_offset, 361 struct auxtrace_buffer **buffer_ptr) 362 { 363 struct auxtrace_buffer buffer = { 364 .pid = -1, 365 .tid = event->auxtrace.tid, 366 .cpu = event->auxtrace.cpu, 367 .data_offset = data_offset, 368 .offset = event->auxtrace.offset, 369 .reference = event->auxtrace.reference, 370 .size = event->auxtrace.size, 371 }; 372 unsigned int idx = event->auxtrace.idx; 373 374 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 375 buffer_ptr); 376 } 377 378 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 379 struct perf_session *session, 380 off_t file_offset, size_t sz) 381 { 382 union perf_event *event; 383 int err; 384 char buf[PERF_SAMPLE_MAX_SIZE]; 385 386 err = perf_session__peek_event(session, file_offset, buf, 387 PERF_SAMPLE_MAX_SIZE, &event, NULL); 388 if (err) 389 return err; 390 391 if (event->header.type == PERF_RECORD_AUXTRACE) { 392 if (event->header.size < sizeof(struct perf_record_auxtrace) || 393 event->header.size != sz) { 394 err = -EINVAL; 395 goto out; 396 } 397 file_offset += event->header.size; 398 err = auxtrace_queues__add_event(queues, session, event, 399 file_offset, NULL); 400 } 401 out: 402 return err; 403 } 404 405 void auxtrace_queues__free(struct auxtrace_queues *queues) 406 { 407 unsigned int i; 408 409 for (i = 0; i < queues->nr_queues; i++) { 410 while (!list_empty(&queues->queue_array[i].head)) { 411 struct auxtrace_buffer *buffer; 412 413 buffer = list_entry(queues->queue_array[i].head.next, 414 struct auxtrace_buffer, list); 415 list_del_init(&buffer->list); 416 auxtrace_buffer__free(buffer); 417 } 418 } 419 420 zfree(&queues->queue_array); 421 queues->nr_queues = 0; 422 } 423 424 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 425 unsigned int pos, unsigned int queue_nr, 426 u64 ordinal) 427 { 428 unsigned int parent; 429 430 while (pos) { 431 parent = (pos - 1) >> 1; 432 if (heap_array[parent].ordinal <= ordinal) 433 break; 434 heap_array[pos] = heap_array[parent]; 435 pos = parent; 436 } 437 heap_array[pos].queue_nr = queue_nr; 438 heap_array[pos].ordinal = ordinal; 439 } 440 441 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 442 u64 ordinal) 443 { 444 struct auxtrace_heap_item *heap_array; 445 446 if (queue_nr >= heap->heap_sz) { 447 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 448 449 while (heap_sz <= queue_nr) 450 heap_sz <<= 1; 451 heap_array = realloc(heap->heap_array, 452 heap_sz * sizeof(struct auxtrace_heap_item)); 453 if (!heap_array) 454 return -ENOMEM; 455 heap->heap_array = heap_array; 456 heap->heap_sz = heap_sz; 457 } 458 459 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 460 461 return 0; 462 } 463 464 void auxtrace_heap__free(struct auxtrace_heap *heap) 465 { 466 zfree(&heap->heap_array); 467 heap->heap_cnt = 0; 468 heap->heap_sz = 0; 469 } 470 471 void auxtrace_heap__pop(struct auxtrace_heap *heap) 472 { 473 unsigned int pos, last, heap_cnt = heap->heap_cnt; 474 struct auxtrace_heap_item *heap_array; 475 476 if (!heap_cnt) 477 return; 478 479 heap->heap_cnt -= 1; 480 481 heap_array = heap->heap_array; 482 483 pos = 0; 484 while (1) { 485 unsigned int left, right; 486 487 left = (pos << 1) + 1; 488 if (left >= heap_cnt) 489 break; 490 right = left + 1; 491 if (right >= heap_cnt) { 492 heap_array[pos] = heap_array[left]; 493 return; 494 } 495 if (heap_array[left].ordinal < heap_array[right].ordinal) { 496 heap_array[pos] = heap_array[left]; 497 pos = left; 498 } else { 499 heap_array[pos] = heap_array[right]; 500 pos = right; 501 } 502 } 503 504 last = heap_cnt - 1; 505 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 506 heap_array[last].ordinal); 507 } 508 509 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 510 struct evlist *evlist) 511 { 512 if (itr) 513 return itr->info_priv_size(itr, evlist); 514 return 0; 515 } 516 517 static int auxtrace_not_supported(void) 518 { 519 pr_err("AUX area tracing is not supported on this architecture\n"); 520 return -EINVAL; 521 } 522 523 int auxtrace_record__info_fill(struct auxtrace_record *itr, 524 struct perf_session *session, 525 struct perf_record_auxtrace_info *auxtrace_info, 526 size_t priv_size) 527 { 528 if (itr) 529 return itr->info_fill(itr, session, auxtrace_info, priv_size); 530 return auxtrace_not_supported(); 531 } 532 533 void auxtrace_record__free(struct auxtrace_record *itr) 534 { 535 if (itr) 536 itr->free(itr); 537 } 538 539 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 540 { 541 if (itr && itr->snapshot_start) 542 return itr->snapshot_start(itr); 543 return 0; 544 } 545 546 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 547 { 548 if (!on_exit && itr && itr->snapshot_finish) 549 return itr->snapshot_finish(itr); 550 return 0; 551 } 552 553 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 554 struct auxtrace_mmap *mm, 555 unsigned char *data, u64 *head, u64 *old) 556 { 557 if (itr && itr->find_snapshot) 558 return itr->find_snapshot(itr, idx, mm, data, head, old); 559 return 0; 560 } 561 562 int auxtrace_record__options(struct auxtrace_record *itr, 563 struct evlist *evlist, 564 struct record_opts *opts) 565 { 566 if (itr) 567 return itr->recording_options(itr, evlist, opts); 568 return 0; 569 } 570 571 u64 auxtrace_record__reference(struct auxtrace_record *itr) 572 { 573 if (itr) 574 return itr->reference(itr); 575 return 0; 576 } 577 578 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 579 struct record_opts *opts, const char *str) 580 { 581 if (!str) 582 return 0; 583 584 /* PMU-agnostic options */ 585 switch (*str) { 586 case 'e': 587 opts->auxtrace_snapshot_on_exit = true; 588 str++; 589 break; 590 default: 591 break; 592 } 593 594 if (itr) 595 return itr->parse_snapshot_options(itr, opts, str); 596 597 pr_err("No AUX area