1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 59 #include <linux/ctype.h> 60 #include "symbol/kallsyms.h" 61 #include <internal/lib.h> 62 63 /* 64 * Make a group from 'leader' to 'last', requiring that the events were not 65 * already grouped to a different leader. 66 */ 67 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 68 { 69 struct evsel *evsel; 70 bool grp; 71 72 if (!evsel__is_group_leader(leader)) 73 return -EINVAL; 74 75 grp = false; 76 evlist__for_each_entry(evlist, evsel) { 77 if (grp) { 78 if (!(evsel__leader(evsel) == leader || 79 (evsel__leader(evsel) == evsel && 80 evsel->core.nr_members <= 1))) 81 return -EINVAL; 82 } else if (evsel == leader) { 83 grp = true; 84 } 85 if (evsel == last) 86 break; 87 } 88 89 grp = false; 90 evlist__for_each_entry(evlist, evsel) { 91 if (grp) { 92 if (!evsel__has_leader(evsel, leader)) { 93 evsel__set_leader(evsel, leader); 94 if (leader->core.nr_members < 1) 95 leader->core.nr_members = 1; 96 leader->core.nr_members += 1; 97 } 98 } else if (evsel == leader) { 99 grp = true; 100 } 101 if (evsel == last) 102 break; 103 } 104 105 return 0; 106 } 107 108 static bool auxtrace__dont_decode(struct perf_session *session) 109 { 110 return !session->itrace_synth_opts || 111 session->itrace_synth_opts->dont_decode; 112 } 113 114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 115 struct auxtrace_mmap_params *mp, 116 void *userpg, int fd) 117 { 118 struct perf_event_mmap_page *pc = userpg; 119 120 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 121 122 mm->userpg = userpg; 123 mm->mask = mp->mask; 124 mm->len = mp->len; 125 mm->prev = 0; 126 mm->idx = mp->idx; 127 mm->tid = mp->tid; 128 mm->cpu = mp->cpu.cpu; 129 130 if (!mp->len || !mp->mmap_needed) { 131 mm->base = NULL; 132 return 0; 133 } 134 135 pc->aux_offset = mp->offset; 136 pc->aux_size = mp->len; 137 138 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 139 if (mm->base == MAP_FAILED) { 140 pr_debug2("failed to mmap AUX area\n"); 141 mm->base = NULL; 142 return -1; 143 } 144 145 return 0; 146 } 147 148 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 149 { 150 if (mm->base) { 151 munmap(mm->base, mm->len); 152 mm->base = NULL; 153 } 154 } 155 156 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 157 off_t auxtrace_offset, 158 unsigned int auxtrace_pages, 159 bool auxtrace_overwrite) 160 { 161 if (auxtrace_pages) { 162 mp->offset = auxtrace_offset; 163 mp->len = auxtrace_pages * (size_t)page_size; 164 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 165 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 166 pr_debug2("AUX area mmap length %zu\n", mp->len); 167 } else { 168 mp->len = 0; 169 } 170 } 171 172 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 173 struct evlist *evlist, 174 struct evsel *evsel, int idx) 175 { 176 bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 177 178 mp->mmap_needed = evsel->needs_auxtrace_mmap; 179 180 if (!mp->mmap_needed) 181 return; 182 183 mp->idx = idx; 184 185 if (per_cpu) { 186 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 187 if (evlist->core.threads) 188 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 189 else 190 mp->tid = -1; 191 } else { 192 mp->cpu.cpu = -1; 193 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 194 } 195 } 196 197 #define AUXTRACE_INIT_NR_QUEUES 32 198 199 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 200 { 201 struct auxtrace_queue *queue_array; 202 unsigned int max_nr_queues, i; 203 204 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 205 if (nr_queues > max_nr_queues) 206 return NULL; 207 208 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 209 if (!queue_array) 210 return NULL; 211 212 for (i = 0; i < nr_queues; i++) { 213 INIT_LIST_HEAD(&queue_array[i].head); 214 queue_array[i].priv = NULL; 215 } 216 217 return queue_array; 218 } 219 220 int auxtrace_queues__init(struct auxtrace_queues *queues) 221 { 222 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 223 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 224 if (!queues->queue_array) 225 return -ENOMEM; 226 return 0; 227 } 228 229 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 230 unsigned int new_nr_queues) 231 { 232 unsigned int nr_queues = queues->nr_queues; 233 struct auxtrace_queue *queue_array; 234 unsigned int i; 235 236 if (!nr_queues) 237 nr_queues = AUXTRACE_INIT_NR_QUEUES; 238 239 while (nr_queues && nr_queues < new_nr_queues) 240 nr_queues <<= 1; 241 242 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 243 return -EINVAL; 244 245 queue_array = auxtrace_alloc_queue_array(nr_queues); 246 if (!queue_array) 247 return -ENOMEM; 248 249 for (i = 0; i < queues->nr_queues; i++) { 250 list_splice_tail(&queues->queue_array[i].head, 251 &queue_array[i].head); 252 queue_array[i].tid = queues->queue_array[i].tid; 253 queue_array[i].cpu = queues->queue_array[i].cpu; 254 queue_array[i].set = queues->queue_array[i].set; 255 queue_array[i].priv = queues->queue_array[i].priv; 256 } 257 258 queues->nr_queues = nr_queues; 259 queues->queue_array = queue_array; 260 261 return 0; 262 } 263 264 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 265 { 266 int fd = perf_data__fd(session->data); 267 void *p; 268 ssize_t ret; 269 270 if (size > SSIZE_MAX) 271 return NULL; 272 273 p = malloc(size); 274 if (!p) 275 return NULL; 276 277 ret = readn(fd, p, size); 278 if (ret != (ssize_t)size) { 279 free(p); 280 return NULL; 281 } 282 283 return p; 284 } 285 286 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 287 unsigned int idx, 288 struct auxtrace_buffer *buffer) 289 { 290 struct auxtrace_queue *queue; 291 int err; 292 293 if (idx >= queues->nr_queues) { 294 err = auxtrace_queues__grow(queues, idx + 1); 295 if (err) 296 return err; 297 } 298 299 queue = &queues->queue_array[idx]; 300 301 if (!queue->set) { 302 queue->set = true; 303 queue->tid = buffer->tid; 304 queue->cpu = buffer->cpu.cpu; 305 } 306 307 buffer->buffer_nr = queues->next_buffer_nr++; 308 309 list_add_tail(&buffer->list, &queue->head); 310 311 queues->new_data = true; 312 queues->populated = true; 313 314 return 0; 315 } 316 317 /* Limit buffers to 32MiB on 32-bit */ 318 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 319 320 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 321 unsigned int idx, 322 struct auxtrace_buffer *buffer) 323 { 324 u64 sz = buffer->size; 325 bool consecutive = false; 326 struct auxtrace_buffer *b; 327 int err; 328 329 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 330 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 331 if (!b) 332 return -ENOMEM; 333 b->size = BUFFER_LIMIT_FOR_32_BIT; 334 b->consecutive = consecutive; 335 err = auxtrace_queues__queue_buffer(queues, idx, b); 336 if (err) { 337 auxtrace_buffer__free(b); 338 return err; 339 } 340 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 341 sz -= BUFFER_LIMIT_FOR_32_BIT; 342 consecutive = true; 343 } 344 345 buffer->size = sz; 346 buffer->consecutive = consecutive; 347 348 return 0; 349 } 350 351 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 352 { 353 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 354 355 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 356 } 357 358 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 359 struct perf_session *session, 360 unsigned int idx, 361 struct auxtrace_buffer *buffer, 362 struct auxtrace_buffer **buffer_ptr) 363 { 364 int err = -ENOMEM; 365 366 if (filter_cpu(session, buffer->cpu)) 367 return 0; 368 369 buffer = memdup(buffer, sizeof(*buffer)); 370 if (!buffer) 371 return -ENOMEM; 372 373 if (session->one_mmap) { 374 buffer->data = buffer->data_offset - session->one_mmap_offset + 375 session->one_mmap_addr; 376 } else if (perf_data__is_pipe(session->data)) { 377 buffer->data = auxtrace_copy_data(buffer->size, session); 378 if (!buffer->data) 379 goto out_free; 380 buffer->data_needs_freeing = true; 381 } else if (BITS_PER_LONG == 32 && 382 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 383 err = auxtrace_queues__split_buffer(queues, idx, buffer); 384 if (err) 385 goto out_free; 386 } 387 388 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 389 if (err) 390 goto out_free; 391 392 /* FIXME: Doesn't work for split buffer */ 393 if (buffer_ptr) 394 *buffer_ptr = buffer; 395 396 return 0; 397 398 out_free: 399 auxtrace_buffer__free(buffer); 400 return err; 401 } 402 403 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 404 struct perf_session *session, 405 union perf_event *event, off_t data_offset, 406 struct auxtrace_buffer **buffer_ptr) 407 { 408 struct auxtrace_buffer buffer = { 409 .pid = -1, 410 .tid = event->auxtrace.tid, 411 .cpu = { event->auxtrace.cpu }, 412 .data_offset = data_offset, 413 .offset = event->auxtrace.offset, 414 .reference = event->auxtrace.reference, 415 .size = event->auxtrace.size, 416 }; 417 unsigned int idx = event->auxtrace.idx; 418 419 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 420 buffer_ptr); 421 } 422 423 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 424 struct perf_session *session, 425 off_t file_offset, size_t sz) 426 { 427 union perf_event *event; 428 int err; 429 char buf[PERF_SAMPLE_MAX_SIZE]; 430 431 err = perf_session__peek_event(session, file_offset, buf, 432 PERF_SAMPLE_MAX_SIZE, &event, NULL); 433 if (err) 434 return err; 435 436 if (event->header.type == PERF_RECORD_AUXTRACE) { 437 if (event->header.size < sizeof(struct perf_record_auxtrace) || 438 event->header.size != sz) { 439 err = -EINVAL; 440 goto out; 441 } 442 file_offset += event->header.size; 443 err = auxtrace_queues__add_event(queues, session, event, 444 file_offset, NULL); 445 } 446 out: 447 return err; 448 } 449 450 void auxtrace_queues__free(struct auxtrace_queues *queues) 451 { 452 unsigned int i; 453 454 for (i = 0; i < queues->nr_queues; i++) { 455 while (!list_empty(&queues->queue_array[i].head)) { 456 struct auxtrace_buffer *buffer; 457 458 buffer = list_entry(queues->queue_array[i].head.next, 459 struct auxtrace_buffer, list); 460 list_del_init(&buffer->list); 461 auxtrace_buffer__free(buffer); 462 } 463 } 464 465 zfree(&queues->queue_array); 466 queues->nr_queues = 0; 467 } 468 469 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 470 unsigned int pos, unsigned int queue_nr, 471 u64 ordinal) 472 { 473 unsigned int parent; 474 475 while (pos) { 476 parent = (pos - 1) >> 1; 477 if (heap_array[parent].ordinal <= ordinal) 478 break; 479 heap_array[pos] = heap_array[parent]; 480 pos = parent; 481 } 482 heap_array[pos].queue_nr = queue_nr; 483 heap_array[pos].ordinal = ordinal; 484 } 485 486 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 487 u64 ordinal) 488 { 489 struct auxtrace_heap_item *heap_array; 490 491 if (queue_nr >= heap->heap_sz) { 492 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 493 494 while (heap_sz <= queue_nr) 495 heap_sz <<= 1; 496 heap_array = realloc(heap->heap_array, 497 heap_sz * sizeof(struct auxtrace_heap_item)); 498 if (!heap_array) 499 return -ENOMEM; 500 heap->heap_array = heap_array; 501 heap->heap_sz = heap_sz; 502 } 503 504 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 505 506 return 0; 507 } 508 509 void auxtrace_heap__free(struct auxtrace_heap *heap) 510 { 511 zfree(&heap->heap_array); 512 heap->heap_cnt = 0; 513 heap->heap_sz = 0; 514 } 515 516 void auxtrace_heap__pop(struct auxtrace_heap *heap) 517 { 518 unsigned int pos, last, heap_cnt = heap->heap_cnt; 519 struct auxtrace_heap_item *heap_array; 520 521 if (!heap_cnt) 522 return; 523 524 heap->heap_cnt -= 1; 525 526 heap_array = heap->heap_array; 527 528 pos = 0; 529 while (1) { 530 unsigned int left, right; 531 532 left = (pos << 1) + 1; 533 if (left >= heap_cnt) 534 break; 535 right = left + 1; 536 if (right >= heap_cnt) { 537 heap_array[pos] = heap_array[left]; 538 return; 539 } 540 if (heap_array[left].ordinal < heap_array[right].ordinal) { 541 heap_array[pos] = heap_array[left]; 542 pos = left; 543 } else { 544 heap_array[pos] = heap_array[right]; 545 pos = right; 546 } 547 } 548 549 last = heap_cnt - 1; 550 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 551 heap_array[last].ordinal); 552 } 553 554 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 555 struct evlist *evlist) 556 { 557 if (itr) 558 return itr->info_priv_size(itr, evlist); 559 return 0; 560 } 561 562 static int auxtrace_not_supported(void) 563 { 564 pr_err("AUX area tracing is not supported on this architecture\n"); 565 return -EINVAL; 566 } 567 568 int auxtrace_record__info_fill(struct auxtrace_record *itr, 569 struct perf_session *session, 570 struct perf_record_auxtrace_info *auxtrace_info, 571 size_t priv_size) 572 { 573 if (itr) 574 return itr->info_fill(itr, session, auxtrace_info, priv_size); 575 return auxtrace_not_supported(); 576 } 577 578 void auxtrace_record__free(struct auxtrace_record *itr) 579 { 580 if (itr) 581 itr->free(itr); 582 } 583 584 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 585 { 586 if (itr && itr->snapshot_start) 587 return itr->snapshot_start(itr); 588 return 0; 589 } 590 591 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 592 { 593 if (!on_exit && itr && itr->snapshot_finish) 594 return itr->snapshot_finish(itr); 595 return 0; 596 } 597 598 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 599 struct auxtrace_mmap *mm, 600 unsigned char *data, u64 *head, u64 *old) 601 { 602 if (itr && itr->find_snapshot) 603 return itr->find_snapshot(itr, idx, mm, data, head, old); 604 return 0; 605 } 606 607 int auxtrace_record__options(struct auxtrace_record *itr, 608 struct evlist *evlist, 609 struct record_opts *opts) 610 { 611 if (itr) { 612 itr->evlist = evlist; 613 return itr->recording_options(itr, evlist, opts); 614 } 615 return 0; 616 } 617 618 u64 auxtrace_record__reference(struct auxtrace_record *itr) 619 { 620 if (itr) 621 return itr->reference(itr); 622 return 0; 623 } 624 625 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 626 struct record_opts *opts, const char *str) 627 { 628 if (!str) 629 return 0; 630 631 /* PMU-agnostic options */ 632 switch (*str) { 633 case 'e': 634 opts->auxtrace_snapshot_on_exit = true; 635 str++; 636 break; 637 default: 638 break; 639 } 640 641 if (itr && itr->parse_snapshot_options) 642 return itr->parse_snapshot_options(itr, opts, str); 643 644 pr_err("No AUX area tracing to snapshot\n"); 645 return -EINVAL; 646 } 647 648 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 649 { 650 bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 651 652 if (per_cpu_mmaps) { 653 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 654 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 655 656 if (cpu_map_idx == -1) 657 return -EINVAL; 658 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 659 } 660 661 return perf_evsel__enable_thread(&evsel->core, idx); 662 } 663 664 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 665 { 666 struct evsel *evsel; 667 668 if (!itr->evlist || !itr->pmu) 669 return -EINVAL; 670 671 evlist__for_each_entry(itr->evlist, evsel) { 672 if (evsel->core.attr.type == itr->pmu->type) { 673 if (evsel->disabled) 674 return 0; 675 return evlist__enable_event_idx(itr->evlist, evsel, idx); 676 } 677 } 678 return -EINVAL; 679 } 680 681 /* 682 * Event record size is 16-bit which results in a maximum size of about 64KiB. 683 * Allow about 4KiB for the rest of the sample record, to give a maximum 684 * AUX area sample size of 60KiB. 685 */ 686 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 687 688 /* Arbitrary default size if no other default provided */ 689 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 690 691 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 692 struct record_opts *opts) 693 { 694 struct evsel *evsel; 695 bool has_aux_leader = false; 696 u32 sz; 697 698 evlist__for_each_entry(evlist, evsel) { 699 sz = evsel->core.attr.aux_sample_size; 700 if (evsel__is_group_leader(evsel)) { 701 has_aux_leader = evsel__is_aux_event(evsel); 702 if (sz) { 703 if (has_aux_leader) 704 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 705 else 706 pr_err("Cannot add AUX area sampling to a group leader\n"); 707 return -EINVAL; 708 } 709 } 710 if (sz > MAX_AUX_SAMPLE_SIZE) { 711 pr_err("AUX area sample size %u too big, max. %d\n", 712 sz, MAX_AUX_SAMPLE_SIZE); 713 return -EINVAL; 714 } 715 if (sz) { 716 if (!has_aux_leader) { 717 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 718 return -EINVAL; 719 } 720 evsel__set_sample_bit(evsel, AUX); 721 opts->auxtrace_sample_mode = true; 722 } else { 723 evsel__reset_sample_bit(evsel, AUX); 724 } 725 } 726 727 if (!opts->auxtrace_sample_mode) { 728 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 729 return -EINVAL; 730 } 731 732 if (!perf_can_aux_sample()) { 733 pr_err("AUX area sampling is not supported by kernel\n"); 734 return -EINVAL; 735 } 736 737 return 0; 738 } 739 740 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 741 struct evlist *evlist, 742 struct record_opts *opts, const char *str) 743 { 744 struct evsel_config_term *term; 745 struct evsel *aux_evsel; 746 bool has_aux_sample_size = false; 747 bool has_aux_leader = false; 748 struct evsel *evsel; 749 char *endptr; 750 unsigned long sz; 751 752 if (!str) 753 goto no_opt; 754 755 if (!itr) { 756 pr_err("No AUX area event to sample\n"); 757 return -EINVAL; 758 } 759 760 sz = strtoul(str, &endptr, 0); 761 if (*endptr || sz > UINT_MAX) { 762 pr_err("Bad AUX area sampling option: '%s'\n", str); 763 return -EINVAL; 764 } 765 766 if (!sz) 767 sz = itr->default_aux_sample_size; 768 769 if (!sz) 770 sz = DEFAULT_AUX_SAMPLE_SIZE; 