xref: /linux/tools/perf/util/auxtrace.c (revision 8eecf1c9929aef24e9e75280a39ed1ba3c64fb71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41 
42 #include <linux/hash.h>
43 
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49 
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56 
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60 
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67 	struct evsel *evsel;
68 	bool grp;
69 
70 	if (!evsel__is_group_leader(leader))
71 		return -EINVAL;
72 
73 	grp = false;
74 	evlist__for_each_entry(evlist, evsel) {
75 		if (grp) {
76 			if (!(evsel__leader(evsel) == leader ||
77 			     (evsel__leader(evsel) == evsel &&
78 			      evsel->core.nr_members <= 1)))
79 				return -EINVAL;
80 		} else if (evsel == leader) {
81 			grp = true;
82 		}
83 		if (evsel == last)
84 			break;
85 	}
86 
87 	grp = false;
88 	evlist__for_each_entry(evlist, evsel) {
89 		if (grp) {
90 			if (!evsel__has_leader(evsel, leader)) {
91 				evsel__set_leader(evsel, leader);
92 				if (leader->core.nr_members < 1)
93 					leader->core.nr_members = 1;
94 				leader->core.nr_members += 1;
95 			}
96 		} else if (evsel == leader) {
97 			grp = true;
98 		}
99 		if (evsel == last)
100 			break;
101 	}
102 
103 	return 0;
104 }
105 
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108 	return !session->itrace_synth_opts ||
109 	       session->itrace_synth_opts->dont_decode;
110 }
111 
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113 			struct auxtrace_mmap_params *mp,
114 			void *userpg, int fd)
115 {
116 	struct perf_event_mmap_page *pc = userpg;
117 
118 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119 
120 	mm->userpg = userpg;
121 	mm->mask = mp->mask;
122 	mm->len = mp->len;
123 	mm->prev = 0;
124 	mm->idx = mp->idx;
125 	mm->tid = mp->tid;
126 	mm->cpu = mp->cpu.cpu;
127 
128 	if (!mp->len) {
129 		mm->base = NULL;
130 		return 0;
131 	}
132 
133 	pc->aux_offset = mp->offset;
134 	pc->aux_size = mp->len;
135 
136 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137 	if (mm->base == MAP_FAILED) {
138 		pr_debug2("failed to mmap AUX area\n");
139 		mm->base = NULL;
140 		return -1;
141 	}
142 
143 	return 0;
144 }
145 
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148 	if (mm->base) {
149 		munmap(mm->base, mm->len);
150 		mm->base = NULL;
151 	}
152 }
153 
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155 				off_t auxtrace_offset,
156 				unsigned int auxtrace_pages,
157 				bool auxtrace_overwrite)
158 {
159 	if (auxtrace_pages) {
160 		mp->offset = auxtrace_offset;
161 		mp->len = auxtrace_pages * (size_t)page_size;
162 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164 		pr_debug2("AUX area mmap length %zu\n", mp->len);
165 	} else {
166 		mp->len = 0;
167 	}
168 }
169 
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171 				   struct evlist *evlist, int idx,
172 				   bool per_cpu)
173 {
174 	mp->idx = idx;
175 
176 	if (per_cpu) {
177 		mp->cpu = perf_cpu_map__cpu(evlist->core.user_requested_cpus, idx);
178 		if (evlist->core.threads)
179 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
180 		else
181 			mp->tid = -1;
182 	} else {
183 		mp->cpu.cpu = -1;
184 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
185 	}
186 }
187 
188 #define AUXTRACE_INIT_NR_QUEUES	32
189 
190 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
191 {
192 	struct auxtrace_queue *queue_array;
193 	unsigned int max_nr_queues, i;
194 
195 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
196 	if (nr_queues > max_nr_queues)
197 		return NULL;
198 
199 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
200 	if (!queue_array)
201 		return NULL;
202 
203 	for (i = 0; i < nr_queues; i++) {
204 		INIT_LIST_HEAD(&queue_array[i].head);
205 		queue_array[i].priv = NULL;
206 	}
207 
208 	return queue_array;
209 }
210 
211 int auxtrace_queues__init(struct auxtrace_queues *queues)
212 {
213 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
214 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
215 	if (!queues->queue_array)
216 		return -ENOMEM;
217 	return 0;
218 }
219 
220 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
221 				 unsigned int new_nr_queues)
222 {
223 	unsigned int nr_queues = queues->nr_queues;
224 	struct auxtrace_queue *queue_array;
225 	unsigned int i;
226 
227 	if (!nr_queues)
228 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
229 
230 	while (nr_queues && nr_queues < new_nr_queues)
231 		nr_queues <<= 1;
232 
233 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
234 		return -EINVAL;
235 
236 	queue_array = auxtrace_alloc_queue_array(nr_queues);
237 	if (!queue_array)
238 		return -ENOMEM;
239 
240 	for (i = 0; i < queues->nr_queues; i++) {
241 		list_splice_tail(&queues->queue_array[i].head,
242 				 &queue_array[i].head);
243 		queue_array[i].tid = queues->queue_array[i].tid;
244 		queue_array[i].cpu = queues->queue_array[i].cpu;
245 		queue_array[i].set = queues->queue_array[i].set;
246 		queue_array[i].priv = queues->queue_array[i].priv;
247 	}
248 
249 	queues->nr_queues = nr_queues;
250 	queues->queue_array = queue_array;
251 
252 	return 0;
253 }
254 
255 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
256 {
257 	int fd = perf_data__fd(session->data);
258 	void *p;
259 	ssize_t ret;
260 
261 	if (size > SSIZE_MAX)
262 		return NULL;
263 
264 	p = malloc(size);
265 	if (!p)
266 		return NULL;
267 
268 	ret = readn(fd, p, size);
269 	if (ret != (ssize_t)size) {
270 		free(p);
271 		return NULL;
272 	}
273 
274 	return p;
275 }
276 
277 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
278 					 unsigned int idx,
279 					 struct auxtrace_buffer *buffer)
280 {
281 	struct auxtrace_queue *queue;
282 	int err;
283 
284 	if (idx >= queues->nr_queues) {
285 		err = auxtrace_queues__grow(queues, idx + 1);
286 		if (err)
287 			return err;
288 	}
289 
290 	queue = &queues->queue_array[idx];
291 
292 	if (!queue->set) {
293 		queue->set = true;
294 		queue->tid = buffer->tid;
295 		queue->cpu = buffer->cpu.cpu;
296 	}
297 
298 	buffer->buffer_nr = queues->next_buffer_nr++;
299 
300 	list_add_tail(&buffer->list, &queue->head);
301 
302 	queues->new_data = true;
303 	queues->populated = true;
304 
305 	return 0;
306 }
307 
308 /* Limit buffers to 32MiB on 32-bit */
309 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
310 
311 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
312 					 unsigned int idx,
313 					 struct auxtrace_buffer *buffer)
314 {
315 	u64 sz = buffer->size;
316 	bool consecutive = false;
317 	struct auxtrace_buffer *b;
318 	int err;
319 
320 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
321 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
322 		if (!b)
323 			return -ENOMEM;
324 		b->size = BUFFER_LIMIT_FOR_32_BIT;
325 		b->consecutive = consecutive;
326 		err = auxtrace_queues__queue_buffer(queues, idx, b);
327 		if (err) {
328 			auxtrace_buffer__free(b);
329 			return err;
330 		}
331 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
332 		sz -= BUFFER_LIMIT_FOR_32_BIT;
333 		consecutive = true;
334 	}
335 
336 	buffer->size = sz;
337 	buffer->consecutive = consecutive;
338 
339 	return 0;
340 }
341 
342 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
343 {
344 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
345 
346 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
347 }
348 
349 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
350 				       struct perf_session *session,
351 				       unsigned int idx,
352 				       struct auxtrace_buffer *buffer,
353 				       struct auxtrace_buffer **buffer_ptr)
354 {
355 	int err = -ENOMEM;
356 
357 	if (filter_cpu(session, buffer->cpu))
358 		return 0;
359 
360 	buffer = memdup(buffer, sizeof(*buffer));
361 	if (!buffer)
362 		return -ENOMEM;
363 
364 	if (session->one_mmap) {
365 		buffer->data = buffer->data_offset - session->one_mmap_offset +
366 			       session->one_mmap_addr;
367 	} else if (perf_data__is_pipe(session->data)) {
368 		buffer->data = auxtrace_copy_data(buffer->size, session);