tracing to snapshot\n"); 598 return -EINVAL; 599 } 600 601 struct auxtrace_record *__weak 602 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 603 { 604 *err = 0; 605 return NULL; 606 } 607 608 static int auxtrace_index__alloc(struct list_head *head) 609 { 610 struct auxtrace_index *auxtrace_index; 611 612 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 613 if (!auxtrace_index) 614 return -ENOMEM; 615 616 auxtrace_index->nr = 0; 617 INIT_LIST_HEAD(&auxtrace_index->list); 618 619 list_add_tail(&auxtrace_index->list, head); 620 621 return 0; 622 } 623 624 void auxtrace_index__free(struct list_head *head) 625 { 626 struct auxtrace_index *auxtrace_index, *n; 627 628 list_for_each_entry_safe(auxtrace_index, n, head, list) { 629 list_del_init(&auxtrace_index->list); 630 free(auxtrace_index); 631 } 632 } 633 634 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 635 { 636 struct auxtrace_index *auxtrace_index; 637 int err; 638 639 if (list_empty(head)) { 640 err = auxtrace_index__alloc(head); 641 if (err) 642 return NULL; 643 } 644 645 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 646 647 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 648 err = auxtrace_index__alloc(head); 649 if (err) 650 return NULL; 651 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 652 list); 653 } 654 655 return auxtrace_index; 656 } 657 658 int auxtrace_index__auxtrace_event(struct list_head *head, 659 union perf_event *event, off_t file_offset) 660 { 661 struct auxtrace_index *auxtrace_index; 662 size_t nr; 663 664 auxtrace_index = auxtrace_index__last(head); 665 if (!auxtrace_index) 666 return -ENOMEM; 667 668 nr = auxtrace_index->nr; 669 auxtrace_index->entries[nr].file_offset = file_offset; 670 auxtrace_index->entries[nr].sz = event->header.size; 671 auxtrace_index->nr += 1; 672 673 return 0; 674 } 675 676 static int auxtrace_index__do_write(int fd, 677 struct auxtrace_index *auxtrace_index) 678 { 679 struct auxtrace_index_entry ent; 680 size_t i; 681 682 for (i = 0; i < auxtrace_index->nr; i++) { 683 ent.file_offset = auxtrace_index->entries[i].file_offset; 684 ent.sz = auxtrace_index->entries[i].sz; 685 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 686 return -errno; 687 } 688 return 0; 689 } 690 691 int auxtrace_index__write(int fd, struct list_head *head) 692 { 693 struct auxtrace_index *auxtrace_index; 694 u64 total = 0; 695 int err; 696 697 list_for_each_entry(auxtrace_index, head, list) 698 total += auxtrace_index->nr; 699 700 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 701 return -errno; 702 703 list_for_each_entry(auxtrace_index, head, list) { 704 err = auxtrace_index__do_write(fd, auxtrace_index); 705 if (err) 706 return err; 707 } 708 709 return 0; 710 } 711 712 static int auxtrace_index__process_entry(int fd, struct list_head *head, 713 bool needs_swap) 714 { 715 struct auxtrace_index *auxtrace_index; 716 struct auxtrace_index_entry ent; 717 size_t nr; 718 719 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 720 return -1; 721 722 auxtrace_index = auxtrace_index__last(head); 723 if (!auxtrace_index) 724 return -1; 725 726 nr = auxtrace_index->nr; 727 if (needs_swap) { 728 auxtrace_index->entries[nr].file_offset = 729 bswap_64(ent.file_offset); 730 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 731 } else { 732 auxtrace_index->entries[nr].file_offset = ent.file_offset; 733 auxtrace_index->entries[nr].sz = ent.sz; 734 } 735 736 auxtrace_index->nr = nr + 1; 737 738 return 0; 739 } 740 741 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 742 bool needs_swap) 743 { 744 struct list_head *head = &session->auxtrace_index; 745 u64 nr; 746 747 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 748 return -1; 749 750 if (needs_swap) 751 nr = bswap_64(nr); 752 753 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 754 return -1; 755 756 while (nr--) { 757 int err; 758 759 err = auxtrace_index__process_entry(fd, head, needs_swap); 760 if (err) 761 return -1; 762 } 763 764 return 0; 765 } 766 767 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 768 struct perf_session *session, 769 struct auxtrace_index_entry *ent) 770 { 771 return auxtrace_queues__add_indexed_event(queues, session, 772 ent->file_offset, ent->sz); 773 } 774 775 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 776 struct perf_session *session) 777 { 778 struct auxtrace_index *auxtrace_index; 779 struct auxtrace_index_entry *ent; 780 size_t i; 781 int err; 782 783 if (auxtrace__dont_decode(session)) 784 return 0; 785 786 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 787 for (i = 0; i < auxtrace_index->nr; i++) { 788 ent = &auxtrace_index->entries[i]; 789 err = auxtrace_queues__process_index_entry(queues, 790 session, 791 ent); 792 if (err) 793 return err; 794 } 795 } 796 return 0; 797 } 798 799 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 800 struct auxtrace_buffer *buffer) 801 { 802 if (buffer) { 803 if (list_is_last(&buffer->list, &queue->head)) 804 return NULL; 805 return list_entry(buffer->list.next, struct auxtrace_buffer, 806 list); 807 } else { 808 if (list_empty(&queue->head)) 809 return NULL; 810 return list_entry(queue->head.next, struct auxtrace_buffer, 811 list); 812 } 813 } 814 815 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 816 { 817 size_t adj = buffer->data_offset & (page_size - 1); 818 size_t size = buffer->size + adj; 819 off_t file_offset = buffer->data_offset - adj; 820 void *addr; 821 822 if (buffer->data) 823 return buffer->data; 824 825 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 826 if (addr == MAP_FAILED) 827 return NULL; 828 829 buffer->mmap_addr = addr; 830 buffer->mmap_size = size; 831 832 buffer->data = addr + adj; 833 834 return