1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 28 #include "../perf.h" 29 #include "util.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "cpumap.h" 36 #include "symbol.h" 37 #include "thread_map.h" 38 #include "asm/bug.h" 39 #include "auxtrace.h" 40 41 #include <linux/hash.h> 42 43 #include "event.h" 44 #include "session.h" 45 #include "debug.h" 46 #include <subcmd/parse-options.h> 47 48 #include "cs-etm.h" 49 #include "intel-pt.h" 50 #include "intel-bts.h" 51 #include "arm-spe.h" 52 #include "s390-cpumsf.h" 53 54 #include "sane_ctype.h" 55 #include "symbol/kallsyms.h" 56 57 static bool auxtrace__dont_decode(struct perf_session *session) 58 { 59 return !session->itrace_synth_opts || 60 session->itrace_synth_opts->dont_decode; 61 } 62 63 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 64 struct auxtrace_mmap_params *mp, 65 void *userpg, int fd) 66 { 67 struct perf_event_mmap_page *pc = userpg; 68 69 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 70 71 mm->userpg = userpg; 72 mm->mask = mp->mask; 73 mm->len = mp->len; 74 mm->prev = 0; 75 mm->idx = mp->idx; 76 mm->tid = mp->tid; 77 mm->cpu = mp->cpu; 78 79 if (!mp->len) { 80 mm->base = NULL; 81 return 0; 82 } 83 84 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 85 pr_err("Cannot use AUX area tracing mmaps\n"); 86 return -1; 87 #endif 88 89 pc->aux_offset = mp->offset; 90 pc->aux_size = mp->len; 91 92 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 93 if (mm->base == MAP_FAILED) { 94 pr_debug2("failed to mmap AUX area\n"); 95 mm->base = NULL; 96 return -1; 97 } 98 99 return 0; 100 } 101 102 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 103 { 104 if (mm->base) { 105 munmap(mm->base, mm->len); 106 mm->base = NULL; 107 } 108 } 109 110 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 111 off_t auxtrace_offset, 112 unsigned int auxtrace_pages, 113 bool auxtrace_overwrite) 114 { 115 if (auxtrace_pages) { 116 mp->offset = auxtrace_offset; 117 mp->len = auxtrace_pages * (size_t)page_size; 118 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 119 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 120 pr_debug2("AUX area mmap length %zu\n", mp->len); 121 } else { 122 mp->len = 0; 123 } 124 } 125 126 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 127 struct perf_evlist *evlist, int idx, 128 bool per_cpu) 129 { 130 mp->idx = idx; 131 132 if (per_cpu) { 133 mp->cpu = evlist->cpus->map[idx]; 134 if (evlist->threads) 135 mp->tid = thread_map__pid(evlist->threads, 0); 136 else 137 mp->tid = -1; 138 } else { 139 mp->cpu = -1; 140 mp->tid = thread_map__pid(evlist->threads, idx); 141 } 142 } 143 144 #define AUXTRACE_INIT_NR_QUEUES 32 145 146 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 147 { 148 struct auxtrace_queue *queue_array; 149 unsigned int max_nr_queues, i; 150 151 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 152 if (nr_queues > max_nr_queues) 153 return NULL; 154 155 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 156 if (!queue_array) 157 return NULL; 158 159 for (i = 0; i < nr_queues; i++) { 160 INIT_LIST_HEAD(&queue_array[i].head); 161 queue_array[i].priv = NULL; 162 } 163 164 return queue_array; 165 } 166 167 int auxtrace_queues__init(struct auxtrace_queues *queues) 168 { 169 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 170 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 171 if (!queues->queue_array) 172 return -ENOMEM; 173 return 0; 174 } 175 176 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 177 unsigned int new_nr_queues) 178 { 179 unsigned int nr_queues = queues->nr_queues; 180 struct auxtrace_queue *queue_array; 181 unsigned int i; 182 183 if (!nr_queues) 184 nr_queues = AUXTRACE_INIT_NR_QUEUES; 185 186 while (nr_queues && nr_queues < new_nr_queues) 187 nr_queues <<= 1; 188 189 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 190 return -EINVAL; 191 192 queue_array = auxtrace_alloc_queue_array(nr_queues); 193 if (!queue_array) 194 return -ENOMEM; 195 196 for (i = 0; i < queues->nr_queues; i++) { 197 list_splice_tail(&queues->queue_array[i].head, 198 &queue_array[i].head); 199 queue_array[i].tid = queues->queue_array[i].tid; 200 queue_array[i].cpu = queues->queue_array[i].cpu; 201 queue_array[i].set = queues->queue_array[i].set; 202 queue_array[i].priv = queues->queue_array[i].priv; 203 } 204 205 queues->nr_queues = nr_queues; 206 queues->queue_array = queue_array; 207 208 return 0; 209 } 210 211 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 212 { 213 int fd = perf_data__fd(session->data); 214 void *p; 215 ssize_t ret; 216 217 if (size > SSIZE_MAX) 218 return NULL; 219 220 p = malloc(size); 221 if (!p) 222 return NULL; 223 224 ret = readn(fd, p, size); 225 if (ret != (ssize_t)size) { 226 free(p); 227 return NULL; 228 } 229 230 return p; 231 } 232 233 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 234 unsigned int idx, 235 struct auxtrace_buffer *buffer) 236 { 237 struct auxtrace_queue *queue; 238 int err; 239 240 if (idx >= queues->nr_queues) { 241 err = auxtrace_queues__grow(queues, idx + 1); 242 if (err) 243 return err; 244 } 245 246 queue = &queues->queue_array[idx]; 247 248 if (!queue->set) { 249 queue->set = true; 250 queue->tid = buffer->tid; 251 queue->cpu = buffer->cpu; 252 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 253 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 254 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 255 return -EINVAL; 256 } 257 258 buffer->buffer_nr = queues->next_buffer_nr++; 259 260 list_add_tail(&buffer->list, &queue->head); 261 262 queues->new_data = true; 263 queues->populated = true; 264 265 return 0; 266 } 267 268 /* Limit buffers to 32MiB on 32-bit */ 269 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 270 271 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 272 unsigned int idx, 273 struct auxtrace_buffer *buffer) 274 { 275 u64 sz = buffer->size; 276 bool consecutive = false; 277 struct auxtrace_buffer *b; 278 int err; 279 280 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 281 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 282 if (!b) 283 return -ENOMEM; 284 b->size = BUFFER_LIMIT_FOR_32_BIT; 285 b->consecutive = consecutive; 286 err = auxtrace_queues__queue_buffer(queues, idx, b); 287 if (err) { 288 auxtrace_buffer__free(b); 289 return err; 290 } 291 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 292 sz -= BUFFER_LIMIT_FOR_32_BIT; 293 consecutive = true; 294 } 295 296 buffer->size = sz; 297 buffer->consecutive = consecutive; 298 299 return 0; 300 } 301 302 static bool filter_cpu(struct perf_session *session, int