369 		if (!buffer->data)
370 			goto out_free;
371 		buffer->data_needs_freeing = true;
372 	} else if (BITS_PER_LONG == 32 &&
373 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
374 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
375 		if (err)
376 			goto out_free;
377 	}
378 
379 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
380 	if (err)
381 		goto out_free;
382 
383 	/* FIXME: Doesn't work for split buffer */
384 	if (buffer_ptr)
385 		*buffer_ptr = buffer;
386 
387 	return 0;
388 
389 out_free:
390 	auxtrace_buffer__free(buffer);
391 	return err;
392 }
393 
394 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
395 			       struct perf_session *session,
396 			       union perf_event *event, off_t data_offset,
397 			       struct auxtrace_buffer **buffer_ptr)
398 {
399 	struct auxtrace_buffer buffer = {
400 		.pid = -1,
401 		.tid = event->auxtrace.tid,
402 		.cpu = { event->auxtrace.cpu },
403 		.data_offset = data_offset,
404 		.offset = event->auxtrace.offset,
405 		.reference = event->auxtrace.reference,
406 		.size = event->auxtrace.size,
407 	};
408 	unsigned int idx = event->auxtrace.idx;
409 
410 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
411 					   buffer_ptr);
412 }
413 
414 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
415 					      struct perf_session *session,
416 					      off_t file_offset, size_t sz)
417 {
418 	union perf_event *event;
419 	int err;
420 	char buf[PERF_SAMPLE_MAX_SIZE];
421 
422 	err = perf_session__peek_event(session, file_offset, buf,
423 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
424 	if (err)
425 		return err;
426 
427 	if (event->header.type == PERF_RECORD_AUXTRACE) {
428 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
429 		    event->header.size != sz) {
430 			err = -EINVAL;
431 			goto out;
432 		}
433 		file_offset += event->header.size;
434 		err = auxtrace_queues__add_event(queues, session, event,
435 						 file_offset, NULL);
436 	}
437 out:
438 	return err;
439 }
440 
441 void auxtrace_queues__free(struct auxtrace_queues *queues)
442 {
443 	unsigned int i;
444 
445 	for (i = 0; i < queues->nr_queues; i++) {
446 		while (!list_empty(&queues->queue_array[i].head)) {
447 			struct auxtrace_buffer *buffer;
448 
449 			buffer = list_entry(queues->queue_array[i].head.next,
450 					    struct auxtrace_buffer, list);
451 			list_del_init(&buffer->list);
452 			auxtrace_buffer__free(buffer);
453 		}
454 	}
455 
456 	zfree(&queues->queue_array);
457 	queues->nr_queues = 0;
458 }
459 
460 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
461 			     unsigned int pos, unsigned int queue_nr,
462 			     u64 ordinal)
463 {
464 	unsigned int parent;
465 
466 	while (pos) {
467 		parent = (pos - 1) >> 1;
468 		if (heap_array[parent].ordinal <= ordinal)
469 			break;
470 		heap_array[pos] = heap_array[parent];
471 		pos = parent;
472 	}
473 	heap_array[pos].queue_nr = queue_nr;
474 	heap_array[pos].ordinal = ordinal;
475 }
476 
477 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
478 		       u64 ordinal)
479 {
480 	struct auxtrace_heap_item *heap_array;
481 
482 	if (queue_nr >= heap->heap_sz) {
483 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
484 
485 		while (heap_sz <= queue_nr)
486 			heap_sz <<= 1;
487 		heap_array = realloc(heap->heap_array,
488 				     heap_sz * sizeof(struct auxtrace_heap_item));
489 		if (!heap_array)
490 			return -ENOMEM;
491 		heap->heap_array = heap_array;
492 		heap->heap_sz = heap_sz;
493 	}
494 
495 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
496 
497 	return 0;
498 }
499 
500 void auxtrace_heap__free(struct auxtrace_heap *heap)
501 {
502 	zfree(&heap->heap_array);
503 	heap->heap_cnt = 0;
504 	heap->heap_sz = 0;
505 }
506 
507 void auxtrace_heap__pop(struct auxtrace_heap *heap)
508 {
509 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
510 	struct auxtrace_heap_item *heap_array;
511 
512 	if (!heap_cnt)
513 		return;
514 
515 	heap->heap_cnt -= 1;
516 
517 	heap_array = heap->heap_array;
518 
519 	pos = 0;
520 	while (1) {
521 		unsigned int left, right;
522 
523 		left = (pos << 1) + 1;
524 		if (left >= heap_cnt)
525 			break;
526 		right = left + 1;
527 		if (right >= heap_cnt) {
528 			heap_array[pos] = heap_array[left];
529 			return;
530 		}
531 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
532 			heap_array[pos] = heap_array[left];
533 			pos = left;
534 		} else {
535 			heap_array[pos] = heap_array[right];
536 			pos = right;
537 		}
538 	}
539 
540 	last = heap_cnt - 1;
541 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
542 			 heap_array[last].ordinal);
543 }
544 
545 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
546 				       struct evlist *evlist)
547 {
548 	if (itr)
549 		return itr->info_priv_size(itr, evlist);
550 	return 0;
551 }
552 
553 static int auxtrace_not_supported(void)
554 {
555 	pr_err("AUX area tracing is not supported on this architecture\n");
556 	return -EINVAL;
557 }
558 
559 int auxtrace_record__info_fill(struct auxtrace_record *itr,
560 			       struct perf_session *session,
561 			       struct perf_record_auxtrace_info *auxtrace_info,
562 			       size_t priv_size)
563 {
564 	if (itr)
565 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
566 	return auxtrace_not_supported();
567 }
568 
569 void auxtrace_record__free(struct auxtrace_record *itr)
570 {
571 	if (itr)
572 		itr->free(itr);
573 }
574 
575 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
576 {
577 	if (itr && itr->snapshot_start)
578 		return itr->snapshot_start(itr);
579 	return 0;
580 }
581 
582 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
583 {
584 	if (!on_exit && itr && itr->snapshot_finish)
585 		return itr->snapshot_finish(itr);
586 	return 0;
587 }
588 
589 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
590 				   struct auxtrace_mmap *mm,
591 				   unsigned char *data, u64 *head, u64 *old)
592 {
593 	if (itr && itr->find_snapshot)
594 		return itr->find_snapshot(itr, idx, mm, data, head, old);
595 	return 0;
596 }
597 
598 int auxtrace_record__options(struct auxtrace_record *itr,
599 			     struct evlist *evlist,
600 			     struct record_opts *opts)
601 {
602 	if (itr) {
603 		itr->evlist = evlist;
604 		return itr->recording_options(itr, evlist, opts);
605 	}
606 	return 0;
607 }
608 
609 u64 auxtrace_record__reference(struct auxtrace_record *itr)
610 {
611 	if (itr)
612 		return itr->reference(itr);
613 	return 0;
614 }
615 
616 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
617 				    struct record_opts *opts, const char *str)
618 {
619 	if (!str)
620 		return 0;
621 
622 	/* PMU-agnostic options */
623 	switch (*str) {
624 	case 'e':
625 		opts->auxtrace_snapshot_on_exit = true;
626 		str++;
627 		break;
628 	default:
629 		break;
630 	}
631 
632 	if (itr && itr->parse_snapshot_options)
633 		return itr->parse_snapshot_options(itr, opts, str);
634 
635 	pr_err("No AUX area tracing to snapshot\n");
636 	return -EINVAL;
637 }
638 
639 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
640 {
641 	bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
642 
643 	if (per_cpu_mmaps) {
644 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
645 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
646 
647 		if (cpu_map_idx == -1)
648 			return -EINVAL;
649 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
650 	}
651 
652 	return perf_evsel__enable_thread(&evsel->core, idx);
653 }
654 
655 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
656 {
657 	struct evsel *evsel;
658 
659 	if (!itr->evlist || !itr->pmu)
660 		return -EINVAL;
661 
662 	evlist__for_each_entry(itr->evlist, evsel) {
663 		if (evsel->core.attr.type == itr->pmu->type) {
664 			if (evsel->disabled)
665 				return 0;
666 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
667 		}
668 	}
669 	return -EINVAL;
670 }
671 
672 /*
673  * Event record size is 16-bit which results in a maximum size of about 64KiB.
674  * Allow about 4KiB for the rest of the sample record, to give a maximum
675  * AUX area sample size of 60KiB.