buffer->data; 835 } 836 837 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 838 { 839 if (!buffer->data || !buffer->mmap_addr) 840 return; 841 munmap(buffer->mmap_addr, buffer->mmap_size); 842 buffer->mmap_addr = NULL; 843 buffer->mmap_size = 0; 844 buffer->data = NULL; 845 buffer->use_data = NULL; 846 } 847 848 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 849 { 850 auxtrace_buffer__put_data(buffer); 851 if (buffer->data_needs_freeing) { 852 buffer->data_needs_freeing = false; 853 zfree(&buffer->data); 854 buffer->use_data = NULL; 855 buffer->size = 0; 856 } 857 } 858 859 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 860 { 861 auxtrace_buffer__drop_data(buffer); 862 free(buffer); 863 } 864 865 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 866 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 867 const char *msg, u64 timestamp) 868 { 869 size_t size; 870 871 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 872 873 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 874 auxtrace_error->type = type; 875 auxtrace_error->code = code; 876 auxtrace_error->cpu = cpu; 877 auxtrace_error->pid = pid; 878 auxtrace_error->tid = tid; 879 auxtrace_error->fmt = 1; 880 auxtrace_error->ip = ip; 881 auxtrace_error->time = timestamp; 882 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 883 884 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 885 strlen(auxtrace_error->msg) + 1; 886 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 887 } 888 889 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 890 struct perf_tool *tool, 891 struct perf_session *session, 892 perf_event__handler_t process) 893 { 894 union perf_event *ev; 895 size_t priv_size; 896 int err; 897 898 pr_debug2("Synthesizing auxtrace information\n"); 899 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 900 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 901 if (!ev) 902 return -ENOMEM; 903 904 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 905 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 906 priv_size; 907 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 908 priv_size); 909 if (err) 910 goto out_free; 911 912 err = process(tool, ev, NULL, NULL); 913 out_free: 914 free(ev); 915 return err; 916 } 917 918 int perf_event__process_auxtrace_info(struct perf_session *session, 919 union perf_event *event) 920 { 921 enum auxtrace_type type = event->auxtrace_info.type; 922 923 if (dump_trace) 924 fprintf(stdout, " type: %u\n", type); 925 926 switch (type) { 927 case PERF_AUXTRACE_INTEL_PT: 928 return intel_pt_process_auxtrace_info(event, session); 929 case PERF_AUXTRACE_INTEL_BTS: 930 return intel_bts_process_auxtrace_info(event, session); 931 case PERF_AUXTRACE_ARM_SPE: 932 return arm_spe_process_auxtrace_info(event, session); 933 case PERF_AUXTRACE_CS_ETM: 934 return cs_etm__process_auxtrace_info(event, session); 935 case PERF_AUXTRACE_S390_CPUMSF: 936 return s390_cpumsf_process_auxtrace_info(event, session); 937 case PERF_AUXTRACE_UNKNOWN: 938 default: 939 return -EINVAL; 940 } 941 } 942 943 s64 perf_event__process_auxtrace(struct perf_session *session, 944 union perf_event *event) 945 { 946 s64 err; 947 948 if (dump_trace) 949 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 950 event->auxtrace.size, event->auxtrace.offset, 951 event->auxtrace.reference, event->auxtrace.idx, 952 event->auxtrace.tid, event->auxtrace.cpu); 953 954 if (auxtrace__dont_decode(session)) 955 return event->auxtrace.size; 956 957 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 958 return -EINVAL; 959 960 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 961 if (err < 0) 962 return err; 963 964 return event->auxtrace.size; 965 } 966 967 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 968 #define PERF_ITRACE_DEFAULT_PERIOD 100000 969 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 970 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 971 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 972 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 973 974 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 975 bool no_sample) 976 { 977 synth_opts->branches = true; 978 synth_opts->transactions = true; 979 synth_opts->ptwrites = true; 980 synth_opts->pwr_events = true; 981 synth_opts->other_events = true; 982 synth_opts->errors = true; 983 if (no_sample) { 984 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 985 synth_opts->period = 1; 986 synth_opts->calls = true; 987 } else { 988 synth_opts->instructions = true; 989 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 990 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 991 } 992 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 993 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 994 synth_opts->initial_skip = 0; 995 } 996 997 /* 998 * Please check tools/perf/Documentation/perf-script.txt for information 999 * about the options parsed here, which is introduced after this cset, 1000 * when support in 'perf script' for these options is introduced. 