xref: /linux/tools/perf/util/auxtrace.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63 
64 /*
65  * Make a group from 'leader' to 'last', requiring that the events were not
66  * already grouped to a different leader.
67  */
68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 	struct evsel *evsel;
71 	bool grp;
72 
73 	if (!evsel__is_group_leader(leader))
74 		return -EINVAL;
75 
76 	grp = false;
77 	evlist__for_each_entry(evlist, evsel) {
78 		if (grp) {
79 			if (!(evsel__leader(evsel) == leader ||
80 			     (evsel__leader(evsel) == evsel &&
81 			      evsel->core.nr_members <= 1)))
82 				return -EINVAL;
83 		} else if (evsel == leader) {
84 			grp = true;
85 		}
86 		if (evsel == last)
87 			break;
88 	}
89 
90 	grp = false;
91 	evlist__for_each_entry(evlist, evsel) {
92 		if (grp) {
93 			if (!evsel__has_leader(evsel, leader)) {
94 				evsel__set_leader(evsel, leader);
95 				if (leader->core.nr_members < 1)
96 					leader->core.nr_members = 1;
97 				leader->core.nr_members += 1;
98 			}
99 		} else if (evsel == leader) {
100 			grp = true;
101 		}
102 		if (evsel == last)
103 			break;
104 	}
105 
106 	return 0;
107 }
108 
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 	return !session->itrace_synth_opts ||
112 	       session->itrace_synth_opts->dont_decode;
113 }
114 
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 			struct auxtrace_mmap_params *mp,
117 			void *userpg, int fd)
118 {
119 	struct perf_event_mmap_page *pc = userpg;
120 
121 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122 
123 	mm->userpg = userpg;
124 	mm->mask = mp->mask;
125 	mm->len = mp->len;
126 	mm->prev = 0;
127 	mm->idx = mp->idx;
128 	mm->tid = mp->tid;
129 	mm->cpu = mp->cpu.cpu;
130 
131 	if (!mp->len || !mp->mmap_needed) {
132 		mm->base = NULL;
133 		return 0;
134 	}
135 
136 	pc->aux_offset = mp->offset;
137 	pc->aux_size = mp->len;
138 
139 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 	if (mm->base == MAP_FAILED) {
141 		pr_debug2("failed to mmap AUX area\n");
142 		mm->base = NULL;
143 		return -1;
144 	}
145 
146 	return 0;
147 }
148 
149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 	if (mm->base) {
152 		munmap(mm->base, mm->len);
153 		mm->base = NULL;
154 	}
155 }
156 
157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 				off_t auxtrace_offset,
159 				unsigned int auxtrace_pages,
160 				bool auxtrace_overwrite)
161 {
162 	if (auxtrace_pages) {
163 		mp->offset = auxtrace_offset;
164 		mp->len = auxtrace_pages * (size_t)page_size;
165 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 		pr_debug2("AUX area mmap length %zu\n", mp->len);
168 	} else {
169 		mp->len = 0;
170 	}
171 }
172 
173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 				   struct evlist *evlist,
175 				   struct evsel *evsel, int idx)
176 {
177 	bool per_cpu = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
178 
179 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
180 
181 	if (!mp->mmap_needed)
182 		return;
183 
184 	mp->idx = idx;
185 
186 	if (per_cpu) {
187 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 		if (evlist->core.threads)
189 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 		else
191 			mp->tid = -1;
192 	} else {
193 		mp->cpu.cpu = -1;
194 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 	}
196 }
197 
198 #define AUXTRACE_INIT_NR_QUEUES	32
199 
200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 	struct auxtrace_queue *queue_array;
203 	unsigned int max_nr_queues, i;
204 
205 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 	if (nr_queues > max_nr_queues)
207 		return NULL;
208 
209 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 	if (!queue_array)
211 		return NULL;
212 
213 	for (i = 0; i < nr_queues; i++) {
214 		INIT_LIST_HEAD(&queue_array[i].head);
215 		queue_array[i].priv = NULL;
216 	}
217 
218 	return queue_array;
219 }
220 
221 int auxtrace_queues__init(struct auxtrace_queues *queues)
222 {
223 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
224 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 	if (!queues->queue_array)
226 		return -ENOMEM;
227 	return 0;
228 }
229 
230 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
231 				 unsigned int new_nr_queues)
232 {
233 	unsigned int nr_queues = queues->nr_queues;
234 	struct auxtrace_queue *queue_array;
235 	unsigned int i;
236 
237 	if (!nr_queues)
238 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
239 
240 	while (nr_queues && nr_queues < new_nr_queues)
241 		nr_queues <<= 1;
242 
243 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
244 		return -EINVAL;
245 
246 	queue_array = auxtrace_alloc_queue_array(nr_queues);
247 	if (!queue_array)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < queues->nr_queues; i++) {
251 		list_splice_tail(&queues->queue_array[i].head,
252 				 &queue_array[i].head);
253 		queue_array[i].tid = queues->queue_array[i].tid;
254 		queue_array[i].cpu = queues->queue_array[i].cpu;
255 		queue_array[i].set = queues->queue_array[i].set;
256 		queue_array[i].priv = queues->queue_array[i].priv;
257 	}
258 
259 	queues->nr_queues = nr_queues;
260 	queues->queue_array = queue_array;
261 
262 	return 0;
263 }
264 
265 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
266 {
267 	int fd = perf_data__fd(session->data);
268 	void *p;
269 	ssize_t ret;
270 
271 	if (size > SSIZE_MAX)
272 		return NULL;
273 
274 	p = malloc(size);
275 	if (!p)
276 		return NULL;
277 
278 	ret = readn(fd, p, size);
279 	if (ret != (ssize_t)size) {
280 		free(p);
281 		return NULL;
282 	}
283 
284 	return p;
285 }
286 
287 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
288 					 unsigned int idx,
289 					 struct auxtrace_buffer *buffer)
290 {
291 	struct auxtrace_queue *queue;
292 	int err;
293 
294 	if (idx >= queues->nr_queues) {
295 		err = auxtrace_queues__grow(queues, idx + 1);
296 		if (err)
297 			return err;
298 	}
299 
300 	queue = &queues->queue_array[idx];
301 
302 	if (!queue->set) {
303 		queue->set = true;
304 		queue->tid = buffer->tid;
305 		queue->cpu = buffer->cpu.cpu;
306 	}
307 
308 	buffer->buffer_nr = queues->next_buffer_nr++;
309 
310 	list_add_tail(&buffer->list, &queue->head);
311 
312 	queues->new_data = true;
313 	queues->populated = true;
314 
315 	return 0;
316 }
317 
318 /* Limit buffers to 32MiB on 32-bit */
319 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
320 
321 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
322 					 unsigned int idx,
323 					 struct auxtrace_buffer *buffer)
324 {
325 	u64 sz = buffer->size;
326 	bool consecutive = false;
327 	struct auxtrace_buffer *b;
328 	int err;
329 
330 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
331 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
332 		if (!b)
333 			return -ENOMEM;
334 		b->size = BUFFER_LIMIT_FOR_32_BIT;
335 		b->consecutive = consecutive;
336 		err = auxtrace_queues__queue_buffer(queues, idx, b);
337 		if (err) {
338 			auxtrace_buffer__free(b);
339 			return err;
340 		}
341 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
342 		sz -= BUFFER_LIMIT_FOR_32_BIT;
343 		consecutive = true;
344 	}
345 
346 	buffer->size = sz;
347 	buffer->consecutive = consecutive;
348 
349 	return 0;
350 }
351 
352 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
353 {
354 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
355 
356 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
357 }
358 
359 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
360 				       struct perf_session *session,
361 				       unsigned int idx,
362 				       struct auxtrace_buffer *buffer,
363 				       struct auxtrace_buffer **buffer_ptr)
364 {
365 	int err = -ENOMEM;
366 
367 	if (filter_cpu(session, buffer->cpu))
368 		return 0;
369 
370 	buffer = memdup(buffer, sizeof(*buffer));
371 	if (!buffer)
372 		return -ENOMEM;
373 
374 	if (session->one_mmap) {
375 		buffer->data = buffer->data_offset - session->one_mmap_offset +
376 			       session->one_mmap_addr;
377 	} else if (perf_data__is_pipe(session->data)) {
378 		buffer->data = auxtrace_copy_data(buffer->size, session);