676  */
677 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
678 
679 /* Arbitrary default size if no other default provided */
680 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
681 
682 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
683 					     struct record_opts *opts)
684 {
685 	struct evsel *evsel;
686 	bool has_aux_leader = false;
687 	u32 sz;
688 
689 	evlist__for_each_entry(evlist, evsel) {
690 		sz = evsel->core.attr.aux_sample_size;
691 		if (evsel__is_group_leader(evsel)) {
692 			has_aux_leader = evsel__is_aux_event(evsel);
693 			if (sz) {
694 				if (has_aux_leader)
695 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
696 				else
697 					pr_err("Cannot add AUX area sampling to a group leader\n");
698 				return -EINVAL;
699 			}
700 		}
701 		if (sz > MAX_AUX_SAMPLE_SIZE) {
702 			pr_err("AUX area sample size %u too big, max. %d\n",
703 			       sz, MAX_AUX_SAMPLE_SIZE);
704 			return -EINVAL;
705 		}
706 		if (sz) {
707 			if (!has_aux_leader) {
708 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
709 				return -EINVAL;
710 			}
711 			evsel__set_sample_bit(evsel, AUX);
712 			opts->auxtrace_sample_mode = true;
713 		} else {
714 			evsel__reset_sample_bit(evsel, AUX);
715 		}
716 	}
717 
718 	if (!opts->auxtrace_sample_mode) {
719 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
720 		return -EINVAL;
721 	}
722 
723 	if (!perf_can_aux_sample()) {
724 		pr_err("AUX area sampling is not supported by kernel\n");
725 		return -EINVAL;
726 	}
727 
728 	return 0;
729 }
730 
731 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
732 				  struct evlist *evlist,
733 				  struct record_opts *opts, const char *str)
734 {
735 	struct evsel_config_term *term;
736 	struct evsel *aux_evsel;
737 	bool has_aux_sample_size = false;
738 	bool has_aux_leader = false;
739 	struct evsel *evsel;
740 	char *endptr;
741 	unsigned long sz;
742 
743 	if (!str)
744 		goto no_opt;
745 
746 	if (!itr) {
747 		pr_err("No AUX area event to sample\n");
748 		return -EINVAL;
749 	}
750 
751 	sz = strtoul(str, &endptr, 0);
752 	if (*endptr || sz > UINT_MAX) {
753 		pr_err("Bad AUX area sampling option: '%s'\n", str);
754 		return -EINVAL;
755 	}
756 
757 	if (!sz)
758 		sz = itr->default_aux_sample_size;
759 
760 	if (!sz)
761 		sz = DEFAULT_AUX_SAMPLE_SIZE;
762 
763 	/* Set aux_sample_size based on --aux-sample option */
764 	evlist__for_each_entry(evlist, evsel) {
765 		if (evsel__is_group_leader(evsel)) {
766 			has_aux_leader = evsel__is_aux_event(evsel);
767 		} else if (has_aux_leader) {
768 			evsel->core.attr.aux_sample_size = sz;
769 		}
770 	}
771 no_opt:
772 	aux_evsel = NULL;
773 	/* Override with aux_sample_size from config term */
774 	evlist__for_each_entry(evlist, evsel) {
775 		if (evsel__is_aux_event(evsel))
776 			aux_evsel = evsel;
777 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
778 		if (term) {
779 			has_aux_sample_size = true;
780 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
781 			/* If possible, group with the AUX event */
782 			if (aux_evsel && evsel->core.attr.aux_sample_size)
783 				evlist__regroup(evlist, aux_evsel, evsel);
784 		}
785 	}
786 
787 	if (!str && !has_aux_sample_size)
788 		return 0;
789 
790 	if (!itr) {
791 		pr_err("No AUX area event to sample\n");
792 		return -EINVAL;
793 	}
794 
795 	return auxtrace_validate_aux_sample_size(evlist, opts);
796 }
797 
798 void auxtrace_regroup_aux_output(struct evlist *evlist)
799 {
800 	struct evsel *evsel, *aux_evsel = NULL;
801 	struct evsel_config_term *term;
802 
803 	evlist__for_each_entry(evlist, evsel) {
804 		if (evsel__is_aux_event(evsel))
805 			aux_evsel = evsel;
806 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
807 		/* If possible, group with the AUX event */
808 		if (term && aux_evsel)
809 			evlist__regroup(evlist, aux_evsel, evsel);
810 	}
811 }
812 
813 struct auxtrace_record *__weak
814 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
815 {
816 	*err = 0;
817 	return NULL;
818 }
819 
820 static int auxtrace_index__alloc(struct list_head *head)
821 {
822 	struct auxtrace_index *auxtrace_index;
823 
824 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
825 	if (!auxtrace_index)
826 		return -ENOMEM;
827 
828 	auxtrace_index->nr = 0;
829 	INIT_LIST_HEAD(&auxtrace_index->list);
830 
831 	list_add_tail(&auxtrace_index->list, head);
832 
833 	return 0;
834 }
835 
836 void auxtrace_index__free(struct list_head *head)
837 {
838 	struct auxtrace_index *auxtrace_index, *n;
839 
840 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
841 		list_del_init(&auxtrace_index->list);
842 		free(auxtrace_index);
843 	}
844 }
845 
846 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
847 {
848 	struct auxtrace_index *auxtrace_index;
849 	int err;
850 
851 	if (list_empty(head)) {
852 		err = auxtrace_index__alloc(head);
853 		if (err)
854 			return NULL;
855 	}
856 
857 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
858 
859 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
860 		err = auxtrace_index__alloc(head);
861 		if (err)
862 			return NULL;
863 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
864 					    list);
865 	}
866 
867 	return auxtrace_index;
868 }
869 
870 int auxtrace_index__auxtrace_event(struct list_head *head,
871 				   union perf_event *event, off_t file_offset)
872 {
873 	struct auxtrace_index *auxtrace_index;
874 	size_t nr;
875 
876 	auxtrace_index = auxtrace_index__last(head);
877 	if (!auxtrace_index)
878 		return -ENOMEM;
879 
880 	nr = auxtrace_index->nr;
881 	auxtrace_index->entries[nr].file_offset = file_offset;
882 	auxtrace_index->entries[nr].sz = event->header.size;
883 	auxtrace_index->nr += 1;
884 
885 	return 0;
886 }
887 
888 static int auxtrace_index__do_write(int fd,
889 				    struct auxtrace_index *auxtrace_index)
890 {
891 	struct auxtrace_index_entry ent;
892 	size_t i;
893 
894 	for (i = 0; i < auxtrace_index->nr; i++) {
895 		ent.file_offset = auxtrace_index->entries[i].file_offset;
896 		ent.sz = auxtrace_index->entries[i].sz;
897 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
898 			return -errno;
899 	}
900 	return 0;
901 }
902 
903 int auxtrace_index__write(int fd, struct list_head *head)
904 {
905 	struct auxtrace_index *auxtrace_index;
906 	u64 total = 0;
907 	int err;
908 
909 	list_for_each_entry(auxtrace_index, head, list)
910 		total += auxtrace_index->nr;
911 
912 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
913 		return -errno;
914 
915 	list_for_each_entry(auxtrace_index, head, list) {
916 		err = auxtrace_index__do_write(fd, auxtrace_index);
917 		if (err)
918 			return err;
919 	}
920 
921 	return 0;
922 }
923 
924 static int auxtrace_index__process_entry(int fd, struct list_head *head,
925 					 bool needs_swap)
926 {
927 	struct auxtrace_index *auxtrace_index;
928 	struct auxtrace_index_entry ent;
929 	size_t nr;
930 
931 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
932 		return -1;
933 
934 	auxtrace_index = auxtrace_index__last(head);
935 	if (!auxtrace_index)
936 		return -1;
937 
938 	nr = auxtrace_index->nr;
939 	if (needs_swap) {
940 		auxtrace_index->entries[nr].file_offset =
941 						bswap_64(ent.file_offset);
942 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
943 	} else {
944 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
945 		auxtrace_index->entries[nr].sz = ent.sz;
946 	}
947 
948 	auxtrace_index->nr = nr + 1;
949 
950 	return 0;
951 }
952 
953 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
954 			    bool needs_swap)
955 {
956 	struct list_head *head = &session->auxtrace_index;
957 	u64 nr;
958 
959 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
960 		return -1;
961 
962 	if (needs_swap)
963 		nr = bswap_64(nr);
964 
965 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
966 		return -1;
967 
968 	while (nr--) {
969 		int err;
970 
971 		err = auxtrace_index__process_entry(fd, head, needs_swap);
972 		if (err)
973 			return -1;
974 	}
975 
976 	return 0;
977 }
978 
979 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
980 						struct perf_session *session,
981 						struct auxtrace_index_entry *ent)
982 {
983 	return auxtrace_queues__add_indexed_event(queues, session,
984 						  ent->file_offset, ent->sz);
985 }
986 
987 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
988 				   struct perf_session *session)
989 {
990 	struct auxtrace_index *auxtrace_index;
991 	struct auxtrace_index_entry *ent;
992 	size_t i;
993 	int err;
994 
995 	if (auxtrace__dont_decode(session))
996 		return 0;
997 
998 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
999 		for (i = 0; i < auxtrace_index->nr; i++) {
1000 			ent = &auxtrace_index->entries[i];
1001 			err = auxtrace_queues__process_index_entry(queues,
1002 								   session,
1003 								   ent);
1004 			if (err)
1005 				return err;
1006 		}
1007 	}
1008 	return 0;
1009 }
1010 
1011 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1012 					      struct auxtrace_buffer *buffer)
1013 {
1014 	if (buffer) {
1015 		if (list_is_last(&buffer->list, &queue->head))
1016 			return NULL;
1017 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1018 				  list);
1019 	} else {
1020 		if (list_empty(&queue->head))
1021 			return NULL;
1022 		return list_entry(queue->head.next, struct auxtrace_buffer,
1023 				  list);
1024 	}
1025 }
1026 
1027 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1028 						     struct perf_sample *sample,
1029 						     struct perf_session *session)
1030 {
1031 	struct perf_sample_id *sid;
1032 	unsigned int idx;
1033 	u64 id;
1034 
1035 	id = sample->id;
1036 	if (!id)
1037 		return NULL;
1038 
1039 	sid = evlist__id2sid(session->evlist, id);
1040 	if (!sid)
1041 		return NULL;
1042 
1043 	idx = sid->idx;
1044 
1045 	if (idx >= queues->nr_queues)
1046 		return NULL;
1047 
1048 	return &queues->queue_array[idx];
1049 }
1050 
1051 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1052 				struct perf_session *session,
1053 				struct perf_sample *sample, u64 data_offset,
1054 				u64 reference)
1055 {
1056 	struct auxtrace_buffer buffer = {
1057 		.pid = -1,
1058 		.data_offset = data_offset,