1001 */ 1002 int itrace_parse_synth_opts(const struct option *opt, const char *str, 1003 int unset) 1004 { 1005 struct itrace_synth_opts *synth_opts = opt->value; 1006 const char *p; 1007 char *endptr; 1008 bool period_type_set = false; 1009 bool period_set = false; 1010 1011 synth_opts->set = true; 1012 1013 if (unset) { 1014 synth_opts->dont_decode = true; 1015 return 0; 1016 } 1017 1018 if (!str) { 1019 itrace_synth_opts__set_default(synth_opts, 1020 synth_opts->default_no_sample); 1021 return 0; 1022 } 1023 1024 for (p = str; *p;) { 1025 switch (*p++) { 1026 case 'i': 1027 synth_opts->instructions = true; 1028 while (*p == ' ' || *p == ',') 1029 p += 1; 1030 if (isdigit(*p)) { 1031 synth_opts->period = strtoull(p, &endptr, 10); 1032 period_set = true; 1033 p = endptr; 1034 while (*p == ' ' || *p == ',') 1035 p += 1; 1036 switch (*p++) { 1037 case 'i': 1038 synth_opts->period_type = 1039 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1040 period_type_set = true; 1041 break; 1042 case 't': 1043 synth_opts->period_type = 1044 PERF_ITRACE_PERIOD_TICKS; 1045 period_type_set = true; 1046 break; 1047 case 'm': 1048 synth_opts->period *= 1000; 1049 /* Fall through */ 1050 case 'u': 1051 synth_opts->period *= 1000; 1052 /* Fall through */ 1053 case 'n': 1054 if (*p++ != 's') 1055 goto out_err; 1056 synth_opts->period_type = 1057 PERF_ITRACE_PERIOD_NANOSECS; 1058 period_type_set = true; 1059 break; 1060 case '\0': 1061 goto out; 1062 default: 1063 goto out_err; 1064 } 1065 } 1066 break; 1067 case 'b': 1068 synth_opts->branches = true; 1069 break; 1070 case 'x': 1071 synth_opts->transactions = true; 1072 break; 1073 case 'w': 1074 synth_opts->ptwrites = true; 1075 break; 1076 case 'p': 1077 synth_opts->pwr_events = true; 1078 break; 1079 case 'o': 1080 synth_opts->other_events = true; 1081 break; 1082 case 'e': 1083 synth_opts->errors = true; 1084 break; 1085 case 'd': 1086 synth_opts->log = true; 1087 break; 1088 case 'c': 1089 synth_opts->branches = true; 1090 synth_opts->calls = true; 1091 break; 1092 case 'r': 1093 synth_opts->branches = true; 1094 synth_opts->returns = true; 1095 break; 1096 case 'g': 1097 synth_opts->callchain = true; 1098 synth_opts->callchain_sz = 1099 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1100 while (*p == ' ' || *p == ',') 1101 p += 1; 1102 if (isdigit(*p)) { 1103 unsigned int val; 1104 1105 val = strtoul(p, &endptr, 10); 1106 p = endptr; 1107 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1108 goto out_err; 1109 synth_opts->callchain_sz = val; 1110 } 1111 break; 1112 case 'l': 1113 synth_opts->last_branch = true; 1114 synth_opts->last_branch_sz = 1115 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1116 while (*p == ' ' || *p == ',') 1117 p += 1; 1118 if (isdigit(*p)) { 1119 unsigned int val; 1120 1121 val = strtoul(p, &endptr, 10); 1122 p = endptr; 1123 if (!val || 1124 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1125 goto out_err; 1126 synth_opts->last_branch_sz = val; 1127 } 1128 break; 1129 case 's': 1130 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1131 if (p == endptr) 1132 goto out_err; 1133 p = endptr; 1134 break; 1135 case ' ': 1136 case ',': 1137 break; 1138 default: 1139 goto out_err; 1140 } 1141 } 1142 out: 1143 if (synth_opts->instructions) { 1144 if (!period_type_set) 1145 synth_opts->period_type = 1146 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1147 if (!period_set) 1148 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1149 } 1150 1151 return 0; 1152 1153 out_err: 1154 pr_err("Bad Instruction Tracing options '%s'\n", str); 1155 return -EINVAL; 1156 } 1157 1158 static const char * const auxtrace_error_type_name[] = { 1159 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1160 }; 1161 1162 static const char *auxtrace_error_name(int type) 1163 { 1164 const char *error_type_name = NULL; 1165 1166 if (type < PERF_AUXTRACE_ERROR_MAX) 1167 error_type_name = auxtrace_error_type_name[type]; 1168 if (!error_type_name) 1169 error_type_name = "unknown AUX"; 1170 return error_type_name; 1171 } 1172 1173 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1174 { 1175 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1176 unsigned long long nsecs = e->time; 1177 const char *msg = e->msg; 1178 int ret; 1179 1180 ret = fprintf(fp, " %s error type %u", 1181 auxtrace_error_name(e->type), e->type); 1182 1183 if (e->fmt && nsecs) { 1184 unsigned long secs = nsecs / NSEC_PER_SEC; 1185 1186 nsecs -= secs * NSEC_PER_SEC; 1187 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1188 } else { 1189 ret += fprintf(fp, " time 0"); 1190 } 1191 1192 if (!e->fmt) 1193 msg = (const char *)&e->time; 1194 1195 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1196 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1197 return ret; 1198 } 1199 1200 void perf_session__auxtrace_error_inc(struct perf_session *session, 1201 union perf_event *event) 1202 { 1203 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1204 1205 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1206 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1207 } 1208 1209 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1210 { 1211 int i; 1212 1213 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1214 if (!stats->nr_auxtrace_errors[i]) 1215 continue; 1216 ui__warning("%u %s errors\n", 1217 stats->nr_auxtrace_errors[i], 1218 auxtrace_error_name(i)); 1219 } 1220 } 1221 1222 int perf_event__process_auxtrace_error(struct perf_session *session, 1223 union perf_event *event) 1224 { 1225 if (auxtrace__dont_decode(session)) 1226 return 0; 1227 1228 perf_event__fprintf_auxtrace_error(event, stdout); 1229 return 0; 1230 } 1231 1232 static int __auxtrace_mmap__read(struct mmap *map, 1233 struct auxtrace_record *itr, 1234 struct perf_tool *tool, process_auxtrace_t fn, 1235 bool snapshot, size_t snapshot_size) 1236 { 1237 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1238 u64 head, old = mm->prev, offset, ref; 1239 unsigned char *data = mm->base; 1240 size_t size, head_off, old_off, len1, len2, padding; 1241 union perf_event ev; 1242 void *data1, *data2; 1243 1244 if (snapshot) { 1245 head = auxtrace_mmap__read_snapshot_head(mm); 1246 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1247 &head, &old)) 1248 return -1; 1249 } else { 1250 head = auxtrace_mmap__read_head(mm); 1251 } 1252 1253 if (old == head) 1254 return 0; 1255 1256 