379 		if (!buffer->data)
380 			goto out_free;
381 		buffer->data_needs_freeing = true;
382 	} else if (BITS_PER_LONG == 32 &&
383 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
384 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
385 		if (err)
386 			goto out_free;
387 	}
388 
389 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
390 	if (err)
391 		goto out_free;
392 
393 	/* FIXME: Doesn't work for split buffer */
394 	if (buffer_ptr)
395 		*buffer_ptr = buffer;
396 
397 	return 0;
398 
399 out_free:
400 	auxtrace_buffer__free(buffer);
401 	return err;
402 }
403 
404 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
405 			       struct perf_session *session,
406 			       union perf_event *event, off_t data_offset,
407 			       struct auxtrace_buffer **buffer_ptr)
408 {
409 	struct auxtrace_buffer buffer = {
410 		.pid = -1,
411 		.tid = event->auxtrace.tid,
412 		.cpu = { event->auxtrace.cpu },
413 		.data_offset = data_offset,
414 		.offset = event->auxtrace.offset,
415 		.reference = event->auxtrace.reference,
416 		.size = event->auxtrace.size,
417 	};
418 	unsigned int idx = event->auxtrace.idx;
419 
420 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
421 					   buffer_ptr);
422 }
423 
424 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
425 					      struct perf_session *session,
426 					      off_t file_offset, size_t sz)
427 {
428 	union perf_event *event;
429 	int err;
430 	char buf[PERF_SAMPLE_MAX_SIZE];
431 
432 	err = perf_session__peek_event(session, file_offset, buf,
433 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
434 	if (err)
435 		return err;
436 
437 	if (event->header.type == PERF_RECORD_AUXTRACE) {
438 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
439 		    event->header.size != sz) {
440 			err = -EINVAL;
441 			goto out;
442 		}
443 		file_offset += event->header.size;
444 		err = auxtrace_queues__add_event(queues, session, event,
445 						 file_offset, NULL);
446 	}
447 out:
448 	return err;
449 }
450 
451 void auxtrace_queues__free(struct auxtrace_queues *queues)
452 {
453 	unsigned int i;
454 
455 	for (i = 0; i < queues->nr_queues; i++) {
456 		while (!list_empty(&queues->queue_array[i].head)) {
457 			struct auxtrace_buffer *buffer;
458 
459 			buffer = list_entry(queues->queue_array[i].head.next,
460 					    struct auxtrace_buffer, list);
461 			list_del_init(&buffer->list);
462 			auxtrace_buffer__free(buffer);
463 		}
464 	}
465 
466 	zfree(&queues->queue_array);
467 	queues->nr_queues = 0;
468 }
469 
470 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
471 			     unsigned int pos, unsigned int queue_nr,
472 			     u64 ordinal)
473 {
474 	unsigned int parent;
475 
476 	while (pos) {
477 		parent = (pos - 1) >> 1;
478 		if (heap_array[parent].ordinal <= ordinal)
479 			break;
480 		heap_array[pos] = heap_array[parent];
481 		pos = parent;
482 	}
483 	heap_array[pos].queue_nr = queue_nr;
484 	heap_array[pos].ordinal = ordinal;
485 }
486 
487 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
488 		       u64 ordinal)
489 {
490 	struct auxtrace_heap_item *heap_array;
491 
492 	if (queue_nr >= heap->heap_sz) {
493 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
494 
495 		while (heap_sz <= queue_nr)
496 			heap_sz <<= 1;
497 		heap_array = realloc(heap->heap_array,
498 				     heap_sz * sizeof(struct auxtrace_heap_item));
499 		if (!heap_array)
500 			return -ENOMEM;
501 		heap->heap_array = heap_array;
502 		heap->heap_sz = heap_sz;
503 	}
504 
505 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
506 
507 	return 0;
508 }
509 
510 void auxtrace_heap__free(struct auxtrace_heap *heap)
511 {
512 	zfree(&heap->heap_array);
513 	heap->heap_cnt = 0;
514 	heap->heap_sz = 0;
515 }
516 
517 void auxtrace_heap__pop(struct auxtrace_heap *heap)
518 {
519 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
520 	struct auxtrace_heap_item *heap_array;
521 
522 	if (!heap_cnt)
523 		return;
524 
525 	heap->heap_cnt -= 1;
526 
527 	heap_array = heap->heap_array;
528 
529 	pos = 0;
530 	while (1) {
531 		unsigned int left, right;
532 
533 		left = (pos << 1) + 1;
534 		if (left >= heap_cnt)
535 			break;
536 		right = left + 1;
537 		if (right >= heap_cnt) {
538 			heap_array[pos] = heap_array[left];
539 			return;
540 		}
541 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
542 			heap_array[pos] = heap_array[left];
543 			pos = left;
544 		} else {
545 			heap_array[pos] = heap_array[right];
546 			pos = right;
547 		}
548 	}
549 
550 	last = heap_cnt - 1;
551 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
552 			 heap_array[last].ordinal);
553 }
554 
555 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
556 				       struct evlist *evlist)
557 {
558 	if (itr)
559 		return itr->info_priv_size(itr, evlist);
560 	return 0;
561 }
562 
563 static int auxtrace_not_supported(void)
564 {
565 	pr_err("AUX area tracing is not supported on this architecture\n");
566 	return -EINVAL;
567 }
568 
569 int auxtrace_record__info_fill(struct auxtrace_record *itr,
570 			       struct perf_session *session,
571 			       struct perf_record_auxtrace_info *auxtrace_info,
572 			       size_t priv_size)
573 {
574 	if (itr)
575 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
576 	return auxtrace_not_supported();
577 }
578 
579 void auxtrace_record__free(struct auxtrace_record *itr)
580 {
581 	if (itr)
582 		itr->free(itr);
583 }
584 
585 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
586 {
587 	if (itr && itr->snapshot_start)
588 		return itr->snapshot_start(itr);
589 	return 0;
590 }
591 
592 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
593 {
594 	if (!on_exit && itr && itr->snapshot_finish)
595 		return itr->snapshot_finish(itr);
596 	return 0;
597 }
598 
599 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
600 				   struct auxtrace_mmap *mm,
601 				   unsigned char *data, u64 *head, u64 *old)
602 {
603 	if (itr && itr->find_snapshot)
604 		return itr->find_snapshot(itr, idx, mm, data, head, old);
605 	return 0;
606 }
607 
608 int auxtrace_record__options(struct auxtrace_record *itr,
609 			     struct evlist *evlist,
610 			     struct record_opts *opts)
611 {
612 	if (itr) {
613 		itr->evlist = evlist;
614 		return itr->recording_options(itr, evlist, opts);
615 	}
616 	return 0;
617 }
618 
619 u64 auxtrace_record__reference(struct auxtrace_record *itr)
620 {
621 	if (itr)
622 		return itr->reference(itr);
623 	return 0;
624 }
625 
626 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
627 				    struct record_opts *opts, const char *str)
628 {
629 	if (!str)
630 		return 0;
631 
632 	/* PMU-agnostic options */
633 	switch (*str) {
634 	case 'e':
635 		opts->auxtrace_snapshot_on_exit = true;
636 		str++;
637 		break;
638 	default:
639 		break;
640 	}
641 
642 	if (itr && itr->parse_snapshot_options)
643 		return itr->parse_snapshot_options(itr, opts, str);
644 
645 	pr_err("No AUX area tracing to snapshot\n");
646 	return -EINVAL;
647 }
648 
649 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
650 {
651 	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
652 
653 	if (per_cpu_mmaps) {
654 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
655 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
656 
657 		if (cpu_map_idx == -1)
658 			return -EINVAL;
659 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
660 	}
661 
662 	return perf_evsel__enable_thread(&evsel->core, idx);
663 }
664 
665 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
666 {
667 	struct evsel *evsel;
668 
669 	if (!itr->evlist || !itr->pmu)
670 		return -EINVAL;
671 
672 	evlist__for_each_entry(itr->evlist, evsel) {
673 		if (evsel->core.attr.type == itr->pmu->type) {
674 			if (evsel->disabled)
675 				return 0;
676 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
677 		}
678 	}
679 	return -EINVAL;
680 }
681 
682 /*
683  * Event record size is 16-bit which results in a maximum size of about 64KiB.
684  * Allow about 4KiB for the rest of the sample record, to give a maximum
685  * AUX area sample size of 60KiB.