1059 		.reference = reference,
1060 		.size = sample->aux_sample.size,
1061 	};
1062 	struct perf_sample_id *sid;
1063 	u64 id = sample->id;
1064 	unsigned int idx;
1065 
1066 	if (!id)
1067 		return -EINVAL;
1068 
1069 	sid = evlist__id2sid(session->evlist, id);
1070 	if (!sid)
1071 		return -ENOENT;
1072 
1073 	idx = sid->idx;
1074 	buffer.tid = sid->tid;
1075 	buffer.cpu = sid->cpu;
1076 
1077 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1078 }
1079 
1080 struct queue_data {
1081 	bool samples;
1082 	bool events;
1083 };
1084 
1085 static int auxtrace_queue_data_cb(struct perf_session *session,
1086 				  union perf_event *event, u64 offset,
1087 				  void *data)
1088 {
1089 	struct queue_data *qd = data;
1090 	struct perf_sample sample;
1091 	int err;
1092 
1093 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1094 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1095 			return -EINVAL;
1096 		offset += event->header.size;
1097 		return session->auxtrace->queue_data(session, NULL, event,
1098 						     offset);
1099 	}
1100 
1101 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1102 		return 0;
1103 
1104 	err = evlist__parse_sample(session->evlist, event, &sample);
1105 	if (err)
1106 		return err;
1107 
1108 	if (!sample.aux_sample.size)
1109 		return 0;
1110 
1111 	offset += sample.aux_sample.data - (void *)event;
1112 
1113 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1114 }
1115 
1116 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1117 {
1118 	struct queue_data qd = {
1119 		.samples = samples,
1120 		.events = events,
1121 	};
1122 
1123 	if (auxtrace__dont_decode(session))
1124 		return 0;
1125 
1126 	if (!session->auxtrace || !session->auxtrace->queue_data)
1127 		return -EINVAL;
1128 
1129 	return perf_session__peek_events(session, session->header.data_offset,
1130 					 session->header.data_size,
1131 					 auxtrace_queue_data_cb, &qd);
1132 }
1133 
1134 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1135 {
1136 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1137 	size_t adj = buffer->data_offset & (page_size - 1);
1138 	size_t size = buffer->size + adj;
1139 	off_t file_offset = buffer->data_offset - adj;
1140 	void *addr;
1141 
1142 	if (buffer->data)
1143 		return buffer->data;
1144 
1145 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1146 	if (addr == MAP_FAILED)
1147 		return NULL;
1148 
1149 	buffer->mmap_addr = addr;
1150 	buffer->mmap_size = size;
1151 
1152 	buffer->data = addr + adj;
1153 
1154 	return buffer->data;
1155 }
1156 
1157 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1158 {
1159 	if (!buffer->data || !buffer->mmap_addr)
1160 		return;
1161 	munmap(buffer->mmap_addr, buffer->mmap_size);
1162 	buffer->mmap_addr = NULL;
1163 	buffer->mmap_size = 0;
1164 	buffer->data = NULL;
1165 	buffer->use_data = NULL;
1166 }
1167 
1168 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1169 {
1170 	auxtrace_buffer__put_data(buffer);
1171 	if (buffer->data_needs_freeing) {
1172 		buffer->data_needs_freeing = false;
1173 		zfree(&buffer->data);
1174 		buffer->use_data = NULL;
1175 		buffer->size = 0;
1176 	}
1177 }
1178 
1179 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1180 {
1181 	auxtrace_buffer__drop_data(buffer);
1182 	free(buffer);
1183 }
1184 
1185 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1186 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1187 			  const char *msg, u64 timestamp)
1188 {
1189 	size_t size;
1190 
1191 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1192 
1193 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1194 	auxtrace_error->type = type;
1195 	auxtrace_error->code = code;
1196 	auxtrace_error->cpu = cpu;
1197 	auxtrace_error->pid = pid;
1198 	auxtrace_error->tid = tid;
1199 	auxtrace_error->fmt = 1;
1200 	auxtrace_error->ip = ip;
1201 	auxtrace_error->time = timestamp;
1202 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1203 
1204 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1205 	       strlen(auxtrace_error->msg) + 1;
1206 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1207 }
1208 
1209 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1210 					 struct perf_tool *tool,
1211 					 struct perf_session *session,
1212 					 perf_event__handler_t process)
1213 {
1214 	union perf_event *ev;
1215 	size_t priv_size;
1216 	int err;
1217 
1218 	pr_debug2("Synthesizing auxtrace information\n");
1219 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1220 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1221 	if (!ev)
1222 		return -ENOMEM;
1223 
1224 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1225 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1226 					priv_size;
1227 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1228 					 priv_size);
1229 	if (err)
1230 		goto out_free;
1231 
1232 	err = process(tool, ev, NULL, NULL);
1233 out_free:
1234 	free(ev);
1235 	return err;
1236 }
1237 
1238 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1239 {
1240 	struct evsel *new_leader = NULL;
1241 	struct evsel *evsel;
1242 
1243 	/* Find new leader for the group */
1244 	evlist__for_each_entry(evlist, evsel) {
1245 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1246 			continue;
1247 		if (!new_leader)
1248 			new_leader = evsel;
1249 		evsel__set_leader(evsel, new_leader);
1250 	}
1251 
1252 	/* Update group information */
1253 	if (new_leader) {
1254 		zfree(&new_leader->group_name);
1255 		new_leader->group_name = leader->group_name;
1256 		leader->group_name = NULL;
1257 
1258 		new_leader->core.nr_members = leader->core.nr_members - 1;
1259 		leader->core.nr_members = 1;
1260 	}
1261 }
1262 
1263 static void unleader_auxtrace(struct perf_session *session)
1264 {
1265 	struct evsel *evsel;
1266 
1267 	evlist__for_each_entry(session->evlist, evsel) {
1268 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1269 		    evsel__is_group_leader(evsel)) {
1270 			unleader_evsel(session->evlist, evsel);
1271 		}
1272 	}
1273 }
1274 
1275 int perf_event__process_auxtrace_info(struct perf_session *session,
1276 				      union perf_event *event)
1277 {
1278 	enum auxtrace_type type = event->auxtrace_info.type;
1279 	int err;
1280 
1281 	if (dump_trace)
1282 		fprintf(stdout, " type: %u\n", type);
1283 
1284 	switch (type) {
1285 	case PERF_AUXTRACE_INTEL_PT:
1286 		err = intel_pt_process_auxtrace_info(event, session);
1287 		break;
1288 	case PERF_AUXTRACE_INTEL_BTS:
1289 		err = intel_bts_process_auxtrace_info(event, session);
1290 		break;
1291 	case PERF_AUXTRACE_ARM_SPE:
1292 		err = arm_spe_process_auxtrace_info(event, session);
1293 		break;
1294 	case PERF_AUXTRACE_CS_ETM:
1295 		err = cs_etm__process_auxtrace_info(event, session);
1296 		break;
1297 	case PERF_AUXTRACE_S390_CPUMSF:
1298 		err = s390_cpumsf_process_auxtrace_info(event, session);
1299 		break;
1300 	case PERF_AUXTRACE_UNKNOWN:
1301 	default:
1302 		return -EINVAL;
1303 	}
1304 
1305 	if (err)
1306 		return err;
1307 
1308 	unleader_auxtrace(session);
1309 
1310 	return 0;
1311 }
1312 
1313 s64 perf_event__process_auxtrace(struct perf_session *session,
1314 				 union perf_event *event)
1315 {
1316 	s64 err;
1317 
1318 	if (dump_trace)
1319 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1320 			event->auxtrace.size, event->auxtrace.offset,
1321 			event->auxtrace.reference, event->auxtrace.idx,
1322 			event->auxtrace.tid, event->auxtrace.cpu);
1323 
1324 	if (auxtrace__dont_decode(session))
1325 		return event->auxtrace.size;
1326 
1327 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1328 		return -EINVAL;
1329 
1330 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1331 	if (err < 0)
1332 		return err;
1333 
1334 	return event->auxtrace.size;
1335 }
1336 
1337 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1338 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1339 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1340 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1341 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1342 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1343 
1344 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1345 				    bool no_sample)
1346 {
1347 	synth_opts->branches = true;
1348 	synth_opts->transactions = true;
1349 	synth_opts->ptwrites = true;
1350 	synth_opts->pwr_events = true;
1351 	synth_opts->other_events = true;
1352 	synth_opts->intr_events = true;
1353 	synth_opts->errors = true;
1354 	synth_opts->flc = true;
1355 	synth_opts->llc = true;
1356 	synth_opts->tlb = true;
1357 	synth_opts->mem = true;
1358 	synth_opts->remote_access = true;
1359 
1360 	if (no_sample) {
1361 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1362 		synth_opts->period = 1;
1363 		synth_opts->calls = true;
1364 	} else {
1365 		synth_opts->instructions = true;
1366 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1367 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1368 	}
1369 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1370 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1371 	synth_opts->initial_skip = 0;
1372 }
1373 
1374 static int get_flag(const char **ptr, unsigned int *flags)
1375 {
1376 	while (1) {
1377 		char c = **ptr;
1378 
1379 		if (c >= 'a' && c <= 'z') {
1380 			*flags |= 1 << (c - 'a');
1381 			++*ptr;
1382 			return 0;
1383 		} else if (c == ' ') {
1384 			++*ptr;
1385 			continue;
1386 		} else {
1387 			return -1;
1388 		}
1389 	}
1390 }
1391 
1392 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1393 {
1394 	while (1) {
1395 		switch (**ptr) {
1396 		case '+':
1397 			++*ptr;
1398 			if (get_flag(ptr, plus_flags))
1399 				return -1;
1400 			break;
1401 		case '-':
1402 			++*ptr;
1403 			if (get_flag(ptr, minus_flags))
1404 				return -1;
1405 			break;
1406 		case ' ':
1407 			++*ptr;
1408 			break;
1409 		default:
1410 			return 0;
1411 		}
1412 	}
1413 }
1414 
1415 /*
1416  * Please check tools/perf/Documentation/perf-script.txt for information
1417  * about the options parsed here, which is introduced after this cset,
1418  * when support in 'perf script' for these options is introduced.