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1257 mm->idx, old, head, head - old); 1258 1259 if (mm->mask) { 1260 head_off = head & mm->mask; 1261 old_off = old & mm->mask; 1262 } else { 1263 head_off = head % mm->len; 1264 old_off = old % mm->len; 1265 } 1266 1267 if (head_off > old_off) 1268 size = head_off - old_off; 1269 else 1270 size = mm->len - (old_off - head_off); 1271 1272 if (snapshot && size > snapshot_size) 1273 size = snapshot_size; 1274 1275 ref = auxtrace_record__reference(itr); 1276 1277 if (head > old || size <= head || mm->mask) { 1278 offset = head - size; 1279 } else { 1280 /* 1281 * When the buffer size is not a power of 2, 'head' wraps at the 1282 * highest multiple of the buffer size, so we have to subtract 1283 * the remainder here. 1284 */ 1285 u64 rem = (0ULL - mm->len) % mm->len; 1286 1287 offset = head - size - rem; 1288 } 1289 1290 if (size > head_off) { 1291 len1 = size - head_off; 1292 data1 = &data[mm->len - len1]; 1293 len2 = head_off; 1294 data2 = &data[0]; 1295 } else { 1296 len1 = size; 1297 data1 = &data[head_off - len1]; 1298 len2 = 0; 1299 data2 = NULL; 1300 } 1301 1302 if (itr->alignment) { 1303 unsigned int unwanted = len1 % itr->alignment; 1304 1305 len1 -= unwanted; 1306 size -= unwanted; 1307 } 1308 1309 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1310 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1311 if (padding) 1312 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1313 1314 memset(&ev, 0, sizeof(ev)); 1315 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1316 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1317 ev.auxtrace.size = size + padding; 1318 ev.auxtrace.offset = offset; 1319 ev.auxtrace.reference = ref; 1320 ev.auxtrace.idx = mm->idx; 1321 ev.auxtrace.tid = mm->tid; 1322 ev.auxtrace.cpu = mm->cpu; 1323 1324 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1325 return -1; 1326 1327 mm->prev = head; 1328 1329 if (!snapshot) { 1330 auxtrace_mmap__write_tail(mm, head); 1331 if (itr->read_finish) { 1332 int err; 1333 1334 err = itr->read_finish(itr, mm->idx); 1335 if (err < 0) 1336 return err; 1337 } 1338 } 1339 1340 return 1; 1341 } 1342 1343 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1344 struct perf_tool *tool, process_auxtrace_t fn) 1345 { 1346 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1347 } 1348 1349 int auxtrace_mmap__read_snapshot(struct mmap *map, 1350 struct auxtrace_record *itr, 1351 struct perf_tool *tool, process_auxtrace_t fn, 1352 size_t snapshot_size) 1353 { 1354 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1355 } 1356 1357 /** 1358 * struct auxtrace_cache - hash table to implement a cache 1359 * @hashtable: the hashtable 1360 * @sz: hashtable size (number of hlists) 1361 * @entry_size: size of an entry 1362 * @limit: limit the number of entries to this maximum, when reached the cache 1363 * is dropped and caching begins again with an empty cache 1364 * @cnt: current number of entries 1365 * @bits: hashtable size (@sz = 2^@bits) 1366 */ 1367 struct auxtrace_cache { 1368 struct hlist_head *hashtable; 1369 size_t sz; 1370 size_t entry_size; 1371 size_t limit; 1372 size_t cnt; 1373 unsigned int bits; 1374 }; 1375 1376 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1377 unsigned int limit_percent) 1378 { 1379 struct auxtrace_cache *c; 1380 struct hlist_head *ht; 1381 size_t sz, i; 1382 1383 c = zalloc(sizeof(struct auxtrace_cache)); 1384 if (!c) 1385 return NULL; 1386 1387 sz = 1UL << bits; 1388 1389 ht = calloc(sz, sizeof(struct hlist_head)); 1390 if (!ht) 1391 goto out_free; 1392 1393 for (i = 0; i < sz; i++) 1394 INIT_HLIST_HEAD(&ht[i]); 1395 1396 c->hashtable = ht; 1397 c->sz = sz; 1398 c->entry_size = entry_size; 1399 c->limit = (c->sz * limit_percent) / 100; 1400 c->bits = bits; 1401 1402 return c; 1403 1404 out_free: 1405 free(c); 1406 return NULL; 1407 } 1408 1409 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1410 { 1411 struct auxtrace_cache_entry *entry; 1412 struct hlist_node *tmp; 1413 size_t i; 1414 1415 if (!c) 1416 return; 1417 1418 for (i = 0; i < c->sz; i++) { 1419 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1420 hlist_del(&entry->hash); 1421 auxtrace_cache__free_entry(c, entry); 1422 } 1423 } 1424 1425 c->cnt = 0; 1426 } 1427 1428 void auxtrace_cache__free(struct auxtrace_cache *c) 1429 { 1430 if (!c) 1431 return; 1432 1433 auxtrace_cache__drop(c); 1434 zfree(&c->hashtable); 1435 free(c); 1436 } 1437 1438 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1439 { 1440 return malloc(c->entry_size); 1441 } 1442 1443 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1444 void *entry) 1445 { 1446 free(entry); 1447 } 1448 1449 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1450 struct auxtrace_cache_entry *entry) 1451 { 1452 if (c->limit && ++c->cnt > c->limit) 1453 auxtrace_cache__drop(c); 1454 1455 entry->key = key; 1456 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1457 1458 return 0; 1459 } 1460 1461 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1462 { 1463 struct auxtrace_cache_entry *entry; 1464 struct hlist_head *hlist; 1465 1466 if (!c) 1467 return NULL; 1468 1469 hlist = &c->hashtable[hash_32(key, c->bits)]; 1470 hlist_for_each_entry(entry, hlist, hash) { 1471 if (entry->key == key) 1472 return entry; 1473 } 1474 1475 return NULL; 1476 } 1477 1478 static void addr_filter__free_str(struct addr_filter *filt) 1479 { 1480 zfree(&filt->str); 1481 filt->action = NULL; 1482 filt->sym_from = NULL; 1483 filt->sym_to = NULL; 1484 filt->filename = NULL; 1485 } 1486 1487 static struct addr_filter *addr_filter__new(void) 1488 { 1489 struct addr_filter *filt = zalloc(sizeof(*filt)); 1490 1491 if (filt) 1492 INIT_LIST_HEAD(&filt->list); 