771 772 /* Set aux_sample_size based on --aux-sample option */ 773 evlist__for_each_entry(evlist, evsel) { 774 if (evsel__is_group_leader(evsel)) { 775 has_aux_leader = evsel__is_aux_event(evsel); 776 } else if (has_aux_leader) { 777 evsel->core.attr.aux_sample_size = sz; 778 } 779 } 780 no_opt: 781 aux_evsel = NULL; 782 /* Override with aux_sample_size from config term */ 783 evlist__for_each_entry(evlist, evsel) { 784 if (evsel__is_aux_event(evsel)) 785 aux_evsel = evsel; 786 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 787 if (term) { 788 has_aux_sample_size = true; 789 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 790 /* If possible, group with the AUX event */ 791 if (aux_evsel && evsel->core.attr.aux_sample_size) 792 evlist__regroup(evlist, aux_evsel, evsel); 793 } 794 } 795 796 if (!str && !has_aux_sample_size) 797 return 0; 798 799 if (!itr) { 800 pr_err("No AUX area event to sample\n"); 801 return -EINVAL; 802 } 803 804 return auxtrace_validate_aux_sample_size(evlist, opts); 805 } 806 807 void auxtrace_regroup_aux_output(struct evlist *evlist) 808 { 809 struct evsel *evsel, *aux_evsel = NULL; 810 struct evsel_config_term *term; 811 812 evlist__for_each_entry(evlist, evsel) { 813 if (evsel__is_aux_event(evsel)) 814 aux_evsel = evsel; 815 term = evsel__get_config_term(evsel, AUX_OUTPUT); 816 /* If possible, group with the AUX event */ 817 if (term && aux_evsel) 818 evlist__regroup(evlist, aux_evsel, evsel); 819 } 820 } 821 822 struct auxtrace_record *__weak 823 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 824 { 825 *err = 0; 826 return NULL; 827 } 828 829 static int auxtrace_index__alloc(struct list_head *head) 830 { 831 struct auxtrace_index *auxtrace_index; 832 833 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 834 if (!auxtrace_index) 835 return -ENOMEM; 836 837 auxtrace_index->nr = 0; 838 INIT_LIST_HEAD(&auxtrace_index->list); 839 840 list_add_tail(&auxtrace_index->list, head); 841 842 return 0; 843 } 844 845 void auxtrace_index__free(struct list_head *head) 846 { 847 struct auxtrace_index *auxtrace_index, *n; 848 849 list_for_each_entry_safe(auxtrace_index, n, head, list) { 850 list_del_init(&auxtrace_index->list); 851 free(auxtrace_index); 852 } 853 } 854 855 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 856 { 857 struct auxtrace_index *auxtrace_index; 858 int err; 859 860 if (list_empty(head)) { 861 err = auxtrace_index__alloc(head); 862 if (err) 863 return NULL; 864 } 865 866 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 867 868 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 869 err = auxtrace_index__alloc(head); 870 if (err) 871 return NULL; 872 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 873 list); 874 } 875 876 return auxtrace_index; 877 } 878 879 int auxtrace_index__auxtrace_event(struct list_head *head, 880 union perf_event *event, off_t file_offset) 881 { 882 struct auxtrace_index *auxtrace_index; 883 size_t nr; 884 885 auxtrace_index = auxtrace_index__last(head); 886 if (!auxtrace_index) 887 return -ENOMEM; 888 889 nr = auxtrace_index->nr; 890 auxtrace_index->entries[nr].file_offset = file_offset; 891 auxtrace_index->entries[nr].sz = event->header.size; 892 auxtrace_index->nr += 1; 893 894 return 0; 895 } 896 897 static int auxtrace_index__do_write(int fd, 898 struct auxtrace_index *auxtrace_index) 899 { 900 struct auxtrace_index_entry ent; 901 size_t i; 902 903 for (i = 0; i < auxtrace_index->nr; i++) { 904 ent.file_offset = auxtrace_index->entries[i].file_offset; 905 ent.sz = auxtrace_index->entries[i].sz; 906 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 907 return -errno; 908 } 909 return 0; 910 } 911 912 int auxtrace_index__write(int fd, struct list_head *head) 913 { 914 struct auxtrace_index *auxtrace_index; 915 u64 total = 0; 916 int err; 917 918 list_for_each_entry(auxtrace_index, head, list) 919 total += auxtrace_index->nr; 920 921 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 922 return -errno; 923 924 list_for_each_entry(auxtrace_index, head, list) { 925 err = auxtrace_index__do_write(fd, auxtrace_index); 926 if (err) 927 return err; 928 } 929 930 return 0; 931 } 932 933 static int auxtrace_index__process_entry(int fd, struct list_head *head, 934 bool needs_swap) 935 { 936 struct auxtrace_index *auxtrace_index; 937 struct auxtrace_index_entry ent; 938 size_t nr; 939 940 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 941 return -1; 942 943 auxtrace_index = auxtrace_index__last(head); 944 if (!auxtrace_index) 945 return -1; 946 947 nr = auxtrace_index->nr; 948 if (needs_swap) { 949 auxtrace_index->entries[nr].file_offset = 950 bswap_64(ent.file_offset); 951 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 952 } else { 953 auxtrace_index->entries[nr].file_offset = ent.file_offset; 954 auxtrace_index->entries[nr].sz = ent.sz; 955 } 956 957 auxtrace_index->nr = nr + 1; 958 959 return 0; 960 } 961 962 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 963 bool needs_swap) 964 { 965 struct list_head *head = &session->auxtrace_index; 966 u64 nr; 967 968 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 969 return -1; 970 971 if (needs_swap) 972 nr = bswap_64(nr); 973 974 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 975 return -1; 976 977 while (nr--) { 978 int err; 979 980 err = auxtrace_index__process_entry(fd, head, needs_swap); 981 if (err) 982 return -1; 983 } 984 985 return 0; 986 } 987 988 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 989 struct perf_session *session, 990 struct auxtrace_index_entry *ent) 991 { 992 return auxtrace_queues__add_indexed_event(queues, session, 993 ent->file_offset, ent->sz); 994 } 995 996 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 997 struct perf_session *session) 998 { 999 struct auxtrace_index *auxtrace_index; 1000 struct auxtrace_index_entry *ent; 1001 size_t i; 1002 int err; 1003 1004 if (auxtrace__dont_decode(session)) 1005 return 0; 1006 1007 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1008 for (i = 0; i < auxtrace_index->nr; i++) { 1009 ent = &auxtrace_index->entries[i]; 1010 err = auxtrace_queues__process_index_entry(queues, 1011 session, 1012 ent); 1013 if (err) 1014 return err; 1015 } 1016 } 1017 return 0; 1018 } 1019 1020 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1021 struct auxtrace_buffer *buffer) 1022 { 1023 if (buffer) { 1024 if (list_is_last(&buffer->list, &queue->head)) 1025 return NULL; 1026 return list_entry(buffer->list.next, struct auxtrace_buffer, 1027 list); 1028 } else { 1029 if (list_empty(&queue->head)) 1030 return NULL; 1031 return list_entry(queue->head.next, struct auxtrace_buffer, 1032 list); 1033 } 1034 } 1035 1036 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1037 struct perf_sample *sample, 1038 struct perf_session *session) 1039 { 1040 struct perf_sample_id *sid; 1041 unsigned int idx; 1042 u64 id; 1043 1044 id = sample->id; 1045 if (!id) 1046 return NULL; 1047 1048 sid = evlist__id2sid(session->evlist, id); 1049 if (!sid) 1050 return NULL; 1051 1052 idx = sid->idx; 1053 1054 if (idx >= queues->nr_queues) 1055 return NULL; 1056 1057 return &queues->queue_array[idx]; 1058 } 1059 1060 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1061 struct perf_session *session, 1062 struct perf_sample *sample, u64 data_offset, 1063 u64 reference) 1064 { 1065 struct auxtrace_buffer buffer = { 1066 .pid = -1, 1067 .data_offset = data_offset, 1068 .reference = reference, 1069 .size = sample->aux_sample.size, 1070 }; 1071 struct perf_sample_id *sid; 1072 u64 id = sample->id; 1073 unsigned int idx; 1074 1075 if (!id) 1076 return -EINVAL; 1077 1078 sid = evlist__id2sid(session->evlist, id); 1079 if (!sid) 1080 return -ENOENT; 1081 1082 idx = sid->idx; 1083 buffer.tid = sid->tid; 1084 buffer.cpu = sid->cpu; 1085 1086 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1087 } 1088 1089 struct queue_data { 1090 bool samples; 1091 bool events; 1092 }; 1093 1094 static int auxtrace_queue_data_cb(struct perf_session *session, 1095 union perf_event *event, u64 offset, 1096 void *data) 1097 { 1098 struct queue_data *qd = data; 1099 struct perf_sample sample; 1100 int err; 1101 1102 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1103 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1104 return -EINVAL; 1105 offset += event->header.size; 1106 return session->auxtrace->queue_data(session, NULL, event, 1107 offset); 1108 } 1109 1110 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1111 return 0; 1112 1113 err = evlist__parse_sample(session->evlist, event, &sample); 1114 if (err) 1115 return err; 1116 1117 if (!sample.aux_sample.size) 1118 return 0; 1119 1120 offset += sample.aux_sample.data - (void *)event; 1121 1122 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1123 } 1124 