1419  */
1420 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1421 			       const char *str, int unset)
1422 {
1423 	const char *p;
1424 	char *endptr;
1425 	bool period_type_set = false;
1426 	bool period_set = false;
1427 
1428 	synth_opts->set = true;
1429 
1430 	if (unset) {
1431 		synth_opts->dont_decode = true;
1432 		return 0;
1433 	}
1434 
1435 	if (!str) {
1436 		itrace_synth_opts__set_default(synth_opts,
1437 					       synth_opts->default_no_sample);
1438 		return 0;
1439 	}
1440 
1441 	for (p = str; *p;) {
1442 		switch (*p++) {
1443 		case 'i':
1444 			synth_opts->instructions = true;
1445 			while (*p == ' ' || *p == ',')
1446 				p += 1;
1447 			if (isdigit(*p)) {
1448 				synth_opts->period = strtoull(p, &endptr, 10);
1449 				period_set = true;
1450 				p = endptr;
1451 				while (*p == ' ' || *p == ',')
1452 					p += 1;
1453 				switch (*p++) {
1454 				case 'i':
1455 					synth_opts->period_type =
1456 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1457 					period_type_set = true;
1458 					break;
1459 				case 't':
1460 					synth_opts->period_type =
1461 						PERF_ITRACE_PERIOD_TICKS;
1462 					period_type_set = true;
1463 					break;
1464 				case 'm':
1465 					synth_opts->period *= 1000;
1466 					/* Fall through */
1467 				case 'u':
1468 					synth_opts->period *= 1000;
1469 					/* Fall through */
1470 				case 'n':
1471 					if (*p++ != 's')
1472 						goto out_err;
1473 					synth_opts->period_type =
1474 						PERF_ITRACE_PERIOD_NANOSECS;
1475 					period_type_set = true;
1476 					break;
1477 				case '\0':
1478 					goto out;
1479 				default:
1480 					goto out_err;
1481 				}
1482 			}
1483 			break;
1484 		case 'b':
1485 			synth_opts->branches = true;
1486 			break;
1487 		case 'x':
1488 			synth_opts->transactions = true;
1489 			break;
1490 		case 'w':
1491 			synth_opts->ptwrites = true;
1492 			break;
1493 		case 'p':
1494 			synth_opts->pwr_events = true;
1495 			break;
1496 		case 'o':
1497 			synth_opts->other_events = true;
1498 			break;
1499 		case 'I':
1500 			synth_opts->intr_events = true;
1501 			break;
1502 		case 'e':
1503 			synth_opts->errors = true;
1504 			if (get_flags(&p, &synth_opts->error_plus_flags,
1505 				      &synth_opts->error_minus_flags))
1506 				goto out_err;
1507 			break;
1508 		case 'd':
1509 			synth_opts->log = true;
1510 			if (get_flags(&p, &synth_opts->log_plus_flags,
1511 				      &synth_opts->log_minus_flags))
1512 				goto out_err;
1513 			break;
1514 		case 'c':
1515 			synth_opts->branches = true;
1516 			synth_opts->calls = true;
1517 			break;
1518 		case 'r':
1519 			synth_opts->branches = true;
1520 			synth_opts->returns = true;
1521 			break;
1522 		case 'G':
1523 		case 'g':
1524 			if (p[-1] == 'G')
1525 				synth_opts->add_callchain = true;
1526 			else
1527 				synth_opts->callchain = true;
1528 			synth_opts->callchain_sz =
1529 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1530 			while (*p == ' ' || *p == ',')
1531 				p += 1;
1532 			if (isdigit(*p)) {
1533 				unsigned int val;
1534 
1535 				val = strtoul(p, &endptr, 10);
1536 				p = endptr;
1537 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1538 					goto out_err;
1539 				synth_opts->callchain_sz = val;
1540 			}
1541 			break;
1542 		case 'L':
1543 		case 'l':
1544 			if (p[-1] == 'L')
1545 				synth_opts->add_last_branch = true;
1546 			else
1547 				synth_opts->last_branch = true;
1548 			synth_opts->last_branch_sz =
1549 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1550 			while (*p == ' ' || *p == ',')
1551 				p += 1;
1552 			if (isdigit(*p)) {
1553 				unsigned int val;
1554 
1555 				val = strtoul(p, &endptr, 10);
1556 				p = endptr;
1557 				if (!val ||
1558 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1559 					goto out_err;
1560 				synth_opts->last_branch_sz = val;
1561 			}
1562 			break;
1563 		case 's':
1564 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1565 			if (p == endptr)
1566 				goto out_err;
1567 			p = endptr;
1568 			break;
1569 		case 'f':
1570 			synth_opts->flc = true;
1571 			break;
1572 		case 'm':
1573 			synth_opts->llc = true;
1574 			break;
1575 		case 't':
1576 			synth_opts->tlb = true;
1577 			break;
1578 		case 'a':
1579 			synth_opts->remote_access = true;
1580 			break;
1581 		case 'M':
1582 			synth_opts->mem = true;
1583 			break;
1584 		case 'q':
1585 			synth_opts->quick += 1;
1586 			break;
1587 		case 'A':
1588 			synth_opts->approx_ipc = true;
1589 			break;
1590 		case 'Z':
1591 			synth_opts->timeless_decoding = true;
1592 			break;
1593 		case ' ':
1594 		case ',':
1595 			break;
1596 		default:
1597 			goto out_err;
1598 		}
1599 	}
1600 out:
1601 	if (synth_opts->instructions) {
1602 		if (!period_type_set)
1603 			synth_opts->period_type =
1604 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1605 		if (!period_set)
1606 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1607 	}
1608 
1609 	return 0;
1610 
1611 out_err:
1612 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1613 	return -EINVAL;
1614 }
1615 
1616 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1617 {
1618 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1619 }
1620 
1621 static const char * const auxtrace_error_type_name[] = {
1622 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1623 };
1624 
1625 static const char *auxtrace_error_name(int type)
1626 {
1627 	const char *error_type_name = NULL;
1628 
1629 	if (type < PERF_AUXTRACE_ERROR_MAX)
1630 		error_type_name = auxtrace_error_type_name[type];
1631 	if (!error_type_name)
1632 		error_type_name = "unknown AUX";
1633 	return error_type_name;
1634 }
1635 
1636 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1637 {
1638 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1639 	unsigned long long nsecs = e->time;
1640 	const char *msg = e->msg;
1641 	int ret;
1642 
1643 	ret = fprintf(fp, " %s error type %u",
1644 		      auxtrace_error_name(e->type), e->type);
1645 
1646 	if (e->fmt && nsecs) {
1647 		unsigned long secs = nsecs / NSEC_PER_SEC;
1648 
1649 		nsecs -= secs * NSEC_PER_SEC;
1650 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1651 	} else {
1652 		ret += fprintf(fp, " time 0");
1653 	}
1654 
1655 	if (!e->fmt)
1656 		msg = (const char *)&e->time;
1657 
1658 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1659 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1660 	return ret;
1661 }
1662 
1663 void perf_session__auxtrace_error_inc(struct perf_session *session,
1664 				      union perf_event *event)
1665 {
1666 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1667 
1668 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1669 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1670 }
1671 
1672 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1673 {
1674 	int i;
1675 
1676 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1677 		if (!stats->nr_auxtrace_errors[i])
1678 			continue;
1679 		ui__warning("%u %s errors\n",
1680 			    stats->nr_auxtrace_errors[i],
1681 			    auxtrace_error_name(i));
1682 	}
1683 }
1684 
1685 int perf_event__process_auxtrace_error(struct perf_session *session,
1686 				       union perf_event *event)
1687 {
1688 	if (auxtrace__dont_decode(session))
1689 		return 0;
1690 
1691 	perf_event__fprintf_auxtrace_error(event, stdout);
1692 	return 0;
1693 }
1694 
1695 /*
1696  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1697  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1698  * the issues caused by the below sequence on multiple CPUs: when perf tool
1699  * accesses either the load operation or the store operation for 64-bit value,
1700  * on some architectures the operation is divided into two instructions, one
1701  * is for accessing the low 32-bit value and another is for the high 32-bit;
1702  * thus these two user operations can give the kernel chances to access the
1703  * 64-bit value, and thus leads to the unexpected load values.
1704  *
1705  *   kernel (64-bit)                        user (32-bit)
1706  *
1707  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1708  *       STORE $aux_data      |       ,--->
1709  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1710  *       STORE ->aux_head   --|-------`     smp_rmb()
1711  *   }                        |             LOAD $data
1712  *                            |             smp_mb()
1713  *                            |             STORE ->aux_tail_lo
1714  *                            `----------->
1715  *                                          STORE ->aux_tail_hi
1716  *
1717  * For this reason, it's impossible for the perf tool to work correctly when
1718  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1719  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1720  * the pointers can be increased monotonically, whatever the buffer size it is,
1721  * at the end the head and tail can be bigger than 4GB and carry out to the
1722  * high 32-bit.
1723  *
1724  * To mitigate the issues and improve the user experience, we can allow the
1725  * perf tool working in certain conditions and bail out with error if detect
1726  * any overflow cannot be handled.
1727  *
1728  * For reading the AUX head, it reads out the values for three times, and
1729  * compares the high 4 bytes of the values between the first time and the last
1730  * time, if there has no change for high 4 bytes injected by the kernel during
1731  * the user reading sequence, it's safe for use the second value.
1732  *
1733  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1734  * 32 bits, it means there have two store operations in user space and it cannot
1735  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1736  * the caller an overflow error has happened.