686  */
687 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
688 
689 /* Arbitrary default size if no other default provided */
690 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
691 
692 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
693 					     struct record_opts *opts)
694 {
695 	struct evsel *evsel;
696 	bool has_aux_leader = false;
697 	u32 sz;
698 
699 	evlist__for_each_entry(evlist, evsel) {
700 		sz = evsel->core.attr.aux_sample_size;
701 		if (evsel__is_group_leader(evsel)) {
702 			has_aux_leader = evsel__is_aux_event(evsel);
703 			if (sz) {
704 				if (has_aux_leader)
705 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
706 				else
707 					pr_err("Cannot add AUX area sampling to a group leader\n");
708 				return -EINVAL;
709 			}
710 		}
711 		if (sz > MAX_AUX_SAMPLE_SIZE) {
712 			pr_err("AUX area sample size %u too big, max. %d\n",
713 			       sz, MAX_AUX_SAMPLE_SIZE);
714 			return -EINVAL;
715 		}
716 		if (sz) {
717 			if (!has_aux_leader) {
718 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
719 				return -EINVAL;
720 			}
721 			evsel__set_sample_bit(evsel, AUX);
722 			opts->auxtrace_sample_mode = true;
723 		} else {
724 			evsel__reset_sample_bit(evsel, AUX);
725 		}
726 	}
727 
728 	if (!opts->auxtrace_sample_mode) {
729 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
730 		return -EINVAL;
731 	}
732 
733 	if (!perf_can_aux_sample()) {
734 		pr_err("AUX area sampling is not supported by kernel\n");
735 		return -EINVAL;
736 	}
737 
738 	return 0;
739 }
740 
741 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
742 				  struct evlist *evlist,
743 				  struct record_opts *opts, const char *str)
744 {
745 	struct evsel_config_term *term;
746 	struct evsel *aux_evsel;
747 	bool has_aux_sample_size = false;
748 	bool has_aux_leader = false;
749 	struct evsel *evsel;
750 	char *endptr;
751 	unsigned long sz;
752 
753 	if (!str)
754 		goto no_opt;
755 
756 	if (!itr) {
757 		pr_err("No AUX area event to sample\n");
758 		return -EINVAL;
759 	}
760 
761 	sz = strtoul(str, &endptr, 0);
762 	if (*endptr || sz > UINT_MAX) {
763 		pr_err("Bad AUX area sampling option: '%s'\n", str);
764 		return -EINVAL;
765 	}
766 
767 	if (!sz)
768 		sz = itr->default_aux_sample_size;
769 
770 	if (!sz)
771 		sz = DEFAULT_AUX_SAMPLE_SIZE;
772 
773 	/* Set aux_sample_size based on --aux-sample option */
774 	evlist__for_each_entry(evlist, evsel) {
775 		if (evsel__is_group_leader(evsel)) {
776 			has_aux_leader = evsel__is_aux_event(evsel);
777 		} else if (has_aux_leader) {
778 			evsel->core.attr.aux_sample_size = sz;
779 		}
780 	}
781 no_opt:
782 	aux_evsel = NULL;
783 	/* Override with aux_sample_size from config term */
784 	evlist__for_each_entry(evlist, evsel) {
785 		if (evsel__is_aux_event(evsel))
786 			aux_evsel = evsel;
787 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
788 		if (term) {
789 			has_aux_sample_size = true;
790 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
791 			/* If possible, group with the AUX event */
792 			if (aux_evsel && evsel->core.attr.aux_sample_size)
793 				evlist__regroup(evlist, aux_evsel, evsel);
794 		}
795 	}
796 
797 	if (!str && !has_aux_sample_size)
798 		return 0;
799 
800 	if (!itr) {
801 		pr_err("No AUX area event to sample\n");
802 		return -EINVAL;
803 	}
804 
805 	return auxtrace_validate_aux_sample_size(evlist, opts);
806 }
807 
808 void auxtrace_regroup_aux_output(struct evlist *evlist)
809 {
810 	struct evsel *evsel, *aux_evsel = NULL;
811 	struct evsel_config_term *term;
812 
813 	evlist__for_each_entry(evlist, evsel) {
814 		if (evsel__is_aux_event(evsel))
815 			aux_evsel = evsel;
816 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
817 		/* If possible, group with the AUX event */
818 		if (term && aux_evsel)
819 			evlist__regroup(evlist, aux_evsel, evsel);
820 	}
821 }
822 
823 struct auxtrace_record *__weak
824 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
825 {
826 	*err = 0;
827 	return NULL;
828 }
829 
830 static int auxtrace_index__alloc(struct list_head *head)
831 {
832 	struct auxtrace_index *auxtrace_index;
833 
834 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
835 	if (!auxtrace_index)
836 		return -ENOMEM;
837 
838 	auxtrace_index->nr = 0;
839 	INIT_LIST_HEAD(&auxtrace_index->list);
840 
841 	list_add_tail(&auxtrace_index->list, head);
842 
843 	return 0;
844 }
845 
846 void auxtrace_index__free(struct list_head *head)
847 {
848 	struct auxtrace_index *auxtrace_index, *n;
849 
850 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
851 		list_del_init(&auxtrace_index->list);
852 		free(auxtrace_index);
853 	}
854 }
855 
856 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
857 {
858 	struct auxtrace_index *auxtrace_index;
859 	int err;
860 
861 	if (list_empty(head)) {
862 		err = auxtrace_index__alloc(head);
863 		if (err)
864 			return NULL;
865 	}
866 
867 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
868 
869 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
870 		err = auxtrace_index__alloc(head);
871 		if (err)
872 			return NULL;
873 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
874 					    list);
875 	}
876 
877 	return auxtrace_index;
878 }
879 
880 int auxtrace_index__auxtrace_event(struct list_head *head,
881 				   union perf_event *event, off_t file_offset)
882 {
883 	struct auxtrace_index *auxtrace_index;
884 	size_t nr;
885 
886 	auxtrace_index = auxtrace_index__last(head);
887 	if (!auxtrace_index)
888 		return -ENOMEM;
889 
890 	nr = auxtrace_index->nr;
891 	auxtrace_index->entries[nr].file_offset = file_offset;
892 	auxtrace_index->entries[nr].sz = event->header.size;
893 	auxtrace_index->nr += 1;
894 
895 	return 0;
896 }
897 
898 static int auxtrace_index__do_write(int fd,
899 				    struct auxtrace_index *auxtrace_index)
900 {
901 	struct auxtrace_index_entry ent;
902 	size_t i;
903 
904 	for (i = 0; i < auxtrace_index->nr; i++) {
905 		ent.file_offset = auxtrace_index->entries[i].file_offset;
906 		ent.sz = auxtrace_index->entries[i].sz;
907 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
908 			return -errno;
909 	}
910 	return 0;
911 }
912 
913 int auxtrace_index__write(int fd, struct list_head *head)
914 {
915 	struct auxtrace_index *auxtrace_index;
916 	u64 total = 0;
917 	int err;
918 
919 	list_for_each_entry(auxtrace_index, head, list)
920 		total += auxtrace_index->nr;
921 
922 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
923 		return -errno;
924 
925 	list_for_each_entry(auxtrace_index, head, list) {
926 		err = auxtrace_index__do_write(fd, auxtrace_index);
927 		if (err)
928 			return err;
929 	}
930 
931 	return 0;
932 }
933 
934 static int auxtrace_index__process_entry(int fd, struct list_head *head,
935 					 bool needs_swap)
936 {
937 	struct auxtrace_index *auxtrace_index;
938 	struct auxtrace_index_entry ent;
939 	size_t nr;
940 
941 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
942 		return -1;
943 
944 	auxtrace_index = auxtrace_index__last(head);
945 	if (!auxtrace_index)
946 		return -1;
947 
948 	nr = auxtrace_index->nr;
949 	if (needs_swap) {
950 		auxtrace_index->entries[nr].file_offset =
951 						bswap_64(ent.file_offset);
952 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
953 	} else {
954 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
955 		auxtrace_index->entries[nr].sz = ent.sz;
956 	}
957 
958 	auxtrace_index->nr = nr + 1;
959 
960 	return 0;
961 }
962 
963 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
964 			    bool needs_swap)
965 {
966 	struct list_head *head = &session->auxtrace_index;
967 	u64 nr;
968 
969 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
970 		return -1;
971 
972 	if (needs_swap)
973 		nr = bswap_64(nr);
974 
975 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
976 		return -1;
977 
978 	while (nr--) {
979 		int err;
980 
981 		err = auxtrace_index__process_entry(fd, head, needs_swap);
982 		if (err)
983 			return -1;
984 	}
985 
986 	return 0;
987 }
988 
989 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
990 						struct perf_session *session,
991 						struct auxtrace_index_entry *ent)
992 {
993 	return auxtrace_queues__add_indexed_event(queues, session,
994 						  ent->file_offset, ent->sz);
995 }
996 
997 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
998 				   struct perf_session *session)
999 {
1000 	struct auxtrace_index *auxtrace_index;
1001 	struct auxtrace_index_entry *ent;
1002 	size_t i;
1003 	int err;
1004 
1005 	if (auxtrace__dont_decode(session))
1006 		return 0;
1007 
1008 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1009 		for (i = 0; i < auxtrace_index->nr; i++) {
1010 			ent = &auxtrace_index->entries[i];
1011 			err = auxtrace_queues__process_index_entry(queues,
1012 								   session,
1013 								   ent);
1014 			if (err)
1015 				return err;
1016 		}
1017 	}
1018 	return 0;
1019 }
1020 
1021 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1022 					      struct auxtrace_buffer *buffer)
1023 {
1024 	if (buffer) {
1025 		if (list_is_last(&buffer->list, &queue->head))
1026 			return NULL;
1027 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1028 				  list);
1029 	} else {
1030 		if (list_empty(&queue->head))
1031 			return NULL;
1032 		return list_entry(queue->head.next, struct auxtrace_buffer,
1033 				  list);
1034 	}
1035 }
1036 
1037 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1038 						     struct perf_sample *sample,
1039 						     struct perf_session *session)
1040 {
1041 	struct perf_sample_id *sid;
1042 	unsigned int idx;
1043 	u64 id;
1044 
1045 	id = sample->id;
1046 	if (!id)
1047 		return NULL;
1048 
1049 	sid = evlist__id2sid(session->evlist, id);
1050 	if (!sid)
1051 		return NULL;
1052 
1053 	idx = sid->idx;
1054 
1055 	if (idx >= queues->nr_queues)
1056 		return NULL;
1057 
1058 	return &queues->queue_array[idx];
1059 }
1060 
1061 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1062 				struct perf_session *session,
1063 				struct perf_sample *sample, u64 data_offset,
1064 				u64 reference)
1065 {
1066 	struct auxtrace_buffer buffer = {
1067 		.pid = -1,
1068 		.data_offset = data_offset,
1069 		.reference = reference,
1070 		.size = sample->aux_sample.size,
1071 	};
1072 	struct perf_sample_id *sid;
1073 	u64 id = sample->id;
1074 	unsigned int idx;
1075 
1076 	if (!id)
1077 		return -EINVAL;
1078 
1079 	sid = evlist__id2sid(session->evlist, id);
1080 	if (!sid)
1081 		return -ENOENT;
1082 
1083 	idx = sid->idx;
1084 	buffer.tid = sid->tid;
1085 	buffer.cpu = sid->cpu;
1086 
1087 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1088 }
1089 
1090 struct queue_data {