1125 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1126 { 1127 struct queue_data qd = { 1128 .samples = samples, 1129 .events = events, 1130 }; 1131 1132 if (auxtrace__dont_decode(session)) 1133 return 0; 1134 1135 if (!session->auxtrace || !session->auxtrace->queue_data) 1136 return -EINVAL; 1137 1138 return perf_session__peek_events(session, session->header.data_offset, 1139 session->header.data_size, 1140 auxtrace_queue_data_cb, &qd); 1141 } 1142 1143 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1144 { 1145 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1146 size_t adj = buffer->data_offset & (page_size - 1); 1147 size_t size = buffer->size + adj; 1148 off_t file_offset = buffer->data_offset - adj; 1149 void *addr; 1150 1151 if (buffer->data) 1152 return buffer->data; 1153 1154 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1155 if (addr == MAP_FAILED) 1156 return NULL; 1157 1158 buffer->mmap_addr = addr; 1159 buffer->mmap_size = size; 1160 1161 buffer->data = addr + adj; 1162 1163 return buffer->data; 1164 } 1165 1166 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1167 { 1168 if (!buffer->data || !buffer->mmap_addr) 1169 return; 1170 munmap(buffer->mmap_addr, buffer->mmap_size); 1171 buffer->mmap_addr = NULL; 1172 buffer->mmap_size = 0; 1173 buffer->data = NULL; 1174 buffer->use_data = NULL; 1175 } 1176 1177 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1178 { 1179 auxtrace_buffer__put_data(buffer); 1180 if (buffer->data_needs_freeing) { 1181 buffer->data_needs_freeing = false; 1182 zfree(&buffer->data); 1183 buffer->use_data = NULL; 1184 buffer->size = 0; 1185 } 1186 } 1187 1188 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1189 { 1190 auxtrace_buffer__drop_data(buffer); 1191 free(buffer); 1192 } 1193 1194 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1195 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1196 const char *msg, u64 timestamp, 1197 pid_t machine_pid, int vcpu) 1198 { 1199 size_t size; 1200 1201 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1202 1203 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1204 auxtrace_error->type = type; 1205 auxtrace_error->code = code; 1206 auxtrace_error->cpu = cpu; 1207 auxtrace_error->pid = pid; 1208 auxtrace_error->tid = tid; 1209 auxtrace_error->fmt = 1; 1210 auxtrace_error->ip = ip; 1211 auxtrace_error->time = timestamp; 1212 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1213 if (machine_pid) { 1214 auxtrace_error->fmt = 2; 1215 auxtrace_error->machine_pid = machine_pid; 1216 auxtrace_error->vcpu = vcpu; 1217 size = sizeof(*auxtrace_error); 1218 } else { 1219 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1220 strlen(auxtrace_error->msg) + 1; 1221 } 1222 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1223 } 1224 1225 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1226 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1227 const char *msg, u64 timestamp) 1228 { 1229 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1230 ip, msg, timestamp, 0, -1); 1231 } 1232 1233 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1234 struct perf_tool *tool, 1235 struct perf_session *session, 1236 perf_event__handler_t process) 1237 { 1238 union perf_event *ev; 1239 size_t priv_size; 1240 int err; 1241 1242 pr_debug2("Synthesizing auxtrace information\n"); 1243 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1244 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1245 if (!ev) 1246 return -ENOMEM; 1247 1248 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1249 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1250 priv_size; 1251 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1252 priv_size); 1253 if (err) 1254 goto out_free; 1255 1256 err = process(tool, ev, NULL, NULL); 1257 out_free: 1258 free(ev); 1259 return err; 1260 } 1261 1262 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1263 { 1264 struct evsel *new_leader = NULL; 1265 struct evsel *evsel; 1266 1267 /* Find new leader for the group */ 1268 evlist__for_each_entry(evlist, evsel) { 1269 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1270 continue; 1271 if (!new_leader) 1272 new_leader = evsel; 1273 evsel__set_leader(evsel, new_leader); 1274 } 1275 1276 /* Update group information */ 1277 if (new_leader) { 1278 zfree(&new_leader->group_name); 1279 new_leader->group_name = leader->group_name; 1280 leader->group_name = NULL; 1281 1282 new_leader->core.nr_members = leader->core.nr_members - 1; 1283 leader->core.nr_members = 1; 1284 } 1285 } 1286 1287 static void unleader_auxtrace(struct perf_session *session) 1288 { 1289 struct evsel *evsel; 1290 1291 evlist__for_each_entry(session->evlist, evsel) { 1292 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1293 evsel__is_group_leader(evsel)) { 1294 unleader_evsel(session->evlist, evsel); 1295 } 1296 } 1297 } 1298 1299 int perf_event__process_auxtrace_info(struct perf_session *session, 1300 union perf_event *event) 1301 { 1302 enum auxtrace_type type = event->auxtrace_info.type; 1303 int err; 1304 1305 if (dump_trace) 1306 fprintf(stdout, " type: %u\n", type); 1307 1308 switch (type) { 1309 case PERF_AUXTRACE_INTEL_PT: 1310 err = intel_pt_process_auxtrace_info(event, session); 1311 break; 1312 case PERF_AUXTRACE_INTEL_BTS: 1313 err = intel_bts_process_auxtrace_info(event, session); 1314 break; 1315 case PERF_AUXTRACE_ARM_SPE: 1316 err = arm_spe_process_auxtrace_info(event, session); 1317 break; 1318 case PERF_AUXTRACE_CS_ETM: 1319 err = cs_etm__process_auxtrace_info(event, session); 1320 break; 1321 case PERF_AUXTRACE_S390_CPUMSF: 1322 err = s390_cpumsf_process_auxtrace_info(event, session); 1323 break; 1324 case PERF_AUXTRACE_HISI_PTT: 1325 err = hisi_ptt_process_auxtrace_info(event, session); 1326 break; 1327 case PERF_AUXTRACE_UNKNOWN: 1328 default: 1329 return -EINVAL; 1330 } 1331 1332 if (err) 1333 return err; 1334 1335 unleader_auxtrace(session); 1336 1337 return 0; 1338 } 1339 1340 s64 perf_event__process_auxtrace(struct perf_session *session, 1341 union perf_event *event) 1342 { 1343 s64 err; 1344 1345 if (dump_trace) 1346 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1347 event->auxtrace.size, event->auxtrace.offset, 1348 event->auxtrace.reference, event->auxtrace.idx, 1349 event->auxtrace.tid, event->auxtrace.cpu); 1350 1351 if (auxtrace__dont_decode(session)) 1352 return event->auxtrace.size; 1353 1354 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1355 return -EINVAL; 1356 1357 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1358 if (err < 0) 1359 return err; 1360 1361 return event->auxtrace.size; 1362 } 1363 1364 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1365 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1366 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1367 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1368 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1369 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1370 1371 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1372 bool no_sample) 1373 { 1374 synth_opts->branches = true; 1375 synth_opts->transactions = true; 1376 synth_opts->ptwrites = true; 1377 synth_opts->pwr_events = true; 1378 synth_opts->other_events = true; 1379 synth_opts->intr_events = true; 1380 synth_opts->errors = true; 1381 synth_opts->flc = true; 1382 synth_opts->llc = true; 1383 synth_opts->tlb = true; 1384 synth_opts->mem = true; 1385 synth_opts->remote_access = true; 1386 1387 if (no_sample) { 1388 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1389 synth_opts->period = 1; 1390 synth_opts->calls = true; 1391 } else { 1392 synth_opts->instructions = true; 1393 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1394 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1395 } 1396 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1397 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1398 synth_opts->initial_skip = 0; 1399 } 1400 1401 static int get_flag(const char **ptr, unsigned int *flags) 1402 { 1403 while (1) { 1404 char c = **ptr; 1405 1406 if (c >= 'a' && c <= 'z') { 1407 *flags |= 1 << (c - 'a'); 1408 ++*ptr; 1409 return 0; 1410 } else if (c == ' ') { 1411 ++*ptr; 1412 continue; 1413 } else { 1414 return -1; 1415 } 1416 } 1417 } 1418 1419 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1420 { 1421 while (1) { 1422 switch (**ptr) { 1423 case '+': 1424 ++*ptr; 1425 if (get_flag(ptr, plus_flags)) 1426 return -1; 1427 break; 1428 case '-': 1429 ++*ptr; 1430 if (get_flag(ptr, minus_flags)) 1431 return -1; 1432 break; 1433 case ' ': 1434 ++*ptr; 1435 break; 1436 default: 1437 return 0; 1438 } 1439 } 1440 } 1441 1442 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1443 1444 static unsigned int itrace_log_on_error_size(void) 1445 { 1446 unsigned int sz = 0; 1447 1448 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1449 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1450 } 1451 1452 /* 1453 * Please check tools/perf/Documentation/perf-script.txt for information 1454 * about the options parsed here, which is introduced after this cset, 1455 * when support in 'perf script' for these options is introduced. 