1737  */
1738 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1739 {
1740 	struct perf_event_mmap_page *pc = mm->userpg;
1741 	u64 first, second, last;
1742 	u64 mask = (u64)(UINT32_MAX) << 32;
1743 
1744 	do {
1745 		first = READ_ONCE(pc->aux_head);
1746 		/* Ensure all reads are done after we read the head */
1747 		smp_rmb();
1748 		second = READ_ONCE(pc->aux_head);
1749 		/* Ensure all reads are done after we read the head */
1750 		smp_rmb();
1751 		last = READ_ONCE(pc->aux_head);
1752 	} while ((first & mask) != (last & mask));
1753 
1754 	return second;
1755 }
1756 
1757 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1758 {
1759 	struct perf_event_mmap_page *pc = mm->userpg;
1760 	u64 mask = (u64)(UINT32_MAX) << 32;
1761 
1762 	if (tail & mask)
1763 		return -1;
1764 
1765 	/* Ensure all reads are done before we write the tail out */
1766 	smp_mb();
1767 	WRITE_ONCE(pc->aux_tail, tail);
1768 	return 0;
1769 }
1770 
1771 static int __auxtrace_mmap__read(struct mmap *map,
1772 				 struct auxtrace_record *itr,
1773 				 struct perf_tool *tool, process_auxtrace_t fn,
1774 				 bool snapshot, size_t snapshot_size)
1775 {
1776 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1777 	u64 head, old = mm->prev, offset, ref;
1778 	unsigned char *data = mm->base;
1779 	size_t size, head_off, old_off, len1, len2, padding;
1780 	union perf_event ev;
1781 	void *data1, *data2;
1782 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1783 
1784 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1785 
1786 	if (snapshot &&
1787 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1788 		return -1;
1789 
1790 	if (old == head)
1791 		return 0;
1792 
1793 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1794 		  mm->idx, old, head, head - old);
1795 
1796 	if (mm->mask) {
1797 		head_off = head & mm->mask;
1798 		old_off = old & mm->mask;
1799 	} else {
1800 		head_off = head % mm->len;
1801 		old_off = old % mm->len;
1802 	}
1803 
1804 	if (head_off > old_off)
1805 		size = head_off - old_off;
1806 	else
1807 		size = mm->len - (old_off - head_off);
1808 
1809 	if (snapshot && size > snapshot_size)
1810 		size = snapshot_size;
1811 
1812 	ref = auxtrace_record__reference(itr);
1813 
1814 	if (head > old || size <= head || mm->mask) {
1815 		offset = head - size;
1816 	} else {
1817 		/*
1818 		 * When the buffer size is not a power of 2, 'head' wraps at the
1819 		 * highest multiple of the buffer size, so we have to subtract
1820 		 * the remainder here.
1821 		 */
1822 		u64 rem = (0ULL - mm->len) % mm->len;
1823 
1824 		offset = head - size - rem;
1825 	}
1826 
1827 	if (size > head_off) {
1828 		len1 = size - head_off;
1829 		data1 = &data[mm->len - len1];
1830 		len2 = head_off;
1831 		data2 = &data[0];
1832 	} else {
1833 		len1 = size;
1834 		data1 = &data[head_off - len1];
1835 		len2 = 0;
1836 		data2 = NULL;
1837 	}
1838 
1839 	if (itr->alignment) {
1840 		unsigned int unwanted = len1 % itr->alignment;
1841 
1842 		len1 -= unwanted;
1843 		size -= unwanted;
1844 	}
1845 
1846 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1847 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1848 	if (padding)
1849 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1850 
1851 	memset(&ev, 0, sizeof(ev));
1852 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1853 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1854 	ev.auxtrace.size = size + padding;
1855 	ev.auxtrace.offset = offset;
1856 	ev.auxtrace.reference = ref;
1857 	ev.auxtrace.idx = mm->idx;
1858 	ev.auxtrace.tid = mm->tid;
1859 	ev.auxtrace.cpu = mm->cpu;
1860 
1861 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1862 		return -1;
1863 
1864 	mm->prev = head;
1865 
1866 	if (!snapshot) {
1867 		int err;
1868 
1869 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1870 		if (err < 0)
1871 			return err;
1872 
1873 		if (itr->read_finish) {
1874 			err = itr->read_finish(itr, mm->idx);
1875 			if (err < 0)
1876 				return err;
1877 		}
1878 	}
1879 
1880 	return 1;
1881 }
1882 
1883 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1884 			struct perf_tool *tool, process_auxtrace_t fn)
1885 {
1886 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1887 }
1888 
1889 int auxtrace_mmap__read_snapshot(struct mmap *map,
1890 				 struct auxtrace_record *itr,
1891 				 struct perf_tool *tool, process_auxtrace_t fn,
1892 				 size_t snapshot_size)
1893 {
1894 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1895 }
1896 
1897 /**
1898  * struct auxtrace_cache - hash table to implement a cache
1899  * @hashtable: the hashtable
1900  * @sz: hashtable size (number of hlists)
1901  * @entry_size: size of an entry
1902  * @limit: limit the number of entries to this maximum, when reached the cache
1903  *         is dropped and caching begins again with an empty cache
1904  * @cnt: current number of entries
1905  * @bits: hashtable size (@sz = 2^@bits)
1906  */
1907 struct auxtrace_cache {
1908 	struct hlist_head *hashtable;
1909 	size_t sz;
1910 	size_t entry_size;
1911 	size_t limit;
1912 	size_t cnt;
1913 	unsigned int bits;
1914 };
1915 
1916 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1917 					   unsigned int limit_percent)
1918 {
1919 	struct auxtrace_cache *c;
1920 	struct hlist_head *ht;
1921 	size_t sz, i;
1922 
1923 	c = zalloc(sizeof(struct auxtrace_cache));
1924 	if (!c)
1925 		return NULL;
1926 
1927 	sz = 1UL << bits;
1928 
1929 	ht = calloc(sz, sizeof(struct hlist_head));
1930 	if (!ht)
1931 		goto out_free;
1932 
1933 	for (i = 0; i < sz; i++)
1934 		INIT_HLIST_HEAD(&ht[i]);
1935 
1936 	c->hashtable = ht;
1937 	c->sz = sz;
1938 	c->entry_size = entry_size;
1939 	c->limit = (c->sz * limit_percent) / 100;
1940 	c->bits = bits;
1941 
1942 	return c;
1943 
1944 out_free:
1945 	free(c);
1946 	return NULL;
1947 }
1948 
1949 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1950 {
1951 	struct auxtrace_cache_entry *entry;
1952 	struct hlist_node *tmp;
1953 	size_t i;
1954 
1955 	if (!c)
1956 		return;
1957 
1958 	for (i = 0; i < c->sz; i++) {
1959 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1960 			hlist_del(&entry->hash);
1961 			auxtrace_cache__free_entry(c, entry);
1962 		}
1963 	}
1964 
1965 	c->cnt = 0;
1966 }
1967 
1968 void auxtrace_cache__free(struct auxtrace_cache *c)
1969 {
1970 	if (!c)
1971 		return;
1972 
1973 	auxtrace_cache__drop(c);
1974 	zfree(&c->hashtable);
1975 	free(c);
1976 }
1977 
1978 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1979 {
1980 	return malloc(c->entry_size);
1981 }
1982 
1983 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1984 				void *entry)
1985 {
1986 	free(entry);
1987 }
1988 
1989 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1990 			struct auxtrace_cache_entry *entry)
1991 {
1992 	if (c->limit && ++c->cnt > c->limit)
1993 		auxtrace_cache__drop(c);
1994 
1995 	entry->key = key;
1996 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1997 
1998 	return 0;
1999 }
2000 
2001 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2002 						       u32 key)
2003 {
2004 	struct auxtrace_cache_entry *entry;
2005 	struct hlist_head *hlist;
2006 	struct hlist_node *n;
2007 
2008 	if (!c)
2009 		return NULL;
2010 
2011 	hlist = &c->hashtable[hash_32(key, c->bits)];
2012 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2013 		if (entry->key == key) {
2014 			hlist_del(&entry->hash);
2015 			return entry;
2016 		}
2017 	}
2018 
2019 	return NULL;
2020 }
2021 
2022 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2023 {
2024 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2025 
2026 	auxtrace_cache__free_entry(c, entry);
2027 }
2028 
2029 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2030 {
2031 	struct auxtrace_cache_entry *entry;
2032 	struct hlist_head *hlist;
2033 
2034 	if (!c)
2035 		return NULL;
2036 
2037 	hlist = &c->hashtable[hash_32(key, c->bits)];
2038 	hlist_for_each_entry(entry, hlist, hash) {
2039 		if (entry->key == key)
2040 			return entry;
2041 	}
2042 
2043 	return NULL;
2044 }
2045 
2046 static void addr_filter__free_str(struct addr_filter *filt)
2047 {
2048 	zfree(&filt->str);
2049 	filt->action   = NULL;
2050 	filt->sym_from = NULL;
2051 	filt->sym_to   = NULL;
2052 	filt->filename = NULL;
2053 }
2054 
2055 static struct addr_filter *addr_filter__new(void)
2056 {
2057 	struct addr_filter *filt = zalloc(sizeof(*filt));
2058 
2059 	if (filt)
2060 		INIT_LIST_HEAD(&filt->list);
2061 
2062 	return filt;
2063 }
2064 
2065 static void addr_filter__free(struct addr_filter *filt)
2066 {
2067 	if (filt)
2068 		addr_filter__free_str(filt);
2069 	free(filt);
2070 }
2071 
2072 static void addr_filters__add(struct addr_filters *filts,
2073 			      struct addr_filter *filt)
2074 {
2075 	list_add_tail(&filt->list, &filts->head);
2076 	filts->cnt += 1;
2077 }
2078 
2079 static void addr_filters__del(struct addr_filters *filts,
2080 			      struct addr_filter *filt)