cpu) 303 { 304 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 305 306 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 307 } 308 309 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 310 struct perf_session *session, 311 unsigned int idx, 312 struct auxtrace_buffer *buffer, 313 struct auxtrace_buffer **buffer_ptr) 314 { 315 int err = -ENOMEM; 316 317 if (filter_cpu(session, buffer->cpu)) 318 return 0; 319 320 buffer = memdup(buffer, sizeof(*buffer)); 321 if (!buffer) 322 return -ENOMEM; 323 324 if (session->one_mmap) { 325 buffer->data = buffer->data_offset - session->one_mmap_offset + 326 session->one_mmap_addr; 327 } else if (perf_data__is_pipe(session->data)) { 328 buffer->data = auxtrace_copy_data(buffer->size, session); 329 if (!buffer->data) 330 goto out_free; 331 buffer->data_needs_freeing = true; 332 } else if (BITS_PER_LONG == 32 && 333 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 334 err = auxtrace_queues__split_buffer(queues, idx, buffer); 335 if (err) 336 goto out_free; 337 } 338 339 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 340 if (err) 341 goto out_free; 342 343 /* FIXME: Doesn't work for split buffer */ 344 if (buffer_ptr) 345 *buffer_ptr = buffer; 346 347 return 0; 348 349 out_free: 350 auxtrace_buffer__free(buffer); 351 return err; 352 } 353 354 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 355 struct perf_session *session, 356 union perf_event *event, off_t data_offset, 357 struct auxtrace_buffer **buffer_ptr) 358 { 359 struct auxtrace_buffer buffer = { 360 .pid = -1, 361 .tid = event->auxtrace.tid, 362 .cpu = event->auxtrace.cpu, 363 .data_offset = data_offset, 364 .offset = event->auxtrace.offset, 365 .reference = event->auxtrace.reference, 366 .size = event->auxtrace.size, 367 }; 368 unsigned int idx = event->auxtrace.idx; 369 370 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 371 buffer_ptr); 372 } 373 374 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 375 struct perf_session *session, 376 off_t file_offset, size_t sz) 377 { 378 union perf_event *event; 379 int err; 380 char buf[PERF_SAMPLE_MAX_SIZE]; 381 382 err = perf_session__peek_event(session, file_offset, buf, 383 PERF_SAMPLE_MAX_SIZE, &event, NULL); 384 if (err) 385 return err; 386 387 if (event->header.type == PERF_RECORD_AUXTRACE) { 388 if (event->header.size < sizeof(struct auxtrace_event) || 389 event->header.size != sz) { 390 err = -EINVAL; 391 goto out; 392 } 393 file_offset += event->header.size; 394 err = auxtrace_queues__add_event(queues, session, event, 395 file_offset, NULL); 396 } 397 out: 398 return err; 399 } 400 401 void auxtrace_queues__free(struct auxtrace_queues *queues) 402 { 403 unsigned int i; 404 405 for (i = 0; i < queues->nr_queues; i++) { 406 while (!list_empty(&queues->queue_array[i].head)) { 407 struct auxtrace_buffer *buffer; 408 409 buffer = list_entry(queues->queue_array[i].head.next, 410 struct auxtrace_buffer, list); 411 list_del(&buffer->list); 412 auxtrace_buffer__free(buffer); 413 } 414 } 415 416 zfree(&queues->queue_array); 417 queues->nr_queues = 0; 418 } 419 420 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 421 unsigned int pos, unsigned int queue_nr, 422 u64 ordinal) 423 { 424 unsigned int parent; 425 426 while (pos) { 427 parent = (pos - 1) >> 1; 428 if (heap_array[parent].ordinal <= ordinal) 429 break; 430 heap_array[pos] = heap_array[parent]; 431 pos = parent; 432 } 433 heap_array[pos].queue_nr = queue_nr; 434 heap_array[pos].ordinal = ordinal; 435 } 436 437 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 438 u64 ordinal) 439 { 440 struct auxtrace_heap_item *heap_array; 441 442 if (queue_nr >= heap->heap_sz) { 443 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 444 445 while (heap_sz <= queue_nr) 446 heap_sz <<= 1; 447 heap_array = realloc(heap->heap_array, 448 heap_sz * sizeof(struct auxtrace_heap_item)); 449 if (!heap_array) 450 return -ENOMEM; 451 heap->heap_array = heap_array; 452 heap->heap_sz = heap_sz; 453 } 454 455 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 456 457 return 0; 458 } 459 460 void auxtrace_heap__free(struct auxtrace_heap *heap) 461 { 462 zfree(&heap->heap_array); 463 heap->heap_cnt = 0; 464 heap->heap_sz = 0; 465 } 466 467 void auxtrace_heap__pop(struct auxtrace_heap *heap) 468 { 469 unsigned int pos, last, heap_cnt = heap->heap_cnt; 470 struct auxtrace_heap_item *heap_array; 471 472 if (!heap_cnt) 473 return; 474 475 heap->heap_cnt -= 1; 476 477 heap_array = heap->heap_array; 478 479 pos = 0; 480 while (1) { 481 unsigned int left, right; 482 483 left = (pos << 1) + 1; 484 if (left >= heap_cnt) 485 break; 486 right = left + 1; 487 if (right >= heap_cnt) { 488 heap_array[pos] = heap_array[left]; 489 return; 490 } 491 if (heap_array[left].ordinal < heap_array[right].ordinal) { 492 heap_array[pos] = heap_array[left]; 493 pos = left; 494 } else { 495 heap_array[pos] = heap_array[right]; 496 pos = right; 497 } 498 } 499 500 last = heap_cnt - 1; 501 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 502 heap_array[last].ordinal); 503 } 504 505 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 506 struct perf_evlist *evlist) 507 { 508 if (itr) 509 return itr->info_priv_size(itr, evlist); 510 return 0; 511 } 512 513 static int auxtrace_not_supported(void) 514 { 515 pr_err("AUX area tracing is not supported on this architecture\n"); 516 return -EINVAL; 517 } 518 519 int auxtrace_record__info_fill(struct auxtrace_record *itr, 520 struct perf_session *session, 521 struct auxtrace_info_event *auxtrace_info, 522 size_t priv_size) 523 { 524 if (itr) 525 return itr->info_fill(itr, session, auxtrace_info, priv_size); 526 return auxtrace_not_supported(); 527 } 528 529 void auxtrace_record__free(struct auxtrace_record *itr) 530 { 531 if (itr) 532 itr->free(itr); 533 } 534 535 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 536 { 537 if (itr && itr->snapshot_start) 538 return itr->snapshot_start(itr); 539 return 0; 540 } 541 542 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr) 543 { 544 if (itr && itr->snapshot_finish) 545 return itr->snapshot_finish(itr); 546 return 0; 547 } 548 549 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 550 struct auxtrace_mmap *mm, 551 unsigned char *data, u64 *head, u64 *old) 552 { 553 if (itr && itr->find_snapshot) 554 return itr->find_snapshot(itr, idx, mm, data, head, old); 555 return 0; 556 } 557 558 int auxtrace_record__options(struct auxtrace_record *itr, 559 struct perf_evlist *evlist, 560 struct record_opts *opts) 561 { 562 if (itr) 563 return itr->recording_options(itr, evlist, opts); 564 return 0; 565 } 566 