1091 	bool samples;
1092 	bool events;
1093 };
1094 
1095 static int auxtrace_queue_data_cb(struct perf_session *session,
1096 				  union perf_event *event, u64 offset,
1097 				  void *data)
1098 {
1099 	struct queue_data *qd = data;
1100 	struct perf_sample sample;
1101 	int err;
1102 
1103 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1104 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1105 			return -EINVAL;
1106 		offset += event->header.size;
1107 		return session->auxtrace->queue_data(session, NULL, event,
1108 						     offset);
1109 	}
1110 
1111 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1112 		return 0;
1113 
1114 	err = evlist__parse_sample(session->evlist, event, &sample);
1115 	if (err)
1116 		return err;
1117 
1118 	if (!sample.aux_sample.size)
1119 		return 0;
1120 
1121 	offset += sample.aux_sample.data - (void *)event;
1122 
1123 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1124 }
1125 
1126 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1127 {
1128 	struct queue_data qd = {
1129 		.samples = samples,
1130 		.events = events,
1131 	};
1132 
1133 	if (auxtrace__dont_decode(session))
1134 		return 0;
1135 
1136 	if (perf_data__is_pipe(session->data))
1137 		return 0;
1138 
1139 	if (!session->auxtrace || !session->auxtrace->queue_data)
1140 		return -EINVAL;
1141 
1142 	return perf_session__peek_events(session, session->header.data_offset,
1143 					 session->header.data_size,
1144 					 auxtrace_queue_data_cb, &qd);
1145 }
1146 
1147 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1148 {
1149 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1150 	size_t adj = buffer->data_offset & (page_size - 1);
1151 	size_t size = buffer->size + adj;
1152 	off_t file_offset = buffer->data_offset - adj;
1153 	void *addr;
1154 
1155 	if (buffer->data)
1156 		return buffer->data;
1157 
1158 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1159 	if (addr == MAP_FAILED)
1160 		return NULL;
1161 
1162 	buffer->mmap_addr = addr;
1163 	buffer->mmap_size = size;
1164 
1165 	buffer->data = addr + adj;
1166 
1167 	return buffer->data;
1168 }
1169 
1170 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1171 {
1172 	if (!buffer->data || !buffer->mmap_addr)
1173 		return;
1174 	munmap(buffer->mmap_addr, buffer->mmap_size);
1175 	buffer->mmap_addr = NULL;
1176 	buffer->mmap_size = 0;
1177 	buffer->data = NULL;
1178 	buffer->use_data = NULL;
1179 }
1180 
1181 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1182 {
1183 	auxtrace_buffer__put_data(buffer);
1184 	if (buffer->data_needs_freeing) {
1185 		buffer->data_needs_freeing = false;
1186 		zfree(&buffer->data);
1187 		buffer->use_data = NULL;
1188 		buffer->size = 0;
1189 	}
1190 }
1191 
1192 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1193 {
1194 	auxtrace_buffer__drop_data(buffer);
1195 	free(buffer);
1196 }
1197 
1198 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1199 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1200 				const char *msg, u64 timestamp,
1201 				pid_t machine_pid, int vcpu)
1202 {
1203 	size_t size;
1204 
1205 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1206 
1207 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1208 	auxtrace_error->type = type;
1209 	auxtrace_error->code = code;
1210 	auxtrace_error->cpu = cpu;
1211 	auxtrace_error->pid = pid;
1212 	auxtrace_error->tid = tid;
1213 	auxtrace_error->fmt = 1;
1214 	auxtrace_error->ip = ip;
1215 	auxtrace_error->time = timestamp;
1216 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1217 	if (machine_pid) {
1218 		auxtrace_error->fmt = 2;
1219 		auxtrace_error->machine_pid = machine_pid;
1220 		auxtrace_error->vcpu = vcpu;
1221 		size = sizeof(*auxtrace_error);
1222 	} else {
1223 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1224 		       strlen(auxtrace_error->msg) + 1;
1225 	}
1226 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1227 }
1228 
1229 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1230 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1231 			  const char *msg, u64 timestamp)
1232 {
1233 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1234 				   ip, msg, timestamp, 0, -1);
1235 }
1236 
1237 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1238 					 struct perf_tool *tool,
1239 					 struct perf_session *session,
1240 					 perf_event__handler_t process)
1241 {
1242 	union perf_event *ev;
1243 	size_t priv_size;
1244 	int err;
1245 
1246 	pr_debug2("Synthesizing auxtrace information\n");
1247 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1248 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1249 	if (!ev)
1250 		return -ENOMEM;
1251 
1252 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1253 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1254 					priv_size;
1255 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1256 					 priv_size);
1257 	if (err)
1258 		goto out_free;
1259 
1260 	err = process(tool, ev, NULL, NULL);
1261 out_free:
1262 	free(ev);
1263 	return err;
1264 }
1265 
1266 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1267 {
1268 	struct evsel *new_leader = NULL;
1269 	struct evsel *evsel;
1270 
1271 	/* Find new leader for the group */
1272 	evlist__for_each_entry(evlist, evsel) {
1273 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1274 			continue;
1275 		if (!new_leader)
1276 			new_leader = evsel;
1277 		evsel__set_leader(evsel, new_leader);
1278 	}
1279 
1280 	/* Update group information */
1281 	if (new_leader) {
1282 		zfree(&new_leader->group_name);
1283 		new_leader->group_name = leader->group_name;
1284 		leader->group_name = NULL;
1285 
1286 		new_leader->core.nr_members = leader->core.nr_members - 1;
1287 		leader->core.nr_members = 1;
1288 	}
1289 }
1290 
1291 static void unleader_auxtrace(struct perf_session *session)
1292 {
1293 	struct evsel *evsel;
1294 
1295 	evlist__for_each_entry(session->evlist, evsel) {
1296 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1297 		    evsel__is_group_leader(evsel)) {
1298 			unleader_evsel(session->evlist, evsel);
1299 		}
1300 	}
1301 }
1302 
1303 int perf_event__process_auxtrace_info(struct perf_session *session,
1304 				      union perf_event *event)
1305 {
1306 	enum auxtrace_type type = event->auxtrace_info.type;
1307 	int err;
1308 
1309 	if (dump_trace)
1310 		fprintf(stdout, " type: %u\n", type);
1311 
1312 	switch (type) {
1313 	case PERF_AUXTRACE_INTEL_PT:
1314 		err = intel_pt_process_auxtrace_info(event, session);
1315 		break;
1316 	case PERF_AUXTRACE_INTEL_BTS:
1317 		err = intel_bts_process_auxtrace_info(event, session);
1318 		break;
1319 	case PERF_AUXTRACE_ARM_SPE:
1320 		err = arm_spe_process_auxtrace_info(event, session);
1321 		break;
1322 	case PERF_AUXTRACE_CS_ETM:
1323 		err = cs_etm__process_auxtrace_info(event, session);
1324 		break;
1325 	case PERF_AUXTRACE_S390_CPUMSF:
1326 		err = s390_cpumsf_process_auxtrace_info(event, session);
1327 		break;
1328 	case PERF_AUXTRACE_HISI_PTT:
1329 		err = hisi_ptt_process_auxtrace_info(event, session);
1330 		break;
1331 	case PERF_AUXTRACE_UNKNOWN:
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 
1336 	if (err)
1337 		return err;
1338 
1339 	unleader_auxtrace(session);
1340 
1341 	return 0;
1342 }
1343 
1344 s64 perf_event__process_auxtrace(struct perf_session *session,
1345 				 union perf_event *event)
1346 {
1347 	s64 err;
1348 
1349 	if (dump_trace)
1350 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1351 			event->auxtrace.size, event->auxtrace.offset,
1352 			event->auxtrace.reference, event->auxtrace.idx,
1353 			event->auxtrace.tid, event->auxtrace.cpu);
1354 
1355 	if (auxtrace__dont_decode(session))
1356 		return event->auxtrace.size;
1357 
1358 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1359 		return -EINVAL;
1360 
1361 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1362 	if (err < 0)
1363 		return err;
1364 
1365 	return event->auxtrace.size;
1366 }
1367 
1368 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1369 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1370 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1371 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1372 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1373 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1374 
1375 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1376 				    bool no_sample)
1377 {
1378 	synth_opts->branches = true;
1379 	synth_opts->transactions = true;
1380 	synth_opts->ptwrites = true;
1381 	synth_opts->pwr_events = true;
1382 	synth_opts->other_events = true;
1383 	synth_opts->intr_events = true;
1384 	synth_opts->errors = true;
1385 	synth_opts->flc = true;
1386 	synth_opts->llc = true;
1387 	synth_opts->tlb = true;
1388 	synth_opts->mem = true;
1389 	synth_opts->remote_access = true;
1390 
1391 	if (no_sample) {
1392 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1393 		synth_opts->period = 1;
1394 		synth_opts->calls = true;
1395 	} else {
1396 		synth_opts->instructions = true;
1397 		synth_opts->cycles = true;
1398 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1399 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1400 	}
1401 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1402 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1403 	synth_opts->initial_skip = 0;
1404 }
1405 
1406 static int get_flag(const char **ptr, unsigned int *flags)
1407 {
1408 	while (1) {
1409 		char c = **ptr;
1410 
1411 		if (c >= 'a' && c <= 'z') {
1412 			*flags |= 1 << (c - 'a');
1413 			++*ptr;
1414 			return 0;
1415 		} else if (c == ' ') {
1416 			++*ptr;
1417 			continue;
1418 		} else {
1419 			return -1;
1420 		}
1421 	}
1422 }
1423 
1424 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1425 {
1426 	while (1) {
1427 		switch (**ptr) {
1428 		case '+':
1429 			++*ptr;
1430 			if (get_flag(ptr, plus_flags))
1431 				return -1;
1432 			break;
1433 		case '-':
1434 			++*ptr;
1435 			if (get_flag(ptr, minus_flags))
1436 				return -1;
1437 			break;
1438 		case ' ':
1439 			++*ptr;
1440 			break;
1441 		default:
1442 			return 0;
1443 		}
1444 	}
1445 }
1446 
1447 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1448 
1449 static unsigned int itrace_log_on_error_size(void)
1450 {
1451 	unsigned int sz = 0;
1452 
1453 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1454 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1455 }
1456 
1457 /*
1458  * Please check tools/perf/Documentation/perf-script.txt for information
1459  * about the options parsed here, which is introduced after this cset,
1460  * when support in 'perf script' for these options is introduced.