2081 {
2082 	list_del_init(&filt->list);
2083 	filts->cnt -= 1;
2084 }
2085 
2086 void addr_filters__init(struct addr_filters *filts)
2087 {
2088 	INIT_LIST_HEAD(&filts->head);
2089 	filts->cnt = 0;
2090 }
2091 
2092 void addr_filters__exit(struct addr_filters *filts)
2093 {
2094 	struct addr_filter *filt, *n;
2095 
2096 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2097 		addr_filters__del(filts, filt);
2098 		addr_filter__free(filt);
2099 	}
2100 }
2101 
2102 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2103 			    const char *str_delim)
2104 {
2105 	*inp += strspn(*inp, " ");
2106 
2107 	if (isdigit(**inp)) {
2108 		char *endptr;
2109 
2110 		if (!num)
2111 			return -EINVAL;
2112 		errno = 0;
2113 		*num = strtoull(*inp, &endptr, 0);
2114 		if (errno)
2115 			return -errno;
2116 		if (endptr == *inp)
2117 			return -EINVAL;
2118 		*inp = endptr;
2119 	} else {
2120 		size_t n;
2121 
2122 		if (!str)
2123 			return -EINVAL;
2124 		*inp += strspn(*inp, " ");
2125 		*str = *inp;
2126 		n = strcspn(*inp, str_delim);
2127 		if (!n)
2128 			return -EINVAL;
2129 		*inp += n;
2130 		if (**inp) {
2131 			**inp = '\0';
2132 			*inp += 1;
2133 		}
2134 	}
2135 	return 0;
2136 }
2137 
2138 static int parse_action(struct addr_filter *filt)
2139 {
2140 	if (!strcmp(filt->action, "filter")) {
2141 		filt->start = true;
2142 		filt->range = true;
2143 	} else if (!strcmp(filt->action, "start")) {
2144 		filt->start = true;
2145 	} else if (!strcmp(filt->action, "stop")) {
2146 		filt->start = false;
2147 	} else if (!strcmp(filt->action, "tracestop")) {
2148 		filt->start = false;
2149 		filt->range = true;
2150 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2151 	} else {
2152 		return -EINVAL;
2153 	}
2154 	return 0;
2155 }
2156 
2157 static int parse_sym_idx(char **inp, int *idx)
2158 {
2159 	*idx = -1;
2160 
2161 	*inp += strspn(*inp, " ");
2162 
2163 	if (**inp != '#')
2164 		return 0;
2165 
2166 	*inp += 1;
2167 
2168 	if (**inp == 'g' || **inp == 'G') {
2169 		*inp += 1;
2170 		*idx = 0;
2171 	} else {
2172 		unsigned long num;
2173 		char *endptr;
2174 
2175 		errno = 0;
2176 		num = strtoul(*inp, &endptr, 0);
2177 		if (errno)
2178 			return -errno;
2179 		if (endptr == *inp || num > INT_MAX)
2180 			return -EINVAL;
2181 		*inp = endptr;
2182 		*idx = num;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2189 {
2190 	int err = parse_num_or_str(inp, num, str, " ");
2191 
2192 	if (!err && *str)
2193 		err = parse_sym_idx(inp, idx);
2194 
2195 	return err;
2196 }
2197 
2198 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2199 {
2200 	char *fstr;
2201 	int err;
2202 
2203 	filt->str = fstr = strdup(*filter_inp);
2204 	if (!fstr)
2205 		return -ENOMEM;
2206 
2207 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2208 	if (err)
2209 		goto out_err;
2210 
2211 	err = parse_action(filt);
2212 	if (err)
2213 		goto out_err;
2214 
2215 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2216 			      &filt->sym_from_idx);
2217 	if (err)
2218 		goto out_err;
2219 
2220 	fstr += strspn(fstr, " ");
2221 
2222 	if (*fstr == '/') {
2223 		fstr += 1;
2224 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2225 				      &filt->sym_to_idx);
2226 		if (err)
2227 			goto out_err;
2228 		filt->range = true;
2229 	}
2230 
2231 	fstr += strspn(fstr, " ");
2232 
2233 	if (*fstr == '@') {
2234 		fstr += 1;
2235 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2236 		if (err)
2237 			goto out_err;
2238 	}
2239 
2240 	fstr += strspn(fstr, " ,");
2241 
2242 	*filter_inp += fstr - filt->str;
2243 
2244 	return 0;
2245 
2246 out_err:
2247 	addr_filter__free_str(filt);
2248 
2249 	return err;
2250 }
2251 
2252 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2253 				    const char *filter)
2254 {
2255 	struct addr_filter *filt;
2256 	const char *fstr = filter;
2257 	int err;
2258 
2259 	while (*fstr) {
2260 		filt = addr_filter__new();
2261 		err = parse_one_filter(filt, &fstr);
2262 		if (err) {
2263 			addr_filter__free(filt);
2264 			addr_filters__exit(filts);
2265 			return err;
2266 		}
2267 		addr_filters__add(filts, filt);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 struct sym_args {
2274 	const char	*name;
2275 	u64		start;
2276 	u64		size;
2277 	int		idx;
2278 	int		cnt;
2279 	bool		started;
2280 	bool		global;
2281 	bool		selected;
2282 	bool		duplicate;
2283 	bool		near;
2284 };
2285 
2286 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2287 {
2288 	/* A function with the same name, and global or the n'th found or any */
2289 	return kallsyms__is_function(type) &&
2290 	       !strcmp(name, args->name) &&
2291 	       ((args->global && isupper(type)) ||
2292 		(args->selected && ++(args->cnt) == args->idx) ||
2293 		(!args->global && !args->selected));
2294 }
2295 
2296 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2297 {
2298 	struct sym_args *args = arg;
2299 
2300 	if (args->started) {
2301 		if (!args->size)
2302 			args->size = start - args->start;
2303 		if (args->selected) {
2304 			if (args->size)
2305 				return 1;
2306 		} else if (kern_sym_match(args, name, type)) {
2307 			args->duplicate = true;
2308 			return 1;
2309 		}
2310 	} else if (kern_sym_match(args, name, type)) {
2311 		args->started = true;
2312 		args->start = start;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2319 {
2320 	struct sym_args *args = arg;
2321 
2322 	if (kern_sym_match(args, name, type)) {
2323 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2324 		       ++args->cnt, start, type, name);
2325 		args->near = true;
2326 	} else if (args->near) {
2327 		args->near = false;
2328 		pr_err("\t\twhich is near\t\t%s\n", name);
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static int sym_not_found_error(const char *sym_name, int idx)
2335 {
2336 	if (idx > 0) {
2337 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2338 		       idx, sym_name);
2339 	} else if (!idx) {
2340 		pr_err("Global symbol '%s' not found.\n", sym_name);
2341 	} else {
2342 		pr_err("Symbol '%s' not found.\n", sym_name);
2343 	}
2344 	pr_err("Note that symbols must be functions.\n");
2345 
2346 	return -EINVAL;
2347 }
2348 
2349 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2350 {
2351 	struct sym_args args = {
2352 		.name = sym_name,
2353 		.idx = idx,
2354 		.global = !idx,
2355 		.selected = idx > 0,
2356 	};
2357 	int err;
2358 
2359 	*start = 0;
2360 	*size = 0;
2361 
2362 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2363 	if (err < 0) {
2364 		pr_err("Failed to parse /proc/kallsyms\n");
2365 		return err;
2366 	}
2367 
2368 	if (args.duplicate) {
2369 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2370 		args.cnt = 0;
2371 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2372 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2373 		       sym_name);
2374 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2375 		return -EINVAL;
2376 	}
2377 
2378 	if (!args.started) {
2379 		pr_err("Kernel symbol lookup: ");
2380 		return sym_not_found_error(sym_name, idx);
2381 	}
2382 
2383 	*start = args.start;
2384 	*size = args.size;
2385 
2386 	return 0;
2387 }
2388 
2389 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2390 			       char type, u64 start)
2391 {
2392 	struct sym_args *args = arg;
2393 
2394 	if (!kallsyms__is_function(type))
2395 		return 0;
2396 
2397 	if (!args->started) {
2398 		args->started = true;
2399 		args->start = start;
2400 	}
2401 	/* Don't know exactly where the kernel ends, so we add a page */
2402 	args->size = round_up(start, page_size) + page_size - args->start;
2403 
2404 	return 0;
2405 }
2406 
2407 static int addr_filter__entire_kernel(struct addr_filter *filt)
2408 {
2409 	struct sym_args args = { .started = false };
2410 	int err;
2411 
2412 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2413 	if (err < 0 || !args.started) {
2414 		pr_err("Failed to parse /proc/kallsyms\n");
2415 		return err;
2416 	}
2417 
2418 	filt->addr = args.start;
2419 	filt->size = args.size;
2420 
2421 	return 0;
2422 }
2423 
2424 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2425 {
2426 	if (start + size >= filt->addr)
2427 		return 0;
2428 
2429 	if (filt->sym_from) {
2430 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2431 		       filt->sym_to, start, filt->sym_from, filt->addr);
2432 	} else {
2433 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2434 		       filt->sym_to, start, filt->addr);
2435 	}
2436 
2437 	return -EINVAL;
2438 }
2439 
2440 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2441 {
2442 	bool no_size = false;
2443 	u64 start, size;
2444 	int err;
2445 
2446 	if (symbol_conf.kptr_restrict) {
2447 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2448 		return -EINVAL;
2449 	}
2450 
2451 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2452 		return addr_filter__entire_kernel(filt);
2453 
2454 	if (filt->sym_from) {