567 u64 auxtrace_record__reference(struct auxtrace_record *itr) 568 { 569 if (itr) 570 return itr->reference(itr); 571 return 0; 572 } 573 574 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 575 struct record_opts *opts, const char *str) 576 { 577 if (!str) 578 return 0; 579 580 if (itr) 581 return itr->parse_snapshot_options(itr, opts, str); 582 583 pr_err("No AUX area tracing to snapshot\n"); 584 return -EINVAL; 585 } 586 587 struct auxtrace_record *__weak 588 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err) 589 { 590 *err = 0; 591 return NULL; 592 } 593 594 static int auxtrace_index__alloc(struct list_head *head) 595 { 596 struct auxtrace_index *auxtrace_index; 597 598 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 599 if (!auxtrace_index) 600 return -ENOMEM; 601 602 auxtrace_index->nr = 0; 603 INIT_LIST_HEAD(&auxtrace_index->list); 604 605 list_add_tail(&auxtrace_index->list, head); 606 607 return 0; 608 } 609 610 void auxtrace_index__free(struct list_head *head) 611 { 612 struct auxtrace_index *auxtrace_index, *n; 613 614 list_for_each_entry_safe(auxtrace_index, n, head, list) { 615 list_del(&auxtrace_index->list); 616 free(auxtrace_index); 617 } 618 } 619 620 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 621 { 622 struct auxtrace_index *auxtrace_index; 623 int err; 624 625 if (list_empty(head)) { 626 err = auxtrace_index__alloc(head); 627 if (err) 628 return NULL; 629 } 630 631 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 632 633 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 634 err = auxtrace_index__alloc(head); 635 if (err) 636 return NULL; 637 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 638 list); 639 } 640 641 return auxtrace_index; 642 } 643 644 int auxtrace_index__auxtrace_event(struct list_head *head, 645 union perf_event *event, off_t file_offset) 646 { 647 struct auxtrace_index *auxtrace_index; 648 size_t nr; 649 650 auxtrace_index = auxtrace_index__last(head); 651 if (!auxtrace_index) 652 return -ENOMEM; 653 654 nr = auxtrace_index->nr; 655 auxtrace_index->entries[nr].file_offset = file_offset; 656 auxtrace_index->entries[nr].sz = event->header.size; 657 auxtrace_index->nr += 1; 658 659 return 0; 660 } 661 662 static int auxtrace_index__do_write(int fd, 663 struct auxtrace_index *auxtrace_index) 664 { 665 struct auxtrace_index_entry ent; 666 size_t i; 667 668 for (i = 0; i < auxtrace_index->nr; i++) { 669 ent.file_offset = auxtrace_index->entries[i].file_offset; 670 ent.sz = auxtrace_index->entries[i].sz; 671 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 672 return -errno; 673 } 674 return 0; 675 } 676 677 int auxtrace_index__write(int fd, struct list_head *head) 678 { 679 struct auxtrace_index *auxtrace_index; 680 u64 total = 0; 681 int err; 682 683 list_for_each_entry(auxtrace_index, head, list) 684 total += auxtrace_index->nr; 685 686 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 687 return -errno; 688 689 list_for_each_entry(auxtrace_index, head, list) { 690 err = auxtrace_index__do_write(fd, auxtrace_index); 691 if (err) 692 return err; 693 } 694 695 return 0; 696 } 697 698 static int auxtrace_index__process_entry(int fd, struct list_head *head, 699 bool needs_swap) 700 { 701 struct auxtrace_index *auxtrace_index; 702 struct auxtrace_index_entry ent; 703 size_t nr; 704 705 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 706 return -1; 707 708 auxtrace_index = auxtrace_index__last(head); 709 if (!auxtrace_index) 710 return -1; 711 712 nr = auxtrace_index->nr; 713 if (needs_swap) { 714 auxtrace_index->entries[nr].file_offset = 715 bswap_64(ent.file_offset); 716 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 717 } else { 718 auxtrace_index->entries[nr].file_offset = ent.file_offset; 719 auxtrace_index->entries[nr].sz = ent.sz; 720 } 721 722 auxtrace_index->nr = nr + 1; 723 724 return 0; 725 } 726 727 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 728 bool needs_swap) 729 { 730 struct list_head *head = &session->auxtrace_index; 731 u64 nr; 732 733 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 734 return -1; 735 736 if (needs_swap) 737 nr = bswap_64(nr); 738 739 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 740 return -1; 741 742 while (nr--) { 743 int err; 744 745 err = auxtrace_index__process_entry(fd, head, needs_swap); 746 if (err) 747 return -1; 748 } 749 750 return 0; 751 } 752 753 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 754 struct perf_session *session, 755 struct auxtrace_index_entry *ent) 756 { 757 return auxtrace_queues__add_indexed_event(queues, session, 758 ent->file_offset, ent->sz); 759 } 760 761 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 762 struct perf_session *session) 763 { 764 struct auxtrace_index *auxtrace_index; 765 struct auxtrace_index_entry *ent; 766 size_t i; 767 int err; 768 769 if (auxtrace__dont_decode(session)) 770 return 0; 771 772 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 773 for (i = 0; i < auxtrace_index->nr; i++) { 774 ent = &auxtrace_index->entries[i]; 775 err = auxtrace_queues__process_index_entry(queues, 776 session, 777 ent); 778 if (err) 779 return err; 780 } 781 } 782 return 0; 783 } 784 785 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 786 struct auxtrace_buffer *buffer) 787 { 788 if (buffer) { 789 if (list_is_last(&buffer->list, &queue->head)) 790 return NULL; 791 return list_entry(buffer->list.next, struct auxtrace_buffer, 792 list); 793 } else { 794 if (list_empty(&queue->head)) 795 return NULL; 796 return list_entry(queue->head.next, struct auxtrace_buffer, 797 list); 798 } 799 } 800 801 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 802 { 803 size_t adj = buffer->data_offset & (page_size - 1); 804 size_t size = buffer->size + adj; 805 off_t file_offset = buffer->data_offset - adj; 806 void *addr; 807 808 if (buffer->data) 809 return buffer->data; 810 811 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 812 if (addr == MAP_FAILED) 813 return NULL; 814 815 buffer->mmap_addr = addr; 816 buffer->mmap_size = size; 817 818 buffer->data = addr + adj; 819 820 return buffer->data; 821 } 822 823 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 824 { 825 if (!buffer->data || !buffer->mmap_addr) 826 return; 827 munmap(buffer->mmap_addr, buffer->mmap_size); 828 buffer->mmap_addr = NULL; 829 buffer->mmap_size = 0; 830 buffer->data = NULL; 831 buffer->use_data = NULL; 832 } 833 834 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 835 { 836 auxtrace_buffer__put_data(buffer); 837 if (buffer->data_needs_freeing) { 838 buffer->data_needs_freeing = false; 839 