1493 1494 return filt; 1495 } 1496 1497 static void addr_filter__free(struct addr_filter *filt) 1498 { 1499 if (filt) 1500 addr_filter__free_str(filt); 1501 free(filt); 1502 } 1503 1504 static void addr_filters__add(struct addr_filters *filts, 1505 struct addr_filter *filt) 1506 { 1507 list_add_tail(&filt->list, &filts->head); 1508 filts->cnt += 1; 1509 } 1510 1511 static void addr_filters__del(struct addr_filters *filts, 1512 struct addr_filter *filt) 1513 { 1514 list_del_init(&filt->list); 1515 filts->cnt -= 1; 1516 } 1517 1518 void addr_filters__init(struct addr_filters *filts) 1519 { 1520 INIT_LIST_HEAD(&filts->head); 1521 filts->cnt = 0; 1522 } 1523 1524 void addr_filters__exit(struct addr_filters *filts) 1525 { 1526 struct addr_filter *filt, *n; 1527 1528 list_for_each_entry_safe(filt, n, &filts->head, list) { 1529 addr_filters__del(filts, filt); 1530 addr_filter__free(filt); 1531 } 1532 } 1533 1534 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1535 const char *str_delim) 1536 { 1537 *inp += strspn(*inp, " "); 1538 1539 if (isdigit(**inp)) { 1540 char *endptr; 1541 1542 if (!num) 1543 return -EINVAL; 1544 errno = 0; 1545 *num = strtoull(*inp, &endptr, 0); 1546 if (errno) 1547 return -errno; 1548 if (endptr == *inp) 1549 return -EINVAL; 1550 *inp = endptr; 1551 } else { 1552 size_t n; 1553 1554 if (!str) 1555 return -EINVAL; 1556 *inp += strspn(*inp, " "); 1557 *str = *inp; 1558 n = strcspn(*inp, str_delim); 1559 if (!n) 1560 return -EINVAL; 1561 *inp += n; 1562 if (**inp) { 1563 **inp = '\0'; 1564 *inp += 1; 1565 } 1566 } 1567 return 0; 1568 } 1569 1570 static int parse_action(struct addr_filter *filt) 1571 { 1572 if (!strcmp(filt->action, "filter")) { 1573 filt->start = true; 1574 filt->range = true; 1575 } else if (!strcmp(filt->action, "start")) { 1576 filt->start = true; 1577 } else if (!strcmp(filt->action, "stop")) { 1578 filt->start = false; 1579 } else if (!strcmp(filt->action, "tracestop")) { 1580 filt->start = false; 1581 filt->range = true; 1582 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1583 } else { 1584 return -EINVAL; 1585 } 1586 return 0; 1587 } 1588 1589 static int parse_sym_idx(char **inp, int *idx) 1590 { 1591 *idx = -1; 1592 1593 *inp += strspn(*inp, " "); 1594 1595 if (**inp != '#') 1596 return 0; 1597 1598 *inp += 1; 1599 1600 if (**inp == 'g' || **inp == 'G') { 1601 *inp += 1; 1602 *idx = 0; 1603 } else { 1604 unsigned long num; 1605 char *endptr; 1606 1607 errno = 0; 1608 num = strtoul(*inp, &endptr, 0); 1609 if (errno) 1610 return -errno; 1611 if (endptr == *inp || num > INT_MAX) 1612 return -EINVAL; 1613 *inp = endptr; 1614 *idx = num; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 1621 { 1622 int err = parse_num_or_str(inp, num, str, " "); 1623 1624 if (!err && *str) 1625 err = parse_sym_idx(inp, idx); 1626 1627 return err; 1628 } 1629 1630 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 1631 { 1632 char *fstr; 1633 int err; 1634 1635 filt->str = fstr = strdup(*filter_inp); 1636 if (!fstr) 1637 return -ENOMEM; 1638 1639 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 1640 if (err) 1641 goto out_err; 1642 1643 err = parse_action(filt); 1644 if (err) 1645 goto out_err; 1646 1647 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 1648 &filt->sym_from_idx); 1649 if (err) 1650 goto out_err; 1651 1652 fstr += strspn(fstr, " "); 1653 1654 if (*fstr == '/') { 1655 fstr += 1; 1656 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 1657 &filt->sym_to_idx); 1658 if (err) 1659 goto out_err; 1660 filt->range = true; 1661 } 1662 1663 fstr += strspn(fstr, " "); 1664 1665 if (*fstr == '@') { 1666 fstr += 1; 1667 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 1668 if (err) 1669 goto out_err; 1670 } 1671 1672 fstr += strspn(fstr, " ,"); 1673 1674 *filter_inp += fstr - filt->str; 1675 1676 return 0; 1677 1678 out_err: 1679 addr_filter__free_str(filt); 1680 1681 return err; 1682 } 1683 1684 int addr_filters__parse_bare_filter(struct addr_filters *filts, 1685 const char *filter) 1686 { 1687 struct addr_filter *filt; 1688 const char *fstr = filter; 1689 int err; 1690 1691 while (*fstr) { 1692 filt = addr_filter__new(); 1693 err = parse_one_filter(filt, &fstr); 1694 if (err) { 1695 addr_filter__free(filt); 1696 addr_filters__exit(filts); 1697 return err; 1698 } 1699 addr_filters__add(filts, filt); 1700 } 1701 1702 return 0; 1703 } 1704 1705 struct sym_args { 1706 const char *name; 1707 u64 start; 1708 u64 size; 1709 int idx; 1710 int cnt; 1711 bool started; 1712 bool global; 1713 bool selected; 1714 bool duplicate; 1715 bool near; 1716 }; 1717 1718 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 1719 { 1720 /* A function with the same name, and global or the n'th found or any */ 1721 return kallsyms__is_function(type) && 1722 !strcmp(name, args->name) && 1723 ((args->global && isupper(type)) || 1724 (args->selected && ++(args->cnt) == args->idx) || 1725 (!args->global && !args->selected)); 1726 } 1727 1728 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1729 { 1730 struct sym_args *args = arg; 1731 1732 if (args->started) { 1733 if (!args->size) 1734 args->size = start - args->start; 1735 if (args->selected) { 1736 if (args->size) 1737 return 1; 1738 } else if (kern_sym_match(args, name, type)) { 1739 args->duplicate = true; 1740 return 1; 1741 } 1742 } else if (kern_sym_match(args, name, type)) { 1743 args->started = true; 1744 args->start = start; 1745 } 1746 1747 return 0; 1748 } 1749 1750 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1751 { 1752 struct sym_args *args = arg; 1753 1754 if (kern_sym_match(args, name, type)) { 1755 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1756 ++args->cnt, start, type, name); 1757 args->near = true; 1758 } else if (args->near) { 1759 args->near = false; 1760 pr_err("\t\twhich is near\t\t%s\n", name); 1761 } 1762 1763 return 0; 1764 } 1765 1766 static int sym_not_found_error(const char *sym_name, int idx) 1767 { 1768 if (idx > 0) { 1769 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 1770 idx, sym_name); 1771 } else if (!idx) { 1772 pr_err("Global symbol '%s' not found.