2455 		err = find_kern_sym(filt->sym_from, &start, &size,
2456 				    filt->sym_from_idx);
2457 		if (err)
2458 			return err;
2459 		filt->addr = start;
2460 		if (filt->range && !filt->size && !filt->sym_to) {
2461 			filt->size = size;
2462 			no_size = !size;
2463 		}
2464 	}
2465 
2466 	if (filt->sym_to) {
2467 		err = find_kern_sym(filt->sym_to, &start, &size,
2468 				    filt->sym_to_idx);
2469 		if (err)
2470 			return err;
2471 
2472 		err = check_end_after_start(filt, start, size);
2473 		if (err)
2474 			return err;
2475 		filt->size = start + size - filt->addr;
2476 		no_size = !size;
2477 	}
2478 
2479 	/* The very last symbol in kallsyms does not imply a particular size */
2480 	if (no_size) {
2481 		pr_err("Cannot determine size of symbol '%s'\n",
2482 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2483 		return -EINVAL;
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 static struct dso *load_dso(const char *name)
2490 {
2491 	struct map *map;
2492 	struct dso *dso;
2493 
2494 	map = dso__new_map(name);
2495 	if (!map)
2496 		return NULL;
2497 
2498 	if (map__load(map) < 0)
2499 		pr_err("File '%s' not found or has no symbols.\n", name);
2500 
2501 	dso = dso__get(map->dso);
2502 
2503 	map__put(map);
2504 
2505 	return dso;
2506 }
2507 
2508 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2509 			  int idx)
2510 {
2511 	/* Same name, and global or the n'th found or any */
2512 	return !arch__compare_symbol_names(name, sym->name) &&
2513 	       ((!idx && sym->binding == STB_GLOBAL) ||
2514 		(idx > 0 && ++*cnt == idx) ||
2515 		idx < 0);
2516 }
2517 
2518 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2519 {
2520 	struct symbol *sym;
2521 	bool near = false;
2522 	int cnt = 0;
2523 
2524 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2525 
2526 	sym = dso__first_symbol(dso);
2527 	while (sym) {
2528 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2529 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2530 			       ++cnt, sym->start,
2531 			       sym->binding == STB_GLOBAL ? 'g' :
2532 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2533 			       sym->name);
2534 			near = true;
2535 		} else if (near) {
2536 			near = false;
2537 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2538 		}
2539 		sym = dso__next_symbol(sym);
2540 	}
2541 
2542 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2543 	       sym_name);
2544 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2545 }
2546 
2547 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2548 			u64 *size, int idx)
2549 {
2550 	struct symbol *sym;
2551 	int cnt = 0;
2552 
2553 	*start = 0;
2554 	*size = 0;
2555 
2556 	sym = dso__first_symbol(dso);
2557 	while (sym) {
2558 		if (*start) {
2559 			if (!*size)
2560 				*size = sym->start - *start;
2561 			if (idx > 0) {
2562 				if (*size)
2563 					return 1;
2564 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2565 				print_duplicate_syms(dso, sym_name);
2566 				return -EINVAL;
2567 			}
2568 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2569 			*start = sym->start;
2570 			*size = sym->end - sym->start;
2571 		}
2572 		sym = dso__next_symbol(sym);
2573 	}
2574 
2575 	if (!*start)
2576 		return sym_not_found_error(sym_name, idx);
2577 
2578 	return 0;
2579 }
2580 
2581 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2582 {
2583 	if (dso__data_file_size(dso, NULL)) {
2584 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2585 		       filt->filename);
2586 		return -EINVAL;
2587 	}
2588 
2589 	filt->addr = 0;
2590 	filt->size = dso->data.file_size;
2591 
2592 	return 0;
2593 }
2594 
2595 static int addr_filter__resolve_syms(struct addr_filter *filt)
2596 {
2597 	u64 start, size;
2598 	struct dso *dso;
2599 	int err = 0;
2600 
2601 	if (!filt->sym_from && !filt->sym_to)
2602 		return 0;
2603 
2604 	if (!filt->filename)
2605 		return addr_filter__resolve_kernel_syms(filt);
2606 
2607 	dso = load_dso(filt->filename);
2608 	if (!dso) {
2609 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2614 		err = addr_filter__entire_dso(filt, dso);
2615 		goto put_dso;
2616 	}
2617 
2618 	if (filt->sym_from) {
2619 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2620 				   filt->sym_from_idx);
2621 		if (err)
2622 			goto put_dso;
2623 		filt->addr = start;
2624 		if (filt->range && !filt->size && !filt->sym_to)
2625 			filt->size = size;
2626 	}
2627 
2628 	if (filt->sym_to) {
2629 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2630 				   filt->sym_to_idx);
2631 		if (err)
2632 			goto put_dso;
2633 
2634 		err = check_end_after_start(filt, start, size);
2635 		if (err)
2636 			return err;
2637 
2638 		filt->size = start + size - filt->addr;
2639 	}
2640 
2641 put_dso:
2642 	dso__put(dso);
2643 
2644 	return err;
2645 }
2646 
2647 static char *addr_filter__to_str(struct addr_filter *filt)
2648 {
2649 	char filename_buf[PATH_MAX];
2650 	const char *at = "";
2651 	const char *fn = "";
2652 	char *filter;
2653 	int err;
2654 
2655 	if (filt->filename) {
2656 		at = "@";
2657 		fn = realpath(filt->filename, filename_buf);
2658 		if (!fn)
2659 			return NULL;
2660 	}
2661 
2662 	if (filt->range) {
2663 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2664 			       filt->action, filt->addr, filt->size, at, fn);
2665 	} else {
2666 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2667 			       filt->action, filt->addr, at, fn);
2668 	}
2669 
2670 	return err < 0 ? NULL : filter;
2671 }
2672 
2673 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2674 			     int max_nr)
2675 {
2676 	struct addr_filters filts;
2677 	struct addr_filter *filt;
2678 	int err;
2679 
2680 	addr_filters__init(&filts);
2681 
2682 	err = addr_filters__parse_bare_filter(&filts, filter);
2683 	if (err)
2684 		goto out_exit;
2685 
2686 	if (filts.cnt > max_nr) {
2687 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2688 		       filts.cnt, max_nr);
2689 		err = -EINVAL;
2690 		goto out_exit;
2691 	}
2692 
2693 	list_for_each_entry(filt, &filts.head, list) {
2694 		char *new_filter;
2695 
2696 		err = addr_filter__resolve_syms(filt);
2697 		if (err)
2698 			goto out_exit;
2699 
2700 		new_filter = addr_filter__to_str(filt);
2701 		if (!new_filter) {
2702 			err = -ENOMEM;
2703 			goto out_exit;
2704 		}
2705 
2706 		if (evsel__append_addr_filter(evsel, new_filter)) {
2707 			err = -ENOMEM;
2708 			goto out_exit;
2709 		}
2710 	}
2711 
2712 out_exit:
2713 	addr_filters__exit(&filts);
2714 
2715 	if (err) {
2716 		pr_err("Failed to parse address filter: '%s'\n", filter);
2717 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2718 		pr_err("Where multiple filters are separated by space or comma.\n");
2719 	}
2720 
2721 	return err;
2722 }
2723 
2724 static int evsel__nr_addr_filter(struct evsel *evsel)
2725 {
2726 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2727 	int nr_addr_filters = 0;
2728 
2729 	if (!pmu)
2730 		return 0;
2731 
2732 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2733 
2734 	return nr_addr_filters;
2735 }
2736 
2737 int auxtrace_parse_filters(struct evlist *evlist)
2738 {
2739 	struct evsel *evsel;
2740 	char *filter;
2741 	int err, max_nr;
2742 
2743 	evlist__for_each_entry(evlist, evsel) {
2744 		filter = evsel->filter;
2745 		max_nr = evsel__nr_addr_filter(evsel);
2746 		if (!filter || !max_nr)
2747 			continue;
2748 		evsel->filter = NULL;
2749 		err = parse_addr_filter(evsel, filter, max_nr);
2750 		free(filter);
2751 		if (err)
2752 			return err;
2753 		pr_debug("Address filter: %s\n", evsel->filter);
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2760 			    struct perf_sample *sample, struct perf_tool *tool)
2761 {
2762 	if (!session->auxtrace)
2763 		return 0;
2764 
2765 	return session->auxtrace->process_event(session, event, sample, tool);
2766 }
2767 
2768 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2769 				    struct perf_sample *sample)
2770 {
2771 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2772 	    auxtrace__dont_decode(session))
2773 		return;
2774 
2775 	session->auxtrace->dump_auxtrace_sample(session, sample);
2776 }
2777 
2778 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2779 {
2780 	if (!session->auxtrace)
2781 		return 0;
2782 
2783 	return session->auxtrace->flush_events(session, tool);
2784 }
2785 
2786 void auxtrace__free_events(struct perf_session *session)
2787 {
2788 	if (!session->auxtrace)
2789 		return;
2790 
2791 	return session->auxtrace->free_events(session);
2792 }
2793 
2794 void auxtrace__free(struct perf_session *session)
2795 {
2796 	if (!session->auxtrace)
2797 		return;
2798 
2799 	return session->auxtrace->free(session);
2800 }
2801 
2802 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2803 				 struct evsel *evsel)
2804 {
2805 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2806 		return false;
2807 
2808 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2809 }
2810