zfree(&buffer->data); 840 buffer->use_data = NULL; 841 buffer->size = 0; 842 } 843 } 844 845 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 846 { 847 auxtrace_buffer__drop_data(buffer); 848 free(buffer); 849 } 850 851 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type, 852 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 853 const char *msg, u64 timestamp) 854 { 855 size_t size; 856 857 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event)); 858 859 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 860 auxtrace_error->type = type; 861 auxtrace_error->code = code; 862 auxtrace_error->cpu = cpu; 863 auxtrace_error->pid = pid; 864 auxtrace_error->tid = tid; 865 auxtrace_error->fmt = 1; 866 auxtrace_error->ip = ip; 867 auxtrace_error->time = timestamp; 868 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 869 870 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 871 strlen(auxtrace_error->msg) + 1; 872 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 873 } 874 875 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 876 struct perf_tool *tool, 877 struct perf_session *session, 878 perf_event__handler_t process) 879 { 880 union perf_event *ev; 881 size_t priv_size; 882 int err; 883 884 pr_debug2("Synthesizing auxtrace information\n"); 885 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 886 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size); 887 if (!ev) 888 return -ENOMEM; 889 890 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 891 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) + 892 priv_size; 893 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 894 priv_size); 895 if (err) 896 goto out_free; 897 898 err = process(tool, ev, NULL, NULL); 899 out_free: 900 free(ev); 901 return err; 902 } 903 904 int perf_event__process_auxtrace_info(struct perf_session *session, 905 union perf_event *event) 906 { 907 enum auxtrace_type type = event->auxtrace_info.type; 908 909 if (dump_trace) 910 fprintf(stdout, " type: %u\n", type); 911 912 switch (type) { 913 case PERF_AUXTRACE_INTEL_PT: 914 return intel_pt_process_auxtrace_info(event, session); 915 case PERF_AUXTRACE_INTEL_BTS: 916 return intel_bts_process_auxtrace_info(event, session); 917 case PERF_AUXTRACE_ARM_SPE: 918 return arm_spe_process_auxtrace_info(event, session); 919 case PERF_AUXTRACE_CS_ETM: 920 return cs_etm__process_auxtrace_info(event, session); 921 case PERF_AUXTRACE_S390_CPUMSF: 922 return s390_cpumsf_process_auxtrace_info(event, session); 923 case PERF_AUXTRACE_UNKNOWN: 924 default: 925 return -EINVAL; 926 } 927 } 928 929 s64 perf_event__process_auxtrace(struct perf_session *session, 930 union perf_event *event) 931 { 932 s64 err; 933 934 if (dump_trace) 935 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n", 936 event->auxtrace.size, event->auxtrace.offset, 937 event->auxtrace.reference, event->auxtrace.idx, 938 event->auxtrace.tid, event->auxtrace.cpu); 939 940 if (auxtrace__dont_decode(session)) 941 return event->auxtrace.size; 942 943 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 944 return -EINVAL; 945 946 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 947 if (err < 0) 948 return err; 949 950 return event->auxtrace.size; 951 } 952 953 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 954 #define PERF_ITRACE_DEFAULT_PERIOD 100000 955 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 956 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 957 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 958 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 959 960 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 961 bool no_sample) 962 { 963 synth_opts->branches = true; 964 synth_opts->transactions = true; 965 synth_opts->ptwrites = true; 966 synth_opts->pwr_events = true; 967 synth_opts->errors = true; 968 if (no_sample) { 969 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 970 synth_opts->period = 1; 971 synth_opts->calls = true; 972 } else { 973 synth_opts->instructions = true; 974 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 975 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 976 } 977 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 978 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 979 synth_opts->initial_skip = 0; 980 } 981 982 /* 983 * Please check tools/perf/Documentation/perf-script.txt for information 984 * about the options parsed here, which is introduced after this cset, 985 * when support in 'perf script' for these options is introduced. 986 */ 987 int itrace_parse_synth_opts(const struct option *opt, const char *str, 988 int unset) 989 { 990 struct itrace_synth_opts *synth_opts = opt->value; 991 const char *p; 992 char *endptr; 993 bool period_type_set = false; 994 bool period_set = false; 995 996 synth_opts->set = true; 997 998 if (unset) { 999 synth_opts->dont_decode = true; 1000 return 0; 1001 } 1002 1003 if (!str) { 1004 itrace_synth_opts__set_default(synth_opts, false); 1005 return 0; 1006 } 1007 1008 for (p = str; *p;) { 1009 switch (*p++) { 1010 case 'i': 1011 synth_opts->instructions = true; 1012 while (*p == ' ' || *p == ',') 1013 p += 1; 1014 if (isdigit(*p)) { 1015 synth_opts->period = strtoull(p, &endptr, 10); 1016 period_set = true; 1017 p = endptr; 1018 while (*p == ' ' || *p == ',') 1019 p += 1; 1020 switch (*p++) { 1021 case 'i': 1022 synth_opts->period_type = 1023 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1024 period_type_set = true; 1025 break; 1026 case 't': 1027 synth_opts->period_type = 1028 PERF_ITRACE_PERIOD_TICKS; 1029 period_type_set = true; 1030 break; 1031 case 'm': 1032 synth_opts->period *= 1000; 1033 /* Fall through */ 1034 case 'u': 1035 synth_opts->period *= 1000; 1036 /* Fall through */ 1037 case 'n': 1038 if (*p++ != 's') 1039 goto out_err; 1040 synth_opts->period_type = 1041 PERF_ITRACE_PERIOD_NANOSECS; 1042 period_type_set = true; 1043 break; 1044 case '\0': 1045 goto out; 1046 default: 1047 goto out_err; 1048 } 1049 } 1050 break; 1051 case 'b': 1052 synth_opts->branches = true; 1053 break; 1054 case 'x': 1055 synth_opts->transactions = true; 1056 break; 1057 case 'w': 1058 synth_opts->ptwrites = true; 1059 break; 1060 case 'p': 1061 synth_opts->pwr_events = true; 1062 break; 1063 case 'e': 1064 synth_opts->errors = true; 1065 break; 1066 case 'd': 1067 synth_opts->log = true; 1068 break; 1069 case 'c': 1070 synth_opts->branches = true; 1071 synth_opts->calls = true; 1072 break; 1073 case 'r': 1074 synth_opts->branches = true; 1075 synth_opts->returns = true; 1076 break; 1077 case 'g': 1078 synth_opts->callchain = true; 1079 