1461  */
1462 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1463 			       const char *str, int unset)
1464 {
1465 	const char *p;
1466 	char *endptr;
1467 	bool period_type_set = false;
1468 	bool period_set = false;
1469 
1470 	synth_opts->set = true;
1471 
1472 	if (unset) {
1473 		synth_opts->dont_decode = true;
1474 		return 0;
1475 	}
1476 
1477 	if (!str) {
1478 		itrace_synth_opts__set_default(synth_opts,
1479 					       synth_opts->default_no_sample);
1480 		return 0;
1481 	}
1482 
1483 	for (p = str; *p;) {
1484 		switch (*p++) {
1485 		case 'i':
1486 		case 'y':
1487 			if (p[-1] == 'y')
1488 				synth_opts->cycles = true;
1489 			else
1490 				synth_opts->instructions = true;
1491 			while (*p == ' ' || *p == ',')
1492 				p += 1;
1493 			if (isdigit(*p)) {
1494 				synth_opts->period = strtoull(p, &endptr, 10);
1495 				period_set = true;
1496 				p = endptr;
1497 				while (*p == ' ' || *p == ',')
1498 					p += 1;
1499 				switch (*p++) {
1500 				case 'i':
1501 					synth_opts->period_type =
1502 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1503 					period_type_set = true;
1504 					break;
1505 				case 't':
1506 					synth_opts->period_type =
1507 						PERF_ITRACE_PERIOD_TICKS;
1508 					period_type_set = true;
1509 					break;
1510 				case 'm':
1511 					synth_opts->period *= 1000;
1512 					/* Fall through */
1513 				case 'u':
1514 					synth_opts->period *= 1000;
1515 					/* Fall through */
1516 				case 'n':
1517 					if (*p++ != 's')
1518 						goto out_err;
1519 					synth_opts->period_type =
1520 						PERF_ITRACE_PERIOD_NANOSECS;
1521 					period_type_set = true;
1522 					break;
1523 				case '\0':
1524 					goto out;
1525 				default:
1526 					goto out_err;
1527 				}
1528 			}
1529 			break;
1530 		case 'b':
1531 			synth_opts->branches = true;
1532 			break;
1533 		case 'x':
1534 			synth_opts->transactions = true;
1535 			break;
1536 		case 'w':
1537 			synth_opts->ptwrites = true;
1538 			break;
1539 		case 'p':
1540 			synth_opts->pwr_events = true;
1541 			break;
1542 		case 'o':
1543 			synth_opts->other_events = true;
1544 			break;
1545 		case 'I':
1546 			synth_opts->intr_events = true;
1547 			break;
1548 		case 'e':
1549 			synth_opts->errors = true;
1550 			if (get_flags(&p, &synth_opts->error_plus_flags,
1551 				      &synth_opts->error_minus_flags))
1552 				goto out_err;
1553 			break;
1554 		case 'd':
1555 			synth_opts->log = true;
1556 			if (get_flags(&p, &synth_opts->log_plus_flags,
1557 				      &synth_opts->log_minus_flags))
1558 				goto out_err;
1559 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1560 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1561 			break;
1562 		case 'c':
1563 			synth_opts->branches = true;
1564 			synth_opts->calls = true;
1565 			break;
1566 		case 'r':
1567 			synth_opts->branches = true;
1568 			synth_opts->returns = true;
1569 			break;
1570 		case 'G':
1571 		case 'g':
1572 			if (p[-1] == 'G')
1573 				synth_opts->add_callchain = true;
1574 			else
1575 				synth_opts->callchain = true;
1576 			synth_opts->callchain_sz =
1577 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1578 			while (*p == ' ' || *p == ',')
1579 				p += 1;
1580 			if (isdigit(*p)) {
1581 				unsigned int val;
1582 
1583 				val = strtoul(p, &endptr, 10);
1584 				p = endptr;
1585 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1586 					goto out_err;
1587 				synth_opts->callchain_sz = val;
1588 			}
1589 			break;
1590 		case 'L':
1591 		case 'l':
1592 			if (p[-1] == 'L')
1593 				synth_opts->add_last_branch = true;
1594 			else
1595 				synth_opts->last_branch = true;
1596 			synth_opts->last_branch_sz =
1597 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1598 			while (*p == ' ' || *p == ',')
1599 				p += 1;
1600 			if (isdigit(*p)) {
1601 				unsigned int val;
1602 
1603 				val = strtoul(p, &endptr, 10);
1604 				p = endptr;
1605 				if (!val ||
1606 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1607 					goto out_err;
1608 				synth_opts->last_branch_sz = val;
1609 			}
1610 			break;
1611 		case 's':
1612 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1613 			if (p == endptr)
1614 				goto out_err;
1615 			p = endptr;
1616 			break;
1617 		case 'f':
1618 			synth_opts->flc = true;
1619 			break;
1620 		case 'm':
1621 			synth_opts->llc = true;
1622 			break;
1623 		case 't':
1624 			synth_opts->tlb = true;
1625 			break;
1626 		case 'a':
1627 			synth_opts->remote_access = true;
1628 			break;
1629 		case 'M':
1630 			synth_opts->mem = true;
1631 			break;
1632 		case 'q':
1633 			synth_opts->quick += 1;
1634 			break;
1635 		case 'A':
1636 			synth_opts->approx_ipc = true;
1637 			break;
1638 		case 'Z':
1639 			synth_opts->timeless_decoding = true;
1640 			break;
1641 		case 'T':
1642 			synth_opts->use_timestamp = true;
1643 			break;
1644 		case ' ':
1645 		case ',':
1646 			break;
1647 		default:
1648 			goto out_err;
1649 		}
1650 	}
1651 out:
1652 	if (synth_opts->instructions || synth_opts->cycles) {
1653 		if (!period_type_set)
1654 			synth_opts->period_type =
1655 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1656 		if (!period_set)
1657 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1658 	}
1659 
1660 	return 0;
1661 
1662 out_err:
1663 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1664 	return -EINVAL;
1665 }
1666 
1667 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1668 {
1669 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1670 }
1671 
1672 static const char * const auxtrace_error_type_name[] = {
1673 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1674 };
1675 
1676 static const char *auxtrace_error_name(int type)
1677 {
1678 	const char *error_type_name = NULL;
1679 
1680 	if (type < PERF_AUXTRACE_ERROR_MAX)
1681 		error_type_name = auxtrace_error_type_name[type];
1682 	if (!error_type_name)
1683 		error_type_name = "unknown AUX";
1684 	return error_type_name;
1685 }
1686 
1687 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1688 {
1689 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1690 	unsigned long long nsecs = e->time;
1691 	const char *msg = e->msg;
1692 	int ret;
1693 
1694 	ret = fprintf(fp, " %s error type %u",
1695 		      auxtrace_error_name(e->type), e->type);
1696 
1697 	if (e->fmt && nsecs) {
1698 		unsigned long secs = nsecs / NSEC_PER_SEC;
1699 
1700 		nsecs -= secs * NSEC_PER_SEC;
1701 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1702 	} else {
1703 		ret += fprintf(fp, " time 0");
1704 	}
1705 
1706 	if (!e->fmt)
1707 		msg = (const char *)&e->time;
1708 
1709 	if (e->fmt >= 2 && e->machine_pid)
1710 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1711 
1712 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1713 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1714 	return ret;
1715 }
1716 
1717 void perf_session__auxtrace_error_inc(struct perf_session *session,
1718 				      union perf_event *event)
1719 {
1720 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1721 
1722 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1723 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1724 }
1725 
1726 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1727 {
1728 	int i;
1729 
1730 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1731 		if (!stats->nr_auxtrace_errors[i])
1732 			continue;
1733 		ui__warning("%u %s errors\n",
1734 			    stats->nr_auxtrace_errors[i],
1735 			    auxtrace_error_name(i));
1736 	}
1737 }
1738 
1739 int perf_event__process_auxtrace_error(struct perf_session *session,
1740 				       union perf_event *event)
1741 {
1742 	if (auxtrace__dont_decode(session))
1743 		return 0;
1744 
1745 	perf_event__fprintf_auxtrace_error(event, stdout);
1746 	return 0;
1747 }
1748 
1749 /*
1750  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1751  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1752  * the issues caused by the below sequence on multiple CPUs: when perf tool
1753  * accesses either the load operation or the store operation for 64-bit value,
1754  * on some architectures the operation is divided into two instructions, one
1755  * is for accessing the low 32-bit value and another is for the high 32-bit;
1756  * thus these two user operations can give the kernel chances to access the
1757  * 64-bit value, and thus leads to the unexpected load values.
1758  *
1759  *   kernel (64-bit)                        user (32-bit)
1760  *
1761  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1762  *       STORE $aux_data      |       ,--->
1763  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1764  *       STORE ->aux_head   --|-------`     smp_rmb()
1765  *   }                        |             LOAD $data
1766  *                            |             smp_mb()
1767  *                            |             STORE ->aux_tail_lo
1768  *                            `----------->
1769  *                                          STORE ->aux_tail_hi
1770  *
1771  * For this reason, it's impossible for the perf tool to work correctly when
1772  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1773  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1774  * the pointers can be increased monotonically, whatever the buffer size it is,
1775  * at the end the head and tail can be bigger than 4GB and carry out to the
1776  * high 32-bit.
1777  *
1778  * To mitigate the issues and improve the user experience, we can allow the
1779  * perf tool working in certain conditions and bail out with error if detect
1780  * any overflow cannot be handled.
1781  *
1782  * For reading the AUX head, it reads out the values for three times, and
1783  * compares the high 4 bytes of the values between the first time and the last
1784  * time, if there has no change for high 4 bytes injected by the kernel during
1785  * the user reading sequence, it's safe for use the second value.
1786  *
1787  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1788  * 32 bits, it means there have two store operations in user space and it cannot
1789  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1790  * the caller an overflow error has happened.