1456 */ 1457 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1458 const char *str, int unset) 1459 { 1460 const char *p; 1461 char *endptr; 1462 bool period_type_set = false; 1463 bool period_set = false; 1464 1465 synth_opts->set = true; 1466 1467 if (unset) { 1468 synth_opts->dont_decode = true; 1469 return 0; 1470 } 1471 1472 if (!str) { 1473 itrace_synth_opts__set_default(synth_opts, 1474 synth_opts->default_no_sample); 1475 return 0; 1476 } 1477 1478 for (p = str; *p;) { 1479 switch (*p++) { 1480 case 'i': 1481 synth_opts->instructions = true; 1482 while (*p == ' ' || *p == ',') 1483 p += 1; 1484 if (isdigit(*p)) { 1485 synth_opts->period = strtoull(p, &endptr, 10); 1486 period_set = true; 1487 p = endptr; 1488 while (*p == ' ' || *p == ',') 1489 p += 1; 1490 switch (*p++) { 1491 case 'i': 1492 synth_opts->period_type = 1493 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1494 period_type_set = true; 1495 break; 1496 case 't': 1497 synth_opts->period_type = 1498 PERF_ITRACE_PERIOD_TICKS; 1499 period_type_set = true; 1500 break; 1501 case 'm': 1502 synth_opts->period *= 1000; 1503 /* Fall through */ 1504 case 'u': 1505 synth_opts->period *= 1000; 1506 /* Fall through */ 1507 case 'n': 1508 if (*p++ != 's') 1509 goto out_err; 1510 synth_opts->period_type = 1511 PERF_ITRACE_PERIOD_NANOSECS; 1512 period_type_set = true; 1513 break; 1514 case '\0': 1515 goto out; 1516 default: 1517 goto out_err; 1518 } 1519 } 1520 break; 1521 case 'b': 1522 synth_opts->branches = true; 1523 break; 1524 case 'x': 1525 synth_opts->transactions = true; 1526 break; 1527 case 'w': 1528 synth_opts->ptwrites = true; 1529 break; 1530 case 'p': 1531 synth_opts->pwr_events = true; 1532 break; 1533 case 'o': 1534 synth_opts->other_events = true; 1535 break; 1536 case 'I': 1537 synth_opts->intr_events = true; 1538 break; 1539 case 'e': 1540 synth_opts->errors = true; 1541 if (get_flags(&p, &synth_opts->error_plus_flags, 1542 &synth_opts->error_minus_flags)) 1543 goto out_err; 1544 break; 1545 case 'd': 1546 synth_opts->log = true; 1547 if (get_flags(&p, &synth_opts->log_plus_flags, 1548 &synth_opts->log_minus_flags)) 1549 goto out_err; 1550 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1551 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1552 break; 1553 case 'c': 1554 synth_opts->branches = true; 1555 synth_opts->calls = true; 1556 break; 1557 case 'r': 1558 synth_opts->branches = true; 1559 synth_opts->returns = true; 1560 break; 1561 case 'G': 1562 case 'g': 1563 if (p[-1] == 'G') 1564 synth_opts->add_callchain = true; 1565 else 1566 synth_opts->callchain = true; 1567 synth_opts->callchain_sz = 1568 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1569 while (*p == ' ' || *p == ',') 1570 p += 1; 1571 if (isdigit(*p)) { 1572 unsigned int val; 1573 1574 val = strtoul(p, &endptr, 10); 1575 p = endptr; 1576 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1577 goto out_err; 1578 synth_opts->callchain_sz = val; 1579 } 1580 break; 1581 case 'L': 1582 case 'l': 1583 if (p[-1] == 'L') 1584 synth_opts->add_last_branch = true; 1585 else 1586 synth_opts->last_branch = true; 1587 synth_opts->last_branch_sz = 1588 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1589 while (*p == ' ' || *p == ',') 1590 p += 1; 1591 if (isdigit(*p)) { 1592 unsigned int val; 1593 1594 val = strtoul(p, &endptr, 10); 1595 p = endptr; 1596 if (!val || 1597 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1598 goto out_err; 1599 synth_opts->last_branch_sz = val; 1600 } 1601 break; 1602 case 's': 1603 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1604 if (p == endptr) 1605 goto out_err; 1606 p = endptr; 1607 break; 1608 case 'f': 1609 synth_opts->flc = true; 1610 break; 1611 case 'm': 1612 synth_opts->llc = true; 1613 break; 1614 case 't': 1615 synth_opts->tlb = true; 1616 break; 1617 case 'a': 1618 synth_opts->remote_access = true; 1619 break; 1620 case 'M': 1621 synth_opts->mem = true; 1622 break; 1623 case 'q': 1624 synth_opts->quick += 1; 1625 break; 1626 case 'A': 1627 synth_opts->approx_ipc = true; 1628 break; 1629 case 'Z': 1630 synth_opts->timeless_decoding = true; 1631 break; 1632 case ' ': 1633 case ',': 1634 break; 1635 default: 1636 goto out_err; 1637 } 1638 } 1639 out: 1640 if (synth_opts->instructions) { 1641 if (!period_type_set) 1642 synth_opts->period_type = 1643 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1644 if (!period_set) 1645 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1646 } 1647 1648 return 0; 1649 1650 out_err: 1651 pr_err("Bad Instruction Tracing options '%s'\n", str); 1652 return -EINVAL; 1653 } 1654 1655 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1656 { 1657 return itrace_do_parse_synth_opts(opt->value, str, unset); 1658 } 1659 1660 static const char * const auxtrace_error_type_name[] = { 1661 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1662 }; 1663 1664 static const char *auxtrace_error_name(int type) 1665 { 1666 const char *error_type_name = NULL; 1667 1668 if (type < PERF_AUXTRACE_ERROR_MAX) 1669 error_type_name = auxtrace_error_type_name[type]; 1670 if (!error_type_name) 1671 error_type_name = "unknown AUX"; 1672 return error_type_name; 1673 } 1674 1675 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1676 { 1677 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1678 unsigned long long nsecs = e->time; 1679 const char *msg = e->msg; 1680 int ret; 1681 1682 ret = fprintf(fp, " %s error type %u", 1683 auxtrace_error_name(e->type), e->type); 1684 1685 if (e->fmt && nsecs) { 1686 unsigned long secs = nsecs / NSEC_PER_SEC; 1687 1688 nsecs -= secs * NSEC_PER_SEC; 1689 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1690 } else { 1691 ret += fprintf(fp, " time 0"); 1692 } 1693 1694 if (!e->fmt) 1695 msg = (const char *)&e->time; 1696 1697 if (e->fmt >= 2 && e->machine_pid) 1698 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1699 1700 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1701 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1702 return ret; 1703 } 1704 1705 void perf_session__auxtrace_error_inc(struct perf_session *session, 1706 union perf_event *event) 1707 { 1708 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1709 1710 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1711 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1712 } 1713 1714 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1715 { 1716 int i; 1717 1718 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1719 if (!stats->nr_auxtrace_errors[i]) 1720 continue; 1721 ui__warning("%u %s errors\n", 1722 stats->nr_auxtrace_errors[i], 1723 auxtrace_error_name(i)); 1724 } 1725 } 1726 1727 int perf_event__process_auxtrace_error(struct perf_session *session, 1728 union perf_event *event) 1729 { 1730 if (auxtrace__dont_decode(session)) 1731 return 0; 1732 1733 perf_event__fprintf_auxtrace_error(event, stdout); 1734 return 0; 1735 } 1736 1737 /* 1738 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1739 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1740 * the issues caused by the below sequence on multiple CPUs: when perf tool 1741 * accesses either the load operation or the store operation for 64-bit value, 1742 * on some architectures the operation is divided into two instructions, one 1743 * is for accessing the low 32-bit value and another is for the high 32-bit; 1744 * thus these two user operations can give the kernel chances to access the 1745 * 64-bit value, and thus leads to the unexpected load values. 1746 * 1747 * kernel (64-bit) user (32-bit) 1748 * 1749 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1750 * STORE $aux_data | ,---> 1751 * FLUSH $aux_data | | LOAD ->aux_head_hi 1752 * STORE ->aux_head --|-------` smp_rmb() 1753 * } | LOAD $data 1754 * | smp_mb() 1755 * | STORE ->aux_tail_lo 1756 * `-----------> 1757 * STORE ->aux_tail_hi 1758 * 1759 * For this reason, it's impossible for the perf tool to work correctly when 1760 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1761 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1762 * the pointers can be increased monotonically, whatever the buffer size it is, 1763 * at the end the head and tail can be bigger than 4GB and carry out to the 1764 * high 32-bit. 1765 * 1766 * To mitigate the issues and improve the user experience, we can allow the 1767 * perf tool working in certain conditions and bail out with error if detect 1768 * any overflow cannot be handled. 