synth_opts->callchain_sz = 1080 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1081 while (*p == ' ' || *p == ',') 1082 p += 1; 1083 if (isdigit(*p)) { 1084 unsigned int val; 1085 1086 val = strtoul(p, &endptr, 10); 1087 p = endptr; 1088 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1089 goto out_err; 1090 synth_opts->callchain_sz = val; 1091 } 1092 break; 1093 case 'l': 1094 synth_opts->last_branch = true; 1095 synth_opts->last_branch_sz = 1096 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1097 while (*p == ' ' || *p == ',') 1098 p += 1; 1099 if (isdigit(*p)) { 1100 unsigned int val; 1101 1102 val = strtoul(p, &endptr, 10); 1103 p = endptr; 1104 if (!val || 1105 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1106 goto out_err; 1107 synth_opts->last_branch_sz = val; 1108 } 1109 break; 1110 case 's': 1111 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1112 if (p == endptr) 1113 goto out_err; 1114 p = endptr; 1115 break; 1116 case ' ': 1117 case ',': 1118 break; 1119 default: 1120 goto out_err; 1121 } 1122 } 1123 out: 1124 if (synth_opts->instructions) { 1125 if (!period_type_set) 1126 synth_opts->period_type = 1127 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1128 if (!period_set) 1129 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1130 } 1131 1132 return 0; 1133 1134 out_err: 1135 pr_err("Bad Instruction Tracing options '%s'\n", str); 1136 return -EINVAL; 1137 } 1138 1139 static const char * const auxtrace_error_type_name[] = { 1140 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1141 }; 1142 1143 static const char *auxtrace_error_name(int type) 1144 { 1145 const char *error_type_name = NULL; 1146 1147 if (type < PERF_AUXTRACE_ERROR_MAX) 1148 error_type_name = auxtrace_error_type_name[type]; 1149 if (!error_type_name) 1150 error_type_name = "unknown AUX"; 1151 return error_type_name; 1152 } 1153 1154 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1155 { 1156 struct auxtrace_error_event *e = &event->auxtrace_error; 1157 unsigned long long nsecs = e->time; 1158 const char *msg = e->msg; 1159 int ret; 1160 1161 ret = fprintf(fp, " %s error type %u", 1162 auxtrace_error_name(e->type), e->type); 1163 1164 if (e->fmt && nsecs) { 1165 unsigned long secs = nsecs / NSEC_PER_SEC; 1166 1167 nsecs -= secs * NSEC_PER_SEC; 1168 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1169 } else { 1170 ret += fprintf(fp, " time 0"); 1171 } 1172 1173 if (!e->fmt) 1174 msg = (const char *)&e->time; 1175 1176 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n", 1177 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1178 return ret; 1179 } 1180 1181 void perf_session__auxtrace_error_inc(struct perf_session *session, 1182 union perf_event *event) 1183 { 1184 struct auxtrace_error_event *e = &event->auxtrace_error; 1185 1186 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1187 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1188 } 1189 1190 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1191 { 1192 int i; 1193 1194 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1195 if (!stats->nr_auxtrace_errors[i]) 1196 continue; 1197 ui__warning("%u %s errors\n", 1198 stats->nr_auxtrace_errors[i], 1199 auxtrace_error_name(i)); 1200 } 1201 } 1202 1203 int perf_event__process_auxtrace_error(struct perf_session *session, 1204 union perf_event *event) 1205 { 1206 if (auxtrace__dont_decode(session)) 1207 return 0; 1208 1209 perf_event__fprintf_auxtrace_error(event, stdout); 1210 return 0; 1211 } 1212 1213 static int __auxtrace_mmap__read(struct perf_mmap *map, 1214 struct auxtrace_record *itr, 1215 struct perf_tool *tool, process_auxtrace_t fn, 1216 bool snapshot, size_t snapshot_size) 1217 { 1218 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1219 u64 head, old = mm->prev, offset, ref; 1220 unsigned char *data = mm->base; 1221 size_t size, head_off, old_off, len1, len2, padding; 1222 union perf_event ev; 1223 void *data1, *data2; 1224 1225 if (snapshot) { 1226 head = auxtrace_mmap__read_snapshot_head(mm); 1227 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1228 &head, &old)) 1229 return -1; 1230 } else { 1231 head = auxtrace_mmap__read_head(mm); 1232 } 1233 1234 if (old == head) 1235 return 0; 1236 1237 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1238 mm->idx, old, head, head - old); 1239 1240 if (mm->mask) { 1241 head_off = head & mm->mask; 1242 old_off = old & mm->mask; 1243 } else { 1244 head_off = head % mm->len; 1245 old_off = old % mm->len; 1246 } 1247 1248 if (head_off > old_off) 1249 size = head_off - old_off; 1250 else 1251 size = mm->len - (old_off - head_off); 1252 1253 if (snapshot && size > snapshot_size) 1254 size = snapshot_size; 1255 1256 ref = auxtrace_record__reference(itr); 1257 1258 if (head > old || size <= head || mm->mask) { 1259 offset = head - size; 1260 } else { 1261 /* 1262 * When the buffer size is not a power of 2, 'head' wraps at the 1263 * highest multiple of the buffer size, so we have to subtract 1264 * the remainder here. 1265 */ 1266 u64 rem = (0ULL - mm->len) % mm->len; 1267 1268 offset = head - size - rem; 1269 } 1270 1271 if (size > head_off) { 1272 len1 = size - head_off; 1273 data1 = &data[mm->len - len1]; 1274 len2 = head_off; 1275 data2 = &data[0]; 1276 } else { 1277 len1 = size; 1278 data1 = &data[head_off - len1]; 1279 len2 = 0; 1280 data2 = NULL; 1281 } 1282 1283 if (itr->alignment) { 1284 unsigned int unwanted = len1 % itr->alignment; 1285 1286 len1 -= unwanted; 1287 size -= unwanted; 1288 } 1289 1290 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1291 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1292 if (padding) 1293 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1294 1295 memset(&ev, 0, sizeof(ev)); 1296 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1297 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1298 ev.auxtrace.size = size + padding; 1299 ev.auxtrace.offset = offset; 1300 ev.auxtrace.reference = ref; 1301 ev.auxtrace.idx = mm->idx; 1302 ev.auxtrace.tid = mm->tid; 1303 ev.auxtrace.cpu = mm->cpu; 1304 1305 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1306 return -1; 1307 1308 mm->prev = head; 1309 1310 if (!snapshot) { 1311 auxtrace_mmap__write_tail(mm, head); 1312 if (itr->read_finish) { 1313 int err; 1314 1315 err = itr->read_finish(itr, mm->idx); 1316 if (err < 0) 1317 return err; 1318 } 1319 } 1320 1321 return 1; 1322 } 1323 1324 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr, 1325 struct perf_tool *tool, process_auxtrace_t fn) 1326 { 1327 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1328 } 1329 1330 int