1791  */
1792 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1793 {
1794 	struct perf_event_mmap_page *pc = mm->userpg;
1795 	u64 first, second, last;
1796 	u64 mask = (u64)(UINT32_MAX) << 32;
1797 
1798 	do {
1799 		first = READ_ONCE(pc->aux_head);
1800 		/* Ensure all reads are done after we read the head */
1801 		smp_rmb();
1802 		second = READ_ONCE(pc->aux_head);
1803 		/* Ensure all reads are done after we read the head */
1804 		smp_rmb();
1805 		last = READ_ONCE(pc->aux_head);
1806 	} while ((first & mask) != (last & mask));
1807 
1808 	return second;
1809 }
1810 
1811 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1812 {
1813 	struct perf_event_mmap_page *pc = mm->userpg;
1814 	u64 mask = (u64)(UINT32_MAX) << 32;
1815 
1816 	if (tail & mask)
1817 		return -1;
1818 
1819 	/* Ensure all reads are done before we write the tail out */
1820 	smp_mb();
1821 	WRITE_ONCE(pc->aux_tail, tail);
1822 	return 0;
1823 }
1824 
1825 static int __auxtrace_mmap__read(struct mmap *map,
1826 				 struct auxtrace_record *itr,
1827 				 struct perf_tool *tool, process_auxtrace_t fn,
1828 				 bool snapshot, size_t snapshot_size)
1829 {
1830 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1831 	u64 head, old = mm->prev, offset, ref;
1832 	unsigned char *data = mm->base;
1833 	size_t size, head_off, old_off, len1, len2, padding;
1834 	union perf_event ev;
1835 	void *data1, *data2;
1836 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1837 
1838 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1839 
1840 	if (snapshot &&
1841 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1842 		return -1;
1843 
1844 	if (old == head)
1845 		return 0;
1846 
1847 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1848 		  mm->idx, old, head, head - old);
1849 
1850 	if (mm->mask) {
1851 		head_off = head & mm->mask;
1852 		old_off = old & mm->mask;
1853 	} else {
1854 		head_off = head % mm->len;
1855 		old_off = old % mm->len;
1856 	}
1857 
1858 	if (head_off > old_off)
1859 		size = head_off - old_off;
1860 	else
1861 		size = mm->len - (old_off - head_off);
1862 
1863 	if (snapshot && size > snapshot_size)
1864 		size = snapshot_size;
1865 
1866 	ref = auxtrace_record__reference(itr);
1867 
1868 	if (head > old || size <= head || mm->mask) {
1869 		offset = head - size;
1870 	} else {
1871 		/*
1872 		 * When the buffer size is not a power of 2, 'head' wraps at the
1873 		 * highest multiple of the buffer size, so we have to subtract
1874 		 * the remainder here.
1875 		 */
1876 		u64 rem = (0ULL - mm->len) % mm->len;
1877 
1878 		offset = head - size - rem;
1879 	}
1880 
1881 	if (size > head_off) {
1882 		len1 = size - head_off;
1883 		data1 = &data[mm->len - len1];
1884 		len2 = head_off;
1885 		data2 = &data[0];
1886 	} else {
1887 		len1 = size;
1888 		data1 = &data[head_off - len1];
1889 		len2 = 0;
1890 		data2 = NULL;
1891 	}
1892 
1893 	if (itr->alignment) {
1894 		unsigned int unwanted = len1 % itr->alignment;
1895 
1896 		len1 -= unwanted;
1897 		size -= unwanted;
1898 	}
1899 
1900 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1901 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1902 	if (padding)
1903 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1904 
1905 	memset(&ev, 0, sizeof(ev));
1906 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1907 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1908 	ev.auxtrace.size = size + padding;
1909 	ev.auxtrace.offset = offset;
1910 	ev.auxtrace.reference = ref;
1911 	ev.auxtrace.idx = mm->idx;
1912 	ev.auxtrace.tid = mm->tid;
1913 	ev.auxtrace.cpu = mm->cpu;
1914 
1915 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1916 		return -1;
1917 
1918 	mm->prev = head;
1919 
1920 	if (!snapshot) {
1921 		int err;
1922 
1923 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1924 		if (err < 0)
1925 			return err;
1926 
1927 		if (itr->read_finish) {
1928 			err = itr->read_finish(itr, mm->idx);
1929 			if (err < 0)
1930 				return err;
1931 		}
1932 	}
1933 
1934 	return 1;
1935 }
1936 
1937 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1938 			struct perf_tool *tool, process_auxtrace_t fn)
1939 {
1940 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1941 }
1942 
1943 int auxtrace_mmap__read_snapshot(struct mmap *map,
1944 				 struct auxtrace_record *itr,
1945 				 struct perf_tool *tool, process_auxtrace_t fn,
1946 				 size_t snapshot_size)
1947 {
1948 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1949 }
1950 
1951 /**
1952  * struct auxtrace_cache - hash table to implement a cache
1953  * @hashtable: the hashtable
1954  * @sz: hashtable size (number of hlists)
1955  * @entry_size: size of an entry
1956  * @limit: limit the number of entries to this maximum, when reached the cache
1957  *         is dropped and caching begins again with an empty cache
1958  * @cnt: current number of entries
1959  * @bits: hashtable size (@sz = 2^@bits)
1960  */
1961 struct auxtrace_cache {
1962 	struct hlist_head *hashtable;
1963 	size_t sz;
1964 	size_t entry_size;
1965 	size_t limit;
1966 	size_t cnt;
1967 	unsigned int bits;
1968 };
1969 
1970 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1971 					   unsigned int limit_percent)
1972 {
1973 	struct auxtrace_cache *c;
1974 	struct hlist_head *ht;
1975 	size_t sz, i;
1976 
1977 	c = zalloc(sizeof(struct auxtrace_cache));
1978 	if (!c)
1979 		return NULL;
1980 
1981 	sz = 1UL << bits;
1982 
1983 	ht = calloc(sz, sizeof(struct hlist_head));
1984 	if (!ht)
1985 		goto out_free;
1986 
1987 	for (i = 0; i < sz; i++)
1988 		INIT_HLIST_HEAD(&ht[i]);
1989 
1990 	c->hashtable = ht;
1991 	c->sz = sz;
1992 	c->entry_size = entry_size;
1993 	c->limit = (c->sz * limit_percent) / 100;
1994 	c->bits = bits;
1995 
1996 	return c;
1997 
1998 out_free:
1999 	free(c);
2000 	return NULL;
2001 }
2002 
2003 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2004 {
2005 	struct auxtrace_cache_entry *entry;
2006 	struct hlist_node *tmp;
2007 	size_t i;
2008 
2009 	if (!c)
2010 		return;
2011 
2012 	for (i = 0; i < c->sz; i++) {
2013 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2014 			hlist_del(&entry->hash);
2015 			auxtrace_cache__free_entry(c, entry);
2016 		}
2017 	}
2018 
2019 	c->cnt = 0;
2020 }
2021 
2022 void auxtrace_cache__free(struct auxtrace_cache *c)
2023 {
2024 	if (!c)
2025 		return;
2026 
2027 	auxtrace_cache__drop(c);
2028 	zfree(&c->hashtable);
2029 	free(c);
2030 }
2031 
2032 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2033 {
2034 	return malloc(c->entry_size);
2035 }
2036 
2037 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2038 				void *entry)
2039 {
2040 	free(entry);
2041 }
2042 
2043 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2044 			struct auxtrace_cache_entry *entry)
2045 {
2046 	if (c->limit && ++c->cnt > c->limit)
2047 		auxtrace_cache__drop(c);
2048 
2049 	entry->key = key;
2050 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2051 
2052 	return 0;
2053 }
2054 
2055 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2056 						       u32 key)
2057 {
2058 	struct auxtrace_cache_entry *entry;
2059 	struct hlist_head *hlist;
2060 	struct hlist_node *n;
2061 
2062 	if (!c)
2063 		return NULL;
2064 
2065 	hlist = &c->hashtable[hash_32(key, c->bits)];
2066 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2067 		if (entry->key == key) {
2068 			hlist_del(&entry->hash);
2069 			return entry;
2070 		}
2071 	}
2072 
2073 	return NULL;
2074 }
2075 
2076 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2077 {
2078 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2079 
2080 	auxtrace_cache__free_entry(c, entry);
2081 }
2082 
2083 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2084 {
2085 	struct auxtrace_cache_entry *entry;
2086 	struct hlist_head *hlist;
2087 
2088 	if (!c)
2089 		return NULL;
2090 
2091 	hlist = &c->hashtable[hash_32(key, c->bits)];
2092 	hlist_for_each_entry(entry, hlist, hash) {
2093 		if (entry->key == key)
2094 			return entry;
2095 	}
2096 
2097 	return NULL;
2098 }
2099 
2100 static void addr_filter__free_str(struct addr_filter *filt)
2101 {
2102 	zfree(&filt->str);
2103 	filt->action   = NULL;
2104 	filt->sym_from = NULL;
2105 	filt->sym_to   = NULL;
2106 	filt->filename = NULL;
2107 }
2108 
2109 static struct addr_filter *addr_filter__new(void)
2110 {
2111 	struct addr_filter *filt = zalloc(sizeof(*filt));
2112 
2113 	if (filt)
2114 		INIT_LIST_HEAD(&filt->list);
2115 
2116 	return filt;
2117 }
2118 
2119 static void addr_filter__free(struct addr_filter *filt)
2120 {
2121 	if (filt)
2122 		addr_filter__free_str(filt);
2123 	free(filt);
2124 }
2125 
2126 static void addr_filters__add(struct addr_filters *filts,
2127 			      struct addr_filter *filt)
2128 {
2129 	list_add_tail(&filt->list, &filts->head);
2130 	filts->cnt += 1;
2131 }
2132 
2133 static void addr_filters__del(struct addr_filters *filts,
2134 			      struct addr_filter *filt)
2135 {
2136 	list_del_init(&filt->list);
2137 	filts->cnt -= 1;
2138 }
2139 
2140 void addr_filters__init(struct addr_filters *filts)