1769 * 1770 * For reading the AUX head, it reads out the values for three times, and 1771 * compares the high 4 bytes of the values between the first time and the last 1772 * time, if there has no change for high 4 bytes injected by the kernel during 1773 * the user reading sequence, it's safe for use the second value. 1774 * 1775 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1776 * 32 bits, it means there have two store operations in user space and it cannot 1777 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1778 * the caller an overflow error has happened. 1779 */ 1780 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1781 { 1782 struct perf_event_mmap_page *pc = mm->userpg; 1783 u64 first, second, last; 1784 u64 mask = (u64)(UINT32_MAX) << 32; 1785 1786 do { 1787 first = READ_ONCE(pc->aux_head); 1788 /* Ensure all reads are done after we read the head */ 1789 smp_rmb(); 1790 second = READ_ONCE(pc->aux_head); 1791 /* Ensure all reads are done after we read the head */ 1792 smp_rmb(); 1793 last = READ_ONCE(pc->aux_head); 1794 } while ((first & mask) != (last & mask)); 1795 1796 return second; 1797 } 1798 1799 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1800 { 1801 struct perf_event_mmap_page *pc = mm->userpg; 1802 u64 mask = (u64)(UINT32_MAX) << 32; 1803 1804 if (tail & mask) 1805 return -1; 1806 1807 /* Ensure all reads are done before we write the tail out */ 1808 smp_mb(); 1809 WRITE_ONCE(pc->aux_tail, tail); 1810 return 0; 1811 } 1812 1813 static int __auxtrace_mmap__read(struct mmap *map, 1814 struct auxtrace_record *itr, 1815 struct perf_tool *tool, process_auxtrace_t fn, 1816 bool snapshot, size_t snapshot_size) 1817 { 1818 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1819 u64 head, old = mm->prev, offset, ref; 1820 unsigned char *data = mm->base; 1821 size_t size, head_off, old_off, len1, len2, padding; 1822 union perf_event ev; 1823 void *data1, *data2; 1824 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1825 1826 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1827 1828 if (snapshot && 1829 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1830 return -1; 1831 1832 if (old == head) 1833 return 0; 1834 1835 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1836 mm->idx, old, head, head - old); 1837 1838 if (mm->mask) { 1839 head_off = head & mm->mask; 1840 old_off = old & mm->mask; 1841 } else { 1842 head_off = head % mm->len; 1843 old_off = old % mm->len; 1844 } 1845 1846 if (head_off > old_off) 1847 size = head_off - old_off; 1848 else 1849 size = mm->len - (old_off - head_off); 1850 1851 if (snapshot && size > snapshot_size) 1852 size = snapshot_size; 1853 1854 ref = auxtrace_record__reference(itr); 1855 1856 if (head > old || size <= head || mm->mask) { 1857 offset = head - size; 1858 } else { 1859 /* 1860 * When the buffer size is not a power of 2, 'head' wraps at the 1861 * highest multiple of the buffer size, so we have to subtract 1862 * the remainder here. 1863 */ 1864 u64 rem = (0ULL - mm->len) % mm->len; 1865 1866 offset = head - size - rem; 1867 } 1868 1869 if (size > head_off) { 1870 len1 = size - head_off; 1871 data1 = &data[mm->len - len1]; 1872 len2 = head_off; 1873 data2 = &data[0]; 1874 } else { 1875 len1 = size; 1876 data1 = &data[head_off - len1]; 1877 len2 = 0; 1878 data2 = NULL; 1879 } 1880 1881 if (itr->alignment) { 1882 unsigned int unwanted = len1 % itr->alignment; 1883 1884 len1 -= unwanted; 1885 size -= unwanted; 1886 } 1887 1888 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1889 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1890 if (padding) 1891 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1892 1893 memset(&ev, 0, sizeof(ev)); 1894 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1895 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1896 ev.auxtrace.size = size + padding; 1897 ev.auxtrace.offset = offset; 1898 ev.auxtrace.reference = ref; 1899 ev.auxtrace.idx = mm->idx; 1900 ev.auxtrace.tid = mm->tid; 1901 ev.auxtrace.cpu = mm->cpu; 1902 1903 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1904 return -1; 1905 1906 mm->prev = head; 1907 1908 if (!snapshot) { 1909 int err; 1910 1911 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1912 if (err < 0) 1913 return err; 1914 1915 if (itr->read_finish) { 1916 err = itr->read_finish(itr, mm->idx); 1917 if (err < 0) 1918 return err; 1919 } 1920 } 1921 1922 return 1; 1923 } 1924 1925 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1926 struct perf_tool *tool, process_auxtrace_t fn) 1927 { 1928 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1929 } 1930 1931 int auxtrace_mmap__read_snapshot(struct mmap *map, 1932 struct auxtrace_record *itr, 1933 struct perf_tool *tool, process_auxtrace_t fn, 1934 size_t snapshot_size) 1935 { 1936 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1937 } 1938 1939 /** 1940 * struct auxtrace_cache - hash table to implement a cache 1941 * @hashtable: the hashtable 1942 * @sz: hashtable size (number of hlists) 1943 * @entry_size: size of an entry 1944 * @limit: limit the number of entries to this maximum, when reached the cache 1945 * is dropped and caching begins again with an empty cache 1946 * @cnt: current number of entries 1947 * @bits: hashtable size (@sz = 2^@bits) 1948 */ 1949 struct auxtrace_cache { 1950 struct hlist_head *hashtable; 1951 size_t sz; 1952 size_t entry_size; 1953 size_t limit; 1954 size_t cnt; 1955 unsigned int bits; 1956 }; 1957 1958 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1959 unsigned int limit_percent) 1960 { 1961 struct auxtrace_cache *c; 1962 struct hlist_head *ht; 1963 size_t sz, i; 1964 1965 c = zalloc(sizeof(struct auxtrace_cache)); 1966 if (!c) 1967 return NULL; 1968 1969 sz = 1UL << bits; 1970 1971 ht = calloc(sz, sizeof(struct hlist_head)); 1972 if (!ht) 1973 goto out_free; 1974 1975 for (i = 0; i < sz; i++) 1976 INIT_HLIST_HEAD(&ht[i]); 1977 1978 c->hashtable = ht; 1979 c->sz = sz; 1980 c->entry_size = entry_size; 1981 c->limit = (c->sz * limit_percent) / 100; 1982 c->bits = bits; 1983 1984 return c; 1985 1986 out_free: 1987 free(c); 1988 return NULL; 1989 } 1990 1991 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1992 { 1993 struct auxtrace_cache_entry *entry; 1994 struct hlist_node *tmp; 1995 size_t i; 1996 1997 if (!c) 1998 return; 1999 2000 for (i = 0; i < c->sz; i++) { 2001 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2002 hlist_del(&entry->hash); 2003 auxtrace_cache__free_entry(c, entry); 2004 } 2005 } 2006 2007 c->cnt = 0; 2008 } 2009 2010 void auxtrace_cache__free(struct auxtrace_cache *c) 2011 { 2012 if (!c) 2013 return; 2014 2015 auxtrace_cache__drop(c); 2016 zfree(&c->hashtable); 2017 free(c); 2018 } 2019 2020 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2021 { 2022 return malloc(c->entry_size); 2023 } 2024 2025 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2026 void *entry) 2027 { 2028 free(entry); 2029 } 2030 2031 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2032 struct auxtrace_cache_entry *entry) 2033 { 2034 if (c->limit && ++c->cnt > c->limit) 2035 auxtrace_cache__drop(c); 2036 2037 entry->key = key; 2038 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2039 2040 return 0; 2041 } 2042 2043 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2044 u32 key) 2045 { 2046 struct auxtrace_cache_entry *entry; 2047 struct hlist_head *hlist; 2048 struct hlist_node *n; 2049 2050 if (!c) 2051 return NULL; 2052 2053 hlist = &c->hashtable[hash_32(key, c->bits)]; 2054 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2055 if (entry->key == key) { 2056 hlist_del(&entry->hash); 2057 return entry; 2058 } 2059 } 2060 2061 return NULL; 2062 } 2063 2064 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2065 { 2066 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2067 2068 auxtrace_cache__free_entry(c, entry); 2069 } 2070 2071 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2072 { 2073 struct auxtrace_cache_entry *entry; 2074 struct hlist_head *hlist; 2075 2076 if (!c) 2077 return NULL; 2078 2079 hlist = &c->hashtable[hash_32(key, c->bits)]; 2080 hlist_for_each_entry(entry, hlist, hash) { 2081 if (entry->key == key) 2082 return entry; 2083 } 2084 2085 return NULL; 2086 } 2087 2088 static void addr_filter__free_str(struct addr_filter *filt) 2089 { 2090 zfree(&filt->str); 2091 filt->action = NULL; 2092 filt->sym_from = NULL; 2093 filt->sym_to = NULL; 2094 filt->filename = NULL; 2095 } 2096 2097 static struct addr_filter *addr_filter__new(void) 2098 { 2099 struct addr_filter *filt = zalloc(sizeof(*filt)); 2100 2101 if (filt) 2102 INIT_LIST_HEAD(&filt->list); 2103 2104 return filt; 2105 } 2106 2107 static void addr_filter__free(struct addr_filter *filt) 