auxtrace_mmap__read_snapshot(struct perf_mmap *map, 1331 struct auxtrace_record *itr, 1332 struct perf_tool *tool, process_auxtrace_t fn, 1333 size_t snapshot_size) 1334 { 1335 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1336 } 1337 1338 /** 1339 * struct auxtrace_cache - hash table to implement a cache 1340 * @hashtable: the hashtable 1341 * @sz: hashtable size (number of hlists) 1342 * @entry_size: size of an entry 1343 * @limit: limit the number of entries to this maximum, when reached the cache 1344 * is dropped and caching begins again with an empty cache 1345 * @cnt: current number of entries 1346 * @bits: hashtable size (@sz = 2^@bits) 1347 */ 1348 struct auxtrace_cache { 1349 struct hlist_head *hashtable; 1350 size_t sz; 1351 size_t entry_size; 1352 size_t limit; 1353 size_t cnt; 1354 unsigned int bits; 1355 }; 1356 1357 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1358 unsigned int limit_percent) 1359 { 1360 struct auxtrace_cache *c; 1361 struct hlist_head *ht; 1362 size_t sz, i; 1363 1364 c = zalloc(sizeof(struct auxtrace_cache)); 1365 if (!c) 1366 return NULL; 1367 1368 sz = 1UL << bits; 1369 1370 ht = calloc(sz, sizeof(struct hlist_head)); 1371 if (!ht) 1372 goto out_free; 1373 1374 for (i = 0; i < sz; i++) 1375 INIT_HLIST_HEAD(&ht[i]); 1376 1377 c->hashtable = ht; 1378 c->sz = sz; 1379 c->entry_size = entry_size; 1380 c->limit = (c->sz * limit_percent) / 100; 1381 c->bits = bits; 1382 1383 return c; 1384 1385 out_free: 1386 free(c); 1387 return NULL; 1388 } 1389 1390 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1391 { 1392 struct auxtrace_cache_entry *entry; 1393 struct hlist_node *tmp; 1394 size_t i; 1395 1396 if (!c) 1397 return; 1398 1399 for (i = 0; i < c->sz; i++) { 1400 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1401 hlist_del(&entry->hash); 1402 auxtrace_cache__free_entry(c, entry); 1403 } 1404 } 1405 1406 c->cnt = 0; 1407 } 1408 1409 void auxtrace_cache__free(struct auxtrace_cache *c) 1410 { 1411 if (!c) 1412 return; 1413 1414 auxtrace_cache__drop(c); 1415 free(c->hashtable); 1416 free(c); 1417 } 1418 1419 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1420 { 1421 return malloc(c->entry_size); 1422 } 1423 1424 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1425 void *entry) 1426 { 1427 free(entry); 1428 } 1429 1430 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1431 struct auxtrace_cache_entry *entry) 1432 { 1433 if (c->limit && ++c->cnt > c->limit) 1434 auxtrace_cache__drop(c); 1435 1436 entry->key = key; 1437 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1438 1439 return 0; 1440 } 1441 1442 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1443 { 1444 struct auxtrace_cache_entry *entry; 1445 struct hlist_head *hlist; 1446 1447 if (!c) 1448 return NULL; 1449 1450 hlist = &c->hashtable[hash_32(key, c->bits)]; 1451 hlist_for_each_entry(entry, hlist, hash) { 1452 if (entry->key == key) 1453 return entry; 1454 } 1455 1456 return NULL; 1457 } 1458 1459 static void addr_filter__free_str(struct addr_filter *filt) 1460 { 1461 free(filt->str); 1462 filt->action = NULL; 1463 filt->sym_from = NULL; 1464 filt->sym_to = NULL; 1465 filt->filename = NULL; 1466 filt->str = NULL; 1467 } 1468 1469 static struct addr_filter *addr_filter__new(void) 1470 { 1471 struct addr_filter *filt = zalloc(sizeof(*filt)); 1472 1473 if (filt) 1474 INIT_LIST_HEAD(&filt->list); 1475 1476 return filt; 1477 } 1478 1479 static void addr_filter__free(struct addr_filter *filt) 1480 { 1481 if (filt) 1482 addr_filter__free_str(filt); 1483 free(filt); 1484 } 1485 1486 static void addr_filters__add(struct addr_filters *filts, 1487 struct addr_filter *filt) 1488 { 1489 list_add_tail(&filt->list, &filts->head); 1490 filts->cnt += 1; 1491 } 1492 1493 static void addr_filters__del(struct addr_filters *filts, 1494 struct addr_filter *filt) 1495 { 1496 list_del_init(&filt->list); 1497 filts->cnt -= 1; 1498 } 1499 1500 void addr_filters__init(struct addr_filters *filts) 1501 { 1502 INIT_LIST_HEAD(&filts->head); 1503 filts->cnt = 0; 1504 } 1505 1506 void addr_filters__exit(struct addr_filters *filts) 1507 { 1508 struct addr_filter *filt, *n; 1509 1510 list_for_each_entry_safe(filt, n, &filts->head, list) { 1511 addr_filters__del(filts, filt); 1512 addr_filter__free(filt); 1513 } 1514 } 1515 1516 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1517 const char *str_delim) 1518 { 1519 *inp += strspn(*inp, " "); 1520 1521 if (isdigit(**inp)) { 1522 char *endptr; 1523 1524 if (!num) 1525 return -EINVAL; 1526 errno = 0; 1527 *num = strtoull(*inp, &endptr, 0); 1528 if (errno) 1529 return -errno; 1530 if (endptr == *inp) 1531 return -EINVAL; 1532 *inp = endptr; 1533 } else { 1534 size_t n; 1535 1536 if (!str) 1537 return -EINVAL; 1538 *inp += strspn(*inp, " "); 1539 *str = *inp; 1540 n = strcspn(*inp, str_delim); 1541 if (!n) 1542 return -EINVAL; 1543 *inp += n; 1544 if (**inp) { 1545 **inp = '\0'; 1546 *inp += 1; 1547 } 1548 } 1549 return 0; 1550 } 1551 1552 static int parse_action(struct addr_filter *filt) 1553 { 1554 if (!strcmp(filt->action, "filter")) { 1555 filt->start = true; 1556 filt->range = true; 1557 } else if (!strcmp(filt->action, "start")) { 1558 filt->start = true; 1559 } else if (!strcmp(filt->action, "stop")) { 1560 filt->start = false; 1561 } else if (!strcmp(filt->action, "tracestop")) { 1562 filt->start = false; 1563 filt->range = true; 1564 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1565 } else { 1566 return -EINVAL; 1567 } 1568 return 0; 1569 } 1570 1571 static int parse_sym_idx(char **inp, int *idx) 1572 { 1573 *idx = -1; 1574 1575 *inp += strspn(*inp, " "); 1576 1577 if (**inp != '#') 1578 return 0; 1579 1580 *inp += 1; 1581 1582 if (**inp == 'g' || **inp == 'G') { 1583 *inp += 1; 1584 *idx = 0; 1585 } else { 1586 unsigned long num; 1587 char *endptr; 1588 1589 errno = 0; 1590 num = strtoul(*inp, &endptr, 0); 1591 if (errno) 1592 return -errno; 1593 if (endptr == *inp || num > INT_MAX) 1594 return -EINVAL; 1595 *inp = endptr; 1596 *idx = num; 1597 } 1598 1599 return 0; 1600 } 1601 1602 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 1603 { 1604 int err = parse_num_or_str(inp, num, str, " "); 1605 1606 if (!err && *str) 1607 err = parse_sym_idx(inp, idx); 1608 1609 return err; 1610 } 1611 1612 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 1613 { 1614 char *fstr; 1615 int err; 1616 1617 filt->str = fstr = strdup(*filter_inp); 1618 if (!fstr) 1619 return -ENOMEM; 1620 1621 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 1622 if (err) 1623 goto out_err; 1624 1625 err = parse_action(filt); 1626 if (err) 1627 