2141 {
2142 	INIT_LIST_HEAD(&filts->head);
2143 	filts->cnt = 0;
2144 }
2145 
2146 void addr_filters__exit(struct addr_filters *filts)
2147 {
2148 	struct addr_filter *filt, *n;
2149 
2150 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2151 		addr_filters__del(filts, filt);
2152 		addr_filter__free(filt);
2153 	}
2154 }
2155 
2156 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2157 			    const char *str_delim)
2158 {
2159 	*inp += strspn(*inp, " ");
2160 
2161 	if (isdigit(**inp)) {
2162 		char *endptr;
2163 
2164 		if (!num)
2165 			return -EINVAL;
2166 		errno = 0;
2167 		*num = strtoull(*inp, &endptr, 0);
2168 		if (errno)
2169 			return -errno;
2170 		if (endptr == *inp)
2171 			return -EINVAL;
2172 		*inp = endptr;
2173 	} else {
2174 		size_t n;
2175 
2176 		if (!str)
2177 			return -EINVAL;
2178 		*inp += strspn(*inp, " ");
2179 		*str = *inp;
2180 		n = strcspn(*inp, str_delim);
2181 		if (!n)
2182 			return -EINVAL;
2183 		*inp += n;
2184 		if (**inp) {
2185 			**inp = '\0';
2186 			*inp += 1;
2187 		}
2188 	}
2189 	return 0;
2190 }
2191 
2192 static int parse_action(struct addr_filter *filt)
2193 {
2194 	if (!strcmp(filt->action, "filter")) {
2195 		filt->start = true;
2196 		filt->range = true;
2197 	} else if (!strcmp(filt->action, "start")) {
2198 		filt->start = true;
2199 	} else if (!strcmp(filt->action, "stop")) {
2200 		filt->start = false;
2201 	} else if (!strcmp(filt->action, "tracestop")) {
2202 		filt->start = false;
2203 		filt->range = true;
2204 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2205 	} else {
2206 		return -EINVAL;
2207 	}
2208 	return 0;
2209 }
2210 
2211 static int parse_sym_idx(char **inp, int *idx)
2212 {
2213 	*idx = -1;
2214 
2215 	*inp += strspn(*inp, " ");
2216 
2217 	if (**inp != '#')
2218 		return 0;
2219 
2220 	*inp += 1;
2221 
2222 	if (**inp == 'g' || **inp == 'G') {
2223 		*inp += 1;
2224 		*idx = 0;
2225 	} else {
2226 		unsigned long num;
2227 		char *endptr;
2228 
2229 		errno = 0;
2230 		num = strtoul(*inp, &endptr, 0);
2231 		if (errno)
2232 			return -errno;
2233 		if (endptr == *inp || num > INT_MAX)
2234 			return -EINVAL;
2235 		*inp = endptr;
2236 		*idx = num;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2243 {
2244 	int err = parse_num_or_str(inp, num, str, " ");
2245 
2246 	if (!err && *str)
2247 		err = parse_sym_idx(inp, idx);
2248 
2249 	return err;
2250 }
2251 
2252 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2253 {
2254 	char *fstr;
2255 	int err;
2256 
2257 	filt->str = fstr = strdup(*filter_inp);
2258 	if (!fstr)
2259 		return -ENOMEM;
2260 
2261 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2262 	if (err)
2263 		goto out_err;
2264 
2265 	err = parse_action(filt);
2266 	if (err)
2267 		goto out_err;
2268 
2269 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2270 			      &filt->sym_from_idx);
2271 	if (err)
2272 		goto out_err;
2273 
2274 	fstr += strspn(fstr, " ");
2275 
2276 	if (*fstr == '/') {
2277 		fstr += 1;
2278 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2279 				      &filt->sym_to_idx);
2280 		if (err)
2281 			goto out_err;
2282 		filt->range = true;
2283 	}
2284 
2285 	fstr += strspn(fstr, " ");
2286 
2287 	if (*fstr == '@') {
2288 		fstr += 1;
2289 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2290 		if (err)
2291 			goto out_err;
2292 	}
2293 
2294 	fstr += strspn(fstr, " ,");
2295 
2296 	*filter_inp += fstr - filt->str;
2297 
2298 	return 0;
2299 
2300 out_err:
2301 	addr_filter__free_str(filt);
2302 
2303 	return err;
2304 }
2305 
2306 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2307 				    const char *filter)
2308 {
2309 	struct addr_filter *filt;
2310 	const char *fstr = filter;
2311 	int err;
2312 
2313 	while (*fstr) {
2314 		filt = addr_filter__new();
2315 		err = parse_one_filter(filt, &fstr);
2316 		if (err) {
2317 			addr_filter__free(filt);
2318 			addr_filters__exit(filts);
2319 			return err;
2320 		}
2321 		addr_filters__add(filts, filt);
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 struct sym_args {
2328 	const char	*name;
2329 	u64		start;
2330 	u64		size;
2331 	int		idx;
2332 	int		cnt;
2333 	bool		started;
2334 	bool		global;
2335 	bool		selected;
2336 	bool		duplicate;
2337 	bool		near;
2338 };
2339 
2340 static bool kern_sym_name_match(const char *kname, const char *name)
2341 {
2342 	size_t n = strlen(name);
2343 
2344 	return !strcmp(kname, name) ||
2345 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2346 }
2347 
2348 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2349 {
2350 	/* A function with the same name, and global or the n'th found or any */
2351 	return kallsyms__is_function(type) &&
2352 	       kern_sym_name_match(name, args->name) &&
2353 	       ((args->global && isupper(type)) ||
2354 		(args->selected && ++(args->cnt) == args->idx) ||
2355 		(!args->global && !args->selected));
2356 }
2357 
2358 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2359 {
2360 	struct sym_args *args = arg;
2361 
2362 	if (args->started) {
2363 		if (!args->size)
2364 			args->size = start - args->start;
2365 		if (args->selected) {
2366 			if (args->size)
2367 				return 1;
2368 		} else if (kern_sym_match(args, name, type)) {
2369 			args->duplicate = true;
2370 			return 1;
2371 		}
2372 	} else if (kern_sym_match(args, name, type)) {
2373 		args->started = true;
2374 		args->start = start;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2381 {
2382 	struct sym_args *args = arg;
2383 
2384 	if (kern_sym_match(args, name, type)) {
2385 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2386 		       ++args->cnt, start, type, name);
2387 		args->near = true;
2388 	} else if (args->near) {
2389 		args->near = false;
2390 		pr_err("\t\twhich is near\t\t%s\n", name);
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 static int sym_not_found_error(const char *sym_name, int idx)
2397 {
2398 	if (idx > 0) {
2399 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2400 		       idx, sym_name);
2401 	} else if (!idx) {
2402 		pr_err("Global symbol '%s' not found.\n", sym_name);
2403 	} else {
2404 		pr_err("Symbol '%s' not found.\n", sym_name);
2405 	}
2406 	pr_err("Note that symbols must be functions.\n");
2407 
2408 	return -EINVAL;
2409 }
2410 
2411 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2412 {
2413 	struct sym_args args = {
2414 		.name = sym_name,
2415 		.idx = idx,
2416 		.global = !idx,
2417 		.selected = idx > 0,
2418 	};
2419 	int err;
2420 
2421 	*start = 0;
2422 	*size = 0;
2423 
2424 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2425 	if (err < 0) {
2426 		pr_err("Failed to parse /proc/kallsyms\n");
2427 		return err;
2428 	}
2429 
2430 	if (args.duplicate) {
2431 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2432 		args.cnt = 0;
2433 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2434 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435 		       sym_name);
2436 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437 		return -EINVAL;
2438 	}
2439 
2440 	if (!args.started) {
2441 		pr_err("Kernel symbol lookup: ");
2442 		return sym_not_found_error(sym_name, idx);
2443 	}
2444 
2445 	*start = args.start;
2446 	*size = args.size;
2447 
2448 	return 0;
2449 }
2450 
2451 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2452 			       char type, u64 start)
2453 {
2454 	struct sym_args *args = arg;
2455 	u64 size;
2456 
2457 	if (!kallsyms__is_function(type))
2458 		return 0;
2459 
2460 	if (!args->started) {
2461 		args->started = true;
2462 		args->start = start;
2463 	}
2464 	/* Don't know exactly where the kernel ends, so we add a page */
2465 	size = round_up(start, page_size) + page_size - args->start;
2466 	if (size > args->size)
2467 		args->size = size;
2468 
2469 	return 0;
2470 }
2471 
2472 static int addr_filter__entire_kernel(struct addr_filter *filt)
2473 {
2474 	struct sym_args args = { .started = false };
2475 	int err;
2476 
2477 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2478 	if (err < 0 || !args.started) {
2479 		pr_err("Failed to parse /proc/kallsyms\n");
2480 		return err;
2481 	}
2482 
2483 	filt->addr = args.start;
2484 	filt->size = args.size;
2485 
2486 	return 0;
2487 }
2488 
2489 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2490 {
2491 	if (start + size >= filt->addr)
2492 		return 0;
2493 
2494 	if (filt->sym_from) {
2495 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2496 		       filt->sym_to, start, filt->sym_from, filt->addr);
2497 	} else {
2498 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2499 		       filt->sym_to, start, filt->addr);
2500 	}
2501 
2502 	return -EINVAL;
2503 }
2504 
2505 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2506 {
2507 	bool no_size = false;
2508 	u64 start, size;
2509 	int err;
2510 
2511 	if (symbol_conf.kptr_restrict) {
2512 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2513 		return -EINVAL;
2514 	}
2515 
2516 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2517 		return addr_filter__entire_kernel(filt);
2518 