\n", sym_name); 1773 } else { 1774 pr_err("Symbol '%s' not found.\n", sym_name); 1775 } 1776 pr_err("Note that symbols must be functions.\n"); 1777 1778 return -EINVAL; 1779 } 1780 1781 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 1782 { 1783 struct sym_args args = { 1784 .name = sym_name, 1785 .idx = idx, 1786 .global = !idx, 1787 .selected = idx > 0, 1788 }; 1789 int err; 1790 1791 *start = 0; 1792 *size = 0; 1793 1794 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 1795 if (err < 0) { 1796 pr_err("Failed to parse /proc/kallsyms\n"); 1797 return err; 1798 } 1799 1800 if (args.duplicate) { 1801 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 1802 args.cnt = 0; 1803 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 1804 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1805 sym_name); 1806 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1807 return -EINVAL; 1808 } 1809 1810 if (!args.started) { 1811 pr_err("Kernel symbol lookup: "); 1812 return sym_not_found_error(sym_name, idx); 1813 } 1814 1815 *start = args.start; 1816 *size = args.size; 1817 1818 return 0; 1819 } 1820 1821 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 1822 char type, u64 start) 1823 { 1824 struct sym_args *args = arg; 1825 1826 if (!kallsyms__is_function(type)) 1827 return 0; 1828 1829 if (!args->started) { 1830 args->started = true; 1831 args->start = start; 1832 } 1833 /* Don't know exactly where the kernel ends, so we add a page */ 1834 args->size = round_up(start, page_size) + page_size - args->start; 1835 1836 return 0; 1837 } 1838 1839 static int addr_filter__entire_kernel(struct addr_filter *filt) 1840 { 1841 struct sym_args args = { .started = false }; 1842 int err; 1843 1844 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 1845 if (err < 0 || !args.started) { 1846 pr_err("Failed to parse /proc/kallsyms\n"); 1847 return err; 1848 } 1849 1850 filt->addr = args.start; 1851 filt->size = args.size; 1852 1853 return 0; 1854 } 1855 1856 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 1857 { 1858 if (start + size >= filt->addr) 1859 return 0; 1860 1861 if (filt->sym_from) { 1862 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 1863 filt->sym_to, start, filt->sym_from, filt->addr); 1864 } else { 1865 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 1866 filt->sym_to, start, filt->addr); 1867 } 1868 1869 return -EINVAL; 1870 } 1871 1872 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 1873 { 1874 bool no_size = false; 1875 u64 start, size; 1876 int err; 1877 1878 if (symbol_conf.kptr_restrict) { 1879 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 1880 return -EINVAL; 1881 } 1882 1883 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 1884 return addr_filter__entire_kernel(filt); 1885 1886 if (filt->sym_from) { 1887 err = find_kern_sym(filt->sym_from, &start, &size, 1888 filt->sym_from_idx); 1889 if (err) 1890 return err; 1891 filt->addr = start; 1892 if (filt->range && !filt->size && !filt->sym_to) { 1893 filt->size = size; 1894 no_size = !size; 1895 } 1896 } 1897 1898 if (filt->sym_to) { 1899 err = find_kern_sym(filt->sym_to, &start, &size, 1900 filt->sym_to_idx); 1901 if (err) 1902 return err; 1903 1904 err = check_end_after_start(filt, start, size); 1905 if (err) 1906 return err; 1907 filt->size = start + size - filt->addr; 1908 no_size = !size; 1909 } 1910 1911 /* The very last symbol in kallsyms does not imply a particular size */ 1912 if (no_size) { 1913 pr_err("Cannot determine size of symbol '%s'\n", 1914 filt->sym_to ? filt->sym_to : filt->sym_from); 1915 return -EINVAL; 1916 } 1917 1918 return 0; 1919 } 1920 1921 static struct dso *load_dso(const char *name) 1922 { 1923 struct map *map; 1924 struct dso *dso; 1925 1926 map = dso__new_map(name); 1927 if (!map) 1928 return NULL; 1929 1930 if (map__load(map) < 0) 1931 pr_err("File '%s' not found or has no symbols.\n", name); 1932 1933 dso = dso__get(map->dso); 1934 1935 map__put(map); 1936 1937 return dso; 1938 } 1939 1940 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 1941 int idx) 1942 { 1943 /* Same name, and global or the n'th found or any */ 1944 return !arch__compare_symbol_names(name, sym->name) && 1945 ((!idx && sym->binding == STB_GLOBAL) || 1946 (idx > 0 && ++*cnt == idx) || 1947 idx < 0); 1948 } 1949 1950 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 1951 { 1952 struct symbol *sym; 1953 bool near = false; 1954 int cnt = 0; 1955 1956 pr_err("Multiple symbols with name '%s'\n", sym_name); 1957 1958 sym = dso__first_symbol(dso); 1959 while (sym) { 1960 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 1961 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1962 ++cnt, sym->start, 1963 sym->binding == STB_GLOBAL ? 'g' : 1964 sym->binding == STB_LOCAL ? 'l' : 'w', 1965 sym->name); 1966 near = true; 1967 } else if (near) { 1968 near = false; 1969 pr_err("\t\twhich is near\t\t%s\n", sym->name); 1970 } 1971 sym = dso__next_symbol(sym); 1972 } 1973 1974 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1975 sym_name); 1976 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1977 } 1978 1979 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 1980 u64 *size, int idx) 1981 { 1982 struct symbol *sym; 1983 int cnt = 0; 1984 1985 *start = 0; 1986 *size = 0; 1987 1988 sym = dso__first_symbol(dso); 1989 while (sym) { 1990 if (*start) { 1991 if (!