goto out_err; 1628 1629 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 1630 &filt->sym_from_idx); 1631 if (err) 1632 goto out_err; 1633 1634 fstr += strspn(fstr, " "); 1635 1636 if (*fstr == '/') { 1637 fstr += 1; 1638 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 1639 &filt->sym_to_idx); 1640 if (err) 1641 goto out_err; 1642 filt->range = true; 1643 } 1644 1645 fstr += strspn(fstr, " "); 1646 1647 if (*fstr == '@') { 1648 fstr += 1; 1649 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 1650 if (err) 1651 goto out_err; 1652 } 1653 1654 fstr += strspn(fstr, " ,"); 1655 1656 *filter_inp += fstr - filt->str; 1657 1658 return 0; 1659 1660 out_err: 1661 addr_filter__free_str(filt); 1662 1663 return err; 1664 } 1665 1666 int addr_filters__parse_bare_filter(struct addr_filters *filts, 1667 const char *filter) 1668 { 1669 struct addr_filter *filt; 1670 const char *fstr = filter; 1671 int err; 1672 1673 while (*fstr) { 1674 filt = addr_filter__new(); 1675 err = parse_one_filter(filt, &fstr); 1676 if (err) { 1677 addr_filter__free(filt); 1678 addr_filters__exit(filts); 1679 return err; 1680 } 1681 addr_filters__add(filts, filt); 1682 } 1683 1684 return 0; 1685 } 1686 1687 struct sym_args { 1688 const char *name; 1689 u64 start; 1690 u64 size; 1691 int idx; 1692 int cnt; 1693 bool started; 1694 bool global; 1695 bool selected; 1696 bool duplicate; 1697 bool near; 1698 }; 1699 1700 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 1701 { 1702 /* A function with the same name, and global or the n'th found or any */ 1703 return kallsyms__is_function(type) && 1704 !strcmp(name, args->name) && 1705 ((args->global && isupper(type)) || 1706 (args->selected && ++(args->cnt) == args->idx) || 1707 (!args->global && !args->selected)); 1708 } 1709 1710 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1711 { 1712 struct sym_args *args = arg; 1713 1714 if (args->started) { 1715 if (!args->size) 1716 args->size = start - args->start; 1717 if (args->selected) { 1718 if (args->size) 1719 return 1; 1720 } else if (kern_sym_match(args, name, type)) { 1721 args->duplicate = true; 1722 return 1; 1723 } 1724 } else if (kern_sym_match(args, name, type)) { 1725 args->started = true; 1726 args->start = start; 1727 } 1728 1729 return 0; 1730 } 1731 1732 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1733 { 1734 struct sym_args *args = arg; 1735 1736 if (kern_sym_match(args, name, type)) { 1737 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1738 ++args->cnt, start, type, name); 1739 args->near = true; 1740 } else if (args->near) { 1741 args->near = false; 1742 pr_err("\t\twhich is near\t\t%s\n", name); 1743 } 1744 1745 return 0; 1746 } 1747 1748 static int sym_not_found_error(const char *sym_name, int idx) 1749 { 1750 if (idx > 0) { 1751 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 1752 idx, sym_name); 1753 } else if (!idx) { 1754 pr_err("Global symbol '%s' not found.\n", sym_name); 1755 } else { 1756 pr_err("Symbol '%s' not found.\n", sym_name); 1757 } 1758 pr_err("Note that symbols must be functions.\n"); 1759 1760 return -EINVAL; 1761 } 1762 1763 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 1764 { 1765 struct sym_args args = { 1766 .name = sym_name, 1767 .idx = idx, 1768 .global = !idx, 1769 .selected = idx > 0, 1770 }; 1771 int err; 1772 1773 *start = 0; 1774 *size = 0; 1775 1776 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 1777 if (err < 0) { 1778 pr_err("Failed to parse /proc/kallsyms\n"); 1779 return err; 1780 } 1781 1782 if (args.duplicate) { 1783 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 1784 args.cnt = 0; 1785 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 1786 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1787 sym_name); 1788 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1789 return -EINVAL; 1790 } 1791 1792 if (!args.started) { 1793 pr_err("Kernel symbol lookup: "); 1794 return sym_not_found_error(sym_name, idx); 1795 } 1796 1797 *start = args.start; 1798 *size = args.size; 1799 1800 return 0; 1801 } 1802 1803 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 1804 char type, u64 start) 1805 { 1806 struct sym_args *args = arg; 1807 1808 if (!kallsyms__is_function(type)) 1809 return 0; 1810 1811 if (!args->started) { 1812 args->started = true; 1813 args->start = start; 1814 } 1815 /* Don't know exactly where the kernel ends, so we add a page */ 1816 args->size = round_up(start, page_size) + page_size - args->start; 1817 1818 return 0; 1819 } 1820 1821 static int addr_filter__entire_kernel(struct addr_filter *filt) 1822 { 1823 struct sym_args args = { .started = false }; 1824 int err; 1825 1826 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 1827 if (err < 0 || !args.started) { 1828 pr_err("Failed to parse /proc/kallsyms\n"); 1829 return err; 1830 } 1831 1832 filt->addr = args.start; 1833 filt->size = args.size; 1834 1835 return 0; 1836 } 1837 1838 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 1839 { 1840 if (start + size >= filt->addr) 1841 return 0; 1842 1843 if (filt->sym_from) { 1844 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 1845 filt->sym_to, start, filt->sym_from, filt->addr); 1846 } else { 1847 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 1848 filt->sym_to, start, filt->addr); 1849 } 1850 1851 return -EINVAL; 1852 } 1853 1854 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 1855 { 1856 bool no_size = false; 1857 u64 start, size; 1858 int err; 1859 1860 if (symbol_conf.kptr_restrict) { 1861 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 1862 return -EINVAL; 1863 } 1864 1865 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 1866 return addr_filter__entire_kernel(filt); 1867 1868 if (filt->sym_from) { 1869 err = find_kern_sym(filt->sym_from, &start, &size, 1870 filt->sym_from_idx); 1871 if (err) 1872 return err; 1873 filt->addr = start; 1874 if (filt->range && !filt->size && !filt->sym_to) { 1875 filt->size = size; 1876 no_size = !size; 1877 } 1878 } 1879 1880 if (filt->sym_to) { 1881 err = find_kern_sym(filt->sym_to, &start, &size, 1882 filt->sym_to_idx); 1883 if (err) 1884 return err; 1885 1886 err = check_end_after_start(filt, start, size); 1887 if (err) 1888 return err; 1889 filt->size = start + size - filt->addr; 1890 no_size = !size; 1891 } 1892 1893 /* The very last symbol in kallsyms does not imply a particular size */ 1894 if (no_size) { 1895 pr_err("Cannot determine size of symbol '%s'\n", 1896 filt->sym_to ? filt->sym_to : filt->sym_from); 1897 return -EINVAL; 1898 } 1899 1900 return 0; 1901 } 1902 1903 static struct dso *load_dso(const char *name) 1904 { 1905 struct map *map; 1906 struct dso *dso; 1907 1908 map = dso__new_map(name); 1909 if (!map) 1910 return NULL; 1911 1912 if (map__load(map) < 0) 1913 pr_err("File '%s' not found or has no symbols.