2519 	if (filt->sym_from) {
2520 		err = find_kern_sym(filt->sym_from, &start, &size,
2521 				    filt->sym_from_idx);
2522 		if (err)
2523 			return err;
2524 		filt->addr = start;
2525 		if (filt->range && !filt->size && !filt->sym_to) {
2526 			filt->size = size;
2527 			no_size = !size;
2528 		}
2529 	}
2530 
2531 	if (filt->sym_to) {
2532 		err = find_kern_sym(filt->sym_to, &start, &size,
2533 				    filt->sym_to_idx);
2534 		if (err)
2535 			return err;
2536 
2537 		err = check_end_after_start(filt, start, size);
2538 		if (err)
2539 			return err;
2540 		filt->size = start + size - filt->addr;
2541 		no_size = !size;
2542 	}
2543 
2544 	/* The very last symbol in kallsyms does not imply a particular size */
2545 	if (no_size) {
2546 		pr_err("Cannot determine size of symbol '%s'\n",
2547 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2548 		return -EINVAL;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 static struct dso *load_dso(const char *name)
2555 {
2556 	struct map *map;
2557 	struct dso *dso;
2558 
2559 	map = dso__new_map(name);
2560 	if (!map)
2561 		return NULL;
2562 
2563 	if (map__load(map) < 0)
2564 		pr_err("File '%s' not found or has no symbols.\n", name);
2565 
2566 	dso = dso__get(map__dso(map));
2567 
2568 	map__put(map);
2569 
2570 	return dso;
2571 }
2572 
2573 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2574 			  int idx)
2575 {
2576 	/* Same name, and global or the n'th found or any */
2577 	return !arch__compare_symbol_names(name, sym->name) &&
2578 	       ((!idx && sym->binding == STB_GLOBAL) ||
2579 		(idx > 0 && ++*cnt == idx) ||
2580 		idx < 0);
2581 }
2582 
2583 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2584 {
2585 	struct symbol *sym;
2586 	bool near = false;
2587 	int cnt = 0;
2588 
2589 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2590 
2591 	sym = dso__first_symbol(dso);
2592 	while (sym) {
2593 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2594 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2595 			       ++cnt, sym->start,
2596 			       sym->binding == STB_GLOBAL ? 'g' :
2597 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2598 			       sym->name);
2599 			near = true;
2600 		} else if (near) {
2601 			near = false;
2602 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2603 		}
2604 		sym = dso__next_symbol(sym);
2605 	}
2606 
2607 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2608 	       sym_name);
2609 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2610 }
2611 
2612 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2613 			u64 *size, int idx)
2614 {
2615 	struct symbol *sym;
2616 	int cnt = 0;
2617 
2618 	*start = 0;
2619 	*size = 0;
2620 
2621 	sym = dso__first_symbol(dso);
2622 	while (sym) {
2623 		if (*start) {
2624 			if (!*size)
2625 				*size = sym->start - *start;
2626 			if (idx > 0) {
2627 				if (*size)
2628 					return 0;
2629 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2630 				print_duplicate_syms(dso, sym_name);
2631 				return -EINVAL;
2632 			}
2633 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2634 			*start = sym->start;
2635 			*size = sym->end - sym->start;
2636 		}
2637 		sym = dso__next_symbol(sym);
2638 	}
2639 
2640 	if (!*start)
2641 		return sym_not_found_error(sym_name, idx);
2642 
2643 	return 0;
2644 }
2645 
2646 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2647 {
2648 	if (dso__data_file_size(dso, NULL)) {
2649 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2650 		       filt->filename);
2651 		return -EINVAL;
2652 	}
2653 
2654 	filt->addr = 0;
2655 	filt->size = dso->data.file_size;
2656 
2657 	return 0;
2658 }
2659 
2660 static int addr_filter__resolve_syms(struct addr_filter *filt)
2661 {
2662 	u64 start, size;
2663 	struct dso *dso;
2664 	int err = 0;
2665 
2666 	if (!filt->sym_from && !filt->sym_to)
2667 		return 0;
2668 
2669 	if (!filt->filename)
2670 		return addr_filter__resolve_kernel_syms(filt);
2671 
2672 	dso = load_dso(filt->filename);
2673 	if (!dso) {
2674 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2675 		return -EINVAL;
2676 	}
2677 
2678 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2679 		err = addr_filter__entire_dso(filt, dso);
2680 		goto put_dso;
2681 	}
2682 
2683 	if (filt->sym_from) {
2684 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2685 				   filt->sym_from_idx);
2686 		if (err)
2687 			goto put_dso;
2688 		filt->addr = start;
2689 		if (filt->range && !filt->size && !filt->sym_to)
2690 			filt->size = size;
2691 	}
2692 
2693 	if (filt->sym_to) {
2694 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2695 				   filt->sym_to_idx);
2696 		if (err)
2697 			goto put_dso;
2698 
2699 		err = check_end_after_start(filt, start, size);
2700 		if (err)
2701 			return err;
2702 
2703 		filt->size = start + size - filt->addr;
2704 	}
2705 
2706 put_dso:
2707 	dso__put(dso);
2708 
2709 	return err;
2710 }
2711 
2712 static char *addr_filter__to_str(struct addr_filter *filt)
2713 {
2714 	char filename_buf[PATH_MAX];
2715 	const char *at = "";
2716 	const char *fn = "";
2717 	char *filter;
2718 	int err;
2719 
2720 	if (filt->filename) {
2721 		at = "@";
2722 		fn = realpath(filt->filename, filename_buf);
2723 		if (!fn)
2724 			return NULL;
2725 	}
2726 
2727 	if (filt->range) {
2728 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2729 			       filt->action, filt->addr, filt->size, at, fn);
2730 	} else {
2731 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2732 			       filt->action, filt->addr, at, fn);
2733 	}
2734 
2735 	return err < 0 ? NULL : filter;
2736 }
2737 
2738 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2739 			     int max_nr)
2740 {
2741 	struct addr_filters filts;
2742 	struct addr_filter *filt;
2743 	int err;
2744 
2745 	addr_filters__init(&filts);
2746 
2747 	err = addr_filters__parse_bare_filter(&filts, filter);
2748 	if (err)
2749 		goto out_exit;
2750 
2751 	if (filts.cnt > max_nr) {
2752 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2753 		       filts.cnt, max_nr);
2754 		err = -EINVAL;
2755 		goto out_exit;
2756 	}
2757 
2758 	list_for_each_entry(filt, &filts.head, list) {
2759 		char *new_filter;
2760 
2761 		err = addr_filter__resolve_syms(filt);
2762 		if (err)
2763 			goto out_exit;
2764 
2765 		new_filter = addr_filter__to_str(filt);
2766 		if (!new_filter) {
2767 			err = -ENOMEM;
2768 			goto out_exit;
2769 		}
2770 
2771 		if (evsel__append_addr_filter(evsel, new_filter)) {
2772 			err = -ENOMEM;
2773 			goto out_exit;
2774 		}
2775 	}
2776 
2777 out_exit:
2778 	addr_filters__exit(&filts);
2779 
2780 	if (err) {
2781 		pr_err("Failed to parse address filter: '%s'\n", filter);
2782 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2783 		pr_err("Where multiple filters are separated by space or comma.\n");
2784 	}
2785 
2786 	return err;
2787 }
2788 
2789 static int evsel__nr_addr_filter(struct evsel *evsel)
2790 {
2791 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2792 	int nr_addr_filters = 0;
2793 
2794 	if (!pmu)
2795 		return 0;
2796 
2797 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2798 
2799 	return nr_addr_filters;
2800 }
2801 
2802 int auxtrace_parse_filters(struct evlist *evlist)
2803 {
2804 	struct evsel *evsel;
2805 	char *filter;
2806 	int err, max_nr;
2807 
2808 	evlist__for_each_entry(evlist, evsel) {
2809 		filter = evsel->filter;
2810 		max_nr = evsel__nr_addr_filter(evsel);
2811 		if (!filter || !max_nr)
2812 			continue;
2813 		evsel->filter = NULL;
2814 		err = parse_addr_filter(evsel, filter, max_nr);
2815 		free(filter);
2816 		if (err)
2817 			return err;
2818 		pr_debug("Address filter: %s\n", evsel->filter);
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2825 			    struct perf_sample *sample, struct perf_tool *tool)
2826 {
2827 	if (!session->auxtrace)
2828 		return 0;
2829 
2830 	return session->auxtrace->process_event(session, event, sample, tool);
2831 }
2832 
2833 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2834 				    struct perf_sample *sample)
2835 {
2836 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2837 	    auxtrace__dont_decode(session))
2838 		return;
2839 
2840 	session->auxtrace->dump_auxtrace_sample(session, sample);
2841 }
2842 
2843 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2844 {
2845 	if (!session->auxtrace)
2846 		return 0;
2847 
2848 	return session->auxtrace->flush_events(session, tool);
2849 }
2850 
2851 void auxtrace__free_events(struct perf_session *session)
2852 {
2853 	if (!session->auxtrace)
2854 		return;
2855 
2856 	return session->auxtrace->free_events(session);
2857 }
2858 
2859 void auxtrace__free(struct perf_session *session)
2860 {
2861 	if (!session->auxtrace)
2862 		return;
2863 
2864 	return session->auxtrace->free(session);
2865 }
2866 
2867 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2868 				 struct evsel *evsel)
2869 {
2870 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2871 		return false;
2872 
2873 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2874 }
2875