2108 { 2109 if (filt) 2110 addr_filter__free_str(filt); 2111 free(filt); 2112 } 2113 2114 static void addr_filters__add(struct addr_filters *filts, 2115 struct addr_filter *filt) 2116 { 2117 list_add_tail(&filt->list, &filts->head); 2118 filts->cnt += 1; 2119 } 2120 2121 static void addr_filters__del(struct addr_filters *filts, 2122 struct addr_filter *filt) 2123 { 2124 list_del_init(&filt->list); 2125 filts->cnt -= 1; 2126 } 2127 2128 void addr_filters__init(struct addr_filters *filts) 2129 { 2130 INIT_LIST_HEAD(&filts->head); 2131 filts->cnt = 0; 2132 } 2133 2134 void addr_filters__exit(struct addr_filters *filts) 2135 { 2136 struct addr_filter *filt, *n; 2137 2138 list_for_each_entry_safe(filt, n, &filts->head, list) { 2139 addr_filters__del(filts, filt); 2140 addr_filter__free(filt); 2141 } 2142 } 2143 2144 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2145 const char *str_delim) 2146 { 2147 *inp += strspn(*inp, " "); 2148 2149 if (isdigit(**inp)) { 2150 char *endptr; 2151 2152 if (!num) 2153 return -EINVAL; 2154 errno = 0; 2155 *num = strtoull(*inp, &endptr, 0); 2156 if (errno) 2157 return -errno; 2158 if (endptr == *inp) 2159 return -EINVAL; 2160 *inp = endptr; 2161 } else { 2162 size_t n; 2163 2164 if (!str) 2165 return -EINVAL; 2166 *inp += strspn(*inp, " "); 2167 *str = *inp; 2168 n = strcspn(*inp, str_delim); 2169 if (!n) 2170 return -EINVAL; 2171 *inp += n; 2172 if (**inp) { 2173 **inp = '\0'; 2174 *inp += 1; 2175 } 2176 } 2177 return 0; 2178 } 2179 2180 static int parse_action(struct addr_filter *filt) 2181 { 2182 if (!strcmp(filt->action, "filter")) { 2183 filt->start = true; 2184 filt->range = true; 2185 } else if (!strcmp(filt->action, "start")) { 2186 filt->start = true; 2187 } else if (!strcmp(filt->action, "stop")) { 2188 filt->start = false; 2189 } else if (!strcmp(filt->action, "tracestop")) { 2190 filt->start = false; 2191 filt->range = true; 2192 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2193 } else { 2194 return -EINVAL; 2195 } 2196 return 0; 2197 } 2198 2199 static int parse_sym_idx(char **inp, int *idx) 2200 { 2201 *idx = -1; 2202 2203 *inp += strspn(*inp, " "); 2204 2205 if (**inp != '#') 2206 return 0; 2207 2208 *inp += 1; 2209 2210 if (**inp == 'g' || **inp == 'G') { 2211 *inp += 1; 2212 *idx = 0; 2213 } else { 2214 unsigned long num; 2215 char *endptr; 2216 2217 errno = 0; 2218 num = strtoul(*inp, &endptr, 0); 2219 if (errno) 2220 return -errno; 2221 if (endptr == *inp || num > INT_MAX) 2222 return -EINVAL; 2223 *inp = endptr; 2224 *idx = num; 2225 } 2226 2227 return 0; 2228 } 2229 2230 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2231 { 2232 int err = parse_num_or_str(inp, num, str, " "); 2233 2234 if (!err && *str) 2235 err = parse_sym_idx(inp, idx); 2236 2237 return err; 2238 } 2239 2240 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2241 { 2242 char *fstr; 2243 int err; 2244 2245 filt->str = fstr = strdup(*filter_inp); 2246 if (!fstr) 2247 return -ENOMEM; 2248 2249 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2250 if (err) 2251 goto out_err; 2252 2253 err = parse_action(filt); 2254 if (err) 2255 goto out_err; 2256 2257 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2258 &filt->sym_from_idx); 2259 if (err) 2260 goto out_err; 2261 2262 fstr += strspn(fstr, " "); 2263 2264 if (*fstr == '/') { 2265 fstr += 1; 2266 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2267 &filt->sym_to_idx); 2268 if (err) 2269 goto out_err; 2270 filt->range = true; 2271 } 2272 2273 fstr += strspn(fstr, " "); 2274 2275 if (*fstr == '@') { 2276 fstr += 1; 2277 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2278 if (err) 2279 goto out_err; 2280 } 2281 2282 fstr += strspn(fstr, " ,"); 2283 2284 *filter_inp += fstr - filt->str; 2285 2286 return 0; 2287 2288 out_err: 2289 addr_filter__free_str(filt); 2290 2291 return err; 2292 } 2293 2294 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2295 const char *filter) 2296 { 2297 struct addr_filter *filt; 2298 const char *fstr = filter; 2299 int err; 2300 2301 while (*fstr) { 2302 filt = addr_filter__new(); 2303 err = parse_one_filter(filt, &fstr); 2304 if (err) { 2305 addr_filter__free(filt); 2306 addr_filters__exit(filts); 2307 return err; 2308 } 2309 addr_filters__add(filts, filt); 2310 } 2311 2312 return 0; 2313 } 2314 2315 struct sym_args { 2316 const char *name; 2317 u64 start; 2318 u64 size; 2319 int idx; 2320 int cnt; 2321 bool started; 2322 bool global; 2323 bool selected; 2324 bool duplicate; 2325 bool near; 2326 }; 2327 2328 static bool kern_sym_name_match(const char *kname, const char *name) 2329 { 2330 size_t n = strlen(name); 2331 2332 return !strcmp(kname, name) || 2333 (!strncmp(kname, name, n) && kname[n] == '\t'); 2334 } 2335 2336 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2337 { 2338 /* A function with the same name, and global or the n'th found or any */ 2339 return kallsyms__is_function(type) && 2340 kern_sym_name_match(name, args->name) && 2341 ((args->global && isupper(type)) || 2342 (args->selected && ++(args->cnt) == args->idx) || 2343 (!args->global && !args->selected)); 2344 } 2345 2346 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2347 { 2348 struct sym_args *args = arg; 2349 2350 if (args->started) { 2351 if (!args->size) 2352 args->size = start - args->start; 2353 if (args->selected) { 2354 if (args->size) 2355 return 1; 2356 } else if (kern_sym_match(args, name, type)) { 2357 args->duplicate = true; 2358 return 1; 2359 } 2360 } else if (kern_sym_match(args, name, type)) { 2361 args->started = true; 2362 args->start = start; 2363 } 2364 2365 return 0; 2366 } 2367 2368 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2369 { 2370 struct sym_args *args = arg; 2371 2372 if (kern_sym_match(args, name, type)) { 2373 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2374 ++args->cnt, start, type, name); 2375 args->near = true; 2376 } else if (args->near) { 2377 args->near = false; 2378 pr_err("\t\twhich is near\t\t%s\n", name); 2379 } 2380 2381 return 0; 2382 } 2383 2384 static int sym_not_found_error(const char *sym_name, int idx) 2385 { 2386 if (idx > 0) { 2387 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2388 idx, sym_name); 2389 } else if (!idx) { 2390 pr_err("Global symbol '%s' not found.\n", sym_name); 2391 } else { 2392 pr_err("Symbol '%s' not found.\n", sym_name); 2393 } 2394 pr_err("Note that symbols must be functions.\n"); 2395 2396 return -EINVAL; 2397 } 2398 2399 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2400 { 2401 struct sym_args args = { 2402 .name = sym_name, 2403 .idx = idx, 2404 .global = !idx, 2405 .selected = idx > 0, 2406 }; 2407 int err; 2408 2409 *start = 0; 2410 *size = 0; 2411 2412 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2413 if (err < 0) { 2414 pr_err("Failed to parse /proc/kallsyms\n"); 2415 return err; 2416 } 2417 2418 if (args.duplicate) { 2419 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2420 args.cnt = 0; 2421 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2422 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2423 sym_name); 2424 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2425 return -EINVAL; 2426 } 2427 2428 if (!args.started) { 2429 pr_err("Kernel symbol lookup: "); 2430 return sym_not_found_error(sym_name, idx); 2431 } 2432 2433 *start = args.start; 2434 *size = args.size; 2435 2436 return 0; 2437 } 2438 2439 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2440 char type, u64 start) 2441 { 2442 struct sym_args *args = arg; 2443 2444 if (!kallsyms__is_function(type)) 2445 return 0; 2446 2447 if (!args->started) { 2448 args->started = true; 2449 args->start = start; 2450 } 2451 /* Don't know exactly where the kernel ends, so we add a page */ 2452 args->size = round_up(start, page_size) + page_size - args->start; 2453 2454 return 0; 2455 } 2456 2457 static int addr_filter__entire_kernel(struct addr_filter *filt) 2458 { 2459 struct sym_args args = { .started = false }; 2460 int err; 2461 2462 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2463 if (err < 0 || !args.started) { 2464 pr_err("Failed to parse /proc/kallsyms\n"); 2465 return err; 2466 } 2467 2468 filt->addr = args.start; 2469 filt->size = args.size; 2470 2471 return 0; 2472 } 2473 2474 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2475 { 2476 if (start + size >= filt->addr) 2477 return 0; 2478 2479 if (filt->sym_from) { 2480 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2481 filt->sym_to, start, filt->sym_from, filt->addr); 2482 } else { 2483 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2484 filt->sym_to, start, filt->addr); 2485 } 2486 2487 return -EINVAL; 2488 } 2489 2490 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2491 { 2492 bool no_size = false; 2493 u64 start, size; 2494 int