\n", name); 1914 1915 dso = dso__get(map->dso); 1916 1917 map__put(map); 1918 1919 return dso; 1920 } 1921 1922 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 1923 int idx) 1924 { 1925 /* Same name, and global or the n'th found or any */ 1926 return !arch__compare_symbol_names(name, sym->name) && 1927 ((!idx && sym->binding == STB_GLOBAL) || 1928 (idx > 0 && ++*cnt == idx) || 1929 idx < 0); 1930 } 1931 1932 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 1933 { 1934 struct symbol *sym; 1935 bool near = false; 1936 int cnt = 0; 1937 1938 pr_err("Multiple symbols with name '%s'\n", sym_name); 1939 1940 sym = dso__first_symbol(dso); 1941 while (sym) { 1942 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 1943 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1944 ++cnt, sym->start, 1945 sym->binding == STB_GLOBAL ? 'g' : 1946 sym->binding == STB_LOCAL ? 'l' : 'w', 1947 sym->name); 1948 near = true; 1949 } else if (near) { 1950 near = false; 1951 pr_err("\t\twhich is near\t\t%s\n", sym->name); 1952 } 1953 sym = dso__next_symbol(sym); 1954 } 1955 1956 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1957 sym_name); 1958 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1959 } 1960 1961 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 1962 u64 *size, int idx) 1963 { 1964 struct symbol *sym; 1965 int cnt = 0; 1966 1967 *start = 0; 1968 *size = 0; 1969 1970 sym = dso__first_symbol(dso); 1971 while (sym) { 1972 if (*start) { 1973 if (!*size) 1974 *size = sym->start - *start; 1975 if (idx > 0) { 1976 if (*size) 1977 return 1; 1978 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1979 print_duplicate_syms(dso, sym_name); 1980 return -EINVAL; 1981 } 1982 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1983 *start = sym->start; 1984 *size = sym->end - sym->start; 1985 } 1986 sym = dso__next_symbol(sym); 1987 } 1988 1989 if (!*start) 1990 return sym_not_found_error(sym_name, idx); 1991 1992 return 0; 1993 } 1994 1995 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 1996 { 1997 if (dso__data_file_size(dso, NULL)) { 1998 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 1999 filt->filename); 2000 return -EINVAL; 2001 } 2002 2003 filt->addr = 0; 2004 filt->size = dso->data.file_size; 2005 2006 return 0; 2007 } 2008 2009 static int addr_filter__resolve_syms(struct addr_filter *filt) 2010 { 2011 u64 start, size; 2012 struct dso *dso; 2013 int err = 0; 2014 2015 if (!filt->sym_from && !filt->sym_to) 2016 return 0; 2017 2018 if (!filt->filename) 2019 return addr_filter__resolve_kernel_syms(filt); 2020 2021 dso = load_dso(filt->filename); 2022 if (!dso) { 2023 pr_err("Failed to load symbols from: %s\n", filt->filename); 2024 return -EINVAL; 2025 } 2026 2027 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2028 err = addr_filter__entire_dso(filt, dso); 2029 goto put_dso; 2030 } 2031 2032 if (filt->sym_from) { 2033 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2034 filt->sym_from_idx); 2035 if (err) 2036 goto put_dso; 2037 filt->addr = start; 2038 if (filt->range && !filt->size && !filt->sym_to) 2039 filt->size = size; 2040 } 2041 2042 if (filt->sym_to) { 2043 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2044 filt->sym_to_idx); 2045 if (err) 2046 goto put_dso; 2047 2048 err = check_end_after_start(filt, start, size); 2049 if (err) 2050 return err; 2051 2052 filt->size = start + size - filt->addr; 2053 } 2054 2055 put_dso: 2056 dso__put(dso); 2057 2058 return err; 2059 } 2060 2061 static char *addr_filter__to_str(struct addr_filter *filt) 2062 { 2063 char filename_buf[PATH_MAX]; 2064 const char *at = ""; 2065 const char *fn = ""; 2066 char *filter; 2067 int err; 2068 2069 if (filt->filename) { 2070 at = "@"; 2071 fn = realpath(filt->filename, filename_buf); 2072 if (!fn) 2073 return NULL; 2074 } 2075 2076 if (filt->range) { 2077 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2078 filt->action, filt->addr, filt->size, at, fn); 2079 } else { 2080 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2081 filt->action, filt->addr, at, fn); 2082 } 2083 2084 return err < 0 ? NULL : filter; 2085 } 2086 2087 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter, 2088 int max_nr) 2089 { 2090 struct addr_filters filts; 2091 struct addr_filter *filt; 2092 int err; 2093 2094 addr_filters__init(&filts); 2095 2096 err = addr_filters__parse_bare_filter(&filts, filter); 2097 if (err) 2098 goto out_exit; 2099 2100 if (filts.cnt > max_nr) { 2101 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2102 filts.cnt, max_nr); 2103 err = -EINVAL; 2104 goto out_exit; 2105 } 2106 2107 list_for_each_entry(filt, &filts.head, list) { 2108 char *new_filter; 2109 2110 err = addr_filter__resolve_syms(filt); 2111 if (err) 2112 goto out_exit; 2113 2114 new_filter = addr_filter__to_str(filt); 2115 if (!new_filter) { 2116 err = -ENOMEM; 2117 goto out_exit; 2118 } 2119 2120 if (perf_evsel__append_addr_filter(evsel, new_filter)) { 2121 err = -ENOMEM; 2122 goto out_exit; 2123 } 2124 } 2125 2126 out_exit: 2127 addr_filters__exit(&filts); 2128 2129 if (err) { 2130 pr_err("Failed to parse address filter: '%s'\n", filter); 2131 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2132 pr_err("Where multiple filters are separated by space or comma.\n"); 2133 } 2134 2135 return err; 2136 } 2137 2138 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel) 2139 { 2140 struct perf_pmu *pmu = NULL; 2141 2142 while ((pmu = perf_pmu__scan(pmu)) != NULL) { 2143 if (pmu->type == evsel->attr.type) 2144 break; 2145 } 2146 2147 return pmu; 2148 } 2149 2150 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel) 2151 { 2152 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 2153 int nr_addr_filters = 0; 2154 2155 if (!pmu) 2156 return 0; 2157 2158 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2159 2160 return nr_addr_filters; 2161 } 2162 2163 int auxtrace_parse_filters(struct perf_evlist *evlist) 2164 { 2165 struct perf_evsel *evsel; 2166 char *filter; 2167 int err, max_nr; 2168 2169 evlist__for_each_entry(evlist, evsel) { 2170 filter = evsel->filter; 2171 max_nr = perf_evsel__nr_addr_filter(evsel); 2172 if (!filter || !max_nr) 2173 continue; 2174 evsel->filter = NULL; 2175 err = parse_addr_filter(evsel, filter, max_nr); 2176 free(filter); 2177 if (err) 2178 return err; 2179 pr_debug("Address filter: %s\n", evsel->filter); 2180 } 2181 2182 return 0; 2183 } 2184