*size) 1992 *size = sym->start - *start; 1993 if (idx > 0) { 1994 if (*size) 1995 return 1; 1996 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1997 print_duplicate_syms(dso, sym_name); 1998 return -EINVAL; 1999 } 2000 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2001 *start = sym->start; 2002 *size = sym->end - sym->start; 2003 } 2004 sym = dso__next_symbol(sym); 2005 } 2006 2007 if (!*start) 2008 return sym_not_found_error(sym_name, idx); 2009 2010 return 0; 2011 } 2012 2013 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2014 { 2015 if (dso__data_file_size(dso, NULL)) { 2016 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2017 filt->filename); 2018 return -EINVAL; 2019 } 2020 2021 filt->addr = 0; 2022 filt->size = dso->data.file_size; 2023 2024 return 0; 2025 } 2026 2027 static int addr_filter__resolve_syms(struct addr_filter *filt) 2028 { 2029 u64 start, size; 2030 struct dso *dso; 2031 int err = 0; 2032 2033 if (!filt->sym_from && !filt->sym_to) 2034 return 0; 2035 2036 if (!filt->filename) 2037 return addr_filter__resolve_kernel_syms(filt); 2038 2039 dso = load_dso(filt->filename); 2040 if (!dso) { 2041 pr_err("Failed to load symbols from: %s\n", filt->filename); 2042 return -EINVAL; 2043 } 2044 2045 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2046 err = addr_filter__entire_dso(filt, dso); 2047 goto put_dso; 2048 } 2049 2050 if (filt->sym_from) { 2051 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2052 filt->sym_from_idx); 2053 if (err) 2054 goto put_dso; 2055 filt->addr = start; 2056 if (filt->range && !filt->size && !filt->sym_to) 2057 filt->size = size; 2058 } 2059 2060 if (filt->sym_to) { 2061 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2062 filt->sym_to_idx); 2063 if (err) 2064 goto put_dso; 2065 2066 err = check_end_after_start(filt, start, size); 2067 if (err) 2068 return err; 2069 2070 filt->size = start + size - filt->addr; 2071 } 2072 2073 put_dso: 2074 dso__put(dso); 2075 2076 return err; 2077 } 2078 2079 static char *addr_filter__to_str(struct addr_filter *filt) 2080 { 2081 char filename_buf[PATH_MAX]; 2082 const char *at = ""; 2083 const char *fn = ""; 2084 char *filter; 2085 int err; 2086 2087 if (filt->filename) { 2088 at = "@"; 2089 fn = realpath(filt->filename, filename_buf); 2090 if (!fn) 2091 return NULL; 2092 } 2093 2094 if (filt->range) { 2095 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2096 filt->action, filt->addr, filt->size, at, fn); 2097 } else { 2098 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2099 filt->action, filt->addr, at, fn); 2100 } 2101 2102 return err < 0 ? NULL : filter; 2103 } 2104 2105 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2106 int max_nr) 2107 { 2108 struct addr_filters filts; 2109 struct addr_filter *filt; 2110 int err; 2111 2112 addr_filters__init(&filts); 2113 2114 err = addr_filters__parse_bare_filter(&filts, filter); 2115 if (err) 2116 goto out_exit; 2117 2118 if (filts.cnt > max_nr) { 2119 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2120 filts.cnt, max_nr); 2121 err = -EINVAL; 2122 goto out_exit; 2123 } 2124 2125 list_for_each_entry(filt, &filts.head, list) { 2126 char *new_filter; 2127 2128 err = addr_filter__resolve_syms(filt); 2129 if (err) 2130 goto out_exit; 2131 2132 new_filter = addr_filter__to_str(filt); 2133 if (!new_filter) { 2134 err = -ENOMEM; 2135 goto out_exit; 2136 } 2137 2138 if (perf_evsel__append_addr_filter(evsel, new_filter)) { 2139 err = -ENOMEM; 2140 goto out_exit; 2141 } 2142 } 2143 2144 out_exit: 2145 addr_filters__exit(&filts); 2146 2147 if (err) { 2148 pr_err("Failed to parse address filter: '%s'\n", filter); 2149 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2150 pr_err("Where multiple filters are separated by space or comma.\n"); 2151 } 2152 2153 return err; 2154 } 2155 2156 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel) 2157 { 2158 struct perf_pmu *pmu = NULL; 2159 2160 while ((pmu = perf_pmu__scan(pmu)) != NULL) { 2161 if (pmu->type == evsel->core.attr.type) 2162 break; 2163 } 2164 2165 return pmu; 2166 } 2167 2168 static int perf_evsel__nr_addr_filter(struct evsel *evsel) 2169 { 2170 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 2171 int nr_addr_filters = 0; 2172 2173 if (!pmu) 2174 return 0; 2175 2176 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2177 2178 return nr_addr_filters; 2179 } 2180 2181 int auxtrace_parse_filters(struct evlist *evlist) 2182 { 2183 struct evsel *evsel; 2184 char *filter; 2185 int err, max_nr; 2186 2187 evlist__for_each_entry(evlist, evsel) { 2188 filter = evsel->filter; 2189 max_nr = perf_evsel__nr_addr_filter(evsel); 2190 if (!filter || !max_nr) 2191 continue; 2192 evsel->filter = NULL; 2193 err = parse_addr_filter(evsel, filter, max_nr); 2194 free(filter); 2195 if (err) 2196 return err; 2197 pr_debug("Address filter: %s\n", evsel->filter); 2198 } 2199 2200 return 0; 2201 } 2202 2203 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2204 struct perf_sample *sample, struct perf_tool *tool) 2205 { 2206 if (!session->auxtrace) 2207 return 0; 2208 2209 return session->auxtrace->process_event(session, event, sample, tool); 2210 } 2211 2212 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2213 { 2214 if (!session->auxtrace) 2215 return 0; 2216 2217 return session->auxtrace->flush_events(session, tool); 2218 } 2219 2220 void auxtrace__free_events(struct perf_session *session) 2221 { 2222 if (!session->auxtrace) 2223 return; 2224 2225 return session->auxtrace->free_events(session); 2226 } 2227 2228 void auxtrace__free(struct perf_session *session) 2229 { 2230 if (!session->auxtrace) 2231 return; 2232 2233 return session->auxtrace->free(session); 2234 } 2235