err; 2495 2496 if (symbol_conf.kptr_restrict) { 2497 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2498 return -EINVAL; 2499 } 2500 2501 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2502 return addr_filter__entire_kernel(filt); 2503 2504 if (filt->sym_from) { 2505 err = find_kern_sym(filt->sym_from, &start, &size, 2506 filt->sym_from_idx); 2507 if (err) 2508 return err; 2509 filt->addr = start; 2510 if (filt->range && !filt->size && !filt->sym_to) { 2511 filt->size = size; 2512 no_size = !size; 2513 } 2514 } 2515 2516 if (filt->sym_to) { 2517 err = find_kern_sym(filt->sym_to, &start, &size, 2518 filt->sym_to_idx); 2519 if (err) 2520 return err; 2521 2522 err = check_end_after_start(filt, start, size); 2523 if (err) 2524 return err; 2525 filt->size = start + size - filt->addr; 2526 no_size = !size; 2527 } 2528 2529 /* The very last symbol in kallsyms does not imply a particular size */ 2530 if (no_size) { 2531 pr_err("Cannot determine size of symbol '%s'\n", 2532 filt->sym_to ? filt->sym_to : filt->sym_from); 2533 return -EINVAL; 2534 } 2535 2536 return 0; 2537 } 2538 2539 static struct dso *load_dso(const char *name) 2540 { 2541 struct map *map; 2542 struct dso *dso; 2543 2544 map = dso__new_map(name); 2545 if (!map) 2546 return NULL; 2547 2548 if (map__load(map) < 0) 2549 pr_err("File '%s' not found or has no symbols.\n", name); 2550 2551 dso = dso__get(map->dso); 2552 2553 map__put(map); 2554 2555 return dso; 2556 } 2557 2558 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2559 int idx) 2560 { 2561 /* Same name, and global or the n'th found or any */ 2562 return !arch__compare_symbol_names(name, sym->name) && 2563 ((!idx && sym->binding == STB_GLOBAL) || 2564 (idx > 0 && ++*cnt == idx) || 2565 idx < 0); 2566 } 2567 2568 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2569 { 2570 struct symbol *sym; 2571 bool near = false; 2572 int cnt = 0; 2573 2574 pr_err("Multiple symbols with name '%s'\n", sym_name); 2575 2576 sym = dso__first_symbol(dso); 2577 while (sym) { 2578 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2579 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2580 ++cnt, sym->start, 2581 sym->binding == STB_GLOBAL ? 'g' : 2582 sym->binding == STB_LOCAL ? 'l' : 'w', 2583 sym->name); 2584 near = true; 2585 } else if (near) { 2586 near = false; 2587 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2588 } 2589 sym = dso__next_symbol(sym); 2590 } 2591 2592 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2593 sym_name); 2594 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2595 } 2596 2597 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2598 u64 *size, int idx) 2599 { 2600 struct symbol *sym; 2601 int cnt = 0; 2602 2603 *start = 0; 2604 *size = 0; 2605 2606 sym = dso__first_symbol(dso); 2607 while (sym) { 2608 if (*start) { 2609 if (!*size) 2610 *size = sym->start - *start; 2611 if (idx > 0) { 2612 if (*size) 2613 return 1; 2614 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2615 print_duplicate_syms(dso, sym_name); 2616 return -EINVAL; 2617 } 2618 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2619 *start = sym->start; 2620 *size = sym->end - sym->start; 2621 } 2622 sym = dso__next_symbol(sym); 2623 } 2624 2625 if (!*start) 2626 return sym_not_found_error(sym_name, idx); 2627 2628 return 0; 2629 } 2630 2631 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2632 { 2633 if (dso__data_file_size(dso, NULL)) { 2634 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2635 filt->filename); 2636 return -EINVAL; 2637 } 2638 2639 filt->addr = 0; 2640 filt->size = dso->data.file_size; 2641 2642 return 0; 2643 } 2644 2645 static int addr_filter__resolve_syms(struct addr_filter *filt) 2646 { 2647 u64 start, size; 2648 struct dso *dso; 2649 int err = 0; 2650 2651 if (!filt->sym_from && !filt->sym_to) 2652 return 0; 2653 2654 if (!filt->filename) 2655 return addr_filter__resolve_kernel_syms(filt); 2656 2657 dso = load_dso(filt->filename); 2658 if (!dso) { 2659 pr_err("Failed to load symbols from: %s\n", filt->filename); 2660 return -EINVAL; 2661 } 2662 2663 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2664 err = addr_filter__entire_dso(filt, dso); 2665 goto put_dso; 2666 } 2667 2668 if (filt->sym_from) { 2669 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2670 filt->sym_from_idx); 2671 if (err) 2672 goto put_dso; 2673 filt->addr = start; 2674 if (filt->range && !filt->size && !filt->sym_to) 2675 filt->size = size; 2676 } 2677 2678 if (filt->sym_to) { 2679 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2680 filt->sym_to_idx); 2681 if (err) 2682 goto put_dso; 2683 2684 err = check_end_after_start(filt, start, size); 2685 if (err) 2686 return err; 2687 2688 filt->size = start + size - filt->addr; 2689 } 2690 2691 put_dso: 2692 dso__put(dso); 2693 2694 return err; 2695 } 2696 2697 static char *addr_filter__to_str(struct addr_filter *filt) 2698 { 2699 char filename_buf[PATH_MAX]; 2700 const char *at = ""; 2701 const char *fn = ""; 2702 char *filter; 2703 int err; 2704 2705 if (filt->filename) { 2706 at = "@"; 2707 fn = realpath(filt->filename, filename_buf); 2708 if (!fn) 2709 return NULL; 2710 } 2711 2712 if (filt->range) { 2713 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2714 filt->action, filt->addr, filt->size, at, fn); 2715 } else { 2716 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2717 filt->action, filt->addr, at, fn); 2718 } 2719 2720 return err < 0 ? NULL : filter; 2721 } 2722 2723 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2724 int max_nr) 2725 { 2726 struct addr_filters filts; 2727 struct addr_filter *filt; 2728 int err; 2729 2730 addr_filters__init(&filts); 2731 2732 err = addr_filters__parse_bare_filter(&filts, filter); 2733 if (err) 2734 goto out_exit; 2735 2736 if (filts.cnt > max_nr) { 2737 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2738 filts.cnt, max_nr); 2739 err = -EINVAL; 2740 goto out_exit; 2741 } 2742 2743 list_for_each_entry(filt, &filts.head, list) { 2744 char *new_filter; 2745 2746 err = addr_filter__resolve_syms(filt); 2747 if (err) 2748 goto out_exit; 2749 2750 new_filter = addr_filter__to_str(filt); 2751 if (!new_filter) { 2752 err = -ENOMEM; 2753 goto out_exit; 2754 } 2755 2756 if (evsel__append_addr_filter(evsel, new_filter)) { 2757 err = -ENOMEM; 2758 goto out_exit; 2759 } 2760 } 2761 2762 out_exit: 2763 addr_filters__exit(&filts); 2764 2765 if (err) { 2766 pr_err("Failed to parse address filter: '%s'\n", filter); 2767 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2768 pr_err("Where multiple filters are separated by space or comma.\n"); 2769 } 2770 2771 return err; 2772 } 2773 2774 static int evsel__nr_addr_filter(struct evsel *evsel) 2775 { 2776 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2777 int nr_addr_filters = 0; 2778 2779 if (!pmu) 2780 return 0; 2781 2782 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2783 2784 return nr_addr_filters; 2785 } 2786 2787 int auxtrace_parse_filters(struct evlist *evlist) 2788 { 2789 struct evsel *evsel; 2790 char *filter; 2791 int err, max_nr; 2792 2793 evlist__for_each_entry(evlist, evsel) { 2794 filter = evsel->filter; 2795 max_nr = evsel__nr_addr_filter(evsel); 2796 if (!filter || !max_nr) 2797 continue; 2798 evsel->filter = NULL; 2799 err = parse_addr_filter(evsel, filter, max_nr); 2800 free(filter); 2801 if (err) 2802 return err; 2803 pr_debug("Address filter: %s\n", evsel->filter); 2804 } 2805 2806 return 0; 2807 } 2808 2809 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2810 struct perf_sample *sample, struct perf_tool *tool) 2811 { 2812 if (!session->auxtrace) 2813 return 0; 2814 2815 return session->auxtrace->process_event(session, event, sample, tool); 2816 } 2817 2818 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2819 struct perf_sample *sample) 2820 { 2821 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2822 auxtrace__dont_decode(session)) 2823 return; 2824 2825 session->auxtrace->dump_auxtrace_sample(session, sample); 2826 } 2827 2828 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2829 { 2830 if (!session->auxtrace) 2831 return 0; 2832 2833 return session->auxtrace->flush_events(session, tool); 2834 } 2835 2836 void auxtrace__free_events(struct perf_session *session) 2837 { 2838 if (!session->auxtrace) 2839 return; 2840 2841 return session->auxtrace->free_events(session); 2842 } 2843 2844 void auxtrace__free(struct perf_session *session) 2845 { 2846 if (!session->auxtrace) 2847 return; 2848 2849 return session->auxtrace->free(session); 2850 } 2851 2852 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2853 struct evsel *evsel) 2854 { 2855 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2856 return false; 2857 2858 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2859 } 2860